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Abstract

As a generalization of entanglement entropy, pseudo entropy is not always real. The
real-valued pseudo entropy has promising applications in holography and quantum phase
transition. We apply the notion of pseudo-Hermticity to formulate the reality condition of
pseudo entropy. We find the general form of the transition matrix for which the eigenvalues
of the reduced transition matrix possess real or complex pairs of eigenvalues. Further, we
construct a class of transition matrices for which the pseudo (Rényi) entropies are positive.
Some known examples which give real pseudo entropy in quantum field theories can be
explained in our framework. Our results offer a novel method to generate the transition
matrix with real pseudo entropy. Finally, we show the reality condition for pseudo entropy
is related to the Tomita-Takesaki modular theory for quantum field theory.
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1 Introduction

Quantum entanglement is a fundamental concept in various branches of physics[1]. Entan-

glement entropy (EE) as entanglement measure has been investigated at many aspects[2]-[9].

Specially, in the context of AdS/CFT [10][11][12], entanglement plays an important role to

understand the emergence of geometry[13][14], subregion/subregion duality[15][16] and infor-

mation paradox of black hole[17][18]. Our paper will focus on a generalization of EE, called

pseudo entropy, which may bring us a new understanding of the role of entanglement in quan-

tum field theory (QFT) or gravity.
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Assume the density matrix of the system is ρ. One could divide the system into two

subsystems A and Ā. The reduced density matrix of A is defined by ρA := trĀρ. The Von

Neumann entropy gives the EE

S(ρA) := −tr(ρA log ρA). (1)

In the framework of AdS/CFT, the EE in CFTs can be evaluated by the area of the extremal

surface in bulk, known as Ryu-Takayanagi formula[8][9]. The pseudo entropy is a generalization

of entanglement entropy by introducing the transition matrix between two pure states |ψ〉 and

|φ〉 as

T ψ|φ :=
|ψ〉〈φ|
〈φ|ψ〉 . (2)

Similarly, one could define the reduced transition matrix

T ψ|φA := trĀT ψ|φ. (3)

The pseudo Rényi entropy is defined as

S(n)(T ψ|φA ) =
1

1− n log tr[(T ψ|φA )n]. (4)

The idea of pseudo entropy was first introduced in [19], see also [20]-[25] for recent studies. In

this paper, we will also consider a generalization of the transition matrix for the mixed state,

which can be expressed as

X :=
∑
i,j

Xij|ψi〉〈φj|, (5)

where Xij are the constant coefficients, |ψi〉 and |φj〉 are pure states. One could define the

reduced transition matrix XA := trĀX and the corresponding pseudo Rényi entropy as Eq.

(4). The pseudo Rényi entropy can be evaluated using the replica method [7] in path integral

formulation in quantum field theories. According to the AdS/CFT, the path integral in CFTs

can be translated to the gravitational path integral in AdS. It is proposed in [19] that the pseudo

entropy can also be calculated by generalizing the RT formula to Euclidean time-dependent

gravity background, which is associated with the states |ψ〉 and |φ〉. Thus it depends both

on two different states. Compared with EE, this new quantity includes more information on

the relation between quantum information in CFTs and geometries in AdS. It is one of the

motivations of [19] to propose this novel quantity. Moreover, pseudo entropy can also be used

in quantum many-body systems. It can be taken as a new order parameter as EE[3][4].

However, some properties of the pseudo entropy are still unclear. In general, X and XA

are not Hermitian. The eigenvalues of XA are not necessarily real. Thus the pseudo entropy

may not be real. The most interesting class of transition matrices is the one that gives real
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pseudo entropy. The real-valued pseudo entropy can have a holographic counterpart. Further,

pseudo entropy could be a new order parameter to capture the phase transition[20][21]. The

reality condition of the pseudo entropy is still unknown. It is the central motivation of our

paper to find such conditions. The problem is closely related to non-Hermitian physics, which

has been extensively studied recently; see the review [26]. It is found the eigenvalues of the

non-Hermitian Hamiltonian can be real. The system satisfying parity-time (PT) symmetry

is one of the most important classes [27][28]. The notion of pseudo-Hermiticity is handy to

character a class of non-Hermitian matrices having real eigenvalues[29][30][31] if the matrix M

has a complete bi-orthonormal eigenbasis.

An operator M is said to be η-pseudo-Hermitian if there exists a Hermitian invertible

operator η such that

M † = ηMη−1. (6)

If η is the identity, the pseudo-Hermitian condition reduces to Hermiticity. The necessary and

sufficient conditions for the pseudo-Hermiticity of M are given by the following theorem[29].

Theorem 1: An operator M with a complete biorthonormal eigenbasis and a discrete spectrum

is pseudo-Hermitian if and only if one of the following conditions hold:

1. The eigenvalues of M are real.

2. The complex eigenvalues come in complex conjugate pairs, and the degeneracy of the

eigenvalues are same.

Remark 1: The existence of a bi-orthonormal eigenbasis in Hilbert space with respect to

M is equivalent to M being diagonalizable. It follows that, according to the Theorem 1,

when the reduced transition matrix XA is diagonalizable, the necessary and sufficient condition

of tr[(XA)n] being real is that XA is ηA-pseudo-Hermitian.4 Throughout this paper, unless

otherwise stated, we will assume that the reduced transition matrix is diagonalizable. The

pseudo Rényi entropy S(n)(XA), however, may not be real in this case. Apparently, to guarantee

the reality of S(n)(XA), one should require tr[(XA)n] > 0, which gives more constraints on ηA.

2 General form of transition matrix

Our motivation is to construct transition matrix X (5) with positive tr[(XA)n] using the notion

of pseudo-Hermiticity. But step by step, let’s first look at what constraints the real tr[(XA)n]

4When XA is non-diagonalizable, a pseudo-Hermitian XA can still give a real tr[(XA)n] , but the converse
is not necessarily true. We show an example in Appendix A where tr[(XA)n] is real, but XA is not pseudo-
Hermitian.
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conditions place on the transition matrix. If the reduced transition matrix XA(Ā) is ηA(Ā)-

pseudo-Hermitian, in general, the transition matrix X is not pseudo-Hermitian. However, we

would show that X can be written as a linear combination of pseudo-Hermitian operators.

Proposition 1: Any operator O can be decomposed as

O = O1 + iO2, (7)

where O1 and O2 are η-pseudo-Hermitian operators, η can be any Hermitian invertible operator.

Proof: For any operator O, we can divide it into two parts

O =
O + η−1O†η

2
+ i
O − η−1O†η

2i
, (8)

where η is any Hermitian invertible operator. For η being identity, (8) is the well-known result

that any operator can be decomposed as linear combinations of two Hermitian operators. Where

O1 = O+η−1O†η
2

and O2 = O−η−1O†η
2i

.

Proposition 2: XA(Ā) is ηA(Ā)-pseudo-Hermitian, if and only if the transition matrix X can

be written as

X = X1 + iX2, (9)

where X1 and X2 are both η-pseudo-Hermitian with η = ηA ⊗ ηĀ. Further, X2 satisfies

trĀ(A)X2 = 0.

Proof: Using the result of Proposition 1, let’s define the operator

X1 :=
1

2
(X + η−1X†η),

X2 :=
i

2
(η−1X†η −X). (10)

Since XA(Ā) is ηA(Ā)-pseudo-Hermitian, we have

trĀX2 =
i

2
[η−1
A (trĀX

†)ηA − trĀX] =
1

2
(η−1
A X†AηA −XA) = 0. (11)

Similarly, one could show trAX2 = 0.

If X can be written as (9) and trĀX2 = 0, we have XA = trĀX1 and

X†A = trĀX
† = trĀ(ηX1η

−1) = ηA(trĀX1)η−1
A = ηAXAη

−1
A . (12)

Thus XA is ηA-pseudo-Hermitian. Similarly, we can show XĀ is ηĀ-pseudo-Hermitian.

An obvious corollary of Proposition 2 is that a η-pseudo-Hermitian transition matrix with

η = ηA ⊗ ηĀ generates a pseudo-Hermitian reduced transition matrix. Let’s first focus on the

pure states transition matrix T ψ|φ and show how to construct the pseudo-Hermitian transition

matrices. The η-pseudo-Hermiticity gives constraints on the pure states |ψ〉 and |φ〉. We have

the following theorem.
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Theorem 2: The transition matrix T ψ|φ is η-pseudo-Hermitian , if and only if it can be written

as follows.

