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Abbreviations

AI Artificial Intelligence

CS Compressed Sensing

DA Domain of Applicability

DFT Density Functional Theory

FHI-aims Fritz Haber Institute ’ab initio molecular simulations’

GPR Gaussian Process Regression

HTC High Throughput Computation

MD Molecular Dynamics

ML Machine Learning

NAO Numerically tabulated Atom-centered Orbitals

PBEsol Perdew-Burke-Ernzerhof functional revised for solids

SC Superconductor

sc self-consistency

SCF Self-Consistency Field
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SGD Subgroup Discovery

SISSO Sure Independence and Screening Sparsifying Operator
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Nomenclature

ab initio from first principles

f(x) Function of x

Ĥ
(m) Operator set

L0 The L0 norm is the number of non-zero elements in a vector

P Set of samples measured incoherently

φ Objects in the set Φ

Φ Starting point for construction of the set

rs Radius of maximum electron density for s orbital

rval Radius of maximum electron density for valence (highest occupied) orbital

σf Selector for the Domain of Applicability

Tc Superconducting critical temperature of material
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Abstract

Materials discovery has traditionally been guided by empirical approaches, with workflows
that involve much trial and error. This method has yielded great discoveries of novel mate-
rials in the past centuries with the technology available, however, with the development
of computational power as well as new methods for developing predictive models for
material simulation, approaches are being developed that seek to involve less trial and
error, saving time and resources.

Machine Learning (ML) models for various materials properties have become increasingly
popular because of their potential to rapidly screen materials at a computational cost
orders of magnitude smaller than traditional ab initio methods. However, the current ML
methods only exploit the outcome of the model developed and focus on optimizing this
model, neglecting the possibility of guiding the next best experiments.

Active learning is the approach of adaptively guiding the choice of the next best exper-
iments, allowing for the best choice of materials to test next in a materials discovery
workflow. Despite the promise of active learning to accelerate materials discovery, it is
currently still a field that has yet to be explored thoroughly. This provides us with the
impetus to explore the active learning method and workflow to materials discovery, and
develop our own active workflow and test the feasibility of this approach.
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Hence, we propose to develop an active learning scheme by firstly identifying a global
model for predicting the bulk modulus of selected perovskite materials, using an AI-based
method known as the sure-independence screening and sparsifying operator (SISSO)
method. Next, we identify significant areas of interest in our dataset using subgroup
discovery (SGD) to find the domain of applicability (DA), and lastly apply the subgroups
found to attempt to direct our next chosen area of study.
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1 Introduction

1.1 Background

The discovery of novel materials has been accelerated in recent years by the increasing
shift toward computational materials science and materials modeling. The advancement
of computational power with High Throughput Computation (HTC) has enabled this
development, which allow for increasingly computationally expensive calculations to be
completed, essential to the demands of materials simulations. [1] Additionally, ab initio
electronic structure methods have been increasingly well developed in order to be more
efficient and/or more accurate for simulating new materials, with Density Functional
Theory (DFT) as one common tool for electronic structure simulation, Molecular Dynam-
ics (MD) codes and Monte Carlo simulations as nuclear dynamics methods, providing
researchers with more tools to explore the diverse possible combinations of materials. [2]

The use of Artificial Intelligence (AI) in automating materials experiments is another
development in the field, and is motivated by the reduction of the costs of the experiments
required in the trial and error approach, in terms of time and resources, as well as for
the reduction of human error in the process. The challenge is then to find a way to use
AI to further improve the materials discovery workflow, which is traditionally done with
Machine Learning (ML) models that aim to describe a particular material property or
feature. [3]
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As seen in Figure 1.1, automation, parallelization (with HTC) are key accelerators, along
with ML models, data repositories automated reasoning and finally active learning.

Figure 1.1: (a) Key aspects of the traditional materials experimental workflow. (b)
Techniques and developments in technology that can be used to accelerate the

workflow. From Ref [2]
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1.2 Machine Learning

1.2.1 Overview

Machine Learning can refer to any form of neural network learning, with many approaches
currently using deep neural network (DNN), which are defined as an artificial neural
networks with multiple hidden layers of units between the input and output layers.
Deep networks are also more complex and computationally demanding. There are more
neurons and more connections between them and some neurons may even influence the
environment by triggering actions. ML algorithms also have certain parameters known as
hyperparameters, which control the complexity of the model and can also influence the
effectiveness of the model prediction. [4]

Two widely used classes of ML approaches are supervised and unsupervised learning.
Supervised learning is one branch of machine learning where the model is supplied with
labeled examples of what it should learn. The critical difference is that with supervised
learning, we have some notion of a label or one characteristic of each data point that
is significant. In unsupervised learning, the data does not have labels. Consequently,
unsupervised problems focus on discovery: looking at the raw data and seeing if it naturally
falls into groups.

Supervised learning can be further split into regression or classification problems. In
classification, the output of the model are discrete class labels, whereas for regression the
output is a prediction in terms of continuous quantities. For the purposes of our active
workflow and property simulated, regression is the kind of machine learning that is carried
out.
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1.2.2 Machine Learning and Materials Science

One of the grand challenges in materials science with machine learning is mainly the issue
with generality and encompassing of a high dimensional search space with a high number
of compounds that should be explored. This search requires inspection of crystal structure,
chemistry and microstructure, with many material properties that could be dependent
on the material descriptors, across different length scales. Materials scientists have so far
mainly utilised machine learning to develop predictive models. [5]

In the field of materials science, depending on the problem to be simulated, the size of
datasets can be limited, and hence not truly ’big’. Thus, in some instances the utility of big
data for materials science applications is limited. [6]. There have been efforts to expand
this data available, with the advent of data sharing and open access databases, such as the
NOMAD archive which enables sharing of data on the platform in an attempt to expand
the big data available to the materials science community [7].

One example of an application of building ML models in materials science is in determining
the critical temperature (Tc) of Superconducting (SC) materials. In this case, there is a
small subset of materials where the model learned applies, as the subset of SC materials
that follow the relationship for determining the Tc are in materials space not determined
by a linear function. This is also due to the fact that there are features of the phenomenon
of SC that are not fully understood, such as the relation between SC and the chemical
properties of materials. [8]

Nonetheless, it is still imperative to develop a model using fewer instances of training, as
normally a supervised learning system has to be trained on labeled data or instances in the
magnitude of thousands or more. This is where an active learning scheme can be greatly
useful in order to develop a model for a desired property with less training. Subgroup
discovery is also useful here in determining the relevance of the global model locally.
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1.3 Active Learning

1.3.1 Overview

Active learning is a set of methods that automatically selects the next set of experiments
to run from a given pool of candidates, without requiring the users input. As a field of
study, it is a subset of ML, as it involves This approach leans on efficiently adding the
samples needed into the training set. Uncertainties are used to push the system toward
exploitation, instead of exploration. However, the distinguishing factor is where there is a
necessity to continuously update the model while carrying out the experimental workflow.
This is also known as a closed-loop workflow, and can eventually lead to experiments that
are self-driven. [9]

Depending on the dataset size, for materials science applications it can be difficult to
develop ML models without large uncertainties. One such method to tackle this problem
is the approach of improving the performance of the ML model, in order to increase the
size of labeled observations iteratively, and enhance the ML model in question successively.
This involves the trade-off between exploration and exploitation of data, in order to guide
the search for recommended samples for the experiments from a readily available pool
of possibilities. Exploration is defined as using the data points outside the scope of the
current training set to expand the model, while exploitation is done to add points inside
the current training set, where the optimal solution is determined to be. [10]

