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Abstract: We discuss how to include our recently proposed
thermopotentiostat technique [Phys. Rev. Lett. 126, 136803
(2021)] into any existing ab initio molecular dynamics (AIMD)
package. Using thermopotentiostat AIMD simulations in the
canonical NVTΦ ensemble at constant electrode potential, we
compute the polarization bound charge and dielectric response
of interfacial water from first principles.

Electrochemical processes occurring at the interface be-
tween a solid electrode and an aqueous electrolyte are cen-
tral to future sustainable energy conversion and storage so-
lutions1,2. Applying a voltage across these interfaces enables
control over the reaction pathways and kinetics. At electri-
fied interfaces, however, water forms stratified layers3 with
properties that differ strongly from those observed in bulk
solutions4. Therefore, solvent reorganization in response to
the electric field, ion de-/resolvation processes, the formation
of the electric double layer and charge transfer reactions all
proceed within these interfacial water regions with modified
properties.

In order to enable further advances in these fields it is
critical to develop accurate simulation techniques to explore
and predict structural properties and chemical reactions at
electrified surfaces in contact with liquid electrolytes from
first principles. While experiments are routinely performed
at constant electrode potential, realizing these conditions
in ab initio molecular dynamics (AIMD) simulations has
remained very challenging. A suitable AIMD potentiostat
technique requires two constituents: (i) a robust method to
either apply an electric field or charge the electrode, and
(ii) an algorithm to control either the field or charge in ac-
cordance with thermodynamic theory in order to drive the
system to the desired electrode potential.

Multiple solutions have been suggested for issue (i). The
modern theory of polarization (MTP)5,6 explicitly includes
the field inside the simulation cell, that is generated by mov-
ing the corresponding charge from one boundary of the unit
cell to the opposite one. The charge itself is outside the unit
cell. This approach has been used to perform first principles
calculations with either a constant total electric field E6 or
a constant electric displacement D7 as electrostatic bound-
ary conditions. Alternatively, Lozovoi and Alavi proposed
to perform constant potential calculations by including an
explicit compensating counter charge inside the unit cell to
ensure charge neutrality8. More recent approaches build on
these ideas to either apply directly an electric field9–15 or
include explicit compensating counter charges16–22.

We note that without exception, the techniques outlined
above rely on electrostatic boundary conditions that enforce
that either the total electric field E or the electric displace-

ment D are kept exactly constant during the AIMD run. In
the thermodynamic sense, all these methods describe purely
microcanonical ensembles with constant total energy. In the
thermodynamic limit, averaged properties are independent
of the chosen ensemble. If, however, the observables of in-
terest explicitly depend on fluctuations (e.g. reaction mech-
anisms and rates, etc.) or if the simulated system is small,
the microcanonical ensemble may not be used. Instead, the
electrode charge must be treated as a thermodynamic de-
gree of freedom, allowing it to react to the dynamics of the
solvent and to charge transfer processes. Such a treatment
requires canonical sampling (issue ii).

The first such approach was pioneered by Bonnet et
al.23 and later extended by Bouzid et al.24,25. Bonnet
et al. suggested to describe the electrode charge by sec-
ond order dynamics coupled to a Nosé-Hoover thermostat.
This approach, however, requires ”[...] the existence of
an energy function E(ri, ne) that is differentiable with re-
spect to the total electronic charge. This implies the ability
to treat non-integer numbers of electrons and, in general,
non-neutral systems.“ 23. Unfortunately, in the context of
density-functional calculations the total energy as a function
of the number of electrons is a notoriously difficult quantity
to compute. Furthermore, the electronic charge is a single
degree of freedom. Yet, controlling single degrees of freedom
by the Nosé-Hoover method often leads to non-ergodic be-
haviour. In order to recover ergodicity, the introduction of
Nosé-Hoover chains was proposed26, however, at the cost of
additional numerical parameters and required extra tuning.
In order to lift these requirements and enable a straight-
forward implementation of the potentiostating process into
any simulation package, we were recently inspired by the
MTP5 and the Maxwell-Langevin equations of fluctuation
electrodynamics27 to introduce a stochastic canonical ther-
mopotentiostat algorithm28.

Here we discuss the implementation of our thermopoten-
tiostat technique in the context of electronic structure cal-
culations and ab initio molecular dynamics. Specifically, we
choose to build our implementation on the computational
counter electrode (CCE) recently proposed by Surendralal
et al.20. In contrast to the finite field methods described in
Refs.5–19,21,22, which are available in only some of the most
commonly used density-functional theory (DFT) codes, the
CCE technique has the added advantage that its application
does not require any changes inside the electronic structure
code. However, we emphasize that the thermopotentiostat
algorithm is equally straightforward to implement using any
of the methods outlined in Refs.5–19,21,22.