T ψ|φ =
|ψ〉〈ψ|η
〈ψ|η|ψ〉 . (13)

Proof: Now assume the transition matrix is η-pseudo-Hermitian, we have

η|ψ〉〈φ|η−1

〈φ|ψ〉 =
|φ〉〈ψ|
〈ψ|φ〉 . (14)

This leads to

η|ψ〉 =
〈ψ|η|ψ〉
〈ψ|φ〉 |φ〉. (15)

Taking the above formula into (2), one can show the transition matrix T ψ|φ is given by (13).

Remark 2: In the Theorem 2, the pure states |ψ〉 and |φ〉 of the transition matrix T ψ|φ

are assumed to be non-orthogonal. For the case 〈φ|ψ〉 = 0, one could consider the matrix

T ′ψ|φ = |ψ〉〈φ|. If it is η-pseudo-Hermitian, we have

η|ψ〉〈φ|η−1 = |φ〉〈ψ|. (16)

To satisfy the above condition it is necessary that 〈ψ|η|φ〉 = 〈φ|η|ψ〉 6= 0, otherwise we would

have η|ψ〉 = 0, which is impossible for |ψ〉 6= 0. Further, we have the relation

|φ〉 =
η|ψ〉
〈ψ|η|φ〉 . (17)

Therefore, the transition matrix |ψ〉〈φ| is given by

T ′ψ|φ =
|ψ〉〈ψ|η
〈ψ|η|φ〉 , (18)

for the case 〈ψ|φ〉 = 0.

Consider a linear combination of the transition matrices {T ψi|φi},

T :=
∑
i

tiT ψi|φi . (19)

Corollary 1: If {T ψi|φi} are all η-pseudo-Hermitian, T can be expressed as

T = T1 + iT2, (20)

where T1 and T2 are η-pseudo-Hermitian.

The above results can be shown by writing ti = tRi +itIi , where tRi and tIi are real and imaged

part of ti.
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Corollary 2: Any diagonalizable η-pseudo-Hermitian matrix M can be expressed as

M =
∑
i

miT ψi|φi , (21)

where mi are real, T ψi|φi are η-pseudo-Hermitian transition matrices between two pure states

|ψi〉 and |φi〉.

The proof can be found in Appendix B. As a summary of our results, we have the following

theorem.

Theorem 3: Suppose that there is a Hermitian invertible matrix η = ηA ⊗ ηĀ such that X ±
η−1X†η are diagonalizable, then XA and XĀ are ηA- and ηĀ-pseudo-Hermitian, if and only if

the transition matrix X is given by

X =
∑
i

x1
iT ψi|φi + i

∑
j

x2
jT ψj |φj , (22)

where x1
i and x2

j are real, T ψi|φi are η-pseudo-Hermitian with η = ηA⊗ ηĀ, which take the form

(13) or (18). Further, we have the constraint trA(Ā)

∑
j x

2
jT ψj |φj = 0.

Remark 3: The above theorem provides a method to check whether the reduced transition

matrices XA and XĀ are pseudo-Hermitian or not. On the other hand, it also gives us a way

to generate the transition matrices X, for which their reduced transition matrices are pseudo-

Hermitian. We will use some examples below to show the applications of our results. The

pseudo-Hermiticity of XA and XĀ only guarantees tr[(XA(Ā))
n] is real, not necessarily positive.

One should give more constraints on ηA(Ā) to make tr[(XA(Ā))
n] > 0. One special set of the

transition matrices is the one that gives XA and XĀ whose eigenvalues are a positive real

number. The following result provides a sufficient condition for this set.

Corollary 3: T ψ|φ is η-pseudo-Hermitian with η = ηA ⊗ ηĀ.

1. If ηA(Ā) is positive or negative definite operator, the eigenvalues of TA(Ā) are real.

2. If ηA is positive or negative and ηĀ is positive or negative too, then the eigenvalues of

TA(Ā) are non-negative.

Proof: In general, TA(Ā) are expected to have complex eigenvalues for arbitrary Hermitian ηA(Ā).

Let us define

T̃A :=
trĀ (|ψ〉〈ψ|ηĀ)

〈ψ|η|ψ〉 . (23)

It is obvious that T̃A is a Hermitian operator. By using (13) we have

TA = trĀT ψ|φ = T̃AηA. (24)
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Assume that ηA is a positive (negative) operator. There exists a Hermitian (skew-Hermitian)

invertible operator η
1/2
A such that (η

1/2
A )2 = ηA. Thus we have

η
1/2
A TAη

−1/2
A = η

1/2
A T̃Aη

1/2
A . (25)

TA is similar to the operator on the right hand side of the above equation, which is Hermitian.

Thus, the eigenvalues of TA are real.

If further assuming ηĀ is positive (negative) definite, we have

T̃A =
trĀ

(
η

1/2

Ā
|ψ〉〈ψ|η1/2

Ā

)
〈ψ|η|ψ〉 , (26)

where we define the Hermitian (skew-Hermitian) invertible operator η
1/2

Ā
and use the cyclic

property of partial trace. It is not hard to show η
1/2
A T̃Aη

1/2
A is always positive semi-definite, the

eigenvalues of which are non-negative. Therefore, using (25), we have proved the eigenvalues

of TA are non-negative. By the similar process one could show the eigenvalues of TĀ are all

non-negative.

Corollary 4: The transition matrix X taking the form (22) is η-pseudo-Hermitian with η =

ηA⊗ ηĀ. Assume ηA(Ā) are positive or negative definite operators. If x1
i > 0, the eigenvalues of

XA and XĀ are non-negative.

Remark 4: One could show this by using those linear combinations of positive semi-definite

operators with positive coefficients that are also positive semi-definite. One could slightly

generalize the above result. Suppose some coefficients, say the set {xa} with xa < 0, is negative.

If the transition matrix T ψa|φa satisfies trA(Ā)

∑
a T ψa|φa = 0, one could also show the eigenvalues

of XA(Ā) are non-negative.

If the eigenvalues of XA and XĀ are positive, one could show 0 < tr[(XA(Ā))
n] < 1. There-

fore, Theorem 3 provides a method to generate transition matrix X, for which the pseudo Rényi

entropy of XA(Ā) is positive. Note that the above condition is only sufficient to have pseudo

Rényi entropy been positive. In Appendix E.2 we show an example of finite dimension. ηA(Ā)

are neither positive nor negative, but the pseudo Rényi entropy is positive for integers n ≥ 2.

3 Construction of the transition matrix

According to (13) one could construct the η-pseudo-Hermitian transition matrix by fixing |ψ〉
and η. In QFTs, the Hilbert space can be built by acting operators in a vacuum. We would

like to review the algebraic view of QFTs.

Firstly, let’s start with finite-dimension examples. The Hilbert space of the total system

is denoted by H. Considering a bipartite quantum system with H = HA ⊗ HĀ. Assume the

dimension of HA and HĀ are same. Let’s denote RA(Ā) to be the algebra of operators working
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on HA(Ā). The algebra of operators for the total system is given by R = RA ⊗RĀ. Choosing

a reference state |Ψ〉, one could contruct the states in H by acting the operators in RA(Ā) on

|Ψ〉. A state |Ψ〉 is said to be cyclic for the algebra such as RA with respect to H if the set

{a|Ψ〉}, a ∈ RA is dense in H. For the finite-dimensional case one could choose the state

|Ψ〉 :=
∑
k

ck|k〉A ⊗ |k〉Ā, (27)

with ck 6= 0, |k〉A(Ā) are basis of HA(Ā). These states are entangled. We would say a state |Ψ〉
is cyclic, if for any state |ψ〉 in H there exists operators a ∈ RA or ā ∈ RĀ

|ψ〉 = a|Ψ〉 = ā|Ψ〉. (28)

It is not hard to show the above state |Ψ〉 is cyclic for the algebra RA and RĀ with respect

to H. In the framework of algebraic QFTs, one could also construct the local algebra R(A)

consisting of the local operators supported in the open region A. The Reeh-Schlieder theorem

states that the vacuum state |0〉 is cyclic for the algebra A associated with any bounded open

region A. Therefore, one could construct any pure state |ψ〉 by only using the operators in

R(A) or R(Ā). In Appendix C, we briefly review the algebraic QFTs. One could also refer to

[35] or [36].

