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Abstract

In this thesis, we perform high-throughput screening calculations for the thermal con-
ductivity (κ) at 300 K of 152 materials using first-principles methods. Due to the various
approximations involved in these calculations, especially the low-order treatment of an-
harmonicity, a first set of 49 calculations is used to validate the computational approach.
In general, this shows that the calculations agree relative well with experiments, but also
that stronger anharmonic effects indeed lead to increased prediction errors for thermal
insulators. In a second step, 103 additional materials are investigated, 83 of which are
found to be potential thermal insulators with κ < 10W/mK. Since the degree of anhar-
monicity affects the accuracy of our computational predictions, we further investigate
to which extent anharmonicity can be quantitatively measured. To do this, we compare
between three metrics for anharmonicity (γ, σA and σAos) and discuss their correlation
with thermal conductivity. While σA and σAos show a relatively promising correlation with
κ, the Grüneisen parameters γ do not. To refine this finding and to find even better
descriptors for the thermal conductivity, we eventually use a machine-learning based sym-
bolic regression approach, i.e., the SISSO (sure-independence screening and sparsifying
operator) method. By applying it to our data, we can show that the models identified by
the SISSO approach show promising predictive accuracy and thus have the potential to
facilitate the discovery of thermal insulators in future.
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1. Introduction

1.1. Application Background

There are a number of applications in industry science and in our everyday life where
thermal insulation plays an important role. Thermoelectrics is a particularly important
application as it is not only a possible route towards saving energy, but also can replace
standard chlorofluorocarbon refrigerants[7]. The efficiency of a thermoelectric material is
described by the figure of merit

ZT =
S2σT

κ
, (1.1)

where S is the Seebeck coefficient, T is the temperature, σ is the electrical conductivity
and κ is thermal conductivity. Eq. 1.1 suggests that efficient thermoelectrics should have as
low κ as possible to ensure heat to be converted to electricity other than being transported.

Various attempts have been made to reduce the thermal conductivity. Intrinsically, one can
start from choosing the right chemical composition. As a rule of thumbs, heavy elements,
soft bonds, complex unit cell, etc. usually lead to low κ. Alternatively, thermal conductivity
can be reduced extrinsically, e.g., by structure disorder and defects. For example, alloying
and doping induced point defects have been used successfully in many thermoelectric
materials system, such as PbTexS1−x, SiGe and Cu2Se1−xIx [26]. Generally, such ap-
proaches are more successful if the materials has low κ already. It is thus important to
identify more insulating materials and to identify reliable design rules that go beyond the
aforementioned rules of thumb.
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1.2. High-throughput Screening and Machine Learning

Despite the strong demand motivated by the vast applications, relatively few materials
have been studied so far, since the accurate calculation of thermal conductivity, even
for simple bulk materials, is still computationally challenging due to need of treating
anharmonic effects. In this work, we use a low-order treatment of anharmonicity to screen
for potential thermal insulators among a relatively large database of 152 materials. The
aim of this is to reveal general trends for κ within different materials classes. To be able to
investigate so many materials, a tradeoff between accuracy and the computational speed
has to be taken into account. This tradeoff inaccuracy needs to be validated and checked
against experimental results.

Once sufficient amount of thermal conductivity data is available, machine learning can be
used for identifying descriptors formed by a set of parameters capturing the underlying
mechanism of materials property. By this means, even more rapid estimations for κ can
be obtained in a rapid fashion.

1.3. An Overview of Our Work

In this thesis, a systematic investigation will be carried out over five classes of materials,
i.e., rock salt, zinc blende, fluorite, half-heusler and chalcopyrite, for the understanding of
thermal conductivity(κ) and for seeking promising thermal insulators (κ < 10W/m/K).

The thesis work contains the following four parts: A summary of the underlying theories,
a description of the screening protocol and how we calculated the thermal conductivity of
all materials, a comparison between different measures of the anharmonicity of a material,
and finally the generation of machine learning models for identifying κ. In our second
part, a high-throughput screening of thermal conductivity at 300 K over 152 materials is
performed. Thermal conductivity is calculated from the phonon-phonon interaction using
single mode relaxation time (SMRT) method. 49 of these materials are used to validate
the approach by comparing with experimental results.

In the third part, a comparative study of three possible anharmonic metric, σA, σAos
and the Grüneisen parameter (γ) is performed, where σA is calculated from ab initio
molecular dynamics (aiMD) and σAos is calculated using a configuration generated via the
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harmonic approximation. γ is obtained from the third order force constants same as the
high-throughput screening for κ.

In the last part, a machine-learning technique, the sure-independence screening and
sparsifying operator (SISSO) approach, is introduced to run regressions for the complex
description of thermal conductivity using σA, σAos, γ, ΘD, etc. In this machine learning
analysis, the 49 experimental values of thermal conductivity will be used as the property
data set, while the training data set includes 16 physical quantities. These are used to
form the feature space for the symbolic regression, before solving the fitting problem by
compressed sensing. We run such regression for two purposes. One is to obtain better
models of κ that are computationally cheaper than first principles calculations. Second,
machine learning can help reveal what factors contribute most to thermal conductivity of
materials.
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2. Theory

2.1. Lattice Dynamics from First Principles

2.1.1. Electronic structure

In classical mechanics, motion of equation is described by Newton’s second law. For solids,
however, the interactions between any two particles (can be nucleus or electron) should
not be neglected. The solution to such many-body problem is usually written as the form
of the wave function and to be solved iteratively. Plane wave is a particular form efficient
for dealing with periodic system with periodic potential.

Bloch Theorem and Periodic Potential

Plane wave can be viewed as the Fourier transform from real lattice space to reciprocal
lattice space. The reciprocal lattice is known as the set of all wave vectors K that yields
plane waves with the periodicity of a given Bravais lattice vector R. They are connected
by the relation

eiK·R = 1 (2.1)

According to the Bloch theorem, the eigenstates of the Hamiltonian takes the form

ψnk(r) = exp(ik · r)unk(r), (2.2)

where ψ is the eigenstate of the Hamiltonian, n is the band index, r is lattice vector and k
is a wave vector. The cell periodic term uk(r) can be expanded in a plane wave basis set
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whose wave vectors are the reciprocal lattice vectors of the crystal,

unk(r) =
∑︂
K

ciK exp(nK · r) (2.3)

where K is the reciprocal lattice vector, and ciK are expansion coefficients of unk, while
unk itself is periodic with respect to Bravais lattice vectors R, unk(r+R) = unk(r). With
this relation we see that Bloch’s theorem

ψ(r+R) = eik·Rψ(r) (2.4)

holds.

For each Bravais lattice vector R, we can define an translation operator T̂ used to shift
the the wave function by R such that T̂ψ(r) = ψ(r+R). If we apply T̂ to Hψ and keep
in mind that the Hamiltonian is periodic, we get

T̂Hψ = H(r+R)ψ(r+R) = H(r)ψ(r+R) = HT̂ψ(r) (2.5)

Given that ψ is an arbitrary function, we find by comparing the first and the last terms
of Eq. 2.5 that the translation operator T̂ commutes with the Hamiltonian. Therefore,
Bloch wave functions ψnk, which are eigenvectors of T̂, are simultaneously the complete
set of eigenvectors for Hamiltonian Ĥ. This helps reduce the searching for eigenvectors of
Hamiltonian from the entire Hilbert space down to N-dimensional eigenspaces, where N
is the number of particles in the first Brillouin zone. The solutions to the wavefunctions
for allowed k in this way are superpositions of plane waves of wave vector k and of wave
vectors differing from k by a reciprocal lattice vector.

Since for a given k there are multiple solutions to the Schrödinger equation, subscript n
in Eq. 2.2 and 2.3 is used to distinguish wave functions labeled with same k. In the limit
of large crystal, for each n the energy level εn(k) is a continuous function that forms an
energy band in the Brillouin zone.

Brillouin Zone Sampling

To evaluate some quantities one often has to get the weighted integral of the density. For
instance, the total energy requires the integration over all the electron energy levels at
all k vectors. In this case, the density of states (DOS) given by integration of k over the
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Brillouin zone for all energy bands n

g(ε) =
∑︂
i

∫︂
dk

4π3
δ(ε− εn(k)) (2.6)

can be helpful.

In practice, this integral is evaluated as a sum

g(ε) =
∑︂
k

ωkgk(ε) (2.7)

where ωk are integration weights that need to be carefully chosen. Using the mean-value
theorem of integral calculus, one can always find a single point within an interval such
that

g(ε) =
∑︂
k

ωkgk(ε) = V × gk(ε) (2.8)

where V is the volume of that interval, usually a polyhedron in 3D. For sc, bcc and fcc
lattices, these points are known. For more complex lattices there are methods to sample
the k-mesh. The Monkhorst-Pack mesh is one of those approaches to generate a uniform
k-mesh. It tells that the commensurate k-points are given by

k⃗lmn =
3∑︂
i

2ni −Ni − 1

2Ni
G⃗i (2.9)

where Ni is the number of k-points in each direction as specified by the k-grid parameter
in the calculations, ni = 1, ..., Ni, and G⃗i is the reciprocal lattice vectors. K-grid parameter
has to be checked by doing convergence tests. Usually we want to evaluate the energy
difference between two structures, or to calculate similar structures in different supercells.
In both cases, k-points density should stay the same, so that the not-fully-converged error
can cancel out.

Born-Oppenheimer Approximation (BOA)

The Born-Oppenheimer (BO) approximation is based on the assumption that (1) nuclei
are much heavier and that electrons hence move much faster, so that they always respond
instantaneously to changes in the atomic positions. As a consequence, the many-particle
Schrödinger equation can be separated into nuclear and electronic equations.
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In more detail, the Hamiltonian for all particles (including electrons and nuclei) reads

H =Tel +Tnuc +Uel−el +Unuc−el +Unuc−nuc

−
Nel∑︂
i=1

ℏ2∇2
i

2m
−

N∑︂
n=1

ℏ2∇2
n

2Mn
+

1

4πϵ0

1

2

Nel∑︂
i,j=1;i ̸=j

e2

|ri − rj|

− 1

4πϵ0

N∑︂
n=1

Nel∑︂
i=1

Zne

|ri −Rn|
+

1

4πϵ0

1

2

N∑︂
n,n′=1;n̸=n′

ZnZ
2
n′

|Rn −Rn′ |

(2.10)

where ∇2
i and ∇2

n are the Laplacians for electrons and nuclei. The first two terms of
the equation are kinetic energies for nuclei and electrons, the last three terms describe
Coulomb interactions between electrons, nuclei, and electron and nuclei.

The full, time-dependent Schrödinger equation subject to this Hamiltonian is given by

Hχ(x, r, t) = iℏ
∂χ

∂t
(2.11)

where χ(x, r, t) is the full wave function that can be written in the separable form

χ(x, r, t) = ψel(x, r)ψnuc(r, t) (2.12)

Due to BO approximation the electron wave functions ψel(x, r) do not depend explicitly
on time. Instead they are functions of the nuclear coordinates r. Substituting Eq. 2.12
into Eq. 2.11 leads to

− ℏ2

2

⎡⎣Nel∑︂
i=1

ψnuc∇2
iψ

nuc

m
+

N∑︂
n=1

ψnuc∇2
nψ

el

Mn
+

N∑︂
n

2∇nψ
el∇nψ

nuc

Mn
+

N∑︂
n=1

ψel∇2
nψ

nuc

Mn

⎤⎦
+ (U ee + U eZ + UZZ)ψelψnuc = iℏψel ∂ψ

nuc

∂t
. (2.13)

Here, the three potential terms in Eq. 2.11 are replaced by U ee, U eZ and UZZ for short.
According to BOA, electrons are always staying at the equilibrium states and the third term
in the squared bracket in Eq. 2.13 vanishes. The second term is much smaller compared
to the first term for the mass of nuclei is much greater than that of electron under the BO
approximation. This term is also negligible.
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The time-independent electron part can be separated out from Eq. 2.13 as

−ℏ2

2

Nel∑︂
i=1

∇2
iψ

el

m
+ (U ee + U ez)ψel = εψel (2.14)

where ε = ε0(r) is the ground state energy of the electron. Inserting the right hand side
into Eq. 2.13, we obtain the time-dependent nuclear Schrödinger equation, in which the
electron energy enters as part of the partial field

−ℏ2

2

N∑︂
n=1

∇2
iψ

nuc

Mn
+ (UZZ + ε0)ψ

nuc = iℏ
∂ψnuc

∂t
(2.15)

In other words, the potential V (r) = UZZ + ε0
1 depends only on the position of nuclei,

which will be varied to find the ground state of the whole system.