Fig. 1 illustrates the computational setup chosen in the
present study. The simulation cell contains an electrolyte
or dielectric medium (explicit or implicit) that is enclosed
between a working and a reference electrode, carrying equal
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Figure 1. Schematic representation of the computational setup.
The periodic simulation cell is indicated by the dashed line. The
power supply and resistor located outside the unit cell represent
the thermopotentiostat introduced in Ref.28. As an input quan-
tity, the thermopotentiostat requires the instantaneous potential
Φ. It is determined from the difference of the workfunctions on
the vacuum side and solvent covered surface of the working elec-
trode, and it is equal to the total dipole moment of the charges
contained in the simulation cell along the surface normal. The
potential as drawn corresponds to the electron potential, consis-
tent with the definition commonly used in electronic structure
codes. By convention, we choose that an increasingly positive
potential corresponds to an increasingly positive charge on the
working electrode.

and opposite charges n and−n, respectively. Hence, the sim-
ulation cell is charge-neutral in total. The working electrode
is connected to an external reservoir of charge at constant
electron chemical potential, so that the external voltage dif-
ference Φ0 between the working and reference electrodes is
exactly constant. The potential Φ0 is the independent ther-
modynamic variable that can be controlled in experiments.
The system potential Φ inside the simulation cell, in con-
trast, is defined as the difference of the workfunctions on
the vacuum side and the solvated surface of the working
electrode, cf. Fig. 1. It is neither a constant nor necessar-
ily equal to the bath potential, due to the microscopic size
of the region targeted by our simulations and the exchange
of charge with the external environment. Instead, the sys-
tem potential Φ as well as the Fermi level and the charge n
depend on the evolution of the system.

Controlling the charge n at each discrete simulation time
step allows us, in principle, to drive the system potential Φ
towards the desired target value for the external bath poten-
tial Φ0. Treating thereby the system potential as a thermo-
dynamic degree of freedom implies, however, that the simu-
lation is able to perform external work and, hence, dissipate
energy. In order to uphold energy conservation, the energy
loss due to controlling the system potential must be bal-
anced exactly, on average, by a corresponding energy gain
from thermally induced fluctuations. The physical system
realises this condition by coupling to a fluctuating electric
field created by temperature dependent charge fluctuations
due to the thermal motion of the electrons and ions29. To
mimic this behaviour, a potentiostat must apply an electric
field with an explicit finite temperature and hence become
a “thermopotentiostat”. We introduced such an algorithm
in Ref.28 and derived a direct expression for the electrode

charge n at each discrete time step:

n(t+ ∆t) = n(t) − C0 (Φ(t)− Φ0)
(

1− e−
∆t
τΦ

)

︸ ︷︷ ︸
dissipation

+ N

√
kBTC0

(
1− e−

2∆t
τΦ

)

︸ ︷︷ ︸
fluctuation

, (1)

where n is the electrode charge and N is a random number
drawn from a Gaussian distribution with zero mean and vari-
ance one. C0 is the geometric capacitance of the bare elec-
trodes in absence of the dielectric or solvent and τΦ := RC0

is the potentiostat relaxation time constant. The instanta-
neous system potential Φ(t) of the working electrode with
respect to the reference electrode is obtained from the total
dipole moment of the charges contained in the simulation cell
parallel to the surface normal28. In practice, Φ(t) is com-
puted using the dipole correction scheme30 that is available
in most density-functional codes. We use the convention
that an increase of the potential in the positive direction
implies an increasingly anodic polarization on the working
electrode, indicated by the vertical arrow in Fig. 1.

We note that Eq. 1 determines only the total amount
of charge n present on the working electrode at each dis-
crete time step. In the context of Born-Oppenheimer (BO)
DFT, the actual distribution of n on the electrode surface is
determined by the electronic minimization. However, since
in BO approximation there is no explicit electron dynamics
and hence no scattering, the electrode charge is redistributed
instantaneously each time step effectively describing an elec-
trode with infinite surface conductivity. Therefore, the phys-
ical meaning of the resistance R shown in Fig. 1 – and by
extension the relaxation time τΦ in Eq. 1 – is to introduce
an effective mean surface conductance that governs the flow
of charge into and out of the finite segment of the electrode
described within the simulation cell.