Assume the state |Ψ〉 is cyclic for the algebra R(A), there exist a and ã such that

a|Ψ〉 = |ψ〉, ã|Ψ〉 = |φ〉. (29)

By using the result (13), the η-pseudo-Hermitian transition matrices can be expressed as

T ψ|φ =
a|Ψ〉〈Ψ|a†η
〈Ψ|a†ηa|Ψ〉 . (30)

If the state |Ψ〉 is also a cyclic state for the algebra RĀ, so there exists an operator ā ∈ RĀ

such that the pure state |φ〉 = ā|Ψ〉. It seems the transition matrix T ψ|φ ∝ a|Ψ〉〈Ψ|ā† is not

like the form (30). However, there always exists an operator a′ ∈ RA such that a′|Ψ〉 = ā|Ψ〉 by

using the cyclic property of |Ψ〉. Therefore, the transition matrix can also be written as (30).

3.1 Finite dimension examples

Consider the Hilbert space H = H1 ⊗ H2. H1 and H2 are of the same dimension d. We can

choose a reference state

|Ψ〉 :=
∑
k

ck|k〉A|k〉Ā, (31)

where
∑d

k=1 ck = 1, {|k〉A(Ā)} are the bases of HA(Ā). If all the ck are non-vanishing, |Ψ〉 is

cyclic state for the algebras RA and RĀ. For simplicity we will choose ck to be positive.
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Suppose a =
∑

ij aij|i〉A A〈j|, ηA = ηmn|m〉A A〈n| and ηĀ = η̄mn|m〉Ā Ā〈n|, where the

matrices ηmn and η̄mn are invertible and Hermitian. With this we could construct the transition

matrix T a by using the formula (30). With some calculations we obtain

T aA = N
∑
j,k

i′,j′,k′

ajk′ck′a
∗
j′i′ci′ηj′kη̄i′k′|j〉A A〈k|, (32)

where N is the normalization. We show some numerical results in the Appendix E.1.

3.2 Examples in QFTs

3.2.1 2-dimensional free scalar theory

In [19] the authors studied some examples in two-dimensional free CFT. In the Euclidean space

the coordinates are τ, x or w = x− iτ , w̄ = x+ iτ . The action is given by S =
∫
dwdw̄∂wφ∂w̄φ.

The vertex operator Vα :=: eiαφ : is primary operator with conformal dimension hα = hᾱ = α2

2
.

One could also define the momentum operator[37]

π0 :=
i

4π

∫
dx∂τφ, (33)

which satisfies the following commutation relation

[π0,Vα] = αVα. (34)

One can also show π0 is a Hermitian operator and commutes with Hamiltonian H. Consider

the operators

O = e
i
2
φ + e−

i
2
φ, Õ := e

i
2
φ + eiθe−

i
2
φ, (35)

where θ ∈ [−π, π]. Define the states

|ψ〉 = e−aHÕ(x = 0)|0〉, |φ〉 = e−a
′HO(x = 0)|0〉, (36)

where H is the Hamiltonian of CFTs, a and a′ are cutoff to avoid UV divergence. The transition

matrix is

T ψ|φ = e−aH T̃ ψ|φe−a′H , (37)

with

T̃ ψ|φ :=
(e

i
2
φ(0)e−

i
2
θ + e−

i
2
φ(0)e

i
2
θ)|0〉〈0|(e i2φ(0) + e−

i
2
φ(0))

2 cos θ
2
〈e i2φ(0)e−(a+a′)He−

i
2
φ(0)〉

, (38)

where φ(0) := φ(x = 0).
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Firstly, let us consider the special case θ = 0. In this case T̃ ψ|φ is Hermitian. Thus, the

transition matrix is η-pseudo-Hermitian with η = e−(a′−a)H . Generally, the Hamiltonian can be

written as integration with local energy density, that is

H = HA +HĀ, HA(Ā) =

∫
A(Ā)

dxT00, (39)

where T00 is the energy density operator. HA(Ā) are Hermitian operators. Therefore, we have

η = ηA ⊗ ηĀ with ηA(Ā) := e−(a′−a)HA(Ā) . ηA(Ā) is an invertible and positive definite operator.

According to Corollary 3 we conclude the eigenvalues of TA(Ā) are non-negative. The pseudo

Rényi entropy should be positive, consistent with the result in [19]. Note that in [19], the

authors only calculate the 2nd and 3rd pseudo Rényi entropy. Our results predict the pseudo

Rényi entropy should be real for all n.

One could construct other examples similar to the above example. For any local operators O
in a given QFTs, we could construct the following transition matrix

T O :=
O(~x0, ia)|0〉〈0|O†(~x0, ia

′)

〈O(~x0, ia)O†(~x0, ia′)〉
, (40)

where ~x0 denotes the space position, O(~x0, ia) := e−aHO(~x0, 0)eaH . One could show the eigen-

values of the reduced transition matrix T O
A(Ā)

should be positive, thus the pseudo Rényi entropy

should be real.

For θ 6= 0 the operator T̃ ψ|φ (38) is non-Hermitian. However, we can also show the

transition matrix T ψ|φ (37) is η-pseudo-Hermitian. By using the commutator (34) and the

Baker–Campbell–Hausdorff formula we have

eλπ0Vαe−λπ0 = eαλVα. (41)

Therefore, we can rewrite T̃ ψ|φ (38) as

T̃ ψ|φ =
(e

i
2
φ(0)e−

i
2
θ + e−

i
2
φ(0)e

i
2
θ)|0〉〈0|(e i2φ(0)e−

i
2
θ + e−

i
2
φ(0)e

i
2
θ)

2 cos θ
2
〈e i2φ(0)e−(a+a′)He−

i
2
φ(0)〉

e−iθπ0 . (42)

The transition matrix (37) can be written as

T ψ|φ =
|Φ〉〈Φ|ηΦ

〈Φ|ηΦ|Φ〉
, (43)

with

ηΦ := e−iθπ0e−(a′−a)H , |Φ〉 := e−aH(e
i
2
φ(0)e−

i
2
θ + e−

i
2
φ(0)e

i
2
θ)|0〉. (44)

Since the momentum operator π0 is Hermitian, e−iθπ0 is a unitary operator. Thus, ηΦ is not

a Hermitian operator. The transition matrix (43) seems to be different from the general form
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of the pseudo-Hermitian operator (13). But this doesn’t mean the transition matrix cannot

be pseudo-Hermitian. We show an example of a two-qubit system in Appendix.F. Here our

problem is similar to the two-qubit system. Actually, in the limit a, a′ → 0, the state (36)

is similar with the qubit system in the quasi-particle picture[19][32]. The transition matrix

(42) takes the form |Φ〉〈Φ|U with the unitary operator U := e−iπ0θ in the limit a, a′ → 0.

Motivated by the example in Appendix.F This transition matrix can be pseudo-Hermitian if

the unitary operator U and the state |Φ〉 satisfy some constraints. It is necessary that there

exists a Hermitian and invertible operator η such that Uη|Φ〉 = |Φ〉, where |Φ〉 is given by (44).

Equally, the operator η′ := Uη should satisfy the condition (97) (98) or a weaker condition

(99).

One could show the transition matrix (37) is ηe−(a′−a)H-pseudo-Hermitian if the transition

matrix (43) in the limit a, a′ → 0 is η-pseudo-Hermitian and η commutes with H. Assume the

transition matrix (43) in the limit a, a′ → 0 is η-pseudo-Hermitian, we have

ηT̃ ψ|φη−1 = T̃ ψ|φ†. (45)

By using the above result and the definition (37) one could show

(ηe−(a′−a)H))T ψ|φ(ηe−(a′−a)H))−1

= ηe−a
′H T̃ ψ|φe−aHη−1

= e−a
′H(T̃ ψ|φ)†e−aH = T ψ|φ†, (46)

where in the second step we use η commutes with H and (45).