1.3.2 Bayesian Optimization

Active learning is typically implemented through Bayesian Optimization, a strategy that
finds the extrema of objective functions, which are normally more difficult or expensive to
evaluate. When considering the number of function evaluations that are required, this
method is one of the more efficient approaches. This is mainly thanks to the capability of
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Bayesian optimization, to use some previous knowledge about the problem to aid in the
sampling. [11]

Optimization is a field that is fundamental to mathematics, and here is defined in the
case of maximization rather than minimization. The problem to be solved is stated by
maxxf(x), to find the x that maximizes the function y = f(x). The efficiency in this
process is using the prior beliefs in form of smoothness, which is essentially the locality of
f(x) in order to direct the adaptive sampling. This means that f(x) is estimated normally
with a surrogate model, which is commonly carried out using Gaussian process Regression
(GPR). [12]

GPR is a Bayesian approach that allows for modeling of functions. Similar to how a
Gaussian distribution is over a random variable, GPR is a distribution over functions with
inference drawn directly in the function space. GPR extends the multivariate Gaussian
distribution, with an infinite number of variables and forming a stochastic process: a
process that governs the properties of the functions. [13]

The demonstration of GPR can be seen in Figure 1.2. Five data points are chosen at
random to train the surrogate model with GPR, with predictions shown in red with the
curve that is fitted. Next in (b) the updated surrogate model is shown, which is obtained
after first iteration with the total of six data points used for training. The reduction in
error bars from (b) compared to (a), is noteworthy, and the exploration strategy suggests
the next data point, with the largest uncertainty for the next computation. The trained
model is now used to predict the response of the data point that was left out. [5]

However, one key issue remains to be the use of Bayesian Optimization with GPR results
a model which may not be generalized beyond the specific solution. Hence, our proposal
is to develop an active workflow that develops a global machine learning model using the
Sure-independence screening and sparsifying operator method (SISSO) method, while
remaining locally relevant with a small number of local models found using subgroup
discovery.
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Figure 1.2: Demonstration of GPR with model prediction and decision making. Actual
function in cyan represents the ground truth function fitted to the data. GP predicts

response for test points along with the associated uncertainties. From Ref [5]
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2 Theoretical Background

2.1 Fritz Haber Institute ’ab initiomolecular simulations’ package

DFT is a powerful computational materials modeling method used to simulate and investi-
gate the electronic structure of many-body systems, developed based on a the theory by
Hohenberg and Kohn. [14], [15] The FHI-aims package is an all-electron, full potential
framework, and is used in this work for the DFT calculations. FHI-aims has an efficiency
close to the fast pseudopotential schemes based on plane-waves, and also being scalable
with system size of N up to thousands of atoms, being developed for parallel execution
of jobs to ensure efficient workflows. [16] FHI-aims is based on numerically tabulated
atom-centered orbitals (NAO), which allow for a wide range of material and molecular
properties to be captured from quantum-mechanical first-principles.

Basis sets here are defined as a set of functions that are used to represent the electronic
wave function according to DFT. [17] In this case of FHI-aims, the basis sets are constructed
following a set of principles, in order to allow for fast calculations as well as basis set
convergence that is able to reach the level of meV in terms of total energy accuracy. The
following principles are used to guide the basis set construction: 1) Basis sets should
be made available beginning from minimal basis until the meV-level for total energy
convergence. 2) Basis sets for the same elements are successively hierarchical, hence a
larger basis set would contain the smaller ones, ensuring a more strict variational total
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energy convergence. 3) The procedure for constructing the basis with minimal human
bias, hence as objectively as possible without preliminary human intuition interfering.
Since all of the basis sets are strictly localized, this means that the operations scale as
O(N) with a system size of N. Overall, FHI-aims provides an efficient and accurate way to
carry out our DFT calculations as part of our workflow.

2.2 SISSO methodology

The increasing trend toward computational materials has led to the need for a systematic
approach that allows us to identify possible materials which are functionally useful (e.g.
stable, nontoxic, etc.). The difficulty in developing a systematic approach lies in the many
factors to be taken into account when determining the stability and functionality of a
material.

Hence, insight into these processes must be obtained through discovering structure and
patterns in data that arise from functional relationships between these processes and
properties. The key step in this process is identifying suitable descriptors, a set of param-
eters that is able to capture the main characteristics that describe a given property or
function for a material. In essence, descriptors are functions of the simple parameters or
features that characterize the actuating mechanisms of a material property, and allow us
to construct ’maps of material properties’. This descriptor will then enable us to uncover
the relationships, allowing an artificial intelligence based learning approach to then be
applied to this system.

This approach has been developed into a compressed-sensing formulation, coined as the
sure-independence screening and sparsifying operator (SISSO) method. Compressed-
sensing (CS) based approaches allow for reproduction of a high quality signal from a small
set of observations, which is highly useful in the field of materials science, where the
luxury of massive datasets is not always available depending on the material or process to
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be simulated. In essence, SISSO handles large, correlated feature spaces, converging to
an optimal solution by using a combination of training sets. This approach means that
SISSO can handle an immense number of candidate features in the scales of billions, and
still be able to find an optimal solution when the features are correlated.

2.2.1 Principle of SISSO

The SISSO procedure begins first with feature space construction, whereby an initial set
of user-defined properties are utilized in order to start constructing the feature space.
Features can be categorized into those which are atomic or species specific, and those
which are collective and depend on the environment of the atoms. Next, functional
and algebraic (analytical) operations extend the feature space recursively. This can be
described better using the operator set Ĥ(m):

Ĥ
(m) ≡ {I,+,−,×, /, exp, log, | − |,√,−1 ,−2 ,−3 }[φ1, φ2] (2.1)

where φ1 and φ2 are objects in Φ (starting point for the construction of the set) and the
superscript m denotes that the dimensional analysis is performed only to retain some
meaningful combinations.

The features created currently are candidate descriptors which have a linear relationship
with P . For every iteration, Ĥ(m) operates all combinations available, which results in the
feature space growing recursively.

In SISSO the problem is resolved by combining SO with Sure Independence Screening
(SIS) which is effective in reducing the dimensionality for the massively high dimensional
feature spaces. SIS is used as L0 regularization is too expensive at a certain point, and
SIS reduces the feature subspace to a more manageable one. [18]
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Hence, SISSO is useful for our application as it reduces the extensive feature space and
allows for training on a single chosen expression.

2.2.2 Descriptor algorithm

Figure 2.1: Descriptor algorithm combining unified subspaces with largest correlation
and residual errors ∆( or P ) generated by SIS with SO to extract the best descriptor.

From Ref. [19]

As seen from Figure 2.1 , SIS is used to score each feature with a metric, retaining only top-
ranked features. From the large feature space, SIS selects the subspace which contains the
features with the most correlation with response P which is the target material property.
The larger this subspace is, the higher the probability for it to contain the best descriptor.
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2.3 Domain of Applicability (DA) and Subgroup Discovery (SGD)

2.3.1 Theory

One of the key issues with ML models applied to materials, is the difficulty in generalizing
the global model learned for specific applications. Hence, conventionally, different ML
models for materials are proposed to provide predictions that remain accurate for specific
applications. The challenge with this approach is that theMLmodels are based on simplistic
metrics such as model test error simply with respect to the whole class of materials. Hence,
an approach that detects domains of applicability (DA) of ML models in a material class
can be seen as one way to resolve this issue. [20]

Figure 2.2: Workflow for DA identification and validation for an ML model. From Ref.
[20]

The DA can be described usually by a selector (σf ) which comprises logical conjunctions
from a space of representation. The DA is normally constructed using simple representation,
as complex representations may not be easily mapped back intuitively to a given material.
A single representation here is defined as one that comprises of features, specifically
catered to the description of subdomains of interest. As an example, the shape of the unit
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cell, the number of atoms in a unit cell and the unit-cell volume are features. The DA
optimization and validation is carried out using the workflow seen in Figure 2.1, domains
of applicability are described by a selector, which comprises logical conjunctions pertaining
to a specific representation space. The selector is normally chosen through applying the
subgroup discovery (SGD) method to individual machine learning model errors for a
subset of a test set. The regions where the model error is significantly lower than the
global average for that material class is then found. This provides a method in contrast to
other methods that provide uncertainty estimates for individual data points. Lastly, an
unbiased estimate of the performance of the model within the DA found is obtained on
the rest of the test set that were not in the DA validation set.