In practice, τΦ is set to a sufficiently small value to en-
able an efficient sampling of the phase-space but not yet
small enough to disturb the system dynamics. Note that the
mean and the variance of the charge as given by Eq. 1 are
unaffected by the choice of τΦ. Small values of τΦ, however,
correspond to a large damping factor and may thus adversely
affect the dynamics of the system if set too aggressively. In
general, a time-constant longer than the slowest vibrational
frequency present in the system is a reasonable choice. We
therefore adopt τΦ = 100 fs as a default value.

Moreover, note that the present first principles computa-
tional setup differs from the semi-empirical one described in
Ref28 in an important aspect: in BO-DFT calculations, the
simulated system is instantaneously polarizable. Since the
capacitance enters Eq. 1 as an adjustable parameter, the
potentiostating process seemingly requires prior knowledge
about the dielectric properties of the system. This, however,
is not the case. In fact, Eq. 1 already takes the instanta-
neous polarizability correctly into account. This property
of Eq. 1 can be understood intuitively, considering that the
instantaneous electric current dn

dt
is independent of the ca-

pacitance. It is only the discrete change n(t + ∆t) − n(t)
that depends on the capacitance. For convenience, the con-
struction of Eq. 1 treats any deviations in the actual capac-
itance C = εrC0 with respect to the parameter C0 within
the time domain: even if εr contains a contribution due to
instantaneous polarizability, Eq. 1 is guaranteed to sam-
ple the correct statistical distribution for the charge n with
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σ2
n = kBTεrC0, albeit with an increased relaxation time of
εrτΦ. An analytical proof of this somewhat counter-intuitive
property of Eq. 1 is included in the SI31.

Conceptually, the parameter C0 plays a role analogous to
the mixing parameter β of the charge mixing schemes32–35

commonly used in DFT, where β determines how much of
the old density is mixed to the new density from one elec-
tronic iteration to the next. In case one of the dimensions
of the unit cell is significantly larger than the other two,
small changes of the electron density with respect to the
more extended direction are associated with large changes
in the total energy. In essence, such a unit cell corresponds
to a reduced capacitance C0, which scales with 1/l, where
l is the length of the unit cell. Thus, in order to prevent
charge sloshing and convergence issues it is often necessary
to reduce the mixing parameter β in these situations. The
parameter C0, like β, is of purely numerical nature and has
no impact on any physical observable. However, it must
be chosen appropriately to ensure numerical stability. The
exact value of C0 is uncritical and its choice is straightfor-
ward: setting C0 to approximately ε0A/d, where A is the
area of the unit cell parallel to the electrode surface and d
is the distance between the working and the reference elec-
trodes resulted in stable convergence behaviour in all cases
investigated.

We now turn to discuss the implementation of our ther-
mopotentiostat into existing AIMD packages. The imple-
mentation must be built on top of a method to realise either
a finite charge on the working electrode or apply a finite elec-
tric field. The thermopotentiostat is completely general and
can be used to control either the field or charge in conjunc-
tion with any of the methods described in Refs.5–22. As a ba-
sis for our implementation, here we chose the computational
counter electrode (CCE) recently proposed by Surendralal
et al.20, because the CCE can be directly used with any
DFT code. Building on the CCE, only the thermopotentio-
stat needs to be implemented inside the electronic structure
code as a control scheme in analogy to a thermostat, but not
the finite field method itself.

In their scheme, Surendralal et al.20 used a large band
gap insulator, so that the Fermi level of the total system
can be controlled within the electronic gap of the CCE by
doping. To transfer charge between the working electrode
and the CCE, Surendralal et al. suggested to dope the CCE
using pseudoatoms with fractional core charges ZCCE . This
approach places an adjustable charge on the working elec-
trode and at the same time provides an equal and opposite
compensating counter charge on the CCE.

In the following, we couple the thermopotentiostat to the
CCE: at each ionic step, the thermopotentiostat is used to
determine the change of the charge n that is located on the
segment of the working electrode described within the sim-
ulation cell, exchanged with an external bath at constant
electron chemical potential. The new electrode charge is
then realised by adjusting the core charge of the atoms con-
stituting the CCE according to:

ZCCE(t+ ∆t) = ZCCE(t) +
n(t+ ∆t)− n(t)

NCCE
, (2)

whereNCCE is the number of atoms constituting the counter
electrode and n is computed according to Eq. 1.