In [19], the authors calculate the 2nd and 3rd pseudo Rényi entropy for the reduced tran-

sition matrix of (43), and it is found that they are real. It indicates the transition matrix

(43) should be pseudo-Hermitian. According to the above discussions, it is expected that there

exists an operator η′ satisfying the condition (99), or equally η′π0η
′ = −π0. A candidate for η′

is the time reflection operator Θ[33][34], which gives the transformation Θφ(τ, x)Θ = φ(−τ, x)

and Θ∂τφ(τ)Θ = −∂τφ(τ). Thus we have Θπ0Θ = −π0. Also, note that Θ commutes with H.

3.2.2 2 dimensional rational CFTs

Another example is the time evolution of pseudo Rényi entropy in 2-dimensional CFTs con-

sidered in [25]. The subsystem A is taken to be [−L,L] (L > 0)5. Consider the transition

matrix

T O :=
O(x1, t1)|0〉〈0|O(x2, t2)

〈0|O(x2, t2)O(x1.t1)|0〉 , (47)

5Note that A is chosen to be [0, L] in [25], which, according to the spatial translation symmetry, does not
affect the final conclusion.
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where O is assumed to be Hermitian primary operator. Consider the case with t1 = t2 = −t
and x1 = −x2. We find for some rational CFT models tr[(T OA )2] is always real [25]. Assume

the Hamiltonian H commutes with the parity P. The transition matrix can be written as

T O =
O(x1,−t)|0〉〈0|O†(x1,−t)P
〈0|O†(x1,−t)PO(x1,−t)|0〉

. (48)

It shows that T O is P-pseudo-Hermitian. Since the subsystem A and Ā are invariant under

parity P, we could decompose P = PA ⊗ PĀ, where PA(Ā) only works on A(Ā). We can

schematically write |φ(x)〉 (x ∈ A) and |φ(x̄)〉 (x̄ ∈ Ā) as the basis for subsystem A and Ā.

The action of PA(Ā) is understood as PA|φ(x)〉 = |φ(−x)〉. By definition −x ∈ A if x ∈ A.

PA maps the basis of A into itself. The parity operators are invertible. Therefore, T O
A(Ā)

is

PA(Ā)-pseudo-Hermitian. This leads to tr[(T O
A(Ā)

)2] is real, which is consistent with the results

in [25]. Again, our results in this paper predict tr[(T O
A(Ā)

)n] should be real for any positive

integer n ≥ 2.

3.2.3 More general examples

Consider a QFT living in d-dimensional Minkowski spacetimes. The metric is ds2 = −dt2 +

dx2 + d~y2, where ~y are coordinates of (d− 2)-dimensional Euclidean space. Let the subsystem

A be the half-space x < 0. Its complement Ā is x > 0. The local algebra RA is given by

operators located at the left Rindler wedge WA := {(t, x, ~y)|x < −|t|}, which is the causal

domain of A. The operators can be constructed by the smeared field
∫
ddxf(xµ)φ(xµ) with

the functions f supported in WA. Similarly, the algebra RĀ is associated with the right wedge

WĀ := {(t, x, ~y)|x > |t|}.
The vacuum state |0〉 is cyclic for the algebra RA(Ā). There exists an antiunitary operator

JΩ that exchanges the algebras WA and WĀ according to the Tomita-Takesaki theory. We

briefly review the Tomita-Takesaki theory and its application in algebraic QFTs in Appendix

C. JΩ is called modular conjugation. For a given Hermitian operator φ(t, x, ~y), JΩ acts as

JΩφ(t, x, ~y)JΩ = φ(−t,−x, ~y). (49)

It has been proved that JΩ = CRT, where C and T are charge and time reversal operators, and

R is the reflection x→ −x while keeping other coordinates invariant[35][38]. For any operator

OA ∈ RA we can define the operator OĀ := JΩOAJΩ ∈ RĀ. For any pure state |ψ〉 there exists

OA ∈ RA such that |ψ〉 can be approximated by OA|0〉 by the cyclic property of the vacuum

state |0〉 for the algebra RA. Define the transition matrix

T OA =
OA|0〉〈0|OĀ
〈0|OAOĀ|0〉

, (50)

where OĀ = JΩOAJΩ. It can be shown the spectra of T OAA are non-negative. Thus the pseudo

Rényi entropy is positive. To show this result, we need to use the modular theory of QFTs. By
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using the modular theory

T OA =
OA|0〉〈0|O†A∆

1/2
Ω

〈0|O†A∆
1/2
Ω OA|0〉

, (51)

where ∆Ω is the modular operator, a positive Hermitian operator. T OA takes the same form as

(30). Thus it is ∆
1/2
Ω -pseudo-Hermitian. Further, ∆

1/2
Ω = e−πKA ⊗ eπKĀ . By using Corollary 3

and the fact that e−πKA = e−πKA/2e−πKA/2 and eπKĀ = eπKĀ/2eπKĀ/2 we conclude the eigenvalues

of T OAA are all positive. In Appendix D we show more general examples with positive pseudo

Rényi entropy.

One could check the above result by evaluating the pseudo Rényi entropy by QFT methods.

To move on, let’s focus on 2D CFTs.6 Consider the transition matrix (47). If x1 = −x2 and

t1 = −t2, JΩO(x1, t1)JΩ = O(x2, t2), thus the pseudo Rényi entropy is expected to be real in

this case. The results are shown in Figure 1 for models in rational CFTs.
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Figure 1: The excess of the 2nd pseudo Rényi entropy ∆S
(2)
A (∆S

(2)
A ≡ S

(2)
A − S

(2)
A;vac, where S

(2)
A;vac

denotes the 2nd Rényi entropy of A when the total system is in the vacuum) of the transition matrix

TA ≡ trĀ
O(x,t)|0〉〈0|O(−x,−t)
〈0|O(−x,−t)O(x,t)|0〉 in the minimal models M(p, p′). We study the case of O = φ(2,2) (dot-

dashed line) and O = φ(2,1) (solid line), respectively. One novel feature is that the 2nd pseudo entropy
is real and time independent.

4 Discussion

In this paper, we apply the notion of pseudo-Hermitian to construct the reality condition of

pseudo entropy since the real-valued pseudo entropy has robust potential application to study

holograph and quantum phase transition. Our results provide a useful method to diagnose

whether the pseudo Rényi entropies for a given transition matrix X are real-valued or not

without evaluating the eigenvalues or pseudo Rényi entropies of all the index n. Especially, in

QFT this is a very practical method as we have shown in section.3.2. The operator η seems to

be associated with the symmetry of the states |ψ〉, |φ〉 and the subsystem A. Moreover, one

6In Appendix G, we give an overview of the replica method to compute the nth pseudo Rényi entropy in 2D
CFTs.
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may use the results in this paper as the guidance to construct the transition matrix X with

real-valued pseudo entropy.

The notion of pseudo-Hermiticity originates from non-Hermitian matrices, which are diag-

onalizable and own a complete bi-orthonormal eigenbasis. We mainly focus on the pseudo-

Hermiticity of the reduced transition matrix to construct the real-valued pseudo entropy. If

the transition matrix is not diagonalizable, the results in our paper are unavailable. It would

be interesting to find the condition for reality by writing the matrix into Jordan form [26].