2.1.2. Density Functional Theory

In density functional theory, the total energy of a system of many interacting particles can
be expressed as a functional of the ground state density n0(r), and that the density n(r)
is obtained from an auxiliary function ψk, normally called Kohn-Sham wave function or
orbital. They are related by

n(r) =
N∑︂
k=1

|ψk(r)|2 (2.16)

The above statement is proven in the first and second Hohenberg-Kohn theorem. The first
states that for any system of interacting electrons in an external potential, the potential is
determined uniquely by the ground-state density. [9]. The second theorem states that the
ground state energy is a functional of the density and assumes a minimum at the ground
state.

Proof of theorem I. Assume there exist two different potentials V1(r) ̸= V2(r) that yield the
same ground-state density. They lead to different Hamiltonians H1

ˆ ̸= H2
ˆ , and to different

1We treat nuclei as classical particles and denote the potential of them as V (r).
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ground-state wave functions Ψ1 ̸= Ψ2. Based on the variation principle, it follows that

E1 = ⟨Ψ1|H1
ˆ |Ψ1⟩ < ⟨Ψ2|H1

ˆ |Ψ2⟩
E2 = ⟨Ψ2|H2

ˆ |Ψ2⟩ < ⟨Ψ1|H2
ˆ |Ψ1⟩ (2.17)

Then we have the following relations

E1 < ⟨Ψ2|H2
ˆ − V2 + V1|Ψ2⟩ = E2 +

∫︂
d3r(V1(r)− V2(r))n2(r)

E2 < ⟨Ψ1|H1
ˆ − V1 + V2|Ψ1⟩ = E1 +

∫︂
d3r(V2(r)− V1(r))n1(r) (2.18)

Summing over these two equations, we get the contradiction:

E1 + E2 < E1 + E2 (2.19)

Proof of theorem II. For a given external potential Vext(r), we first define the associated
total energy to be

EHK [n] =T [n] + Eint[n] + Eext[n]

= T [n] + Eint[n] +

∫︂
n(r)Vext(r)dr (2.20)

Assume n0 is the ground state density with the corresponding Hamiltonian H0 generated
from the true external potential Vext and hence its ground state wave function Ψ0. Let n1
be some other density, corresponding to another wave function Ψ1. This density can also
be as the wave function for H0, leading to the inequality given by

E0 = EHK [n0] = ⟨Ψ0|H0|Ψ0⟩ < ⟨Ψ1|H0|Ψ1⟩ = EHK [n1] (2.21)

In density functional theory, the Schrödinger equation with an effective-independent
Hamiltonian for single-spin orbital is given by[︄

−1

2
∇2 −

∑︂
n

Zn

|r−Rn|
+

∫︂
d3r′n(r′)

1

|r− r′| + Vxc[n](r)

]︄
ψk(r) = εkψk(r) (2.22)

where the first three terms are kinetic energy, the electrostatic interactions between
electrons and nuclei and the electrostatic energy of the electron in the field generated by
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the total electron density n(r). The fourth term contains the many-body effects, forming
together the so-called exchange-correlation potential.

The energy-functional for a many-electron system with electronic interactions included
takes the form

E[n] = T [n] +

∫︂
d3rn(r)Vext(r) +

1

2

∫︂
d3r

∫︂
d3r′n(r′)

1

|r− r′|n(r) + Exc[n] (2.23)

Exchange and Correlation Functional

The accuracy of the calculated total energy largely depends on the approximation of
exchange and correction energy Exc. The term Exc[n] Based on the assumption that the
exchange and correlation is the functional of electron density, it is useful to express Exc[n]
in the form

Exc[n] =

∫︂
drn(r)ϵxc(n(r)) (2.24)

where ϵxc([n], n(r)) is the energy per electron at thr position r depends on the density in
some neighborhood of r. Exc can be written in terms of density like potential term due to
the exchange-correlation hole averaged over the interaction from fully independent to
fully correlated.

The Local Density Approximation assumes that the the exchange and the correlation ener-
gies are the same as that in a homogeneous electron gas and that the exchange-correlation
energy can thus simply be calculated as the integral of not necessarily homogeneous
density,

ELDA
xc [n(r)] = ELDA

x [n(r)] + ELDA
c [n(r)]

=

∫︂
d3rϵLDA

x (n(r)) · n(r) +
∫︂
d3rϵLDA

c (n(r)) · n(r) (2.25)

where the exchange energy per electron ϵLDA
x (n(r)) is

ϵLDA
x (n(r) = −3

4

(︃
3

π

)︃1/3

n1/3(r) (2.26)
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and the correlation term ϵLDA
c (n(r)) is parameterized as

ϵLDA
c (n(r)) =

0.1423

1 + 1.0529(3/4πn)1/6 + 0.3334(3/4πn)1/3
(2.27)

based on Quantum Monte Carlo methods[18].

Despite its success of honogeneous electron gas, LDA has the following shortcomings:
(1) It is problematic for localized electrons, (2) it overestimates cohesive energies and
underestimates the corresponding bond lengths and (3) erroneous self-interaction in-
cluded [14].

The Generalized Gradient Approximation (GGA) is a more accurate approach in which not
just the density, but also the derivatives of density are taken into account. GGA combines
the idea of Taylor expansion with a generalized gradient given by

s =
|∇n(r)|
2kFn(r)

(2.28)

with kF = (3π2n)1/3 representing the magnitude of the local Fermi wave vector.

The GGA energy has the form as

EGGA
xc =

∫︂
d3rn(r)ϵxcFxc[s] (2.29)

where ϵxc is the exchange correlation energy per particle of the homogeneous gas as
shown in Eq. 2.25 and Fxc is the enhancement factor. There is only one type of LDA, but
there are several kinds of GGA due to different parameterizations, among which some are
empirical, some semi-empirical, and others ab initio. Widely used GGA functionals are the
Perdew and Yang (PW91) [4], the Becke (B88 [2], B97 [3]), Perdew, Burke, Ernzerhof
(PBE) [19], just to name a few. One of the major drawback of both LDA and GGA is that
the exchange correlation does not cancel the self-interaction present in the Hartree energy.

The enhancement factor Fxc[s] for exchange term under GGA is given by

Fx = 1 + µs2 + ... (2.30)

where the first term comes from L(S)DA, and the coefficient µ in the second term specifies
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the s2 contribution based on GGA. The GGA correlation energy takes the form

Ec[n] =

∫︂
d3rn(r){ϵunifc (n(r)) + βt2(r) + ...} (2.31)

where ϵunifc (n(r)) is the correlation energy per particle of the uniform gas, β is the
coefficient and t is the reduced density gradient for the correlation.

The calculations done in Chapter 3 used PBEsol as xc functional. PBEsol [6] stands for PBE
functional revised for solids that restores the density-expansion gradient for exchange in
solids, while the original PBE was designed in molecules. It is able to give more accurate
results in describing the equilibrium properties of densely packed solids and their surfaces.

For PBEsol, µ = 2µGE with µGE = 10/81 ≈ 0.1235 and β = βGE = 0.0667, where µGE

and βGE are coefficients for gradient expansion. However, it does not well agree with
densely packed solids. In PBEsol, β = 0.046 and µ = µGE are chosen, making it exact
for solids under intense compression and can give significantly better equilibrium lattice
constants and surface energies. However, PBEsol is not expected to give good atomization
energies, for which PBE is superior.
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2.1.3. Solid State Physics

Harmonic Approximation of Lattice Dynamics

In real materials, atoms are not static, but oscillate around the equilibrium sites. If the
assumption that for solid materials ions vibrate around their equilibrium positions, i.e.,
the Bravais lattice sites, with deviation much smaller than the interionic spacing holds,
potential energy can be approximated by a Taylor expansion in terms of ion displacements
u(R) up to second order:

U(R) =
N

2
(
∑︂

Φ(R) +
∑︂

u(R)∇Φ(R) +
1

2

∑︂
u2(R)∇2Φ(R) + O(u3(R))) (2.32)

≈ U eq +
1

2

N∑︂
α,β

∑︂
µ,ν=x,y,z

uα,µ(R)Φ
α,β
µ,ν (R−R′)uβ,ν(R

′) (2.33)

The first order term in Eq. 2.32 vanishes due to the fact that the forces are zero when
atoms are at the equilibrium positions, thus only the equilibrium and harmonic terms
are left as shown in Eq. 2.33. Here, the equation is written in matrix form which is more
convenient for higher dimensional cases. Φα,β

µ,ν (R − R′) is the second derivative of the
potential with respect to the positions denoted by the subscripts {µ, ν} and is given by

Φα,β
µ,ν (R−R′) =

∂Φαβ

∂uα,µ(R)∂uβ,ν(R′)
(2.34)

where Φαβ is the potential between atom α and β. The equilibrium potentials are nothing
but the minimum of the potential energy surface (PES), i.e., the ground state energy
obtained from ab initio calculations.

Using Eq. 2.33, one obtain the atomic equation of motion that reads

Mαüα,µ(t) = −
∑︂
β,ν

Φα,β
µ,νuβ,ν (2.35)

where uα,µ¨ (t) is the second order time derivative of displacement for atom α. An ansatz
for such a differential equation is an exponential function:

uα,µ = umq(α, µ)e
iq⃗Rµ⃗e−iωt (2.36)
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Here, ω is the frequency of the normal modes of vibration. umq(α, µ) is the polarization
vector along µ direction. This form of displacement function is analogous to Bloch waves
in describing electron wave function. Born-von Karman periodic condition is used to
define the q⃗ vector in Eq. 2.36, which requires that: uα,µ(R+Niai) = uα,µ(R), where Ni

is any integer along i direction and ai is the respective primitive lattice vector. Applying
this to Eq. 2.35, one found that the q⃗ take the form:

q⃗ =
n1
N1

b1 +
n2
N2

b2 +
n3
N3

b3 (2.37)

where bi are the reciprocal lattice vectors that satisfy biai = 2π.

Substituting Eq. 2.36 into the equation of motion (Eq. 2.35) and by cancels the time-
dependent term e−iωt so that we end up with

Mαω
2
mqumq(αµ)e

iq⃗Rκ⃗ =
∑︂
κ′βν

Φκκ′
αµ,βνumq(βν)e

iq⃗Rκ′
⃗ (2.38)

Here Φκκ′
αµ,βν is the force constants of force acting on atom α with direction µ, induced

by the displacement of atom β along direction ν. Multiplying with e−iq⃗Rκ⃗ on both sides,
gives

Mαω
2
mqumq(αµ) =

∑︂
βν

{
∑︂
κ′

Φκκ′
αµ,βνe

iq⃗Rκ′
⃗ −Rκ⃗}umq(βν) (2.39)

Eq. 2.39 is not a generalized form of eigenvalue equation due to the existence of mass
matrix and can be solved by redefining the ansatz as

uα,µ =
1√
Mα

cmq(α, µ)e
iq⃗Rµ⃗e−iωt (2.40)

Now the equations of motion take the form:

ω2
mqcmq(αµ) =

∑︂
βν

{
∑︂
κ′

1√︁
MαMβ

Φκκ′
αµ,βνe

iq⃗(Rκ′
⃗ −Rκ⃗)}cmq(βν) (2.41)

The curly bracket on the right hand side converts the equation from R⃗ dependent to q⃗
dependent and can be replaced by a new variable called dynamical matrix

Dκκ′
αµ,βν =

∑︂
κ′

1√︁
MαMβ

Φκκ′
αµ,βνe

iq⃗(Rκ′
⃗ −Rκ⃗) (2.42)
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Eq. 2.41 can now be rewritten as its most general form:

ω2
mqcmq(αµ) =

∑︂
β,ν

Dκκ′
αµ,βνcmq(βν) (2.43)

By diagonalizing Eq. 2.43 we find out the eigenvalues for each q, which are the solutions
to ω.

Given the phonon dispersion ω(q), we can compute the phonon density of states nvib(ω),
the partition function Zvib(T ) and the related quantities such as the internal energy
Uvib(T ), the Helmholtz free energy Fvib(T ) and vibrational entropy Svib(T ).

nvib(ω) =

∫︂
dq

(2π)3
δ(ω − ω(q)) (2.44)

Z = Πqν
e−ℏων(q)/2kBT

1− 1e−ℏων(q)/kBT
(2.45)

Uvib = − ∂

∂β
lnZvib =

∑︂
qν

(
1

2
+

1

eℏων − 1
) (2.46)

Fvib = −kBT lnZvib =
1

2

∑︂
qν

ℏω(qν) + kBT
∑︂
qν

ln(1− e−ℏω(qν)/kBT ) (2.47)

Svib = −∂Fvib

∂T
(2.48)

CV =
1

kBT 2

∂2 lnZ

∂β2
=

1

kBT 2
(⟨U2

vib⟩ − ⟨Uvib⟩2) (2.49)

For quantum-mechanical harmonic oscillator, energies for each level are given by

En =
1

2
ℏω + nℏω (2.50)

where n is the excitation number of the oscillator. The density distribution of any ordinary
classical gas Pn is given in equilibrium at temperature T byMaxwell-Boltzmann distribution
such that Pn ∝ e−En/kBT , where En is the energy at state n.
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Average energy of an oscillator at temperature T is given by2

ε(ω, T ) =

∞∑︂
n=0

EnPn = (1− e−ℏω/kBT )ℏω
∞∑︂
n=0

(n+
1

2
)(e−ℏω/kBT )n

=
1

2
ℏω + ℏω

1

exp(ℏω/kBT )− 1
=

1

2
ℏω + ⟨n⟩ℏω (2.51)

Next, two models will be discussed for estimating the phonon distribution to the heat
capacity of a solid.