SGD thus provides a flexible framework which focuses more on exploratory data analysis,
discovering new insights regarding the DA in question, compared to most methods which
currently use predictive or global modeling, which focuses more on developing a model
that can best fit the given data and features available. In building a global model, the
prediction accuracy is the key metric to optimize, which is achieved through more training
data as well as optimizing hyper-parameters.

The implementation for SGD is carried out by Creedo, a software that was developed for
scalable data analysis studies that are tailored by the user for specific experiments.

2.3.2 Implementation using Creedo

Creedo is a conceptual framework that allows for empirical user studies and is used
here specifically in the domain of pattern discovery. It is a Java based server application,
allowing users to define the settings for experimental studies and to tailor these studies for
their needs. Creedo provides the framework that allows for the creation of studies that are
repeatable as well as scalable, and can be implemented without use of extensive resources,
compared to a study that requires supervision or manual implementation of the design.
Creedo is built in a manner such that the application performs the tasks assigned, and can
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be implemented on any web browser. Creedo uses realKD algorithms that allows to create
and execute online user studies.[21] realKD is a free open-sourced Java based library that
is designed to be a new tool for data exploration, with a strong focus on developing a
detailed data model, which allows for the specification of domain-dependent semantics.
The model developed is also meant to capture meaningful knowledge from the data, and
should be able to describe algorithms and their parameters in a user-friendly manner. In
the case of this work, realKD is mainly used for discovering associations, and exceptional
model patterns, or subgroups in the data.

The motivations for having creedo run on a web application are firstly, to enable scalable
studies, as any computer with access to the server has the potential to be used as a terminal,
and secondly, to ensure that all definitions and statistics can be controlled from one central
location.
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3 Methodology

3.1 Overview of workflow and datasets

To develop the active workflow, the first step was to consider the data readily available for
training of a global model. For the purpose of our training, an oxide perovskite dataset of
504 oxide perovskites was chosen. The data consists of 504 ABO3 perovskites, that are
evaluated with DFT-PBEsol (Perdew-Burke-Ernzerhof functional revised for solids) using
the FHI-aims full potential all-electron code. For the selection of evaluated materials, the
A and B atoms were chosen based on the oxide perovskites available in literature (cite
here). The atomic (primary) features of the isolated atoms (A and B) were calculated with
DFT-PBEsol. These features include the radius of maximum electron density for s (rs)
and valence (highest occupied) (rval) orbitals, the energy of highest occupied and lowest
unoccupied states, the electron affinity (EA) and ionization potential (IP), the nuclear
charges (Z) and the ionic charge of A (cA). These features are used by SISSO to develop a
global predictive model for the bulk modulus of the perovskitee.

As seen in Figure 3.1, the workflow begins with the training of a global SISSO model,
based on the oxide perovskite dataset. This global model is then used to perform SGD
to find the domains of applicability. The subgroup discovered is then used to reduce the
dataset, whereby we remove the materials in question with low error, and are left with the
remaining oxide perovskites. A further second global model is found using SISSO again,
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Figure 3.1: Active Workflow developed

and the procedure is repeated to obtain further SGD. The first subgroup found is then
applied to a new dataset, to show us which materials we can search for which would be
of interest in terms of the property bulk modulus.
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3.2 FHI aims calculations

3.2.1 Calculation setup

To further develop the dataset and to develop our active learning framework, 50 halide
perovskites are considered, with the A and B atoms chosen based on charge balance. This
dataset of halide perovskites serves as a basis to be explored upon by the active learning
framework, where the promising candidates for the next group of materials are identified
from this list.

The first step in the FHI aims DFT calculations is the use of two different input files,
control.in and a geometry.in file. The geometry.in file provides the information that is
relevant for the atomic structure in any given calculation, which includes the atomic
positions as well as the description of particulars of every element that is contained
in control.in file. The lattice vectors are also defined here for periodic calculations,
which apply in this calculation for the perovskite solid crystal structures. The remaining
information that is given here is only done so if it is directly linked to an atom, with
parameters including the initial spin moment, initial charge, relaxation constraint etc.
This can be better seen in Listing 3.1 of the geometry.in file.

For the purposes of preparing the geometry.in file, the AFLOW (automatic flow) package
was utilized, which is a software framework that allows for high throughput calculations
of crystal structure properties of various materials. [22] Specifically, AFLOW-Xtal finder,
[23] was used to set up the input geometries in order to further automatize the process.
The relaxation in this case was done with parametric constraints to ensure homogeneity
in the perovskite cubic structures simulated [24].

An example of a geometry.in file for the halide perovskite AgCoF3 generated by AFLOW-
Xtal finder for an FHI aims calculation can be seen in the Listing 3.1.
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1 # AgCoF/AB3C_cP5_221_a_c_b.ABC params=3.86 SG=221 [ANRL doi: 10.1016/j.
commatsci.2017.01.017 (part 1), doi: 10.1016/j.commatsci.2018.10.043 (
part 2)]

2 # AFLOW::AIMS BEGIN
3 lattice_vector 3.86000000000000 0.00000000000000 0.00000000000000
4 lattice_vector 0.00000000000000 3.86000000000000 0.00000000000000
5 lattice_vector 0.00000000000000 0.00000000000000 3.86000000000000
6 atom_frac 0.00000000000000 0.00000000000000 0.00000000000000 Ag
7 atom_frac 0.50000000000000 0.50000000000000 0.50000000000000 Co
8 atom_frac 0.00000000000000 0.50000000000000 0.50000000000000 F
9 atom_frac 0.50000000000000 0.00000000000000 0.50000000000000 F

10 atom_frac 0.50000000000000 0.50000000000000 0.00000000000000 F
11 # format: symmetry_n_params [n n_lv n_fracpos]
12 symmetry_n_params 1 1 0
13 symmetry_params a
14 symmetry_lv a , 0 , 0
15 symmetry_lv 0 , a , 0
16 symmetry_lv 0 , 0 , a
17 symmetry_frac 0 , 0 , 0
18 symmetry_frac 0.5 , 0.5 , 0.5
19 symmetry_frac 0 , 0.5 , 0.5
20 symmetry_frac 0.5 , 0 , 0.5
21 symmetry_frac 0.5 , 0.5 , 0
22 # AFLOW::AIMS END

Listing 3.1: Example of set-up for geometry.in file created by AFLOW XTAL with
parametric constraints

The control.in file, which can be seen in listing 3.2, is then required for all information
that is runtime-specific for the calculations. In general, there is a segment of the file that
is more general, while additional more specific information related to the atoms is added
on.
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1 #Physical Settings
2 xc pbesol
3 spin none
4 relativistic atomic_zora scalar
5 basis_threshold 1E-5
6 override_illconditioning .true.
7

8 # SCF settings
9 sc_accuracy_forces 1E-5

10 sc_iter_limit 900
11 sc_accuracy_rho 1E-5
12 sc_accuracy_eev 1E-3
13 sc_accuracy_etot 1E-6
14 sc_init_iter 10
15