As a generalization of EE, the pseudo entropy has a more complicated structure. Thus it

includes more information on the underlying theory, which is still unknown. As shown in the

examples of QFTs, the reality condition is closely related to the modular theory. For some par-

ticular examples of CFTs, the pseudo entropy depends on the conformal blocks in Minkowski

spacetime. It would be an interesting future problem to explore the relation between the reality

of pseudo entropy and the structure of conformal blocks.
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A Non-pseudo-Hermitian XA with real tr[(XA)
n]

Let us consider a 4 qubits system S (2 qubits each for A and Ā) and a transition matrix

X = |ψ〉〈φ|
〈φ|ψ〉 acting on its Hilbert space HS ≡ HA⊗HĀ, where |ψ〉 and |φ〉 are two non-orthogonal

quantum states living in HS ,

|ψ〉 =
1

2
|00〉A|00〉Ā +

1

2
|01〉A|01〉Ā +

1

2
|10〉A|10〉Ā +

1

2
|11〉A|11〉Ā,

|ψ⊥〉 =
i

4
|00〉A|00〉Ā +

i

4
|01〉A|01〉Ā −

i

4
|10〉A|10〉Ā −

i

4
|11〉A|11〉Ā +

√
3

2
|11〉A|10〉Ā,

|φ〉 ≡
√

2

2
|ψ〉+

√
2

2
|ψ⊥〉, (〈φ|φ〉 = 〈ψ|ψ〉 = 〈ψ⊥|ψ⊥〉 = 1, 〈ψ|ψ⊥〉 = 0). (52)

14



The reduced transition matrix of the subsystem A, obtained by tracing out the d.o.f. of Ā, is

given by

XA ≡ trĀX =
(1

4
− i

8

)(
|00〉A A〈 00|+ |01〉A A〈 01|

)
+
(1

4
+
i

8

)(
|10〉A A〈 10|+ |11〉A A〈 11|

)
+

√
3

4
|01〉〈11|.

(53)

Building on (53), it’s more useful to write down the matrix formulation of XA,

XA =


1
4
− i

8
1
4
− i

8
1
4

+ i
8

√
3

4
1
4

+ i
8

 , (54)

which is an upper triangular 4 × 4 matrix and cannot be diagonalized. It can be found from

(54) that the eigenvalues of XA consist of two complex conjugate pairs, which renders tr[(XA)n]

real. On the other hand, we have

X†A =


1
4

+ i
8

1
4

+ i
8

1
4
− i

8√
3

4
1
4
− i

8

 . (55)

Although X†A has the same eigenvalues as XA, they are not similar. This is because they have

different Jordan standard forms, which is read from the fact that the Jordan blocks of the same

eigenvalue of two matrices are different. Therefore, we know that XA is non-pseudo-Hermitian.

B A proof of Corollary 2

The result of Corollary 2 follows from the spectral decomposition of pseudo-Hermitian matrices.

For any diagonalizable η-pseudo-Hermitian matrix M , we can write the spectral decomposition

of M as

M =
∑
i

λ0,i|ψ0,i〉〈φ0,i|+
∑
j

(
λ+,j|ψ+,j〉〈φ+,j|+ λ−,j|ψ−,j〉〈φ−,j|

)
, (56)

where λ, |ψ〉 and 〈φ| represent the eigenvalue, right eigenvector, and left eigenvector of M ,

respectively. 7 Since we can always choose the bi-orthonormal eigenbasis such that

|φ0,i〉 = η|ψ0,i〉, |φ±,j〉 = η|ψ∓,j〉 (57)

7We use the subscript 0 to stand for real eigenvalues and the corresponding basis eigenvectors and the
subscript± to stand for the complex eigenvalues with± imaginary part and the corresponding basis eigenvectors.
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hold [29], the spectrum decomposition becomes

M =
∑
i

λ0,i|ψ0,i〉〈ψ0,i|η

+
∑
j

(λ+,j|ψ+,j〉〈ψ−,j|η + λ−,j|ψ−,j〉〈ψ+,j|η)

=
∑
i

λ0,i|ψ0,i〉〈ψ0,i|η

+
∑
j

(λ+,j|ψ+,j〉〈ψ−,j|η + λ−,j|ψ−,j〉〈ψ+,j|η)

=
∑
i

λ0,i|ψ0,i〉〈ψ0,i|η

+
∑
j

λR+,j
[
(|ψ+,j〉+ |ψ−,j〉)(〈ψ−,j|+ 〈ψ+,j|)η

− |ψ−,j〉〈ψ−,j|η − |ψ+,j〉〈ψ+,j|η
]

+
∑
j

λI+,j
[
(|ψ+,j〉 − i|ψ−,j〉)(〈ψ+,j|+ i〈ψ−,j|)η

− |ψ−,j〉〈ψ−,j|η − |ψ+,j〉〈ψ+,j|η
]
, (58)

where λR+,j and λI+,j are the real and imaged part of λ+,j. Note that every term in the summation

is η-pseudo-Hermitian.

C Brief review of modular theory in QFTs

For any given open subsystem A in spacetimes, the local algebraRA consists of all the operators

supported in A. The algebra can also be associated with the domain of dependence of A,

denoted by D(A). The reason is that the operators located in D(A) can be determined by the

ones in A according to the dynamical time evolution of the theory. If A′ is another subsystem

that is spacelike with A, we expect the operators in A′ would commute with the ones in A,

that is [RA,RA′ ] = 0.

Denote the algebra associated with the whole spacetime as R. The full Hilbert space H0

could be constructed by acting the operators in R on the vacuum state |0〉. The Reeh-Schlieder

theorem says that the set {a|0〉, a ∈ RA} is also dense in H0. For any given state |ψ〉, the

theorem means that there exist operator a ∈ RA such that a|0〉 can be arbitrarily close to |ψ〉.
Thus we could construct the transition matrix T ψ|φ only by using the operators located in a

subsystem. The above results can also be generalized to any cyclic state |Ψ〉.
The Tomita operator SΨ for the state |Ψ〉 is antilinear and satisfies

SΨa|Ψ〉 = a†|Ψ〉, (59)

for any a ∈ RA. By definition it is obvious that S2
Ψ = 1. SΨ has a unique polar decomposition

SΨ = JΨ∆
1/2
Ψ , (60)
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where JΨ is antiunitary, ∆
1/2
Ψ is a positive Hermitian operator. JΨ is called the modular

conjugation satisfying J2
Ψ = 1 and J†Ψ = JΨ. ∆Ψ is the modular operator associated with RA

and |Ψ〉. Similarly, one could define the modular operator S̄Ψ associated with RĀ. By using

S2
Ψ = 1 we have

JΨ∆
1/2
Ψ JΨ = ∆

−1/2
Ψ . (61)

It can be shown that

S̄Ψ = S†Ψ = ∆
1/2
Ψ JΨ = JΨ∆−1/2. (62)

Consider the d-dimensional Minkowski spacetime. The metric is ds2 = −dt2 + dx2 + d~y2,

where ~y are coordinates of (d−2)-dimensional Euclidean space. Let the subsystem A be x > 0.

The domain of dependence of A is known as the Rindler wedge WA. For the vacuum state |0〉
the modular conjugation JΩ is given by

JΩ = CRT, (63)

which is first proved by Bisognano and Wichmann [38]. The modular operator ∆Ω can be

formly written as

∆Ω = ρA ⊗ ρ−1
Ā
, (64)

where ρA := e−2πKA and ρĀ := e−2πKĀ are the reduced density matrices of A and Ā. KA and

KĀ are known as the modular Hamiltonian of A and Ā. The density matrices are positive

operators. For any positive function f(x), the operators f(ρA) or f(ρĀ) are also positive. For

example, one could define the operator ρ
1/2
A = e−πKA , ρ

1/4
A = e−πKA/2. It is obvious the modular

operator ∆Ω = e−2π(KA−KĀ) is a positive Hermitian operator.

For the Rindler wedge KA and KĀ are associated with the Lorentz boost generators

KA =

∫
t=0,x≥0

dxdd−2yxT00,

KĀ = −
∫
t=0,x≤0

dxdd−2yxT00. (65)

For any Hermitian operator O(t, x, ~y), according to the definition of SΩ we have

SΩO(t, x, ~y)|0〉 = O(t, x, ~y)|0〉, (66)

which leads to

∆
1/2
Ω O(t, x, ~y)|0〉 = JΩO(t, x, ~y)|0〉|0〉 = O(−t,−x, ~y)|0〉,

(67)

where we use the fact J2
Ω = 1 and JΩ|0〉 = |0〉.
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D Details of the example in QFTs

The transition matrix (50) is related to the operators OA and OĀ. In Figure 2, we show the

positions of the two operators.

Figure 2: Illustration of the operators OA and OĀ.