The Einstein model assumes that all atoms are in a similar potential and thus all harmonic
oscillators have the same resonance frequency ωE . It is often more convenient to examine
the temperature derivative of energy, i.e., heat capacity, and not the absolute energy itself
since it varies too slightly compared to the equilibrium value. The Einstein model of heat
capacity under constant volume is given by

CV = (
∂U

∂T
)V = 3N

∂

∂T
⟨ε(ω, T )⟩

= 3N
∂

∂T

∞∑︂
n=0

Pnεn(ωE)

= 3N
∂

∂T
(
1

2
ℏωE +

ℏωE

eℏωE/kBT − 1
)

= 3NkB(
ℏωE

kBT
)2

eℏωE/kBT

(eℏωE/kBT − 1)2
(2.52)

If we define Einstein temperature ΘE = ℏωE
kB

, the heat capacity can be written in terms of
ΘE as

CV = 3NkB(
ΘE

T
)2

eΘE/T

(eΘE/T − 1)2
(2.53)

At large T, CV ≈ 3NkB. While for low temperature, CV ∝ (ΘE
T )2e−ΘE/T . Einstein model

succeeds in describing heat capacity in intermediate and high temperature range. However,
due to the inaccurate assumption that all oscillators share the same frequency, Einstein
model fails to predict heat capacity under low temperature.

Debye model takes into account the variation of frequency over different lattice sites, or

2Here Pn = e−nℏω/kBT

1−e−ℏω/kBT follows Bose-Einstein distribution.
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different k-values. Debye assumes that ω and k follow a linear dispersion relation,

ω = vsk (2.54)

where vs is the sound velocity. Obviously, sound velocity differs from the longitudinal
and the two transverse modes in diatomic case but it is not considered in Debye model.
Similar to the way of how total number of free electrons is counted in Eq. ??, the number
of vibration modes (or phonons) is given by

N =
k3

6π2
V (2.55)

Then we get the density of states

g(k) =
V k2

2π2
(2.56)

We can convert the density of states per polarization from the conservation law g(ω)dω ≡
g(k)dk and arrive at

g(ω) = g(k)
dk

dω
=
V ω2

2π2
1

v3s
(2.57)

The number of states is given by integrating the density of states up to some cutoff
frequency ωD

N =

∫︂ ωD

0
dωg(ω) =

∫︂ ωD

0
dω
V ω2

2π2
1

v3s
=
V ω3

D

6π2
1

v3s
(2.58)

where we can derive the cutoff frequency also called Debye frequency ωD = 6π2v3s
N
V and

Debye temperature ΘD = ℏωD
kB

= ℏvs
kB

(6π2NV )1/3.

The internal energy is obtained by integrating over density of states times statistically
weighted energy per stateup to Debye frequency,

U =

∫︂ ωD

0
dωg(ω)⟨ε(ω)⟩ℏω

=

∫︂ ωD

0
dω(

V ω2

2π2v3s
)(

ℏω
eℏω − 1

)

= 9NkBT (
T

ΘD
)3
∫︂ xD

0
dx

x3

ex − 1
(2.59)

where x = ℏω/kBT and xD = ΘD/T . The heat capacity is then given by time derivative
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of internal energy

CV = (
∂U

∂T
)V = 3

V ℏ
2π2v3s

∫︂ ωD

0
dω

∂

∂T

ω3

eℏω/kBT − 1

=
3V ℏ2

2π2v3skBT
2

∫︂ ωD

0
dω
ω4ℏω/kBT
(eℏω/kBT )2

=
3V

2π2v3skBT
2

∫︂ ωD

0
dω

ω4eℏω/kBT

(eℏω/kBT )2
(2.60)

= 9NkB(
T

ΘD
)3
∫︂ xD

0
dx

x4ex

(ex − 1)2

For large T,
CV ≈ 9NkB(

T

ΘD
)3
∫︂ xD

0
dxx2 = 3NkB (2.61)

For T → 0,

U ≈ 3π4NkBT
4

5Θ3
D

CV ≈ 12π4NkB
5

(
T

ΘD
)3 ∝ T 3 (2.62)

Methods for Phonon Calculation

There are essentially two methods for calculating harmonic force constants within DFT,
density functional perturbation theory (DFPT) and finite difference approaches.

Within DFT, the force induced by displacing an atom by a displacement, uαµ, can be
calculated using the Hellman-Feynman theorem

∂E

∂uαµ
=

∫︂
d3rn(r)

∂Vext(r)

∂uαµ
(2.63)

For force constants, we need the second derivative, that is,

∂2E

∂uαµ∂uβν
=

∫︂
d3rn(r)

∂2Vext(r)

∂uαµ∂uβν
+

∫︂
d3r

∂n(r)

∂uβν

∂Vext(r)

∂uαµ
(2.64)
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The derivative of the density in Eq. 2.64 can be obtained from perturbation theory, since
according to Eq. 2.16, the calculation of perturbed density is equivalent to that of perturbed
wave function. The regular way to get first-order responses is to calculate the expectation
value of the perturbed operator in terms of unperturbed states, e.g.,

∆ψ
(1)
i =

∑︂
j ̸=i

⟨ψ(0)
j |∆H|ψ(0)

j ⟩
ε
(0)
i − ε

(0)
j

ψj (2.65)

where the superscript (0) denotes non-perturbed state and (1) denotes the first order
perturbed state. Perturbed wave fucntion can be obtained in a self-consistent way similar
to solving the Kohn-Sham equation. From these, Eq. 2.64 then yields the force constants.

In the finite difference (also known as "frozen phonon") approach, the force constants
needed to set up the dynamical matrix is accomplished by displacing one atom after
another

∂2E

∂uαµ∂uβν
≈ Fαµ

uβν
, (2.66)

with µ→ 0.

The finite difference method involves calculations of supercells to get accurate force
constants, so to sample phonon with q ̸= 0. To construct the supercell, we first define
a 3× 3× 3 supercell matrix P that relates supercell vector (as bs cs) and primitive cell
matrix (ap bp cp) by

(as bs cs) = (ap bp cp)P (2.67)

The total number of atom in the supercell is calculated by

Ns = Np · | det(P)| (2.68)

where det(P) is the determinant of P. As one period of wave has to be bound by any of
the lattice point in a unit cell, the number of commensurate q-points that are accurately
calculated in phonon dispersion is equivalent to |det(P)|.

These two methods lead to comparable accuracies. DFPT does not require the construction
of supercells, but is typically only implemented in semilocal DFT calculations, but not
for hybrid functional, nor beyond DFT methods. Conversely, the finite difference ap-
proach is compatible with all ab initio methods that allow a force calculation, but requires
calculations in large supercells.
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The Quasiharmonic Approximation

In experiments, what we are concerned about is usually not the Helmholtz energy and
the related thermal quantities given above, but the Gibbs free energy since we are not
controlling volume and temperature, but pressure and temperature. The Gibbs free energy
is obtained via Legendre transform from

G(T, p) = min
V

[F (T, V ) + pV ] (2.69)

where it means to find the minimum of the function of V in the bracket. One way to
calculate G(T, p) is the quasiharmonic approximation (QHA), where G(T, p) is obtained
by repeatedly computing F (T, V ) at various volumes. This is equivalent to redefining the
phonon to be volume dependent so that the “extension" of the Helmholtz free energy
given in Eq. 2.47 can be written as

FQHA(T, V ) =
1

2

∑︂
qν

ℏω(qνV ) + kBT
∑︂
qν

ln(1− e−ℏω(qνV )/kBT ) (2.70)

Based on the two equations of states

P (V, T ) = −
(︃
∂F

∂V

)︃
T

(2.71)

V (P, T ) =

(︃
∂G

∂V

)︃
T

(2.72)

where F and G are Helmholtz and Gibbs free energy, we obtain the volume thermal
expansion coefficient and the isothermal bulk modulus that are given by

α =
1

V

(︃
∂V

∂T

)︃
P

=
1

V

(︃
∂2G

∂T∂P

)︃
PT

(2.73)

BT = −V
(︃
∂P

∂V

)︃
T

= V

(︃
∂2F

∂V 2

)︃
T

(2.74)

It can be seen that these two quantities are related by

αBT = −
(︃
∂2F

∂V ∂T

)︃
TV

(2.75)
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If we expand a lattice to V1 against its equilibrium volume V0, Eq. 2.74 yields

V QHA
1 (T )− V0

V0
= − 1

B0

(︃
∂F

∂V

)︃
T

(2.76)

Now we introduce mode Grüneisen parameter defined as

γqν ≡ −
(︃
V

ωqν

dωqν

dV

)︃
V0

(2.77)

Combing Eq. 2.70, Eq. 2.76 and Eq. 2.83, we arrive at

V QHA
1 (T )− V0

V0
=

1

B0V0

∑︂
qν

ℏωqνγqν(nqν +
1

2
) (2.78)

Taking this equation back to the relation (Eq. 2.75) given above and replacing the temper-
ature derivative with the heat capacity Cv, we obtain the Grüneisen equation of states

α =
γCv

3B
(2.79)

Eq. 2.79 implies that the thermal expansion shows similar trends as the heat capacity such
that α ∼ T 3 when T → 0 and that it converges to kBγ/B0V0 (γ is the overall Grüneisen
parameter) when T > ΘD.

Perturbation Theory in Lattice Dynamics

In the harmonic approximation, we determine the stationary eigenstates of the harmonic
Hamiltonian. It is however not sufficient in describing transport properties. One typical
example is the thermal expansion which the harmonic approximation would never capture
since it is assumed that the equilibrium size of the crystal is temperature independent. Also
the phonon mean free path is infinite in the harmonic approximation (since no phonon
interactions are included), and so is the thermal conductivity.

One approach to account for anharmonicity at least approximately is to obtain the third
or higher order terms via Taylor expansion of the potential. The anharmonic term then
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takes the form

Uanh =
∞∑︂
n=3

1

n!

∑︂
R1...Rn

∂nU

∂uµ1(R1)...∂uµn(Rn)
uµ1(R1)...uµn(Rn) (2.80)

In the following, only cubic anharmonicity is taken into account, though sometimes it is
necessary to go further to higher orders (see [1], p. 489). Here, we first discuss the volume
dependence. In the finite difference method, one now has to do three phonon calculations,
one at equilibrium volume V0 and the other two with slightly larger and smaller volume
than V0. The volume derivative of dynamical matrix in Eq. 2.82 is computed as

∂D

∂V
=
D(V +∆V )−D(V −∆V )

2(∆V )
(2.81)

As defined in Eq. 2.83, the mode Grüneisen parameter can now be related to the dynmical
matrix by

γqν = − V

2 [ω2(qν)]
⟨ε(qν)|∂D(q)

∂V
|ε(qν)⟩ (2.82)

where ε(qν) is the eigenvalue got from diagonalization of the dynamical matrix.

The overall Grüneisen parameter is calculated by summing over mode Grüneisen parameter
weighted by its contribution to the specific heat

Grüneisen parameter defined in Eq.