16 #k-point grid and relaxation
17 k_grid 5 5 5
18 relax_geometry trm 1E-2
19 relax_unit_cell full

Listing 3.2: FHI aims calculations set-up

The Self-Consistency Field (SCF) cycles are controlled using the SCF settings, these are
important in determining the convergence criterion for the calculations. These settings
will now be detailed. The sc accuracy forces set the convergence criterion for the self-
consistency cycle, which are normally based on energy derivatives. The sc accuracy force
is usually a small positive real number against which the maximum difference of atomic
forces is checked between the successive SCF iterating. The sc accuracy rho setting
provides the criterion for convergence of the self-consistency cycle and is based on charge
density. Thus, it is the most important criterion for convergence. Normally, this will take a
value of 1E−5 for a geometry.in file that contains between 6 to 60 atoms. The sc accuracy
eev is similar to sc accuracy rho, however it instead provides the convergence criterion
based on eigenvalues, while sc accuracy etot provides the criterion based on total energy.
The Harris-Foulkes form of this functional is used for FHI-aims as the total energy. Lastly,
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the sc iteration limit sets the maximum number of SCF cycles that can occur before the
calculation is abandoned.

The choice of the basis set is also contained in the control.in file, and is essential as it
affects both the efficiency as well as the accuracy of a calculation. The xc keyword specifies
the exchange-correlation approach that is used for the self-consistent DFT. The values for
the k-pint grid are crucial for sampling the Brillouin zone accurately, and are necessary
for periodic calculations.

The last important setting to describe is the use of species-specific information, that are
provided preconstructed as default definitions for different species, found in a subdirectory
in FHI aims. There are four different levels of these defaults, from light to intermediate,
to tight and finally, really tight. Light relaxations are mainly for quick prerelaxations, with
few convergence errors arising. Intermediate is only present for some elements but can be
useful for large calculations that are computationally expensive. The tight default is highly
useful to provide meV level accurate energy differences for more accurate calculations.
Really tight settings are similar to tight, however there are some numerical aspects such
as the grids or Hartree potential that are strongly overconverged here.

3.2.2 Calculation procedure

The FHI-aims calculations that were carried out in our workflow, were first done with a
’light’ relaxation, followed by a final ’tight’ relaxation. The Birch-"murn.py" script (Annex
6.1), provided in the "utilities" folder from FHI-aims is used to fit the Birch-Murnaghan
equation of state to a series of volume/energy calculated values and thus obtain the bulk
modulus. For the volume/energy values, the equilibrium volume of the structure, obtained
after relaxing the structure, and other values not too far from it ( +/- 1% volume) were
used.

As seen in the figure 3.2, the calculation for CsEuF3, the Burch fit can be plotted using
the tools provided, and the calculations were done in a manner to ensure the Burch fit is

33



Figure 3.2: Demonstration of checking Birch-fit for CsEuF3

appropriately done about the minimum ( +/- 1% volume) as seen on the figure on the
right.

3.3 SISSO-SGD Approach

3.3.1 Hierarchical SISSO (hiSISSO) approach

The approach adopted here combines domain of applicability with SISSO, in order to
develop a global model (based on SISSO), that is still locally relevant. In other words,
a model is developed that functions globally, with a small number of local models that
are relevant in certain DAs. If the employed model is particularly applicable in a specific
subdomain of the materials class, and if that subdomain has a simple and interpretable
shape that permits to generate new materials from it, this allows one to directly focus the
screening there. The procedure will now be detailed based on the different steps involved,
beginning with the SISSO calculations. As mentioned previously, the primary features
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used are as follows: the radius of maximum electron density for s (rs) ad p (rp) orbitals,
the energy of highest occupied and lowest unoccupied states, the electron affinity (EA)
and ionization potential (IP), the nuclear charges (Z) and the ionic charge of A (cA).

3.3.2 Subgroup Discovery using Creedo

The model that was developed on the oxide perovskite dataset uses an advanced form of
SISSO, known as hierarchical SISSO (hiSISSO), which further exploits the relationship
between material properties, with the goal of improving descriptor identification. Firstly,
the descriptors for a simple property are identified, then the descriptors are used as
primary features to address a related property, which is more complex in nature. The
hiSISSO approach works for the situation whereby the relationship between the primary
features and the material property is too complex.

In this workflow, the hiSISSO approach is applied in order to identify descriptors for bulk
modulus (B0) in the oxide perovskite dataset, with the lattice constant (a0) used as a
simple property. These properties are related since they both depend on bond strength.
[25] After discovering the global model using hiSISSO, the model with the dataset is
then used in the subgroup discovery process. This is carried out using the creedo java
application which can be run on any web browser. The parameters that can be adjusted
for the subgroup discovery will now be discussed, in order to have a better understanding
of the active workflow.

The different features in creedo are seen in figure 3.3, and aid in understanding the process
of using creedo. Target attributes are the list of attributes for which patterns should show
special characteristics. The model class is the type of data summary according to which
population deviation is measured, in our case we choose an empirical distribution. The
deviation measure is the function for measuring the deviation of the local population to
be sought for, from the global population. Normalized negative median shift is chosen, in
order to search for areas in the data that have a low error. The control attribute is that for
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Figure 3.3: Parameters used for creedo

which the subgroup should show an identical distribution just as in the global population.
The coverage weight is an important term that is the power of the coverage factor in
the optimization function. The number of results allows us to determine the number of
optimal subgroups to be found. The optimistic estimator is the function that is used for
pruning the search space, and the approximation factor guarantees to return the solution
with optimization value that is at least x times the optimal value. Lastly, the depth limit
represents the maximum depth in the refinement tree to be expanded by the algorithm.
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3.4 Metrics for evaluating the workflow

Having gone through the methods used to build the steps of the active workflow, metrics
to evaluate our workflow have been developed in order to better define some key chara-
teristics that will indicate whether to keep going on with the training, or if it is better to
change approach.

Metric Condition
Size of the subgroup <10% of the dataset
Distribution of materials with low
and high error

Is there a clear separation ?

Correlation between the errors from
the models

High correlation (>0.7)

Table 3.1: Metrics developed for evaluating active workflow

The first metric is the size of the subgroup, as a local model found has to be of a certain
size in order to be significant. The next is the separation in the distribution of materials
with low and high error in the prediction. Lastly, in order to determine if the two models
are in good agreement, the correlation factor between the two global SISSO models
developed must also be taken into consideration. Through the development of the active
framework, these metrics are useful as benchmarks to guide further work on our cycles of
the workflow.
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4 Results and Discussion

4.1 First Active Workflow cycle

4.1.1 First Subgroup Discovery

Coverage 0.3
Property Condition Value
Electron Affinity of A atom >= 0.735817 eV
Lower Unoccupied Molecular Orbital of B atom >= -4.68356 eV
Radius of B atom (rval) <= 0.975250 Å

Coverage 0.5
Electron Affinity of A atom > 0 eV
Lower Unoccupied Molecular Orbital of B atom >= -4.68356 eV
Radius of B atom (rval) <= 0.975250 Å

Coverage 1.0
Electron Affinity of A atom > 0 eV
Radius of B atom (rval) <= 0.975250 Å

Table 4.1: First subgroups discovered with varying coverage parameter

In this section, the initial results of the first iteration of the active workflow are entailed,
along with the conclusions that can be drawn in order to enhance the workflow. The results
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of the subgroup discovery analysis are discussed first, followed by the SISSO models, and
then further discussion is made to improve the active workflow.