Taking OĀ into (50) we obtain

T OA =
OA|0〉〈0|OAJΩ

〈0|OAJΩOA|0〉
. (68)

By the definition of Tomita operator we have

SΩO†A|0〉 = JΩ∆
1/2
Ω OA|0〉

= JΩ∆
1/2
Ω JΩJΩO†A|0〉

= ∆
−1/2
Ω JΩO†A|0〉, (69)

where in the second step we use the fact J2
Ω = 1,in the third step we use (61). Therefore, we

have

JΩO†A|0〉 = ∆
1/2
Ω OA|0〉. (70)

The transition matrix (68) is reduced to

T OA =
OA|0〉〈0|O†A∆

1/2
Ω

〈0|O†A∆
1/2
Ω OA|0〉

. (71)

In the main text, we only discuss the special case (47), for which the eigenvalues of T OAA are

positive real. More generally, one could choose OA =
∑

j CjOj(x1, t1), where Oj are Hermitian

operators (not necessarily be primary), Cj are arbitrary constants. By OĀ = JΩOĀJΩ we have

OĀ =
∑

j C
∗
jOj(−x1,−t1). It is expected that the pseudo Rényi entropy for the transition

matrix associated with these operators will also be real.

The result of Theorem 2 can be used to construct the η-pseudo-Hermitian transition matrix

in QFTs. Assume |Ψ〉 is a cyclic state for the algebra RA. The general η-pseudo-Hermitian
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transition matrices in QFTs are

T OA =
OA|Ψ〉〈Ψ|O†Aη
〈Ψ|O†AηOA|Ψ〉

. (72)

If η is taken to be identity, the transition matrix reduces to the Hermitian case. By using (59)

one could rewrite the above formula as

T OA =
OA|Ψ〉〈Ψ|OAS†Ψη
〈Ψ|O†AηOA|Ψ〉

=
OA|Ψ〉〈Ψ|OAJΩ∆

−1/2
Ψ η

〈Ψ|O†AηOA|Ψ〉
(73)

This paper only focuses on the vacuum state |0〉. Our example (68) is a special case η = ∆
1/2
Ω .

In general, one could choose η = ηA ⊗ ηĀ, where ηA and ηĀ are invertible positive operators.

Using Corollary 3, one could show that the pseudo Rényi entropy is also real in this case.

E Finite dimension example

Assume the Hilbert space H = HA⊗HĀ, the dimension of HA(Ā) is d. (30) provides us a way to

generate the η-pseudo-Hermitian transition matrices with η = ηA ⊗ ηĀ. One could arbitrarily

choose the reference state |Ψ〉, i.e., the coefficients ck and the operators a, ηA(Ā). With a given

basis |k〉A(Ā), we have the expansion

a =
∑
ij

aij|i〉A A〈j|,

ηA =
∑
m,n

ηmn|m〉A A〈n|,

ηĀ =
∑
m,n

η̄mn|m〉Ā Ā〈n|. (74)

The matrices ηmn and η̄mn should be Hermitian and invertible.

In finite dimension, it is easy to show the Reeh-Schlieder theorem. Any state |ψ〉 can be

constructed by only local operations on A or Ā. The reference state |Ψ〉 :=
∑

k ck|k〉A⊗ |k〉Ā is

cyclic if the coefficients ck are all non-vanishing. For any given state |ψ〉, we can expand it as

|ψ〉 =
∑
i,j

ψij|i〉A ⊗ |j〉Ā. (75)

It is enough to show that the basis |i〉A ⊗ |j〉Ā of H can be obtained only by local operations

on |Ψ〉. One could achieve this by acting an operator |i〉A A〈j| on |Ψ〉.
Taking (74) into (30) one could obtain the transition matrix T a. (32) can be obtained by

partial trace trĀT a :=
∑

k Ā〈k|T a|k〉Ā. One could generate random matrices aij, ηmn and η̄mn
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by software, e.g., Mathematica. Then we can construct the matrices T aA (32) and evaluate the

eigenvalues of them. According to Theorem 3 the transition matrices by linear combinations

of T a can also have positive eigenvalues.

We have the following three different cases.

Case I : ηA(Ā) is Hermitian and invertible matrices.

Generally, in this case, the eigenvalues are expected to come in complex conjugate pairs or be

real.

Case II : ηA(Ā) = OA(Ā)O†A(Ā)
. OA(Ā) is an arbitrary invertible operator.

The eigenvalues, in this case, are expected to be real and positive. By considering the normal-

ization of T aA the eigenvalues should belong to [0, 1]. Thus the pseudo Rényi entropy should be

real.

Case III : The linear combinations of T aI ,

T :=
∑
I

xIT a
I

, (76)

where xI are positive numbers satisfying
∑

I xI = 1, T aI is ηA⊗ηĀ-pseudo-Hermitian transition

matrices with ηA(Ā) = OA(Ā)O†A(Ā)
. In this case, the eigenvalues of TA are positive.

E.1 Numerical result with d = 3

We show examples for these three cases in the main text, obtained by randomly choosing the

matrices. In the following, we would like to show an example with d = 3.

Case I. The matrices aij, ηmn and η̄mn are randomly generated by Mathematica,

ηA =

(
−12.7085 24.1113 + 2.50006i 12.752 − 7.64134i

24.1113 − 2.50006i −34.9796 16.159 + 12.3798i
12.752 + 7.64134i 16.159 − 12.3798i 6.06277

)

ηĀ =

(
−18.2979 −5.89479− 25.5118i 5.61273 + 21.1508i

−5.89479 + 25.5118i −32.9428 12.504 − 10.931i
5.61273 − 21.1508i 12.504 + 10.931i −25.1785

)

a =

(
17.5055 − 19.3962i 8.29301 + 13.4073i −13.3458 + 5.79992i
−2.34212 + 12.1545i −19.0161 + 8.64625i 17.1027 + 20.3801i
−5.46605− 24.0534i −0.924333 + 21.9112i −19.6201 + 22.0798i

)

The reference state |Ψ〉 = 1√
3

∑3
k=1 |k〉A|k〉Ā. One could evaluate the reduced transition matrix

T aA by using (32), it is given by

T aA =

(
1.06475 + 0.82173i −2.58944− 1.89593i −0.414598 + 1.47507i
5.81552 + 1.36514i −2.51542− 3.45208i 3.90801 + 1.03913i

4.96095 + 0.0703348i −5.61733− 0.740827i 2.45067 + 2.63035i

)

It is obvious that T aA is non-Hermitian. The eigenvalues of it are

λ1 = 0.7053 − 6.27836i, λ2 = 0.7053 + 6.27836i, λ3 = −0.410601. (77)
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The pseudo Rényi entropy may not be real in this case. e.g., S(2)(T aA ) = −4.3525 + 3.14159i.

Case III. We take x1 = 0.932007, x2 = 0.0679932. ηmn, η̄mn and aij are given by

ηA =

(
2241.0 −1009.73 + 735.915i 286.517 + 572.134i

−1009.73− 735.915i 1007.3 58.5703 − 617.441i
286.517 − 572.134i 58.5703 + 617.441i 1399.02

)

ηĀ =

(
967.287 −307.565− 126.497i −129.349 + 149.126i

−307.565 + 126.497i 1336.39 209.52 + 1520.81i
−129.349− 149.126i 209.52 − 1520.81i 2269.12

)

a1 =

(
−12.9325 + 0.0289028i −7.24499 + 4.48426i −14.4313 + 15.8304i
−4.09857− 26.938i −14.2456− 2.55161i 10.7265 − 5.71364i
4.30869 + 11.8775i −19.1378 + 9.46391i 1.32846 + 4.07899i

)

a2 =

(
−9.48366 + 25.7059i −6.14031 + 23.5242i −13.0021− 20.8661i
−3.87512 + 5.57805i 4.9788 − 6.5475i 1.21723 + 7.54634i
−10.6898 + 13.5806i 11.563 − 1.35289i −14.61 + 21.6139i

)

The reference state |Ψ〉 = 1√
3

∑3
k=1 |k〉A|k〉Ā. We have the reduced transition matrix TA :=

x1T
a1

A + x2T
a2

A

TA =

(
0.530706 − 0.0443678i −0.249067 + 0.220004i 0.16275 + 0.257015i
−0.0842444− 0.152933i 0.129589 + 0.0451508i 0.0460981 − 0.13474i
0.213683 − 0.402251i 0.0403375 + 0.312084i 0.339705 − 0.000782992i

)
(78)

The eigenvalues are

λ1 = 0.938253, λ2 = 0.0533309, λ3 = 0.00841637. (79)

The pseudo Rényi entropy is real. The result is shown in Figure 3.
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Figure 3: The plot of S(n)(TA).