γ =

∑︁
qν γqνCV ν(q)∑︁

qν CV ν(q)
(2.83)

Alternatively, one can calculate Grüneisen parameter from third-order force constants. The
volume derivative term ∂D(q)

∂V is related to the third order force constants by (subscripts
are the same as used in Section 2.1.3)

δDαβ(κκ
′;q) =

1√
MκMκ′

∑︂
l′

δΦµν(lκ; l
′κ′) exp[iq · (r(l′)− r(l))]

δΦµν(lκ; l
′κ′) =

∑︂
l′,κ′,λ

Φµνλ(lκ; lκ
′; l′′κ

′′
)rλ(l

′′κ
′′
) (2.84)

where δDαβ is the change of dynamical matrix due to the change of volume.
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Lattice Thermal Conductivity

Transport phenomena are all typically characterized by the quantity being transported
and the transport speed. Furthermore, the transport of (quasi-)particles is typically
accompanied by collisions. For instance, electrons are often described in the Drude model,
which assumes that the velocity between two collisions remains unchanged. The time
interval, or relaxation time, of charge transport between two consecutive collisions is
simply given by

τ =
m∗σ

ne2
(2.85)

wherem∗ is the electronic mass, σ is the conductivity, n the charge density and e the charge.
For thermal transport, these become heat and the velocity of the particles transporting the
heat. Consider a simple heat transport model along the x-axis as shown in Fig. 2.1 with
heat source and sink at both ends. Heat that arrives at T2 experienced its last collision at
either T1 or T3. The heat balance at the mid position xT2 with temperature T2 is given by
the difference between heat flow into and out of the domain.

j =
1

2
nv [ε(T [xT2 − vτ ])− ε(T [xT2 + vτ ])] (2.86)

When the mean free path l = vτ is very small, the energy density functions in Eq. 2.86
can be linearly expanded as

j =
1

2
nvε

(︃
T

[︃
xT2 − vτ(−dT

dx
)

]︃)︃
− 1

2
nvε

(︃
T

[︃
xT2 + vτ(−dT

dx
)

]︃)︃
=

1

2
nv

[︃
ε(T (xT2))− vτ(−dT

dx
)(
dε

dT
)

]︃
− 1

2
nv

[︃
ε(T (xT2)) + vτ(−dT

dx
)(
dε

dT
)

]︃
= nv2τ

dε

dT
(−dT

dx
) (2.87)

For the three-dimensional case the velocity in Eq. 2.87 is replaced by the component along
one coordinate, which is ⟨v2x⟩ = ⟨v2y⟩ = ⟨v2z⟩. Note that here the mean square velocity is
approximated as temperature-independent. With the energy derivative being replaced by
heat capacity as well, the heat flux is then written as

j =
1

3
v2τCV (−∇T ) (2.88)
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Comparing this results with Fourier’s law, the thermal conductivity per phonon mode κλ
is given by

κλ =
1

3
CV λv

2τλ =
1

3
CV λvlλ (2.89)

The relaxation time (or phonon lifetime) in the above equation remains to be the most
tricky part of solving for the lattice thermal conductivity.

The phonon lifetime τ (or phonon scattering rate τ−1) related to the phonon-phonon
scattering has been approximated in different models.

Figure 2.1.: Schematic diagram of heat transport

1. Slack Model and Debye-Callaway Model

The lattice thermal conductivity is quantitatively described by the early work of
Debye and Peierls. It tells that (1) in the low temperature region thermal conductivity
increases with heat capacity and the latter is T 3 dependent, (2) when temperature
gets higher (∼ 0.1ΘD), the Umklapp processes start to dominant and the thermal
conductivity starts to drop and (3) at the peak of the thermal conductivity, its value
is sensitive to the crystal impurities.

Following these findings, the Slack model suggests that the lattice thermal conduc-
tivity can be approximated by

κL =
kB
2π2v

(
kBT

ℏ
)3
∫︂ ΘD/T

0

x4ex

τ−1
c (ex − 1)2

dx (2.90)
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where x = ℏω/kBT , ΘD is the Debye temperature, v is the velocity of sound, and τ
is the total phonon scattering time.

Similar to the Slack model, the Debye-Callaway model also only considers the con-
tribution of acoustic modes to the thermal conductivity, which is sufficient for very
simple materials. For the phonon scattering process, however, both normal and
Umklapp processes will affect the heat transport. Umklapp process gives rise to
the thermal resistance due to the reversed phonon flux, while the normal mode
may redistribute momentum and energy among the phonons. Thus the total the
scattering rate of phonon is expressed by τ−1

C = τ−1
N + τ−1

U . The partial thermal
conductivities κi (i = LA, TA or TA’ modes) are given by [25]

κi =
1

3
CiT

3

∫︂ Θi/T

0

τ ic(x)x
4ex

(ex − 1)2
dx+

[︂∫︁ Θi/T
0

τ ic(x)x
4ex

τ iN (ex−1)2
dx

]︂2
∫︁ Θi/T
0

τ ic(x)x
4ex

τ iN τ iU (ex−1)2
dx

(2.91)

where Θi is the longitudinal (transverse) Debye temperature given by Θ = ℏωD/kB ,
x = ℏω/kBT and Ci depends on the acoustic group velocity such that Ci =
k4B/2π

2ℏ3vi. We notice that the Debye-Callaway model is a function of the De-
bye temperature (Θ), phonon velocity (v) and the phonon lifetime (τ) for both
normal and Umklapp processes. Below are the fitting models for the scattering rate
of different modes given in [15]. For Umklapp process, these are

[τLU (x)]
−1 = BL

U

(︃
kB
ℏ

)︃2

x2T 3e−ΘL/3T (2.92)

and

[τTU (x)]−1 = BT
U

(︃
kB
ℏ

)︃2

x2T 3e−ΘT /3T , (2.93)

with
Bi

U ≈ ℏγ2i
Mv2iΘi

(2.94)

For normal process, these are

[τLN (x)]−1 = BL
N

(︃
kB
ℏ

)︃2

x2T 5 (2.95)
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with
BL

N ≈ k3Bγ
2
LV

Mℏ2v5L
(2.96)

and

[τLN (x)]−1 = BL
N

(︃
kB
ℏ

)︃2

xT 5 (2.97)

with
BT

N ≈ k4Bγ
2
LV

Mℏ3v5T
(2.98)

The three involved dispersion related parameters Debye temperature (Θ), phonon
velocity (v) and Grüneisen parameter can be obtained either from experiments or ab
initio calculations. There are also phonon-boundary scattering and phonon-isotope
needed to be included but they are simply not shown here.

2. Three-Phonon-Interaction

In our study, the single-mode relaxation time (SMRT) method including the three-
phonon interaction is used to calculate the thermal conductivity [22], where the
phonon life time is obtained from the anharmonic term of the potential. Compared
to the Slack model and the Debye-Callaway model, the phonon-phonon scattering is
now treated as perturbation and the actual third-order anharmonicity is captured.

To do this, the Hamiltonian is expanded up to third order. Combining Eqs. 2.33 and
2.80, we get

U = U eq + Uharm + Uanharm

= U eq +
1

2

N∑︂
α,β

∑︂
µ,ν=x,y,z

uα,µ(R)Φα,β
µ,ν (R−R′)uβ,ν(R

′)

+
1

6

N∑︂
α,β,γ

∑︂
µ,ν,ξ=x,y,z

Φα,β,γ
µ,ν,ξ (R,R

′,R′′)uα,(R)uβ,ν(R
′′)uγ,ξ(R

′′′)

= U eq +
∑︂
qν

(︃
1

2
+ nqν

)︃
ℏων(q) +

∑︂
λλ′λ′′

Φλλ′λ′′(âλ + â†−λ)(âλ′ + â†−λ′)(âλ′′ + â†−λ′′)

(2.99)

The last equation in Eq. 2.99 is the quantum mechanical expression derived from the
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second equation, where λ denotes the phonon mode (q, ν) and Φλλ′λ′′ represents
the interaction between three phonons. â and â† are the creation and annihilation
operators of the harmonic Hamiltonian respectively. Φλλ′λ′′ is derived from the third
order force constants and explicitly given by

Φλλ′λ′′ =
1√
N

1

6

∑︂
κκ′κ′′

∑︂
αβγ

Wα(κ, λ)Wβ(κ
′, λ′)Wγ(κ

′′, λ′′)

√︄
ℏ

2mκωλ

√︄
ℏ

2mκ′ωλ′

√︄
ℏ

2mκ′′ωλ′′

×
∑︂
l′l′′

Φαβγ(0κ, l
′κ′, l′′κ′′)eiq

′[l′κ′−0κ]eiq
′′[l′′κ′′−0κ]ei(q+q′+q′′)r(0κ′)∆(q+ q′ + q′′)

(2.100)

Here ∆(q + q′ + q′′) = 1 when q + q′ + q′′ equals to reciprocal lattice vector
and is zero otherwise. W (κ, λ) are the polarization vectors corresponding to the
eigenvectors of the Dynamical matrix. Φλλ′λ′′ can then be used to calculate the
imaginary part of the self-energy, which is given by

Γλ(ω) =
18π

ℏ2
|Φ−λλ′λ′′ |2{(nλ′ + nλ′′ + 1)δ(ω − ωλ′ − ωλ′′)

+ (nλ′ − nλ′′)[δ(ω + ωλ′ − ωλ′′)− δ(ω − ωλ′ + ωλ′′)]}

where nλ is the phonon occupation number at the equilibrium. Phonon lifetime is
related to the imaginary part of the self-energy via

τλ =
1

2Γλ(ωλ)
. (2.101)

Eq. 2.101 can be inserted into Eq 2.89 for calculating the mode-specific thermal
conductivity

κµµph (ω) =
1

ΩNq

∑︂
λ

Cλv
µ
λv

µ
λτλδ(ω − ωλ) (2.102)

Integrating over all mode frequencies gives the bulk thermal conductivity.

3. Green-Kubo Method
Using Green-Kubo method one is able to calculate thermal the conductivity in a
non-perturbative manner via ab initio molecular dynamics. The Kubo relations [12]
tell us that transport coefficients can be obtained by integrating the correlation
function of the associated flux over time.
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Figure 2.2.: Characteristic features of an auto-correlation function

Figure 2.2 shows the decay of an auto-correlation function C(r, τ) over time, where
A and B are two time-dependent signals. When the two signals are same quantity,
the auto-correlation function will decay simply to zero. The thermal conductivity κ
is related to the heat flux auto-correlation by [5]

κα =
1

kBT 2V

∫︂ ∞

0
⟨Jα(t)Jα(0)⟩dt (2.103)

where ⟨Jα(t)Jα(0)⟩ is the ensemble averaged heat flux auto-correlation function.
Considering the continuity law

1

V

∂E(t)

∂t
+∇j = 0 (2.104)

and integrating both sides over position r, we get the expression of the heat flux
J(t) that is

J(t) =
1

V

d

dt

∑︂
I

RIEI =
1

V

∑︂
I

RI
̇ EI +

1

V

∑︂
I

RIEI
̇ (2.105)
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where RI and EI are the position and the energy for atom I. The last two terms
in Eq. 2.105 imply that the heat flux can be decomposed into a convective term
describing the diffusion of atoms which is negligible for heat transported in typical
solids, and the conduction term describing the energy transfer between neighboring
atoms. The conduction term can be rewritten in the following way.

1

V

∑︂
I

RIEI
̇ =

1

V

∑︂
I ̸=J

(FIJ · vI)RIJ

=
1

V

∑︂
I

σIvI (2.106)

From Eq. 2.106 we see that the heat flux now depends on the stress tensor and the
velocity of each atom, while no longer on the energy density directly. The solution
to it is exact provided that the stress term can be formulated in a unique and well-
defined way, which has been implemented in the all-electron code FHI-aims [11].
Then one is able to calculate the heat flux J(t) from the position and the velocity
of each ab initio MD trajectory. Thermal conductivity κ is further obtained by the
integral of the heat flux auto-correlation.

Measure for Anharmonicity

When comparing between MD-computed thermal conductivity and the perturba-
tive ones, it is important to note that discrepancies arise for strongly anharmonic
materials. It is thus important to characterize materials by anharmonicity.

Recently, Knoop et al. [10] developed a quantitative measure of the degree of an-
harmonicity of materials by computing the root mean square error (RMSE) of the
difference between anharmonic and harmonic forces divided by the standard devia-
tion of force distribution:

σA(T ) ≡
σ
[︁
FA

]︁
T

σ [F ]T
=

⌜⃓⃓⎷∑︁
I,α⟨(FA

I,α)
2⟩T∑︁

I,α⟨(FI,α)2⟩T
(2.107)
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where both σ [F ]T and σ [F ]T can be obtained from the time average, which are

σ [F ]T =

⌜⃓⃓⎷ 1

3NI

1

Nt

Nt∑︂
t=1

F 2
I,α(t) (2.108)

σ
[︁
FA

]︁
T
=

⌜⃓⃓⎷ 1

3NI

1

Nt

Nt∑︂
t=1

(FI,α − F
(2)
I,α)

2(t) (2.109)

The degree of anharmonicity can also be roughly predicted in a one shot way. This
is done by calculating the atomic configurations from the distribution function
predicted in the harmonic approximation instead of time averaging the MD results.
For a given normal-mode coordinate qs = As(T ) cos(ωst+ ψs), the average kinetic
energy in the thermal equilibrium is given by

⟨1
2
qṡ⟩ = ⟨1

2
ω2
sA

2
s sin

2(ωst+ ψs)⟩

=
1

4
ω2
s⟨A2

s⟩ =
1

2
kBT (2.110)

The expectation value of the amplitude is ⟨As⟩ =
√
2kBT/ωs. If this holds for all s,

then the energy of each mode is exactly kBT according to the equipartition theorem.
Displacements can therefore calculated from a random distribution given by

∆Rα
I =

1√
MI

∑︂
s

ζs⟨As⟩eαsI (2.111)

where eαsI is the harmonic eigenvectors, and ζs is a normally distribute random
number. If a material is fully harmonic, Eq. 2.111 would represent the true thermo-
dynamic ensemble average. In this case, both σA σAos will be zero.