Most BO-DFT codes rely either on the (velocity) Verlet
or leapfrog algorithms to integrate the equations of motion.
Fig. 2 outlines a code structure commonly used throughout

Figure 2. Flowchart of the thermopotentiostat implementation
in conjunction with leapfrog integration of the equations of mo-
tion, see text. A corresponding flowchart for velocity Verlet inte-
gration is included in the SI31.

many existing DFT packages, complemented by our ther-
mopotentiostat. After the calculation of the electronic struc-
ture and the forces at time t, both the positions and the
electrode charge (or ZCCE , respectively) can be updated di-
rectly and in any order to time t + ∆t. The code structure
differs slightly if velocity Verlet integration is used, cf. Fig.
S131 for a representative example.

We note that although our computational setup guaran-
tees that the total system is always charge neutral, the num-
ber of electrons ne− contained inside the simulation cell is
free to change from one ionic step to the next, as the ther-
mopotentiostat adjusts the compensating counter charge lo-
cated on the CCE. After computing the updated electrode
charge n(t+ ∆t) and doping the CCE according to Eq. 2, it
is therefore necessary to update also the number of electrons
ne− perceived by the electronic structure code. If the num-
ber of electrons changes, by default, most DFT codes will
shift the electron density by a constant offset so that its vol-
ume integral becomes equal to the new electron number. A
straightforward shift of the electron density, however, may
cause charge sloshing during the scf cycle and led to con-
vergence issues in previous approaches8. The presence of
explicit fluctuations in our approach exacerbates this prob-
lem further.

To ensure that the electronic loop converges reliably, we
note that in the physical system charge is added to or re-
moved from the electrode at the Fermi level only. In or-
der to recover the physically correct behaviour in our setup,
we recalculate the electronic occupations for the electronic
structure at time t, but with the already updated number of
electrons ne−(t+∆t). Subsequently, the electron density ρ is
recalculated from the present wavefunctions at time t using
the new occupations, and introduced into the Hamiltonian
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at time t + ∆t. We tested this approach at the example
of different semiconducting and metallic working electrodes,
and we obtained a completely robust electronic convergence
behaviour in all cases investigated.

In order to highlight the opportunities provided by our
ab initio thermopotentiostat technique, we now turn to a
topic that currently attracts considerable attention: inter-
facial water and water under confinement feature structural
and dynamic properties that differ significantly from those
of bulk water3. Most notably, thin water films confined
to a few nm thickness exhibit a strongly reduced dielectric
response in the direction perpendicular to the confining sur-
faces4. Since the high polarizability of liquid water is re-
garded as the origin of its unique solvation behaviour and
interfacial water is omnipresent, it is necessary to under-
stand the mechanism and to be able to accurately simulate
the dielectric response of liquid water at realistic interfaces.

Fumagalli et al.’s work4 therefore stimulated a consider-
able number of theoretical studies, cf. e.g. Refs.36–41. Most
studies used Kirkwood-Fröhlich theory42–44 or the theory
of polarization fluctuations45 in order to compute the di-
electric tensor from the variance of the total dipole mo-
ment fluctuations per volume. Converging these variances
enforces, however, a statistical sampling of the water dy-
namics spanning a time scale of several hundred ns. For
this reason, atomistic simulations of interfacial water’s di-
electric response have been largely restricted to force-field
approaches and non-polarizable water models.

Moreover, these simulations require the dielectric volume
as an input parameter, e.g. in the form of dielectric box mod-
els38. The dielectric volume is well defined for homogeneous
bulk media. In the presence of an interface between the elec-
trode and the dielectric, however, the exact location of the
boundary and hence the definition of the dielectric volume
become ambiguous. This ambiguity reflects an assumption
implicit to the construction of both the Kirkwood-Fröhlich
theory and the theory of polarization fluctuations: these ap-
proaches describe the dielectric response of the system en-
closed within the periodic simulation cell to a displacement
field created by sheet charges that are placed exactly on
the boundaries of the simulation cell. In atomistic simula-
tions of electrified interfaces, however, the distribution of the
electrode charge may differ significantly from idealized sheet
charges, which Kirkwood-Fröhlich and the theory of polar-
ization fluctuations are fundamentally unable to account for.

Both problems are solved by our thermopotentiostat tech-
nique in conjunction with explicit applied fields. Introducing
the densities of the electrode charge n and the bound charge
np as the explicit quantities to describe the response of a
dielectric medium exposed to an electric field enables direct
and parameter-free access to dielectric properties. Moreover,
the densities can be computed at least two orders of mag-
nitude faster than dipole variances, due to the use of ther-
modynamic averages and the efficient stochastic canonical
sampling of our approach. Themopotentiostat MD thereby
opens the door towards simulations of interfacial dielectric
properties from first principles.