E.2 Example: S(n)(TA) > 0, ηA is not positive definite

Corollary 3 only gives a sufficient condition for S(n)(TA) > 0. In this section, we would like

to use a numerical example to show it is not a necessary condition. We will focus on a three-
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dimensional example. Choosing the matrices

ηA =

(
13.9359 −17.8554 + 8.22163i 0.740751 − 0.860494i

−17.8554− 8.22163i 11.7561 3.87722 + 0.527719i
0.740751 + 0.860494i 3.87722 − 0.527719i 4.32501

)
,

ηĀ =

(
2.68826 + 0.i −2.76297 + 6.09204i −13.4254− 5.89942i

−2.76297− 6.09204i 23.4288 + 0.i 2.24652 − 1.6307i
−13.4254 + 5.89942i 2.24652 + 1.6307i 6.07729 + 0.i

)
,

a =

(
2.79442 + 26.2305i 14.4042 − 1.54735i 1.27623 + 2.29185i
17.0343 + 21.4595i 6.13678 − 4.72818i −6.82378 + 24.1677i
−6.55401 + 2.08772i −6.0073− 29.8274i −7.59207− 24.0165i

)
. (80)

The reference state |Ψ〉 = 1√
3

∑3
k=1 |k〉A|k〉Ā. The eigenvalues of ηA and ηĀ are

ηA → {32.6819,−7.87014, 5.20516},
ηĀ → {26.3549, 17.3493,−11.5099}. (81)

Thus they are not positive operators. The eigenvalues of TA are

λ1 = 0.849706, λ2 = 0.075147− 0.106401i, λ3 = 0.075147 + 0.106401i. (82)

The pseudo Rényi entropy is positive in this example as shown in Figure 4
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Figure 4: The plot of S(n)(TA) and tr[(TA)n]. The upper left plot shows the imaginary part of
S(n)(TA), which are vanishing. The upper right plot shows S(n)(TA). The lower plot shows tr[(TA)n],
which are in the region (0, 1).
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E.3 Example: S(n)(TA) < 0

In this section we show an example for which S(n)(TA) < 0. Choosing the matrices

ηA =

(
13.9359 −17.8554 + 8.22163i 0.740751 − 0.860494i

−17.8554− 8.22163i 11.7561 3.87722 + 0.527719i
0.740751 + 0.860494i 3.87722 − 0.527719i 4.32501

)
,

ηĀ =

(
2.68826 −2.76297 + 6.09204i −13.4254− 5.89942i

−2.76297− 6.09204i 23.4288 2.24652 − 1.6307i
−13.4254 + 5.89942i 2.24652 + 1.6307i 6.07729

)
,

a =

(
2.79442 + 26.2305i 14.4042 − 1.54735i 1.27623 + 2.29185i
17.0343 + 21.4595i 6.13678 − 4.72818i −6.82378 + 24.1677i
−6.55401 + 2.08772i −6.0073− 29.8274i −7.59207− 24.0165i

)
. (83)

The reference state |Ψ〉 = 1√
3

∑3
k=1 |k〉A|k〉Ā. The eigenvalues of ηA, ηĀ and TA are given by

ηA → {85.7965,−45.7377,−0.637431},
ηĀ → {−51.9884,−40.48, 28.8633},
TA → {1.37237,−0.368265,−0.00410468}. (84)

The pseudo Rényi entropy is negative in this example. The result is shown in Figure 5.
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Figure 5: The plot of S(n)(TA) and tr[(TA)n]. The upper left plot shows the imaginary part of
S(n)(TA), which are vanishing. The upper right plot shows S(n)(TA), which are negative. The lower
plot shows tr[(TA)n].

E.4 Example with d = 2

Let the reference state be |Ψ〉 = 1√
2
(|0〉A|0〉Ā + |1〉A|1〉Ā). Let the operators ηA and ηĀ be

diagonal, a be arbitrary. They are given by

a =

(
a11 a12

a21 a22

)
, η =

(
η1 0
0 η2

)
, ηĀ =

(
η̄1 0
0 η̄2

)
. (85)
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Assume ηA and ηĀ to be positive, thus η1(2) > 0, η̄1(2) > 0. One could construct the transition

matrix T a with these operators. According to Corollary 3 we know the eigenvalues of T aA are

positive. With some calculations, we have

T aA =

( |a11|2η1η̄1+|a12|2η1η̄2

|a11|2η1η̄1+|a12|2η1η̄2+|a21|2η̄1η2+|a22|2η2η̄2

a11a∗21η2η̄1+a12a∗22η2η̄2

|a11|2η1η̄1+|a12|2η1η̄2+|a21|2η̄1η2+|a22|2η2η̄2
a∗11a21η1η̄1+a∗12a22η1η̄2

|a11|2η1η̄1+|a12|2η1η̄2+|a21|2η̄1η2+|a22|2η2η̄2

|a21|2η̄1η2+|a22|2η2η̄2

|a11|2η1η̄1+|a12|2η1η̄2+|a21|2η̄1η2+|a22|2η2η̄2

)
. (86)

The pseudo Rényi entropy of the 2-qubit system is studied in [19]. They claim the eigenvalues

of T aA are positive if and only if 0 ≤ det[T aA ] ≤ 1/4. With some calculations, we have

det[T aA ] =
|a12a21 − a11a22|2η1η̄1η2η̄2

(|a11|2η1η̄1 + |a12|2η1η̄2 + |a21|2η̄1η2 + |a22|2η2η̄2)2

≤ |a12a21 − a11a22|2η1η̄1η2η̄2

(2|a11||a22|
√
η1η̄1η2η̄2 + 2|a12||a21|

√
η1η̄1η2η̄2)2

≤ 1

4
. (87)

The above result can be generalized to arbitrary positive η̃A and η̃Ā. Since they are Hermitian

operators, there exists unitary operator UA and UĀ such that

η̃A = UAηAU
†
A, η̃Ā = UĀηĀU

†
Ā
, (88)

where ηA and ηĀ are digonal. The transition matrix T a with a given reference state |Ψ′〉 is

given by

T a ∝ a|Ψ′〉〈Ψ′|a†UAηAU †AUĀηĀU †Ā. (89)

Taking partial trace we have

T aA = trĀT a ∝ a(trĀU
†
Ā
|Ψ′〉〈Ψ′|UĀηĀ)a†UAηAU

†
A. (90)

It is always possible to make the operator trĀU
†
Ā
|Ψ′〉〈Ψ′|UĀηĀ = trĀ|Ψ〉〈Ψ|ηĀ by choosing

suitable |Ψ′〉. With this choice one can show det[T aA ] is equal to (87). Therefore, the transition

matrix T aA having positive eigenvalues satisfies that det[T aA ] ≤ 1/4, which is consistent with the

result in [19].

F Details of the example of free scalar with θ 6= 0

In the main text we discuss the transition matrix (37), which can be written as the form

T ψ|φ ∝ |Φ〉〈Φ|U, (91)

where U is a unitary operator, it seems the above transition matrix is not like the general

form (13) for the pure pseudo-Hermitian transition matrix. In this section, we will show the

transition matrix (91) can be pseudo-Hermitian for some particular unitary operator U and
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pure state |Φ〉.
Let’s start with two-qubit example in [19] with

|ψ〉 =
1√
2

(|00〉+ eiθ|11〉), |φ〉 =
1√
2

(|00〉+ |11〉), (92)

where we label the states |i〉A|j〉Ā (i, j = 0, 1) as |ij〉. The transition matrix T ψ|φ is given by

T ψ|φ =
1

2 cos θ
2

|Φ〉〈Φ|U, (93)

where we define the state |Φ〉 = e−
i
2
θ|00〉+ e

i
2
θ|11〉 and the unitary operator

U = e−
i
2
θ|00〉〈00|+ e

i
2
θ|11〉〈11 + |01〉〈10|+ |10〉〈01|. (94)

In fact, we can also show it is η-pseudo-Hermitian with

η := e−
i
2
θ|00〉〈11|+ |01〉〈10|+ |10〉〈01|+ e

i
2
θ|11〉〈00|. (95)

To satisfy the pseudo Hermitian condition we should require

η|Φ〉〈Φ|Uη−1 = U †|Φ〉〈Φ|. (96)

Define the operator η′ := Uη. This condition is given by

η′|Φ〉 = |Φ〉, 〈Φ|(η′−1)† = 〈Φ|. (97)

which can be transformed to the operator relation

η′ = η′−1 + αPΦ
⊥ , (98)

where α is some constant, PΦ
⊥ satisfies the condition PΦ

⊥ |Φ〉 = 0. One special case is taking

α = 0. One would have the following relations:

(η′)2 = 1, η′ = (η′)−1. (99)

One could check the above two qubits example satisfies the constraints (97) and (99). For

the example of free scalar theory with θ 6= 0, one could show the transition matrix is pseudo-

Hermitian by proving the existence of the operator η′ which satisfies the conditions (97) (98)

or (99).