The subgroups found are described in Table 4.1: these conditions, namely the restriction
of the radius of B atom (rval), limit us to mainly the transition metals in the periodic table.
The physical significance of this is mainly indicating the better performance of the global
model found by SISSO in predicting the bulk modulus for oxide perovskites where the B
element is a transition metal.

The probability density function of the subgroups is plotted in Figure 4.1, in order to
help us visualize the distribution of materials in the subgroup as well as the size of the
subgroup. In the best case, we would expect a subgroup with the low error materials
completely separated from those with high error, leaving a subgroup where the predictive
model for bulk modulus has performed best. This would be shown by the histogram being
completely orange in the areas with low error.

In Figure 4.1, the effect of the coverage parameter on the distribution of high and low
error materials is also studied. Here we observe that the subgroups discovered still contain
a proportion of materials that have high error, although the search was towards low
error materials. Hence, the subgroup discovered is not the best-case scenario expected,
however, it is still useful in providing us with a subset of materials that have lower error
in the prediction of the bulk modulus, which is according to the metric of subgroup size
developed, useful for our workflow (greater than >10% of the dataset). In this case, we
do not observe much difference even with a change of coverage from 0.3 to 1.0. To further
investigate our findings, the cumulative density function is then plotted.

The cumulative density function is plotted in Figure 4.2, to observe the separation of the
dataset between those in the subgroup and outside of it, from the distinction between the
orange and blue lines. In the ideal situation, it would be expected that the orange line
(materials in the subgroup) would reach 1.0 before the line in blue (materials outside the
subgroup) increases, indicating. It is also expected that one would see minimal overlap
between the two cumulative error distributions. Although it is also important to keep the
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Figure 4.1: The first subgroup plotted with the probability density function to show the
distribution and spread of errors between the oxide perovskites inside (orange) and

outside (blue) the subgroup, with coverage parameter adjusted from 0.3 to 1.0.

size of the subgroups in mind, a small subgroup may improve this separation due to the
small sample size. In this case, it is observed that there is an increase up to 1.0, however
there is a more of an asymptotic approach of the graph to 1.0. This could indicate the
limit of the model to completely separate low and high error materials. It also noteworthy
that between the coverage of 0.3 to 1.0, there is no significant change in the separation.
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Figure 4.2: Cumulative Density Function for the first subgroup of materials inside
(orange) and outside (blue) the subgroup, with coverage parameter adjusted from 0.3

to 1.0.

This indicates the stability of the subgroup found despite the change in coverage.
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4.1.2 SISSO Cross Validation Second Model

The results from the first round of SGD, using negative median shift as the metric for
searching (i.e. searching for materials with the lowest error), were that all of the subgroups
discovered also had some groups with high errors in them, indicates that the high error
samples are not fully removed. This could point to an inherent problem with focusing on
low errors, meaning that every model will have some distribution of errors, and which
samples have a low error may just be random and not systematic (an assumption we make
when using SGD).

Another possibility is symmetric wells in the input feature space. Due to the nature of the
study where the variables are the choice of elements, and the fact that across the periodic
table there are symmetries in elemental features, this can result in ’symmetry wells’ where
the material feature in question is the same. Thus, this could also impact the training of
the global model by SISSO, and result in subgroups found which contain compounds with
low and high error, however having the same atomic features that match the conditions
given by SGD.

Hence, the next step taken was to remove the low error materials discovered, to see if other
small local models exist that would need to be patched together. If another significant
local model is found, this indicates to us that this subgroup should be studied in more
detail, and that another cycle of the workflow (SISSO-SGD) should be possible.

Each sample (data point / material) is 5 times used to train a SISSO model (5 models in
total) and also evaluated 5 times as test material. The absolute mean of the 5 prediction
errors is taken, as well as evaluate the standard error, to see if the error estimate via its
mean is reliable enough. This operation gives a distribution of mean (over the 5 iterations)
errors, one entry for each material. This then becomes the new population for a second
subgroup discovery.

This strategy allows the SISSOmodel to adapt to the specific training set (i.e., the descriptor
can change) in order to avoid a specific bias due to the initial selection of training set. By
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using the Cross-Validation splits we can then ascertain the spread of the prediction errors
using an ensemble of models and hopefully average out the random effects. The test error
here is used instead of the training error, as the evaluation of the SISSO global model on
unseen data is what we would like to investigate here.

4.1.3 Second Subgroup Discovery

Using the global model found with the lowest error, subgroup discovery is run again using
Creedo, with the intention of seeking additional local models. The subgroups discovered
are as follows, according to the change of coverage parameter. The second set of subgroups
found can be described by the conditions shown in Table 4.2.

The conditions seen in Table 4.2 for the different subgroups in this case involve more pa-
rameters than the previous iteration of SGD. Noteworthy is the restriction of the elemental
charge of the A atom, which for our dataset, limits us mainly to the elements Li, Be, Na,
Mg, K, and Ca for the A atom (groups I and II in the periodic table). Interestingly, for the
compounds containing the A atom belong to group I and II, the B atom for the perovskites
in our dataset are also mainly transition metal elements.
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Coverage 0.3
Property Condition Value
Elemental charge of A atom < 29
Electron affinity of B atom >= -0.793269 eV
Elemental charge of B atom <= 46.5
Radius of B atom: Brs > 1.43540 Å
Predicted lattice parameter from hiSISSO rung 1 <= AND

>=
3.76401Å
4.00535Å

Coverage 0.5
Ionization Potential of A atom <= 7.36587 eV
Radius of A atom: Ars <= 2.2645 Å
Radius of A atom: Arval >= 0.763350 Å
Electron affinity of B atom >= -0.793269 eV
Ionic Potential of B atom: B(IP) <= 8.93925 eV
Elemental charge of B atom: B(Z) <= 46.5
Radius of B atom: Brs >= 1.02150 Å
Predicted lattice parameter from hiSISSO rung 1 <= 4.00535 Å
Predicted lattice parameter from rung 1 <= 4.01571 Å

Coverage 1.0
Electron affinity of A atom <= AND

>=
1.31958eV
-0.350936 eV

Radius(val) of A atom: A(rval) <= 2.26450 Å
Radius of B atom: B(rs) >= 1.02150 Å

Table 4.2: Second set of subgroups discovered with varying coverage parameter
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Figure 4.3: The second subgroup plotted with the probability density function to show
the distribution and spread of errors between the oxide perovskites inside (orange) and

outside (blue) the subgroup, with coverage parameter adjusted from 0.3 to 1.0.

The coverage parameter was again increased as seen in Figure 4.3 in order to see the
affect it has on the distribution, and in this case, the first clear observation is a much
smaller subgroup obtained. The subgroup (in orange) for coverage 0.3 for example is
<10% of the size of the dataset, which already is a failure according to the benchmarks
that we set. We also observe a much clearer difference size of the subgroup as we increase
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the coverage from 0.3 to 1.0. This indicates instability in the subgroups discovered.

The cumulative density function curve is then plotted to investigate the separation further.
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Figure 4.4: Cumulative Density Function for the second subgroup of materials
discovered inside (orange) and outside (blue) the subgroup, with coverage parameter

adjusted from 0.3 to 1.0.

The cumulative density function curves shown in Figure 4.4 show that the separation of the
dataset between those in the subgroup and outside of it quickly diminishes as the coverage
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parameter is increased to 1.0, this is evidenced by the convergence of the blue and orange
line for coverage of 1.0. This difference shows that with a lower coverage, SGD here does
a better job of separating the low and high error materials, which is interesting to note
considering this is the second round of SGD on the second model developed with SISSO.
However, this is done with a very small number of materials (a smaller subgroup), hence
the subgroup found is still not significant as decided by our previous metric discussed.