We implemented our thermopotentiostat approach into
the Vienna Ab Initio Simulation Package (VASP) and per-
formed AIMD simulations for liquid water confined between
two computational Ne electrodes, using the generalized gra-
dient approximation PBE46,47. As test cases we considered
ensembles consisting of 32, 64 and 192 water molecules, cor-
responding to electrode separations of d = 10.7, 17.4 and

Figure 3. a) Time evolution of the electrode charge n and b)
the system potential Φ for an NVE ensemble consisting of 192
H2O molecules, potentiostated to Φ0 = 4 V. The red dotted line
marks the average electrode charge after equilibration. The inset
shows the stochastic charge fluctuations in an enlarged region
around the average electrode charge. c) Time evolution of the
temperature for multiple NVE ensembles consisting of 32, 64 and
192 H2O molecules, respectively, potentiostated to Φ0 = 4 V. The
electrode charge is adjusted, using only the dissipation (potential
control) term in Eq. 1 (green, orange and black lines), or using
the full Eq. 1 (red line).

31.4 Å, respectively. Consistent with the work of Fumagalli
et al.4, we applied potentials of Φ0 = 0 V and 4 V, respec-
tively. Further numerical details are provided in the SI31.

In Fig. 3a and b we show the time evolution of the poten-
tial difference and the charge transferred between the two
electrodes, respectively, directly after switching on the ther-
mopotentiostat. The system potential is driven efficiently
towards the externally applied voltage and becomes station-
ary after a simulation time of ∼ 4 ps has elapsed. Yet, a
net current continues to flow until ∼ t = 8 ps, where the
charge assumes an equilibrium value of n̄ = −1.73 e−, cf.
Fig. 3b. This electric displacement current is caused by the
increasing polarization density of the water due to the reori-
entation of the water molecules within the applied electric
field. This reorientation occurs on a much slower time scale
than the changes in the applied electric field, which are gov-
erned by the chosen relaxation time constant of τΦ = 100 fs.
Moreover, after the system has reached equilibrium the elec-
trode charge continues to fluctuate (inset Fig. 3a). We note
that two different processes contribute to these fluctuations:
on the one hand, any water dynamics that are associated
with a change in the total dipole moment, as well as contri-
butions due to electronic screening, are actively countered
by the thermopotentiostat in order to drive the potential
towards its target value. This action of the thermopoten-
tiostat therefore takes the form of deterministic fluctuations
in the electrode charge. On the other hand, the energy dis-
sipated due to potential control is returned, on average, by
the stochastic fluctuations introduced in Eq. 1.

An important aspect of simulations under potential con-
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trol is to ensure that the interplay between the deterministic
potential control mechanism and the stochastic fluctuations
balances out to a zero net energy change, in order to sample
the canonical ensemble at constant temperature and applied
potential. As discussed above and in the supplemental infor-
mation31, our central working Eq. 1 explicitly takes instan-
taneously polarizable systems into account. For verification,
we performed all simulations presented here in absence of an
explicit thermostat. Neglecting the fluctuation term in Eq.
1, the potential control mechanism alone always dissipates
thermal energy from those vibrational degrees of freedom,
that couple to a change in the total dipole moment of the
ensemble. For typical DFT system sizes the pure potential
control mechanism is able to drive the ensemble severely
out of equilibrium in a matter of ps, cf. Fig. 3c (black, or-
ange and green curves, respectively). If, in contrast, the full
fluctuation-dissipation relation Eq. 1 is used (cf. Fig. 3c,
red curve), the thermopotentiostat eliminates any artificial
net energy drain and the temperature remained constant, on
average, over the whole course of the simulation.

We now explore the dielectric properties of nanoconfined
water, using our thermopotentiostat technique to include the
atomistic details of the interface at the AIMD level of the-
ory. In Fig. 4, we compare electrostatic potential profiles
that were obtained for two different external applied voltages
Φ0 = 0 V (blue curve) and Φ0 = 4 V (red curve), respec-
tively, each time-averaged over a trajectory length of 125 ps.
We partitioned the space between the electrodes into three
different regions: (i) a hydrophobic gap with a thickness of
2 Å, formed between the electrode surface and interfacial
water, (ii) an interfacial water region with a thickness of 8
Å, and (iii) a bulk-like water region, indicated in Fig. 4 by
areas shaded in orange, green and grey, respectively.