It is not hard to show the Hermitian matrix η (95) can be written as η = ηA⊗ ηĀ. Thus the

reduced transition matrix T ψ|φ
A(Ā)

is also pseudo-Hermitian. ηA(Ā) is not a positive or negative

definite matrix. The eigenvalues should not be real. In fact the eigenvalues are { 1
1+eiθ

, eiθ

1+eiθ
},

which is consistent with the above discussion.
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G Calculation of pseudo Rényi entropy by replica method

We outline the replica method in QFTs to compute the pseudo Rényi entropy in this appendix.

In particular, we focus on 2D CFTs as the correlation functions in the replica manifold are easy

to obtain by conformal mapping. Let’s consider a 2D CFT with Lagrangian L(φ, ∂φ) dwells on

a Euclidean plane Σ1 (ds2 = dwdw̄, (w, w̄) = (x+ iτ, x− iτ)) and a transition matrix generated

by a local operator O(w, w̄) ≡ eτHO(x, 0)e−τH ,

T OE =
O(w1, w̄1)|0〉〈0|O†(w2, w̄2)

〈0|O†(w2, w̄2)O(w1, w̄1)|0〉 , (100)

where w1 = x1 − iτ1 and w2 = x2 + iτ2, (τ1, τ2 > 0). The reduced transition matrix of a

subsystem A, T OE,A := trĀT OE , can be expressed by path integral with operators inserted at

(w1, w̄1) and (w2, w̄2) on the w-plane with a cut on A

〈φA−|T OE,A|φA+〉 =

∫ φ(x∈A,τ=0+)=φA+
(x)

φ(x∈A,τ=0−)=φA− (x) [dφ]O†(w2, w̄2)O(w1, w̄1) exp
{
−
∫
R2 L(φ, ∂φ)

}∫
[dφ]O†(w2, w̄2)O(w1, w̄1) exp

{
−
∫
R2 L(φ, ∂φ)

}

=



(η, η̄) x1=x2 x1<x2 x1>x2

late time (1,0) {0,0} (1,1)

early time a2 a3 a4

Table 1: 123

A

O†
2,1

O1,n1

O†
2,n2

O1,1

⟨ϕA+|
|ϕA−⟩

O†(w2, w̄2)

O(w1, w̄1)

τ

x

0

+∞

−∞

O†(w2, w̄2)

O(w1, w̄1)

τ

x

0

+∞

−∞

1



−1

×

(η, η̄) x1=x2 x1<x2 x1>x2

late time (1,0) {0,0} (1,1)

early time a2 a3 a4

Table 1: 123

A

O†
2,1

O1,n1

O†
2,n2

O1,1

|ϕA+⟩
⟨ϕA−|

O†(w2, w̄2)

O(w1, w̄1)

τ

x

0

+∞

−∞

O†(w2, w̄2)

O(w1, w̄1)

τ

x

0

+∞

−∞

1

. (101)

Building on (101), tr[(T OE,A)n] is given by a 2n-point correlation function on a n-sheet Riemann

surface Σn,

tr[(T OE,A)n] =
Zn
Zn1
· 〈O(w1, w̄1)O†(w2, w̄2)...O(w2n−1, w̄2n−1)O†(w2n, w̄2n)〉Σn

〈O†(w2, w̄2)O(w1, w̄1)〉nΣ1

=



(η, η̄) x1=x2 x1<x2 x1>x2

late time (1,0) {0,0} (1,1)

early time a2 a3 a4

Table 1: 123

A

O†
2,1

O1,n1

O†
2,n2

O1,1

⟨ϕA+|
|ϕA−⟩

O†(w2, w̄2)

O(w1, w̄1)

τ

x

0

+∞

−∞

O†(w2, w̄2)

O(w1, w̄1)

τ

x

0

+∞

−∞

1



−n

×

Σn

A A A

n n− 1 1

3

,

(102)

where Z1 and Zn are partition functions on Σ1 and Σn, respectively, and O(w2k−1, w̄2k−1) and

O†(w2k, w̄2k) denote the operators inserted at kth sheet. The nth pseudo Rényi entropy of T OE,A
turns out to be

S(n)(T OE,A) = S
(n)
A;vac + ∆S(n)(T OE,A), (103)
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where S
(n)
A;vac ≡ 1

1−n log ZnZn1
is the nth Rényi entropy of A when the total system is in the vacuum,

and ∆S(n)(T OE,A) we refer to as the excess of nth pseudo Rényi entropy of A,

∆S(n)(T OE,A) =
1

1− n log
〈O(w1, w̄1)O†(w2, w̄2)...O(w2n−1, w̄2n−1)O†(w2n, w̄2n)〉Σn

〈O(w1, w̄1)O†(w2, w̄2)〉nΣ1

. (104)

For our purposes, we only focus on the 2nd pseudo Rényi entropy,

∆S(2)(T OE,A) = − log
〈O(w1, w̄1)O†(w2, w̄2)O(w3, w̄3)O†(w4, w̄4)〉Σ2

〈O(w1, w̄1)O†(w2, w̄2)〉2Σ1

. (105)

Meanwhile, O is assumed to be a primary with chiral and anti-chiral conformal dimension ∆O.

By conformal symmetry, the 2- and 4-point function of O on Σ1 can be expressed as

〈O(z1, z̄1)O†(z2, z̄2)〉Σ1 =
c12

|z12|4∆O
, (106)

〈O(z1, z̄1)O†(z2, z̄2)O(z3, z̄3)O†(z4, z̄4)〉Σ1 = |z13z24|−4∆OG(η, η̄), (107)

respectively, where η := z12z34

z13z24
and η̄ := z̄12z̄34

z̄13z̄24
are the cross ratios. Since there are conformal

mappings

z =

{
w1/n, A = [0,∞),(
w+L
w−L

)1/n
, A = [−L,L],

from Σn to Σ1, the 4-point function on Σ2 is obtained by applying the above conformal mappings

with n = 2

〈O(w1, w̄1)O†(w2, w̄2)O(w3, w̄3)O†(w4, w̄4)〉Σ2 =


∣∣ 64L2z2

1z
2
2

(z2
1−1)2(z2

2−1)2

∣∣−4∆OG(η, η̄), A = [−L,L],

∣∣16z2
1z

2
2

∣∣−4∆OG(η, η̄), A = [0,+∞).

(108)

Substituting (106) and (108) into (105) and after some algebra, we obtain

∆S(2)(T OE,A) = log
c2

12

|η(1− η)|4∆OG(η, η̄)
, (109)

which only depends on the cross ratios η and η̄. The 2nd pseudo Rényi entropy with regard to

the real-time dependent transition matrix can be obtained by applying the analytic continuation

to τ1 and τ2 in the above result. When τ1 → ε + it and τ2 → ε − it, we meet the case

studied in [25]. As we mentioned in the previous section, we would like to focus on the case

of T O = O(x,t)|0〉〈0|O(−x,−t)
〈0|O(−x,−t)O(x,t)|0〉 . Thus we have the analytic continuation τ1 = τ2 → ε − it. An

infinitesimally small regularization parameter ε is introduced to suppress the high energy modes

[39].
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