In calculating one shot forces we simply set ζs to be ±1 other than from a random
distribution to approximate the harmonic turning points. Plugging this into Eq. 2.107
we get the one-shot metric σAos. Note that for strongly anharmonic materials the
approximated σAos is not accurate and one still has to use σA from aiMD.
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Figure 2.3.: These two plots show that for given potential energy and force, the anhar-
monic contribution of them is nothing but the difference between the total
value and its harmonic approximation (figure from [10])
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2.2. Statistical Theories

Once we are done with some calculations, we would like to gain some insights of structure-
property relations by mapping the output results to the input data. Ideally, this should
allow for skipping the costly computation step to determine the property and to only
rely on simple, easy-to-compute properties. However, this mapping is usually not linear
or explicit. Machine learning is a useful tool to find out the complex descriptor for us.
Here in this section I will briefly introduce the approach, i.e, sure independence screening
and sparsifying operator (SISSO), that is used to do the regression for the set thermal
conductivity dataset obatained from ab initio calculations.

2.2.1. LASSO (Least Absolute Shrinkage and Selection Operator) and
Compressed Sensing

Let’s assume that there are some set of input data points {d11,...,d1N},...,{dN1,...,dMN}
and a set of property data points {P1,...,PN}, dMN and PN ∈ R. Our goal is to find a set
of constants c that can be the solution to the equation P = D · c, where P is the property
vector and D is the input (or descriptor) matrix. Least squares is the most simple approach
to solve this by minimizing the square of errors between the two sides, i.e.,

argmin
c∈RM

||P−Dc||22 (2.112)

where ||||22 denotes l2 the square errors. The explicit solution to Eq. 2.112 is given by
c = (DTD)−1DTP. A problem of this approach is that for under-determined linear
system, it would cause over-fitting if two entries of D, inversely correlated to each other,
are distributed with very large weights. Also, such an approach will usually lead to
high-dimensional models with ci ̸= 0∀ĉ.

l2 Regularization

A better solution can be achieved by introducing an additional norm term (or penalty
term) to Eq. 2.112. The most commonly used l2 regularization is given by

argmin
c∈RM

(||P−Dc||22 + λ||c||22) (2.113)

36



where the coefficient λ controls the strength of the penalty and usually tuned by cross
validation. However, the l2 norm still tends to make use of all features, thus it is unable to
give a sparsified solution that we want.

l0 and l1 Regularization

The sparsest solution can be obtained by replacing the second term of Eq. 2.113 with
λ||c||0, which is nothing but the number of non-zero entries in D. Solving such a problem
is an NP-hard problem that scales non-polynomial with problem size. To accelerate the
procedure, the l1 norm regularization can simplify the regression by making it convex
again, while still providing a sparse solution. Similar to the above, l1 regularization is
defined as

argmin
c∈RM

(||P−Dc||22 + λ||c||1) (2.114)

where ||c||1 =
∑︁

k |ck|. This method is also known as LASSO (Least Absolute Shrinkage
and Selection Operator). There exists a smallest λ0 > 0, such that all entries of the solution
c are zero. With decreasing λ, more and more components become non-zero.

N ≥ CΩ ln(M) (2.115)

Eq. 2.115 quantitatively shows that there exists a constant C such that whenever this
relation holds, a stable and robust recovery of c fromD and P is possible [8]. Compressed
sensing provides a way to justify the construction of matrixD and then the low-dimensional
descriptor model is to be found via LASSO.

2.2.2. Symbolic Regression

Linear models of features are often not enough to describe most of the physical properties
of materials. That’s why non-linear models, e.g., kernel ridge regression, are often used
for these applications. In our case, we use another approach based on symbolic regression
to introduce non-linearity. It aims at generating sufficiently large feature space upon a
small number of training data and mapping the regression output analytically to the input
data. Features will be generated in a “building blocks" manner and based on this they will
be further grouped into different rungs, i.e., Φ1, Φ2, Φ3 etc., with each rung building up
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out of features (“blocks") of the previous rung:

Φn ≡
n⋃︂

i=1

Ĥ[ϕ1, ϕ2], ∀ϕ1, ϕ2 ∈ Φi−1 (2.116)

In practice, features up to a few rung are sufficient and the maximum rung is one of the
hyperparameters of the regression needed to be optimized. These feature spaces will
be then mapped into dimension spaces by scoring the Pearson correlation with property
vector P. Optimal descriptors among them will be determined by the l0 method. Details
of these two steps will be introduced in the following section.

2.2.3. SISSO (sure independence screening and sparsifying operators)

The goal of SISSO is to find the best low-dimensional linear models of a property given
a set of non-linear, analytical expressions stored in Φ. The first step of this method is to
use sure-independence screening (SIS) to screen all features in Φ to find the nsis features
that are most correlated to P, using the Pearson correlation

ρdip =
N∑︂
n

[(dni − dī)(pn − pn̄)]

σdni
σpn

(2.117)

where dni, dī and σdni
are the value of the nth feature di, mean value of di and its

standard deviation. pn, pn̄ and σpn are the respective values for pn. Once done these
nsis are stored inside of a subspace S1D and the best nres models are trivially found using
ℓ0-regularized least-squares regression. We then calculate the residuals ∆1D,

∆r
1D ≡ P− d1Dc1D, (2.118)

where r is the index of the found model, for each of the found models and then use those
to perform the SIS selection for S2D. In this step we will be using multiple residuals, so
the projection score has now changed to be the maximum correlation between the various
residuals

ρdip = max
(︂
ρ1dip

, . . . , ρnres
dip

)︂
, (2.119)

where ρrdip
is the projection score associated with the residual of the rth model. From here,

we find the best two-dimensional model using ℓ0-regularized least-squares regression on
the union of S1D, and S2D. This cycle is then repeated until some user-defined maximum
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dimension is reached. In this algorithm the maximum dimension, nsis, and nres are all
hyper-parameters that are optimized during cross validation.

feature space Φ

1D model = 1D descriptor
2D model = 1D descriptor + 2D descriptor

Property

1D
des

crip
tor residual of 1D

2D descriptor

resid
u
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l
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f
2
D

Figure 2.4.: Descriptors up to 2D are used to reduce the residual

2.2.4. Cross Validations of Models

Cross validations of model of the current dimension before moving on to the next dimension
to ensure that the loss function - root mean square errors (RMSE) - is small enough so
that the model is generalizable to be used in predicting property of a mew material. Cross
validation is performed by randomly leaving out a certain number of data from training
data set. These left-out data form another test set to check the variance between real and
fitting values of samples in the test set caused by over-fitting. Fig. 2.5 below shows the
tradeoff between bias and variance over different complexities of model. It shows that the
error is not always decreasing with increasing model complexity but that there exists a
minimum.
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Figure 2.5.: Total Error = Bias + Variance

In 1D, the RMSE is defined by

RMSE1D =

⌜⃓⃓⎷ 1

N

N∑︂
i

(Pi −
M∑︂
j

d1D
ij c1Dj )2 (2.120)

where N and M are sizes of the property set and the feature set.

RMSEnD =

⌜⃓⃓⎷ 1

N

N∑︂
i

(Pi −
ndim∑︂
n

M∑︂
j

dnD
ij cnD

j )2 (2.121)

After running a number of cross validations for each set of “hyperparameters"3, a jackknife
resampling will be done to check if the result of cross validations is converged. For
jackknife resampling we simply take the average over all but the i-th data points which is
called the jackknife replicate:

x̄(i) =
1

n− 1

∑︂
j∈[n],j ̸=i

xj , i = 1, ..., n (2.122)

3Hyperparameters will be discussed in detail in Sec. 3.5.
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Obviously we will get n jackknife replicates and they can be used to calculate the jackknife
estimate of the average:

x̄jack =
1

n

n∑︂
i=1

x̄(i) (2.123)

The jackknife estimate of variance of x̄ can be calculated from the variance of the jackknife
replicates x̄(i):

varˆ (x̄)jack =
n− 1

n

n∑︂
i=1

(x̄(i) − x̄jack)
2 =

1

n(n− 1)

n∑︂
i=1

(xi − x̄)2 (2.124)

We shall see that the larger size of data sample will give better estimated mean value with
smaller variance. By performing jackknife resampling we are able to know whether the
variance of RMSE is within the tolerance and that the estimate mean value can be used
as the RMSE of the model, or we need more cross validations to give reliable estimate of
RMSE.

Primary Features Φ0

Feature Spaces: Φ1, Φ2, Φ3 etc.

Score Features According to Pearson Correlation
and Divide Them into Various Dimensions

Find Low-dimensional Models via l0 (or LASSO) Regression

Cross Validation of each Dimension using RMSE

Extrapolation

SIS

SO

Figure 2.6.: Workflow of SISSO Regression
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3. Results and Discussion

3.1. Numerical Settings

Ab initio forces used in the following sections are computed using the all-electron code
FHI-aims with the numerical atom-centered orbitals (NAOs) method. PBEsol is used as
the exchange-correlation functional and the SCF convergence criterion of density is set
to be 10−7eV/Å3, k-point density is set as 2 Å−3 and light settings are used. Other
numerical settings are set as the default in the code. All structures are fully relaxed using
symmetry-preserving constraints[13], before force calculations are performed.

3.2. Preliminary Convergence Tests

In this work, third order force constants are needed for the calculations of anharmonic
quantities using the methods discussed in Sec. 2.1.3. To obtain third order force constants
(fc3) by finite-differences, one has to compute the forces acting on each atom caused
by displacing a pair of atoms from their equilibrium positions as shown in Eq. 2.80.
The number of force pairs needed grows rapidly with the increasing supercell size and
complexity of the structure. For instance, for Si supercell with 8 atoms, the displacement
pairs needed are 16. However, this number goes up to 222 for the 64-atom Si supercell, and
to 434 for the 216 one. Table 3.1 shows the materials to be calculated in our following high-
thoughput screening, along with the supercell sizes to be used and their corresponding
number of atomic pair displacements needed for fc3 calculations.
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Materials Rocksalt Zincblende Fluorite Half-Heusler Chaclopyrite
Atom per supercell 64 64 96 96 144
Number of pairs 146 222 258 497 5192

Table 3.1.: Number of displaced configurations for five different structures
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Figure 3.1.: Mean and Maximum Relative Errors of Thermal Conductivity at 300 K with
Cutoff Radius from 4 to 7 Å. Mean relative error is defined as MeanRE =∑︁N

i |xi−xacc|/xacc

N , where xi are log κ and xacc are the respective accurate values.
MaxRE is the maximum among the set of relative errors.
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Figure 3.2.: Mean and Maximum Relative Errors of the Grüneisen Parameter with Cutoff
Radius from 4 to 7 Å.
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To obtain third order force constants, two atoms are displaced simultaneously (r1 and r2)
and such displaced configuration induces forces on all the other atoms given by

F3 = − ∂V

∂r3
(3.1)

However, forces caused by the interaction of an atom pair may be shorter-ranged than the
chosen supercell size which is determined by the harmonic approximation. It is possible
to choose a cutoff radius dcut (with an upper bound equal to distance between the two
displaced atoms), such that only atomic pairs with |r1 − r2| < dcut are considered in the
force calculations. The setting of cutoff radius helps reduce the number of pairs computed,
but should not affect the accuracy of the third order force constants. Due to the large
number of displacement configurations needed for the last three classes of materials in
Table 3.1, a cutoff radius is particularly helpful in these calculations.