At the positions of the electrodes, the nuclear core charges
of the atoms constituting the electrodes induce deep wells in
the potential. For an applied voltage of Φ0 = 4V , the poten-
tial then decays linearly and almost unscreened within the
hydrophobic gap regions, resulting in a homogeneous electric
field of E0,⊥ = −1.83 V/Å. The electric field is also homo-
geneous and constant inside the bulk-like water region with
a value of Ebulk,⊥ = −0.023 V/Å. The field strengths are
indicated by dotted lines in Fig. 4. We then estimated the
static dielectric constant inside the bulk-like water region
as the ratio between the unscreened electric field within the
hydrophobic gap and the field in the central bulk-like re-
gion. We obtained a value of εbulk,⊥ = E0,⊥/Ebulk,⊥ ≈ 79,
consistent with the one for homogeneous bulk water.

Although the dielectric response within the central bulk-
like water region is fully consistent with the continuum pic-
ture shown in Fig. 1, the region of interfacial water ex-
hibits a distinctly different behaviour. At interfaces, water
forms stratified structures48,49. This stratification gives rise
to potential oscillations within the interfacial water region,
cf. green shaded area in Fig. 4. In analogy to Friedel os-
cillations50, which originate when screening an electric field
with charge carriers of finite size, the wavelength of the po-
tential oscillations reflects the size of the water molecules51.
In consequence, a considerable part of the potential drop
applied between the two electrodes occurs within the hy-
drophobic gap, where the field is essentially unscreened, and
inside the interfacial stratified water region. Since the gap
and interfacial water regions are unable to effectively screen
the applied electric field, the total static dielectric constant
ε⊥, as measured by capacitive techniques4, is significantly

Figure 4. Schematic representation of the ab initio simulation
cell. Grey balls represent electrode surface atoms (Ne), whereas
red and white balls denote O and H, respectively. The unit cell has
a lateral dimension of 14.5×14.5 Å2, with a distance of d = 31.4
Å between the electrodes, and contains 192 H2O molecules at the
experimental density of water. Blue and red lines indicate planar-
averaged electrostatic potential profiles parallel to the surface nor-
mal for applied voltages of Φ0 = 0 V and Φ0 = 4 V, respectively,
time-averaged over a trajectory length of 125 ps, see text.

lower for nanoconfined water than that of homogeneous bulk
water28.

The dielectric response of interfacial water is often char-
acterized using spatially resolved dielectric constants and di-
electric profiles28,36–39,52. This approach has recently been
criticized on the grounds that physically meaningful dielec-
tric constants can only be obtained at the mesoscale, averag-
ing over multiple molecular layers41. Moreover, the ability
of the interfacial water layer to polarize and store electro-
static free energy (dielectric response) should not be con-
fused with the reduction of Coulomb interactions between
charges, e.g. ions, embedded inside this region (screening).
These two properties diverge at the nanoscale40 and can-
not be described by a spatially dependent local dielectric
constant, due to the granularity of the solvent.

The response of a dielectric medium to electric fields
or embedded charges, however, is well-defined even at the
nanoscale in terms of the induced polarization density P
and hence – by extension – the corresponding local bound
charge density ρbound. We therefore propose to use ρbound

as the central local quantity in the context of first principles
atomistic simulations.

In order to explicitly compute ρbound, we begin by cal-
culating the total charge density ρtot = −ε0 · ∆φ from
the DFT effective single particle potential φ(r), according
to Poisson’s equation 1. Note that ρtot includes both the
electronic charge as well as the nuclear core charge. Sub-
sequently, ρtot is partitioned into a free charge contribu-
tion ρfree, whose volume integral is equal to the electrode
charge n, and the bound charge contribution ρbound. We
computed the free charge density ρfree using the identical
2-electrode setup but without the water as a reference. Of
course other approaches to partition the charge density are
conceivable as well, e.g. based on Wannier function tech-

1We note that most ab initio codes define the electrostatic poten-
tial as the electron potential, which has the opposite sign compared
to classical electrostatics. In Fig. 4a, we adopt the same convention,
so that φ is equal to the inverse potential shown in Fig. 4a.
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Figure 5. a) Bound charge density profiles for Φ0 = 0 V and
b) Φ0 = 4 V, obtained by subtracting the total charge density of
the electrodes as a reference, see text. For improved visibility, the
electrode charge densities shown as dotted lines have been scaled
by a factor of 1/10. Filled light green and light blue areas indicate
O/H number density profiles, respectively.

niques53,54. The bound charge density is then obtained as
ρbound = ρtot − ρfree.