Figure 4.5: Correlation plot showing Pearson correlation between two SISSO models
as well as the outlier materials.

Following the metrics defined, the correlation between the models should now be studied.
Pearson correlation is used to study the relation between the two SISSO models developed,
as seen in the correlation plot in Figure 4.5 The correlation reflects if the two models
are in relatively good agreement. If it is low then they are separate models. This check
is used to see if the iterative approach leads to a separate local model or not. Given the
relatively high correlation of 0.72, it is a good indicator that the two models are in some
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agreement. This is a good indicator that the two SISSO models that were found, have
close correlation in describing the material property in question, bulk modulus and are
consistent between the first dataset and the reduced dataset.

Figure 4.6: Parity plots for the two SISSO models

Parity plots also allow us to study the SISSO machine learning plot for the models, and
show us the performance of the machine learning model through comparing the differences
between predicted and actual bulk modulus, as well as their deviation from the prediction.
From the parity plots in Figure 4.6, it becomes evident and is logical that the second
model, which is trained on the reduced dataset with low error materials removed, has
more deviation between the predicted and actual values of bulk modulus. This ties into
the hypothesis of only one model to be found, as the training to predict bulk modulus
performed best on the first model with the original dataset, and the second model SISSO
found shows poorer performance as seen by the scatter of the datapoints.

The initial results indicate to us that there is only one global model discoverable, the reason
for the choice of training on oxides to develop a model, were mainly the availability of the
oxide dataset as well as to investigate if a local subgroup discovered could be applicable
to another chemically different group of Perovskites ( Halides in this case). However,
the initial results of which the subgroup discovered was unable to identify any possible

48



candidates for the next round of the workflow.

Hence, following this development in the work, the datasets are expanded using both
sulfide and halide atoms, to see the effect the C atom (for a perovskite ABC3) will have
on the overall models developed, and to improve the generalizability of the model.

4.2 Second Active Workflow cycle

4.2.1 Sulfide Oxide Dataset

In order to determine how extendable the model is to sulfides, a sulfide-oxide mix of
dataset was chosen in order to have a bridge between the sulfides and the oxides. The
atoms in the f-block of the periodic table are avoided in order to prevent any possible
inaccuries performing FHI-aims calculations. The procedure was carried out using the
subgroup discovered with coverage 0.3 (in Figure 4.1), with samples randomly selected,
30 samples inside of the first subgroup and 70 are outside of it, leading to a total of 100
sulfide perovskites. This is done to prevent a bias in selection of the sulfides simulated. This
dataset includes the 504 oxide perovskites from the original dataset, with the additional
100 sulfide perovskites that are added in.

To evaluate the SISSO model for this sulfide-oxide dataset, absolute error plots as well
as the validation RMSE are plotted as seen in Figure 4.7. In this case can be seen that
the model dimension 5 has the lowest validation RMSE, with a much clearer indication of
convergence toward the fifth dimension. The mean and median of the absolute error for
the fifth dimension can also be seen as lower, giving us a good indication of where the
optimum model can be found.

The first set of subgroups discovered are detailed in Table 4.3, and it can be seen that
there are fewer parameters involved in the conditions for the subgroup. Interesting to note
is the influence of the elemental charge of the C atom (<=12) in the subgroup, which
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Figure 4.7: Distribution of absolute errors and RMSE for the Oxide-Sulfide dataset. The
model dimension with the lowest RMSE is model 5, the Validation RMSE decreases

with increasing model dimension.

Coverage 0.3
Property Condition Value
Higher Occupied Molecular Orbital of A atom < -2.90100 eV
Lower Unoccupied Molecular Orbital of B atom >= -4.68356 eV
Elemental charge of C atom < 12

Coverage 0.5
Higher Occupied Molecular Orbital of A atom < -2.90100 eV
Elemental charge of C atom <= 12

Coverage 1.0
Ac < 2.5
Elemental charge of C atom <= 12

Table 4.3: First set of subgroups discovered on the new dataset

shows that there is some significance of the C atom in the SGD process, and limits us here
to only oxides. Here the elemental charge condition tells us that the model still works
best in predicting bulk modulus for oxide perovskites. This is logical given that the model
is trained mostly on oxide perovskites, however it is still noteworthy as this shows that the
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inclusion of the sulfide perovskites in the dataset does not greatly impact the model.
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Figure 4.8: Probability Density Function for the subgroup with Oxide-Sulfide
Perovskites discovered inside (orange) and outside (blue) the subgroup, with coverage

parameter adjusted from 0.3 to 1.0.
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The new first subgroup is now plotted in Figure 4.8 with the probability density function
to show the distribution and spread of errors between the oxide perovskites inside and
outside the subgroup. The separation of low and high error materials is better, as evidenced
by mostly orange in the histograms for lower errors, with few or no high error materials
in the distribution. It is also worth noting that the size of the subgroup fits our metric. The
coverage parameter was again increased in order to see the affect it has on the distribution,
and in this case, we observe minor differences in the separation of distribution of low error
materials from high error ones (outside of the subgroup), as we increase the coverage
from 0.3 to 1.0. This indicates stability in the subgroup despite changing the coverage
parameter.
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Figure 4.9: Cumulative Density Function for the second subgroup of materials
discovered inside (orange) and outside (blue) the subgroup, with coverage parameter

adjusted from 0.3 to 1.0.

The cumulative density function in Figure 4.9 shows us the separation of the dataset
between those in the subgroup and outside of it, and in the case of the second subgroup,
this difference is more starkly contrasted as the coverage parameter is increased. Here
we notice that between the coverage of 0.3 to 1.0, there is no significant change in the
separation. This indicates that the subgroups are stable with respect to the change in
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coverage parameter. The separation of the subgroups in this case is the best that we have
seen.
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Figure 4.10: Proportion of C atom in
the subgroup
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Figure 4.11: Distribution of C atom in
the subgroup

From the histograms in Figures 4.10 and 4.11, the proportion of the C atom (Oxygen or
Sulfur) can be seen relative to the entire dataset, in terms of in or out of the subgroup
found. As the dataset is mainly trained on oxide perovskites, it is logical that the majority
of perovskites that are in the subgroup with lower error would be oxide perovskites. It is
interesting to note however that the proportion (rather than the sheer count) of sulfide
perovskites relative to the number of sulfide perovskites in the dataset, is similar to that
of the oxides.
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4.2.2 Sulfide-Halide-Oxide Dataset

For the second expanded dataset, a sulfide-halide-oxide mix was chosen to see how this
combination would then influence the finding of a global model, and the eventual first
subgroup discovered. This dataset includes the 504 oxide perovskites from the original
dataset, with an additional 100 sulfide perovskites that are added in, and finally the 50
halide perovskites that are included.

Figure 4.12: Distribution of absolute errors and RMSE for the Sulfide-Halide-Oxide
dataset. The model dimension with the lowest RMSE is model 5, the Validation RMSE

decreases with increasing model dimension.

The absolute error plots as well as the validation RMSE are plotted again in Figure 4.12
to evaluate the new model. In this case for the Sulfide-Halide-Oxide perovskites dataset,
it can be seen that the model dimension 5 has the lowest validation RMSE, with a clear
indication of convergence toward the fifth dimension. The mean and median of the
absolute error for the fifth dimension can also be seen as lower, thus the SISSO model of
the fifth dimension was chosen to perform subgroup discovery.