To check the accuracy, we perform a convergence test of Phono3py calculation for a total
of fifteen materials, containing four fluorites (Li2O, Mg2Ge, Mg2Si and Mg2Sn), four
half-heuslers (CoTiSb, FeVSb , NiSnTi and NiSnZr) and nine chalcopyrites (AgGaS2,
CdAs2Ge, CdGeP2, CuGaS2, CuGaSe2, CuGaTe2, ZnAs2Ge, ZnAs2Si and ZnGeP2). The
accuracy for each cutoff radius is evaluated by calculating the relative errors of the
respective Grüneisen parameter and thermal conductivity calculated without cutoff radius.
For chalcopyrite, we use results with rcut = 9 Å as the accurate values. This rcut ensures a
convergence of relative errors within 0.01. Results of the mean relative errors (MeanRE)
and maximum relative errors (MaxRE) using different rcut are shown in Fig. 3.1 and 3.2.
We note that for thermal conductivity, both fluorite and half-heusler materials show very
good convergence with MaxRe and MeanRe smaller than 0.05. Chalcopyrites, however,
have larger calculation errors, where the MaxRE is unable to reach a value smaller than
0.05 at 7 Å cutoff radius. For the results of Grüneisen parameter, the accuracy of the
calculations of all the three classes of materials is greatly enhanced from cutoff 5 Å to 6 Å,
and thus 6 Å is a good choice. Given that for chalcopyrite materials 5192 displacements
have to be computed to get the third order force constants without using a cutoff radius,
it is helpful to use a cutoff radius of 6 Å in the following high-throughput screening, since
it halves the amount of displacements.
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3.3. Phono3py Results of Thermal Conductivity

Here we perform a high-throughput screening over 152 materials from those five structures
discussed in Section 3.2. Parameters for the calculations of ab initio forces are set in Sec. 3.1.
The Phono3py code is used to calculate third order force constants. Cutoff pair distances of
6 Å are set for fluorite, half-heusler and chalcopyrite, as has been tested to give converged
results in the previous section. Thermal conductivity (300 K), Grüneisen parameter and
other thermodynamic properties can then be extracted. Other computational details are
given in Sec. 3.1.
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Figure 3.3.: Comparing Thermal Conductivities (300 K) calculated by Phono3py with the
experimental values.
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Structure Rock Salt Zinc Blende Fluorite Half-Heusler Chalcopyrite

Number of materials 18 16 4 4 7
RMSE 0.15 0.24 0.17 0.31 0.22

Table 3.2.: Results of the number ofmaterials for each structures and the RMSEs showing
the relationship between experimental and calculated thermal conductivity.

Results for the thermal conductivity are shown in the parity plot (Fig 3.3) between
computation and experiment results. Only 49 materials with measured values available
are included in this plot. The overall R2 value of 0.91 indicates relatively good agreement
with the experiment results.

We note that part of the rock salt materials show a remarkably small thermal conductivity,
which contradicts the common expectation that simple materials have high thermal con-
ductivity [21]. Among them the one with lowest κexp is NaI (κexp = 1.80W/mK). Other
halides are also found to have low thermal conductivity, e.g., RbI (κexp = 2.30W/mK)
and KI (κexp = 2.60W/mK). This can be explained by their strong anharmonicity. For
instance, their Grüneisen parameters are: 1.565 (NaI), 2.30 (RbI) and 1.587 (KI). Their
mode Grüneisen parameters are shown in the Appendix (Fig. A.4).

Table 3.2 lists the number of the materials and the RMSE for each class. Among these
five classes, only rock salt, zinc blende and chalcopyrite may have sufficient number of
data to give a rough idea of the accuracy of the Phono3py calculations for each class, as
measured by the RMSE. Conversely, calculations for fluorite and half-heusler materials are
too few to give useful information regarding the accuracy of the calculation for these two
individual classes. Nonetheless, we remark that all the half-heusler materials are severely
overestimated in thermal conductivity, unlike other classes for which materials lie above
and below the parity line.
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Figure 3.4.: Materials with κexp < 10W/m/K that can be selected as thermal insulators.
Thresholds for κexp and κcal are marked by the two dashed lines.

83 of the 152 materials are found to be promising thermal insulators with calculated
κ smaller than 10 W/mK, as shown in Table A.1 and A.2, where 25 are rock salts, 3
are zinc blendes, 21 are fluorites, 4 are half-heuslers and 30 are chalcopyrites. Based
on the available 49 experiment data 23 materials are confirmed experimentally to be
thermal insulators, as shown in Fig. 3.4. They are 12 rock salt, 2 zinc blende, 3 fluorite, 2
half-heusler and 4 chalcopyrite materials. In these insulators, the large overall root mean
square error (RMSE) of KF, NaCl, CdSe, CdTe, NiSnTi, NiSnZr, CdAs2Ge and CuGaSe2
is caused by the break down of either DFT with PBEsol method or Phono3py calculation
of thermal conductivity. If we leave out those data points with absolute error greater than
2 W/mK, the resulting RMSE of the remaining 15 materials will be lowered to 0.840, but
still relatively large.

We notice that AgGaS2 shows the smallest lattice thermal conductivity (κexp = 1.45 and
κcal = 0.82W/mK) among all the thermal insulators shown in Fig. 3.4. Note that the
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calculated result of κAgGaS2 does not agree very well with its experimental value, as it
shows a larger distance away from the parity line than the other blue points in Fig. 3.4.
However, its significantly low thermal conductivity is of more interest to us. In the next
part of this section we will investigate more about this material, using Si as a comparison
for a good thermal conductor.
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Figure 3.5.: (a) Phonon band structure and density of states, (b) thermal properties
(Dashed horizontal line indicates the Dulong-Petit estimation of high temper-
ature heat capacity) and (c) mode Grüneisen parameters of Si
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Figure 3.6.: (a) Phonon band structure and density of states, (b) thermal properties
(Dashed horizontal line indicates the Dulong-Petit estimation of high temper-
ature heat capacity) and (3) mode Grüneisen parameters of AgGaS2

Figs. 3.5 show the phonon band structure and density of states, temperature dependent
thermal properties and mode Grüneisen parameters of Si. They are important quantities
for the evaluation of the dynamical stability of a material. There are two Si atoms in a
primitive cell, resulting in six phonon dispersion bands in Fig. 3.5(a). Density of states
(DOS) gives an overview of the phonon density distribution across some frequency range.

Fig. 3.5(b) shows the changes of the heat capacity, entropy and free energy under different
temperatures. They are extracted from ab initio forces as derived in Eq. 2.44. Alternatively,
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one can get these quantities form ensemble average by performing aiMD simulations.
For free energy, another approach would be to do thermodynamic integration, that is, to
integrate along the internal energy “path" between the reference state and the unknown
state.

Fig. 3.5(c) shows the Grüneisen parameter of Si per mode. They are calculated from third
order force constants via Phono3py. We can see clearly that those Grüneisen parameter
points are divided into two clusters, one covers values from 0.25 to -2.0, while the other
stays around 1.0. Grüneisen parameters in the first cluster all belong to the acoustic bands,
which are the causes of Si’s negative thermal expansion at low temperature.

AgGaS2 is one of the chalcopyrite semiconductors that are promising thermoelectric
materials that can be used as both n- and p-type[20]. For chalcopyrite, value of thermal
conductivity differs greatly between specific materials. As we found in our calculation,
ZnGeO2, LiBO2, LiN2P and SnZnP2 have thermal conductivity over 20 W/mK, while all
Ag-based chalcopyrites show low κ values around 2 W/mK.

Fig 3.6(a) shows the phonon band structure and the partial DOS of the chalcopyrite type
(I 4̄2d) AgGaS2. There are 8 atoms in the unit cell of AgGaS2, resulting in 24 phonon
branches (3 acoustic branches and 21 optic branches). The flat band shape leads to very
small phonon sound velocity vs of 1397 m/s 1 (for another chalcopyrite ZnGeP2 with
κ = 29.374W/mK, vs = 5056m/s), in particular along X-P direction where all modes are
double-degenerated[24]. Following the relaxation time approximation for lattice thermal
conductivities, i.e., κL = 1

3Cvv
2
sτ , the small sound velocity explains the low thermal

conductivity. It is also noted that at low frequency region, the optical modes and the
acoustic modes overlap, giving rise to a high density. The partial DOS plot on the right
shows that density at low frequency is dominated by Ag atoms, while Ga atoms contribute
in the intermediate to high frequency region and S atoms in the high frequency region.
The partial DOS can then be mapped to other frequency dependent properties (e.g. mode
Grüneisen parameter shown in Fig. 3.6(c)) to give an idea of which atom affects other
properties.

Three thermodynamic properties, i.e., the vibrational free energy EF , entropy S and heat
capacity CV are plotted in Fig 3.6 (b) as functions of temperature. The absolute values
of these three properties are all much greater than that of Si mainly due to the larger
number of atoms in the unit cell. The heat capacity reaches a constant at roughly 400 K
and follows Dulong-Petit law at higher temperature.

1Phonon sound velocity is calculated via the derivative of frequency with respect to wave vector q using
finite difference method.
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The mode Grüneisen parameter for AgGaS2 is shown in Fig. 3.6(c). The overall Grüneisen
parameter of AgGaS2 in our calculation is 1.05 (for the relation between overall and
mode Grüneisen parameter see Eq. 2.83), which is in good agreement with the reported
γ of 1.02[23]. Two different colors represent the positive and negative parts of the mode
Grüneisen parameters. The negative γ all come from low frequency branches (mainly
acoustic branches), implying that these branches produce negative thermal expansion.
What is different is that close to zero frequency, Grüneisen parameters are very large with
a maximum of 35.31, from which it drops linearly till 1 THz. Mapping this back to the
partial DOS of AgGaS2 we find that most of these modes belong to Ag atoms which have
the highest density at low frequencies.
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Figure 3.7.: (a) Structure of chalcopyrite compound, (b) Average thermal conductivity
(calculated) for different A-based chalcopyrites (A = Li, Na, Mg, Cu, Zn, Ag
and Cd)

As observed in the case of AgGaS2, the low frequency Ag atoms with large Grüneisen
parameters might explain the low thermal conductivity of this compound. Now we would
like to see if this assumption can be generalized to the whole chalcopyrite space.

Fig. 3.7(a) shows the structure of the tetragonal unit cell of ternary chalcopyrite with
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ABX2 composition (I− III−VI2 or II− IV−V2). The yellow points stand for atom X (S,
Se, Te, etc.), while the gray atoms (A = Cu, Ag, etc.) and the green atoms (B = Al, Ga, In,
etc.) equally occupy the tetrahedron holes.

To reveal the A-atom dependent trend for the thermal conductivity in ABX2 type chal-
copyrite, we divide the 38 chalcopyrite materials into 7 groups based on the element on
their A site. Here, GaLiTe2 and CdSnP2 are excluded since they do not follow the general
trends. Of all the remaining 36 chalcopyrite materials, Li, Na, Cu and Ag based compounds
correspond to I− III−VI2 composition, while Mg, Zn and Cd correspond to II− IV−V2

composition. The ionization number differs in these two cases (for I− III−VI2 A is a +1
cation and for I− III− VI2 A is a +2 cation). Then we calculate the averaged thermal
conductivity for each group with results shown in Fig. 3.7(b). Generally speaking, thermal
conductivity decreases with increasing atomic number/mass as shown from left to right in
the bar chart. Ag-based chalcopyrite shows the lowest average thermal conductivity of
1.19 W/mK. Exceptions are found in Zn and Cd, where the average thermal conductivity
of Zn-based compound is 18.5 W/mK and for Cd it is 6.3 W/mK. The descending trend of
I− III−VI2 compounds is in general consistent with the experimentally fitted model for
thermal conductivity given in Ref. [23], which states that the relation κL ∝ M̄δΘ3

D (M̄ is
the average atomic mass, δ is the average volume occupied by one atom of the crystal and
ΘD is the Debye temperature) holds for each individual compositions, i.e., I− III−VI2
and II− IV−V2. However, the unexpected high average thermal conductivity of Zn-based
compounds breaks this trend for II− IV −V2 compounds.

3.4. Anharmonicity Measure

Can we obtain or at least have an initial guess of thermal conductivity without performing
any costly Phono3py or MD calculations?

Of course one can do such predictions using machine learning if enough reliable data is
available. But before that, we would like to first look for descriptors in physics domain. It
is known that the thermal conductivity is finite due to aharmonicity. Here, we will present
three anharmonicity metrics, i.e., σA, σAos and Grüneisen parameter γ, and compare their
performance as an anharmonicity measure by investigating their correlations with the
thermal conductivity.

The idea behind σA and σAos is based on Ref. [10]. They are extracted from the RMSE
of normalized forces obtained via aiMD and harmonic sampling respectively (see the
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derivation in Sec. 3). Both R2 and RMSE are used to measure how well they can predict
the thermal conductivity linearly. From Fig. 3.8(a) and 3.8(b) one can easily note that
at the region near 10W/mK four materials are far off the regression line. They are the
half-heusler materials (CoTiSb, FeVSb, NiSnTi and NiSnZr), corresponding to the four
orange points well below the equality line in Fig. 3.3.

The greater R2 and smaller RMSE of σA than that of σAos indicate that σA is a better
descriptor for thermal conductivity and anharmonicity. This can be explained from
Fig. 3.8(a) where the data points of strongly anharmonic materials with larger σA are
closer fitted to the regression line. As discussed in Sec. 3, σAos is an approximation to σA
based on the ensemble average of perfectly harmonic system. Errors thus must become
larger for more anharmonic materials.