Figs. 5a and 5b show line profiles of the resulting bound
charge densities parallel to the surface normal for applied
potentials of Φ0 = 0 V and Φ0 = 4 V, respectively. For both
voltages, the bound charge density is zero inside the bulk-
like water region to within our numerical accuracy. This
is the expected outcome. Inside the regions of interfacial
water, however, the bound charge density displays charac-
teristic oscillations, even for zero applied voltage (cf. Fig.
5a). These oscillations correspond to the specific structure
assumed by water at the interface, in particular the strat-
ification discussed above. In Fig. 5a, water stratification
is visible as the modulation in the water number density.
The bound charge density hence gives rise to a characteris-
tic dipole moment within the interfacial water layers. The
exact details depend on the specific electrode and may in-
clude charge transfer due to e.g. chemisorbed water.

This purely chemical contribution to the bound charge
density is to be clearly distinguished from field-induced con-
tributions due to the presence of surface charges. For an
applied voltage of Φ0 = 4 V, Fig. 5b shows distinct modi-
fications to the bound charge density. These modifications
coincide with field-induced changes to the internal structure
of the solid-water interface, as illustrated by the water num-
ber density shown in the bottom of Fig. 5b. Since the left
electrode is negatively charged, one of the hydrogen atoms of
each interfacial water molecule is now pointing towards the
electrode while the other one remains available to contribute
to the hydrogen bond network. This reorientation is visible
in the form of a double peak structure in the H number den-
sity close to the left hand interface. It is also reflected in
the distribution of the angle between the OH-bond and the
surface normal. A recent study48 reported similar findings
for water-gold interfaces. We include the calculated angle
distributions in the SI31.

In principle, both the chemical and dielectric response of
a solvent to a given solute can be accurately described in
terms of the bound charge densities discussed above. Bound
charge densities computed from first principles, hence, rep-
resent important benchmarking quantities that allow us to
evaluate the performance of implicit solvent models, such
as e.g. modified Poisson-Boltzmann (MPB), models based

Figure 6. a) Polarization densities obtained for Φ0 = 0 V and
Φ0 = 4 V, respectively, and b) polarization density difference. c)
Inverse dielectric profile computed from the polarization density
difference shown in b) with error bars. The dashed line marks the
value of ε−1

bulk for liquid water. Dotted lines denote the positions
of the electrodes.

on the integral theory of liquids (e.g. RISM) and molecular
DFT55.

Despite the above mentioned shortcomings40,41 of describ-
ing the nanoscale dielectric response using local dielectric
constants, this approach is often desirable for practical rea-
sons in the construction of implicit solvent models. There
has hence been continued interest to compute local dielectric
profiles3,28,36–39,52 for water-solid interfaces.

Such dielectric profiles can be directly computed from the
bound charge densities. As a first step, we compute the po-
larization density P (z) =

∫ z

0
ρbound(z′)dz′, cf. Fig. 6a. For

Φ = 0 V, the chemical contribution to the bound charge
density due to water stratification is reflected in the polar-
ization density close to the interfaces, but P (z) naturally
vanishes inside the bulk-like water region. There is no net
polarization in this case. The polarization density obtained
for an applied voltage of Φ = 4 V, in contrast, clearly dis-
plays a constant net polarization. We remind the reader
that the bound charge densities, and thus by extension the
polarization densities, consist of (i) a chemical contribution
due to the presence of the interface, superimposed with (ii)
an electrostatic contribution that describes the dielectric re-
sponse. In order to isolate the dielectric response, we com-
pute the polarization density difference ∆P , cf. Fig. 6b,
to cancel out any interface related structuring. In linear
response theory, this polarization density difference ∆P is
proportional to the inverse local dielectric constant ε⊥ with
∆E ≈ [ε0ε⊥]−1∆D 37. According to the definition of the
electric displacement field ∆D, the electric field ∆E is given
by ∆E = ε−1

0 [∆D −∆P ].
Fig. 6c shows the inverse dielectric profile. Compared

to dielectric profiles obtained from empirical force-field ap-
proaches, which often involve statistical sampling of sev-
eral nanoseconds, the present simulations were sampled for
125 ps and thus exhibit somewhat larger errors bars, indi-
cated by vertical lines in Fig. 6c. The largest error bars
by far are encountered inside the bulk-like water region.
Close to the interfaces, in contrast, statistical fluctuations
are much less pronounced and the interfacial dielectric fea-
tures shown in Fig. 6c are robust within the numerical ac-
curacy of our simulations.