The subgroups found for the new sulfide-halide perovskite dataset are listed in Table 4.4.
It is interesting to note that the parameters involving the C atom are not predominant in
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Coverage 0.3
Property Condition Value
Ionization Potential of A atom >= 5.47762 eV
Radius (rval) of A atom <= 1.87700 Å
Electron affinity of B atom < 0 eV
Ionic Potential of B atom <= 8.59751 eV
Radius(rval) of B atom <= 0.975250 Å
Radius(rval) of C atom <= 0.756950 Å

Coverage 0.5
Ionization Potential of A atom <= 7.34643 eV
Elemental charge of A atom: A(Z) >= 15.5
Electron affinity of B atom < 0 eV
Ionic Potential of B atom <= 8.59751 eV
Radius(rval) of B atom <= 0.975250 Å

Coverage 1.0
Electron affinity of A atom > 0 eV
Radius(rval) of B atom <= 0.975250 Å

Table 4.4: First subgroups discovered on new dataset with varying coverage parameter
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the subgroup selection space, perhaps indicating less effect of this choice on the dataset.
Another recurrent condition, is the influence of the radius of the B atom (rval), which
limits the dataset again, to B atoms in the area of transition metals. Also, the subgroups
are based mainly on oxides.
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Figure 4.13: Probability Density Function for the subgroup with Sulfide-Halide-Oxide
Perovskites discovered with varying coverage parameters

The new first subgroup is now plotted in Figure 4.13, with the probability density function
to show the distribution and spread of errors between the oxide perovskites inside and
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outside the subgroup. Here it can be observed that there is a good size of the subgroup,
as well as good separation of high and low error materials (as indicated by the orange bar
in the histogram). This is true even for higher coverage at 1.0. The coverage parameter
was again increased in order to see the affect it has on the distribution, and in this case,
we observe minor differences in the separation of distribution of low error materials from
high error ones (outside of the subgroup), as we increase the coverage from 0.3 to 1.0.
This indicates stability in the subgroup.

The cumulative density function plotted in Figure 4.14 shows low overlap between the
two cumulative error distributions. It is also noteworthy that between the coverage of
0.3 to 1.0, there is no significant change in this overlap. This indicates stability in the
subgroup found.

From the histograms in Figure 4.15 and 4.16, the proportion of the C atom (Sulfur, Oxygen
or Halide atom) can be seen relative to the entire dataset, in terms of in or out of the
subgroup found. Interestingly, the halide atom subset of the data is entirely out of the
subgroup found, indicating higher errors for the predicted values of Bulk modulus for the
halide perovskites. This is reduced in the sulfide perovskites, with a proportion of them
being in the subgroup found. This observation is unsurprising, as sulfide perovskites can
be seen to serve as an inbetween to oxide and halide perovskites in terms of chemistry.
Given that the model is trained largely on oxide perovskites, it is logical then that the
halide perovskite data is not included in the subgroup discovered.

Through our tests of expanding the generalizability of the dataset, the results indicated
that the model is influenced by the majority perovskite trained on (in this case oxides),
and introduction of new perovskite types has little influence on the overall model as well
as the subgroups discovered. Hence, the workflow was halted here, and a second round of
SGD was not carried out, given the conclusions that the introduction of the new perovskites
in the dataset proved not to aid in the model prediction or provide more interesting local
models from SGD.

58



0.0 0.1 0.2 0.3 0.4 0.5
Error

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Cumulative Density Function Coverage 0.3
in_sg_1

False
True

0.0 0.1 0.2 0.3 0.4 0.5
Error

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Cumulative Density Function Coverage 0.5
in_sg_1

False
True

0.0 0.1 0.2 0.3 0.4 0.5
Error

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Cumulative Density Function Coverage 1.0
in_sg_1

False
True

Figure 4.14: Cumulative Density Function for the second subgroup of materials
discovered with varying coverage parameters
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Figure 4.15: Proportion of C atom in
the subgroup (coverage 0.3)
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Figure 4.16: Distribution of C atom in
the subgroup (coverage 0.3)
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5 Conclusion and outlook

The proposal for this work was to develop an active workflow that develops a global
machine learning model for predicting bulk modulus using the Sure-independence screen-
ing and sparsifying operator method (SISSO), while remaining locally relevant with a
small number of local models found using subgroup discovery, as opposed to the typical
approach of Bayesian Optimization with GPR, which can result in a model which may not
be generalized beyond the specific solution.

To evaluate our workflow, metrics were developed which involved the size of the subgroup
discovered, the correlation between the SISSO models, and the distribution of materials
with low and high error. These were evaluated with probability density function and
cumulative density function graphs. The initial results, with the parity plots (Figure 4.5)
showing poorer performance of the second SISSO model, as well as the high correlation
number in the correlation plot (Figure 4.6) indicate to us that there is only one global
model discoverable, and the subgroup discovered was unable to identify any possible
candidates for the next round of the workflow. The datasets were then expanded using
both sulfide and halide atoms, to see the effect the C atom (for a perovskite ABC3) would
have on the overall models developed, and to improve the generalizability of the model.
This inclusion of sulfide and halide atoms, to make the model more generalisable, resulted
in some indication there is some influence of the C atom, however from our results it did
not significantly influence the SGD process.
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Noteworthy conclusions to be drawn are firstly the parameters involving the C atom are
not predominant in the subgroup selection space, perhaps indicating less effect of this
choice on the dataset. Another recurrent condition, is the influence of the radius of the B
atom (rval), which limits the dataset to having perovskites with B atoms in the area of
transition metals. Lastly, the models were found to work best for oxide perovskites, which
is a logical conclusion given the training of the model on a dataset containing mainly
oxide perovskites.

The SGD in our work was still unable to separate the materials between those with low
and high error completely, as shown in the probability distribution function curves plotted.
One possibility is an inherent problem with focusing on low errors, meaning that every
model will have some distribution of errors, and which samples have a low error may just
be random and not systematic. Another possibility is symmetric wells in the input feature
space as within the A and B elements in the perovskites across the periodic table there
are symmetries in elemental features, resulting in ’symmetry wells’ where the material
feature in question is the same. These could both impair the SGD process and the results
obtained.

The active workflow developed, while having shortcomings, is a good first step as providing
an alternative to the traditional Bayesian method, and allows for more room in the process
for studying the workflow as opposed to a ’black-box’ approach. For the future development
of the active workflow, based off the initial conclusions set, firstly, different metrics (other
than negativemedian shift) can be experimented with and tabulated, in order to investigate
the effect of this metric and SGD, as well as to see if some metrics are able to provide
complete separation of high and low error materials. Further, given the good performance
of the global model on B atoms with transition metals can be further studied to understand
the reasons behind this phenomenon, and also to improve the accuracy of the workflow.
Lastly, a final test of the C atom should be carried out with sulfide perovskite datasets of a
higher proportion than oxide perovskites, to give a conclusion as to whether the C atom
significantly affects the SGD results.
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6 Annex

6.1 Code used for fitting

The code used for fitting of the Birch-Murnaghan equation for the bulkmodulus calculations
is given below in Listing 6.1.