We further plot the correlation between κexp and γ as shown in Fig. 3.8(c). γ is correlated
to the thermal conductivity via the Slack model and the Debye-Callaway model discussed
in Sec. 3.3. They both tell that the phonon scattering rate τ−1 ∝ γ2 (where the relaxation
time τ ∝ γ−2), and τ is proportional to the lattice thermal conductivity. The R2 and
RMSE show, however, that its correlation with the thermal conductivity is not particularly
pronounced. This suggests that in both the Slack and the Debye-Callaway model, κ is
dominated by Debye temperature ΘD and other properties (atomic mass, volume, etc.)
and that the Grüneisen parameter, however, plays only a minor role.
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Figure 3.8.: Correlation of the three anharmonic metrics (at 300K) (a) σA, (b) σAos and (c)
γ−2 with the thermal conductivity, straight lines show the regression results
(Due to bad correlation fitting line is removed from (c)).
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3.5. SISSO Regression for Thermal Conductivity

As discussed in Sec. 3, both σAos and γ don’t encompass all aspects of thermal conductivity.
For instance, the Slack model [21] for thermal conductivity reads

κL = A
M̄Θ3

Dδ

γ2T
(3.2)

where M̄ is the average atomic mass, ΘD is the Debye temperature, δ average volume per
atom in the unit cell, γ is the Grüneisen parameter, T is temperature and A is a constant.
This model has been proved to describe successfully in high-κ materials, e.g., Si, MgO, BP,
etc. However, it fails in the case of strongly anharmonic materials. To check the accuracy
of the Slack model, we plot the relation between κexp and the coefficientMaΘ

3
aδ/γ

2 using
the κ data we calculated, as shown in Fig. 3.9. It shows that a roughly linear correlation
can be reached for materials with κexp greater than 50 W/mK, whereas no linear trend is
found for lower κexp.
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Figure 3.9.: Experimental values of thermal conductivity as a function of the coefficient
MaΘ

3
aδ/γ

2 in the Slack model
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Machine learning provides a way to include more features relevant to the other aspects of
the thermal conductivity. As introduced in Sec. 2.2, SISSO (sure independence screen-
ing and sparsifying operator) is able to tackle immense and correlated feature spaces,
and converges to the optimal solution from a combination of relevant to the materials’
property [16].

In this work, the set of 49 experimental data shown in Sec. 3.3 will be used as the target
property. As preprocessing step κexp will first be converted to log(κexp) to reduce the range
of possible values of κ. Table 3.3 shows the primary features (or training data) used to
construct the feature spaces for the symbolic regression as discussed in Sec. 2.2.2, where
some stem from ab initio calculations, some are structure-specific parameters. They have
been selected as primary features since they represent relevant processes for the thermal
conductivity. It is thus reasonable to assume that a combination of these physical features
in the higher rungs of feature space can give a better description of thermal conductivity.

There are four parameters forming a set of hyperparameters that have to be adjusted and
optimized during the training, which are

(1) n_sis_select: number of features selected for each dimension;

(2) n_residual: number of residuals of loss function taken to the calculation of RMSE
for each dimension;

(3) max_rung: feature space are built up to Φmax_rung and

(4) desc_dim: number of dimensions considered.

All hyperparameters in the following regressions are optimized using 50 or 100 iterations
of leave-10% out cross validation (CV), i.e., 10% of the data in training set are used as
test data in the CV.
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Feature Definition

γ Grüneisen parameter

σA Measure of degree of anharmonicity from MD [10]

σAos One shot measure of degree of anharmonicity [10]

Lavgprim (Å) Average lattice constants of primitive cell

Θp (K) Average phonon temperature [17]

ΘD∞ (K) Estimated high-temperature limits of Debye temperature [17]

Θa (K) Debye temperature of the acoustic phonon branches

Cv (J/K) Heat capacity

ωΓmax (THz) Maximum frequency at Γ point

mmin (Da) Minimum atomic mass

mmax (Da) Maximum atomic mass

mavg (Da) Average atomic mass

µ (Da) Reduced mass1

Vm(Å3
) Molar volume

Va(Å
3
) Volume per atom

ρ(Da/Å3
) Density

n_atoms_prim (n_atom) Number of atoms in the primitive cell

vs (m/s) Phonon sound velocity

1 µ = 1∑︁
i

1
mi

, where mi are the masses of atoms in the primitive cell.

Table 3.3.: The primary features used in the following regressions. Definitions are given
in the right column.
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3.5.1. Regression including γ

In this section, SISSO regression is performed with γ included and σA/σAos excluded. A
total of 49 materials are taken to the training.

Cross Validations (CVs) of Models
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Figure 3.10.: Validation RMSE of 100 CVs. Other parameters are: max_rung = 2,
desc_dim = 3 and n_sis_select = 500.

Fig. 3.10 shows the RMSE obtained from 100 cross validations as the final step of the
cross validations, with n_residual ranging from 200 to 500. A set of 50 CVs is performed
first using the same hyperparameter settings, RMSE given in Fig. B.2, where the other
parameters are already optimized through the initial cross validations with results shown
in Fig. B.1 and B.3. In Fig. B.2 it is unclear whether 400 is the best parameter and then we
increase the number of cross validations to 100 (Fig. 3.10). Based on this results we are
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sure that n_residual should be 400, with the validation RMSE being 0.209. In Table B.1
we provide a list of the best model with smallest RMSE across all CVs for each dimension
(hyperparameters are the same as the final training), which may give an idea of how
models vary with dimension and cross validation.

Final Training

To finally determine a descriptor for this regression, we run another training with all
materials included in the training set. The parity plot and the fitting errors are shown
in Fig. 3.11 and Table 3.42. The maximum absolute error corresponds to LiH, whose
thermal conductivity is underestimated by nearly 50%. Nevertheless, the overall regression
performs well with R2 = 0.97. Table 3.4 also lists the errors for each individual materials
class, from which we get a rough idea of how well the model describes one certain class.
Obviously, the consistently small errors confirms the accuracy of this model across the
whole dataset.

The obtained equation for the descriptor is given by

κest = c0 + a0
ρ√
vs

+ a1
3
√
mmin

L2
avg_prim

+ a2Θ
2
pVamavg (3.3)

where c0 = −1.743 · 10−2, a0 = −17.97, a1 = 5.515 and a2 = −1.743e−08.

From a physics point of view, the primary features entering the equation should be
individually related to the thermal conductivity as: ρ(-), vs(+), mmin(-), Lavg_prim(+),
Θp(+), Va(+) and mavg(-)3. Throughout the equation only the density ρ, the sound
velocity vs and the mavg agree with this physical intuition. However, this ignores the
correlations between the primary features, which may lead to different results. For
example, Va is actually inversely correlated to thermal conductivity because Va and Θp

are also inversely correlated to each other. The latter has strong positive impact on the
thermal conductivity. The large differences between the coefficients might play a role, but
this is in fact also related to the different order of magnitude of the primary features.

2Here both RMSE and R2 are used in the error assessment. RMSE tells us the typical distance between the
predicted value and the actual value, while R2 tells us how well the predictor variables can explain the
variation in the response variable.

3(+) stands for positive correlation, while (-) for negative correlation.
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Figure 3.11.: Parity plot of the final training using the optimized hyerparameters with all
materials included as the training data.

MAE MaxAE RMSE

Overall 0.10 0.31 0.13
Rock salt 0.09 0.31 0.12

Zinc blende 0.09 0.30 0.13
Fluorite 0.08 0.20 0.11

Half-heusler 0.05 0.12 0.07
Chalcopyrite 0.16 0.28 0.18

Table 3.4.: Errors of the final training are presented in four ways, i.e, mean absolute error
(MAE), maximum absolute absolute error (MaxAE), root mean square error
(RMSE) and R2
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To make it easier to evaluate the contribution of each feature directly from the model
equation, we rescale the primary features and the property before running the regression.
Accordingly, all the data will be scaled to the range [0, 1]. This transformation is given by

xi_scaled =
xi − xmin

xmax − xmin
(3.4)

where xmin and xmax are the minimum and the maximum number of each primary
feature/property array.

The Model for the scaled training is given by

κest = c0 + a0(ω
3
Γmax) · (ρ · Vm) + a1(ω

3
Γmax) · (ρ · Va) + a2(v

6
s) · (µ+mavg) (3.5)

where c0 = 1.57e−03, a0 = −9.35, a1 = 22.26 and a2 = 4.45. Now the coefficients are
more comparable and we can state that the model depends more on the 2D descriptor
containing ωΓmax, ρ and Va than the other two. All the three parameters are physically
making sense, since a larger ω3

Γmax gives rise to higher ΘD and thus higher κ, and ρ and
Va are inversely and positively correlated to κ respectively as discussed above. Fitting
errors are listed in Table 3.5.

MAE MaxAE RMSE R2

0.002 0.01 0.003 0.99

Table 3.5.: Errors of the scaled training. Due to the small range of the data, regression
errors look much better than in Table 3.4 for the original data.

Predicting Property of New Materials

In the next step we will use these models to predict the thermal conductivity of the other
101 materials without measured data, but for which Phono3py data were produced. Two
predictions using models obtained from direct and scaled regressions are performed. For
the scaled one, primary features in the dataset are also scaled to [0, 1] based on Eq. 3.4
in advance. The estimated results are then be compared to their Phono3py results. The
resulting parity plots for the direct and scaled regressions are shown in Fig. 3.12(a) and
3.12(b), respectively. R2 and RMSE are both errors for the log values not the direct ones.
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We can clearly see from these two figures that the descriptor obtained from the direct
regression performs better in predicting thermal conductivity of new materials as most
of the data points stay close to the parity line and the R2 is much larger than the scaled
one4. Note that in the case when data are of different scales, the comparison of RMSE is
no longer making sense. For the direct regression, the mean absolute error (MAE) and
maximum absolute error are 0.25 and 0.86. 70 of 101 materials have absolute error below
RMSE (0.30), while 56 below MAE (0.25). The errors are in general normally distributed.

Based on the above results and discussion, we will continue using direct training data and
log κexp as target property in the following regressions.

4The bad prediction of the scaled regression is also attributed to the lack of CVs which is the limitation of
this study.
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Figure 3.12.: Predictions of new set of materials using (a) direct regression and (b) scaled
regression (for scaled regression, only points lying within [0, 0.1] are shown
on the plot)
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3.5.2. Regression including σA, σA
os and γ

In this section we would like to check if the inclusion of σA and σAos can give a better
interpretation of the thermal conductivity, since in Sec. 3 they have been found as better
descriptors of anharmonicity over γ.

Cross Validations of Models

Similar to the regression with γ, hyperparameters have to be fixed via cross validations.
Previous regressions suggests thatmax_rung = 2 is already sufficient and will be adapted
here. 50 CVs with leave-10% out fraction are performed for each setting. Cross validation
results for n_residual and desc_dim are shown in Fig. 3.13. Best models with small-
est RMSEs for each n_residual and desc_dim are listed in Table B.2. From the cross
validations we have found the optimized hyperparameter set, which is

max_rung desc_dim n_sis_select n_residual

2 2 500 500

Table 3.6.: Hyperparameters for the Final Training

Parameters given in Table 3.6 will be taken to the final training where all data are included
in the training set.
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Figure 3.13.: Validation RMSEs of models containing 500 features per dimension. Other
hyperparameters are max_rung = 2 and n_sis_select = 500. The smallest
RMSE (0.201) is found at dimension 2 with n_residual = 500.

Final Training

The resulting model is

κest = c0 + a0 · ((ρ ·Θa) · (Vm · γ)) + a1 ·
ln(σA)

3
√︁
Lavg_prim

(3.6)

where c0 = −0.8043, a0 = −8.478e−06 and a1 = −2.4778. In this model, both γ and σA
enter the equation and are negatively correlated with κest. We also find that all the 2D
models in Table B.2 (0.10 left out) and this one take the same form with same primary
features included, though the coefficients are different.
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Figure 3.14.: Parity plot between experimental and estimated thermal conductivities.
(n_sis=500, n_res=500)

MAE MaxAE RMSE

Overall 0.13 0.49 0.16
Rock salt 0.13 0.31 0.16

Zinc blende 0.13 0.49 0.17
Fluorite 0.11 0.23 0.14

Half-heusler 0.09 0.23 0.12
Chalcopyrite 0.13 0.29 0.15

Table 3.7.: Errors of the final training, i.e, mean absolute error (MAE), maximum absolute
absolute error (MaxAE), root mean square error (RMSE) and R2

Comparing Table 3.7 and Table 3.4, we find that the two models (the direction regression
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in Sec. 3.5.1 and this one) give close regression results, though errors are slightly smaller
in the first model. However, the second model including σA and σAos has the advantage in
describing thermal conductivity of chalcopyrite materials, where both the MAE (0.13) and
the RMSE (0.15) are lower than the first one. Furthermore, the second model looks simpler
with only two dimensions involved, and hence fewer primary features are required.

Predicting Property of New Materials

As a further validation of the model, a total of 90 newmaterials5 are taken to the prediction
for their thermal conductivity. The dataset is composed of 20 rock salt, 6 zinc blende, 19
fluorite, 13 half-heusler and 32 chalcopyrite.

The prediction results are shown in Fig. 3.15. It is not surprising that this model is able to
predict as well as the previous model (with only γ) does due to the close training errors of
them. The slightly better R2 may be explained by the smaller RMSE in cross validation
step, where the overfitting problem is better removed. For the prediction, Phono3py results
of κ are used as property dataset instead of the experiment data that includes the full
anharmonicity (so does σA). The lack of full anharmonicity in the Phono3py results may
be one of the causes for the slightly larger RMSE of this model than the previous one. Also,
this model is able to give prediction with greater R2 using a smaller dataset than the first
model.

To summarize, both the two models we obtain through SISSO regression have the ability
to accurately describe the thermal conductivity, while the model including σA as primary
feature outperforms the one without σA for the reason that (1) the equation of the model
takes a simpler form with feature space up to only 2D, (2) the better CV result means less
prediction error, reflected by the larger R2 value in predicting new materials and (3) the
inclusion of σA makes it better in describing strongly anharmonic materials, as shown in
the case of chalcopyrite.

511 among all the 101 calculated materials do not have σA data, thus only 90 are used, which makes the
following discussion not fully convincing. This is also a limitation of this work.
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Figure 3.15.: Predictions of new set of materials using model shown in Eq. 3.6
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4. Conclusions

In this thesis, we have focused on the the screening for low-κ materials with potential for
applications such as thermoelectrics. To this end, a systematic investigation is performed,
starting from a high-throughput computation for the thermal conductivity including five
classes of materials (rock salt, zinc blende, fluorite, half-heusler and chalcopyrite), followed
by a SISSO regression for discovering descriptors to be used in the prediction of κ for
materials without experimental values. The key findings are summarized as follows.

1. rcut = 6.0 Å is able to yield accurate third order force constants (fc3) for fluorite,
half-heusler and chalcopyrite (convergence results see Sec. 3.2). This rcut is set in
the following high-throughput computation for the above materials. rcut are not set
in other two classes, rock salt and zinc blende, due to the low symmetry.

2. The high-throughput results are validated by comparing with experimental data.
Good agreement has been reached in general, with R2 = 0.91 and RMSE = 0.21
for log-scaled values, though all half-heusler materials are overestimated (Fig. 3.3).
Based on the calculation, 83 out of 152 investigated materials are thermal insulators
with κcal < 10W/mK (see Table. A.1 and A.2).

3. A detailed study of AgGaS2 as a low-κ, strong anharmonic material gives some
insights into the origins of its low thermal conductivity as well as the strong anhar-
monicity. Based on the analysis of the band structure, DOS and mode Grüneisen
parameter, the low thermal conductivity may have something to do with the Ag
atom, and all other Ag-based chalcopyrites also show low thermal conductivity
across the chalcopyrite space. This can give us some hints into what is going on
overall. However, More intensive and systematic investigations are needed for a
better understanding of these effects.

4. A comparative study of three possible anharmonic metrics (σA, σAos and γ) reveals
that there is a linear correlation of σA and σAos (for definitions see Sec. 3) with
thermal conductivity, where σA shows larger R2 and smaller RMSE. The Grüneisen
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parameter, γ, however, is not particularly suited to describe thermal conductivity
(Fig. 3.8) at least on its own.

5. Eventually, two models are obtained via SISSO regressions and cross validations, one
including only γ for the description of anharmonicity, and the other including both γ
and σA. The second model performs better as the descriptor of thermal conductivity
for the following reasons: (1) the equation (Eq. 3.6) of the model takes a simpler
form with feature space up to only 2D and thus fewer primary features are required,
(2) the better CV result leads to smaller prediction error, reflected by the larger R2

value in predicting new materials and (3) the inclusion of σA makes it better in
describing strongly anharmonic materials, as shown in the case of chalcopyrites.

Due to time and computational limits, only a relative small sets of materials covering only
five materials was explored. Similarly, only a low order description of anharmonicity was
used for calculating κ. This approximation is especially problematic for thermal insulators.
In future, it would thus be interesting to study if the promising findings in this thesis hold
up when a larger material space is explored and more accurate predictions for κ are used.
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A. Results of High-Throughput Screening
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Material Type κcal (W/mK) Material Type κcal (W/mK)

AgAlS2 chalcopyrite 0.661 K2O fluorite 2.325
AgGaS2 chalcopyrite 0.794 NaI rock salt 2.370
Rb2Te fluorite 0.832 CsCl rock salt 2.566
AgAlSe2 chalcopyrite 0.995 K2S fluorite 2.758
AgInS2 chalcopyrite 0.998 BaO rock salt 2.780
AgGaSe2 chalcopyrite 1.085 KBr rock salt 2.889
AgInSe2 chalcopyrite 1.154 RbCl rock salt 2.917
Rb2O fluorite 1.165 RbBr rock salt 2.938

AgAlTe2 chalcopyrite 1.283 BaCl2 fluorite 3.060
InLiTe2 chalcopyrite 1.563 SrCl2 fluorite 3.100
K2Te fluorite 1.57 AlCuS2 fluorite 3.107

AgGaTe2 chalcopyrite 1.609 AgI zinc blende 3.462
SnS zinc blende 1.622 AlCuSe2 chalcopyrite 3.711
Rb2S fluorite 1.632 Na2Te fluorite 3.735
K2Se fluorite 1.726 CdF2 fluorite 3.818

AlLiTe2 chalcopyrite 1.746 NaBr rock salt 3.866
LiI rock salt 1.844 Na2Se fluorite 4.073

GaLiTe2 chalcopyrite 1.877 InLiSe2 chalcopyrite 4.154
RbI rock salt 1.906 LiGeIn half-heusler 4.856
CsF rock salt 2.005 CdAs2Ge chalcopyrite 4.951
CsBr rock salt 2.041 CdSnAs2 chalcopyrite 5.015
KI rock salt 2.143 LiCl rock salt 5.231

AgInTe2 chalcopyrite 2.160 CuInS2 chalcopyrite 5.345
CsI rock salt 2.176 CdAs2Si chalcopyrite 3.449
LiBr rock salt 2.246 CuInSe2 chalcopyrite 5.540
CsH rock salt 2.298 MgAs2Ge chalcopyrite 5.597

Table A.1.: List 1 of thermal insulators (κcal < 10W/mK)
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Material Type κcal (W/mK) Material Type κcal (W/mK)

CdP2Si chalcopyrite 5.817 CuGaSe2 chalcopyrite 5.848
CuInTe2 chalcopyrite 6.152 BaS rock salt 6.179
BaF2 fluorite 6.233 CuBSe2 chalcopyrite 6.535

LiAsMg half-heusler 6.781 MgSe rock salt 7.017
CuBS2 chalcopyrite 7.231 CaTe rock salt 7.268
Li2Te fluorite 7.375 Mg2Ge fluorite 7.388
KH rock salt 7.751 KCl rock salt 7.883

AlCuTe2 chalcopyrite 7.975 CuN2P chalcopyrite 8.011
CdGeP2 chalcopyrite 8.065 LiAsZn half-heusler 8.097
BaTe rock salt 8.100 SnSe rock salt 8.107
ZnPLi half-heusler 8.219 CuI zinc blende 8.224
Na2S fluorite 8.725 Mg2Si fluorite 8.771

MgAs2Si chalcopyrite 8.880 Na2O fluorite 8.911
KF rock salt 9.069 ZnO rock salt 9.202
SrF2 fluorite 9.789

Table A.2.: List 2 of thermal insulators (κcal < 10W/mK)
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Figure A.1.: Calculated thermal conductivity (141 materials) vs. σA of them. Compared to
Fig. 3.8(a) (R2 = 0.68 and RMSE = 0.41) the correlation slightly gets worse.
σos is calculated in the same way that describes the error between true and
harmonic forces, which is what we define as the degree of anharmonicity,
the only difference is that now we are using κcal calculated from third order
force constants.
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Figure A.2.: Calculated thermal conductivity of all the 152 materials vs. σAos of them. Com-
pared to Fig. 3.8(b) (R2 = 0.64 and RMSE = 0.43) the correlation slightly gets
worse. σos is calculated in the same way that describes the error between
true and harmonic forces, which is what we define as the degree of anhar-
monicity, the only difference is that now we are using κcal calculated from
third order force constants.
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Figure A.3.: Calculated thermal conductivity of all the 152 materials vs. γ−2 of them
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Figure A.4.: Mode Grüneisen parameters of NaI, RbI and KI
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B. Cross Validation Results of SISSO
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(a) n_sis_select = 100
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(b) n_sis_select = 500
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Figure B.1.: Three figures correspond to CV results of different n_sis_select as shown in
the subcaptions. For each n_sis_select, three n_residual are used, i.e., 10,
50, 100.
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Figure B.2.: Validation RMSE of 50 CVs for the regression in Sec. 3.5.1. Other parameters
are: max_rung = 2, desc_dim = 3 and n_sis_select = 500. For 50 cross
validation, regression using 400 residuals yields the smallest RMSE, but the
error bar of it goes to somewhere larger than the average RMSE of 300 and
350 n_residual
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Dimension Models Test RMSE

1 0.3023 + 7.9631 · 10−2 · ( ωΓmax
natoms_prim

· 3
√
mmin) 0.0821

2 −1.8640− 7.4638 · Vm/µ√
vs

+ 7.5694 · 10−2 · (
√︁
Θp · 3

√
Va) 0.0877

3 0.2965− 1.0857 · 102 · ρ·mavg

vs·µ 0.0513

+3.5644e−09 · ((mavg ·ΘD∞) · (Va ·ΘD∞))

+1.4598e−03 · ( 3
√
mmin · Θp

natoms_prim
)

Table B.1.: Models with smallest test RMSE of each dimension (n_sis = 500, n_residual =
400)
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Figure B.3.: Cross validations for n_sis_select = 400, 500, 600, with max_rung = 2,
n_residual = 400 and desc_dim = 3 as optimized earlier. Results show
that the one with 500 features selected gives the smallest RMSE.
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Dimension Models Test RMSE

1 0.2956 + 0.0807 · 3
√
mmin · ωΓmax

natoms_prim
0.1251

2 −0.7913− 8.5600e−6 · ((ρ · γ) · (Vm ·Θa))− 2.4722 · ln(σ)
3
√

Lavg_prim
0.0674

3 −0.2686 + 3.7887e−05 · Va
σ2
os

0.1000
+3.7887e−5 · (|mavg

Θa
− 2.1196mmax

Θp
|) + 1.9414e−03 · 3

√
mmin · Θp

natoms_prim

4 1.3778− 7.8360e−06 · ((Θa −ΘD∞) · (mmax · Lavg_prim)) 0.0979
−5.1820e+02 · mmax/Va

Va·Θa

−0.9481 · ( 3
√
Cv · σ) + 1.5690e−04 · ( 3

√
mmin · vs

natoms_prim
)

1 0.2979 + 7.9679e−02 · ( 3
√
mmin ∗ ωΓmax

natoms_prim
) 0.1508

2 −0.7863− 2.4636 · ((ρ · γ)(Vm ·Θa))− 8.4830e−06 · ( ln(σ)
3
√

Lavg_prim
) 0.0871

3 −0.3054 + 14.4497 · natoms_prim·ρ
mmin·ΘD∞

0.0764
+1.3506e−02 · Θa/natoms_prim√

ωΓmax
− 3.3912e+02 · ωΓmax/Θa

σos+σ

4 −0.2919 + 6.3967e−06 · Va·ΘD∞
Θa·σos

0.0667
+6.3107 · (|mavg

Θa
− mmax

Θp
|)− 1.8714 · Θa/ΘD∞

natoms_prim·Lavg_prim

+4.1979e−03 · vs·Va
Lavg_prim·σos

1 0.2996 + 8.0321e−02 · 3
√
mmin · ωΓmax

natoms_prim
0.1839

2 −0.8213− 2.4931 · ((ρ · γ) · (Vm ·Θa))− 8.4887e−06 · ln(σ)
3
√

Lavg_prim
0.0660

3 0.9199 + 3.4929e−02 · (|mavg

Θa
− mmax

Θp
|) 0.0769

−1.6305 · ωΓmax·Lavg_prim√
natoms_prim

4 0.8159 + 5.1109e−05 · Cv ·σos√
µ 0.0732

+50.9457 · (|mavg
Θa

− mmax
Θp

|)− 1.7517 ∗ mmin/ρ
L6
avg_prim

−5.4608e−02 · ((ΘD∞ −Θp) · Va
σos

)

Table B.2.: Models with smallest test RMSE corresponding to the regression in Sec. 3.5.2.
From top to bottom are n_residual = 100, 400and500.
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