1 #!/usr/bin/python3.7
2

3 """
4 The parameters in the Birch-Murnaghan equation of state
5

6 E(V) = E0 + B0*V/B’ * [(V0/V)^B’ / (B’-1) + 1] - B0 V0 / (B’-1)
7

8 are fit to energies for different lattice constants.
9

10 E0: Energy in equilibrium
11 V0: Volume in equilibrium
12 B0: Bulk modulus in equilibrium
13 B := - V (dP/dV)_T
14 P := - (dE/dV)_S
15 B’: Pressure derivative of B (assumed constant in this model)
16 B’ := (dB/dP)_T
17

18 See also: http://en.wikipedia.org/wiki/Birch-Murnaghan_equation_of_state
19 """
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20

21 import sys
22

23 import numpy as np
24 from scipy.optimize import fmin_powell
25

26 USAGE = """%prog [options] <input_file>
27

28 The <input_file> should contain two columns, the first containing the volume
29 and the second total energies.
30

31 No unit conversions are done. If you have used Angstroms^3 and eV in the
input

32 file, the bulk modulus is returned in eV/Anstrom^3. You can convert it using
33 GNU units:
34

35 units "<B0> eV/angstrom^3" "GPa"\
36 """
37

38 def Birch_Murnaghan(paras, V):
39 """Evaluate Birch Murnaghan equation-of-state for [E0, V0, B0, B’]"""
40 E0, V0, B0, Bprime = paras
41 T1a = B0*V/Bprime
42 T1b = ((V0/V)**Bprime / (Bprime-1.) + 1.)
43 T1 = T1a * T1b
44 T2 = - B0 * V0 / (Bprime - 1)
45 E = E0 + T1 + T2
46 return E
47

48 def sum_of_squares(paras, Vs, Es):
49 """Calculate squared norm of residue vector for paras."""
50 E_BMs = Birch_Murnaghan(paras, Vs)
51 return np.sum((Es - E_BMs)**2)
52

53

54 def initial_guess(Vs, Es):
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55 """Construct initial guess for V0, E0, ..."""
56 n = len(Es)
57 assert n == len(Vs)
58 if n < 3:
59 parser.error("Need at least three energies for fit") # 4?
60

61 E0 = np.min(Es)
62 i0 = np.argmin(Es) # index of minimum
63 V0 = Vs[i0]
64 if i0 > 0:
65 dE_left = (Es[i0] - Es[i0-1]) / (Vs[i0] - Vs[i0-1])
66 V_left = (Vs[i0] + Vs[i0-1]) / 2.
67 else:
68 dE_left = 0.
69 V_left = Vs[i0]
70 if i0 < n-1:
71 dE_right = (Es[i0+1] - Es[i0]) / (Vs[i0+1] - Vs[i0])
72 V_right = (Vs[i0+1] + Vs[i0]) / 2.
73 else:
74 dE_right = 0.
75 V_right = Vs[i0]
76 ddE = (dE_left - dE_right) / (V_left - V_right)
77 B0 = ddE * V0
78 Bprime = 3.5 # Typical value according to [1]
79 return np.array([E0, V0, B0, Bprime], dtype=’float’)
80

81

82 def get_default_VV(V0, Vs):
83 """Get default set of lattice constants aa for plotting"""
84 Vmin = min(np.min(Vs), V0)
85 Vmax = max(np.max(Vs), V0)
86 Vrange = Vmax - Vmin
87 VV = np.linspace(Vmin - 0.15*Vrange, Vmax + 0.15*Vrange, 200)
88 return VV
89

90 def plot(VV, EE, Vs, Es, V_text="$V$ in [a^3]"):
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91 import matplotlib as mpl
92 import matplotlib.pyplot as plt
93 fig = plt.figure()
94 ax = fig.add_subplot(1,1,1)
95

96 # Plot input data points
97 ax.plot(Vs, Es, ’o’, label="Calculated energies")
98

99 # Plot Birch-Murnaghan equation of states
100 ax.plot(VV, EE, ’-’, label="Birch-Murnaghan fit")
101

102 # Decorate and plot
103 ax.legend()
104 ax.set_xlabel(V_text)
105 ax.set_ylabel("$E$ in [E]")
106 def on_q_exit(event):
107 if event.key == "q": sys.exit(0)
108 plt.connect(’key_press_event’, on_q_exit)
109 plt.show()
110

111

112 def main():
113 import optparse
114

115 # Parse command line
116 parser = optparse.OptionParser(usage=USAGE)
117 parser.add_option("-p", "--plot", action="store_true",
118 help="Plot E(a) curve using matplotlib")
119 parser.add_option("-i", "--info", action="store_true",
120 help="Output info about Birch-Murnaghan e.o.s. & quit")
121 parser.add_option("-r", "--range", action="store", nargs=3, type="float",
122 help="Output range <start> <stop> <nstep>")
123 parser.add_option("-o", "--output", "--datafile", action="store",
124 help="Output fitted curve to OUTPUT")
125 parser.add_option("-e", "--reference", action="store", type="float",
126 help="Reference energy", default=0.)
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127 parser.add_option("-l", "--lattice-constant", metavar="FACTOR",
128 help="""\
129 Assume <input_file> contains lattice constants a instead of volumes V
130 and calculate V=FACTOR*a^3. Use, e.g., FACTOR=0.25 for fcc.""")
131

132 options, args = parser.parse_args()
133 if options.info:
134 print(__doc__)
135 sys.exit(0)
136 if len(args) != 1:
137 parser.error("Need exactly one argument")
138 input_file_name = args[0]
139

140 use_lattconst = options.lattice_constant is not None
141 if use_lattconst:
142 unit_cell_frac = float(options.lattice_constant)
143

144 # Read input data
145 data = np.loadtxt(input_file_name) # Input data as array
146 if use_lattconst:
147 lattconsts, Es = data.T # Separate 1st and 2nd col
148 Vs = unit_cell_frac * lattconsts**3
149 else:
150 Vs, Es = data.T # Separate 1st and 2nd col
151 Es -= options.reference
152

153 # Sort input data by V
154 VEs = sorted([list(zip(Vs, Es))]) # List of (V, E) pairs sorted

by V
155 Vs, Es = np.array(VEs,dtype=’float’).T # Convert back to

numpy arrays
156

157 # Construct initial guesses
158 paras = initial_guess(Vs, Es)
159

160 # Optimize parameters
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161 paras, fopt, direc, n_iter, n_funcalls, warnflag \
162 = fmin_powell(sum_of_squares, paras, (Vs, Es), full_output=True)
163 E0, V0, B0, Bprime = paras
164

165 # Final output
166 print("Final residue: %g [E]^2." % fopt)
167 print("=== Final parameters (output units match input units)")
168 outlist = []
169 outlist.append(" E0 = %18.12g [E]" % E0)
170 outlist.append(" V0 = %18.12g [a^3]" % V0)
171 if use_lattconst:
172 a0 = (V0 / unit_cell_frac)**(1./3.)
173 outlist.append(" a0 = %18.12g [a]" % a0)
174 outlist.append(" B0 = %18.12g [E/a^3]" % B0)
175 outlist.append(" B0’ = %18.12g" % Bprime)
176 for line in outlist:
177 print(line)
178

179 if options.range is None:
180 VV = get_default_VV(V0, Vs)
181 else:
182 start, stop, nstep = options.range
183 VV = np.linspace(start, stop, nstep)
184

185 EE = Birch_Murnaghan(paras, VV)
186

187

188 # Optionally plot
189 if options.output is not None:
190 f = open(options.output, "w")
191 for line in outlist:
192 f.write("# %s\n" % line)
193 if use_lattconst:
194 np.savetxt(f, np.array([aa, VV, EE]).T)
195 else:
196 np.savetxt(f, np.array([VV, EE]).T)
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197 f.close()
198 if options.plot:
199 try:
200 if use_lattconst:
201 aa = (VV / unit_cell_frac)**(1./3.)
202 plot(aa, EE, lattconsts, Es, "$a$ in [a]")
203 else:
204 plot(VV, EE, Vs, Es)
205 except ImportError:
206 parser.error("Cannot use --plot without matplotlib")
207

208 if __name__ == "__main__":
209 main()

Listing 6.1: Birch-Munaghan fit
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