In comparison to dielectric profiles computed using force-
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field approaches, cf. e.g. Ref.28, the first principles dielec-
tric profile presented here features distinct differences be-
tween the dielectric responses to the negative and positive
charges located on the left and right hand side electrodes,
respectively. Moreover, interfacial water exhibits additional
structuring in the dielectric response that is not captured by
empirical simulations. Most notably, the inverse dielectric
constant assumes values of ε−1

⊥ > 1 directly at the interfaces.
The induced polarization of the water therefore locally en-
hances the applied electric field. This phenomenon is known
as antiscreening and was recently proposed to occur within
the electrochemical double layer56. Our results demonstrate
that antiscreening is already present in neat water.

In conclusion, we extended our thermopotentiostat ap-
proach28 towards ab initio molecular dynamics (AIMD) sim-
ulations and demonstrated its implementation in the context
of density-functional theory. We emphasize that the ther-
mopotentiostat can be implemented using any of the cur-
rently available finite electric field or charge techniques. In
order to highlight the performance of our thermopotentio-
stat AIMD technique, we computed the dielectric properties
of nano-confined water from first principles. These devel-
opments allowed us to directly obtain bound charges and
polarization densities due to the dielectric response of in-
terfacial water at constant electrode potential. Both the
bound charge and the induced polarization density repre-
sent important benchmark quantities for future implicit sol-
vent models that are able to accurately describe solvation
at the nanoscale. Moreover, our thermopotentiostat AIMD
technique is able to describe bond making and breaking, as
well as charge transfer processes at electrified solid-liquid in-
terfaces at constant electrode potential. Our developments
thus open the door towards simulations of electrochemical
and electrocatalytic processes from first principles.
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Instantaneously Polarizeable Systems

Our central working equation (1) in the main paper is equally valid for non-polarizable

and instantaneously polarizable systems. As derived in Ref.? , the fluctuation-dissipation

theorem (FDT) takes the following form for the electrode charge:

fdt = − 1

τΦ

(Φ− Φ0) dt
︸ ︷︷ ︸

dissipation

+

√
2

τΦ

kBT

C0

dWt

︸ ︷︷ ︸
fluctuation

, (S1)

where τΦ, Φ, Φ0 and C0 are the relaxation time constant, the instantaneous potential, the

target potential and the capacitance of the bare electrodes in absence of a dielectric, respec-

tively. We note that the differential dWt of a Wiener process plays the same conceptual role

as dt: it represents an integration over time t, albeit with an infinitesimal stochastic time
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step dWt using Itō integration? , cf. Ref.? .

If the system under investigation is instantaneously polarizable, e.g. in the context of

Born-Oppenheimer dynamics, the form of Eq. S1 seemingly suggests that the capacitance

C0 would need to be corrected accordingly. Indeed it is possible, in principle, to describe

instantaneously polarizable systems by adapting C0 within the fluctuation term. However,

this particular choice is inadvisable because it would require advance knowledge about the

system’s dielectric properties. Instead, the dielectric properties should be an outcome of

the simulation, not a parameter entering it. We therefore propose to shift the issue of the

unknown dielectric contributions to the capacitance into the time domain and to take into

account any polarizability, instantaneous or not, implicitly within the deterministic term, as

described in the following.

For simplicity, we set Φ0 = 0 without loss of generality and demonstrate the derivation

of Eq. S1 explicitly for instantaneously polarizable systems. According to Ohm’s Law and

Kirchhoff’s 2nd Law, the instantaneous current for the setup shown in Fig. 1 in the main

manuscript is described by:

dn

dt
= −Φ

R
, (S2)

where n and R are the electrode charge and an effective resistance, respectively. We

now assume that the capacitance is increased to an unknown value C = εrC0, where the

factor εr describes an instantaneous dielectric response. According to the definition of the

capacitance, the instantaneous voltage Φ is:

Φ =
n

εrC0

. (S3)

Substituting Eq. S3 into Eq. S2 and adding a corresponding fluctuation term ñ dWt, we

obtain:
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dn = − 1

RC0

n

εr
dt+ ñ dWt. (S4)

In the canonical ensemble at finite temperature T , the variance σ2
n of the electrode charge

n must satisfy the relation:

σ2
n = kBTC = kBTεrC0. (S5)

Therefore, the fluctuation term ñ in Eq. S4 must be constructed accordingly. Here we

remind the reader that Eq. S4 formally represents a stochastic differential equation (SDE)

of the so-called Ornstein-Uhlenbeck type:

dx = −kxdt+
√
DdWt. (S6)

The variance of Eq. S6 has been derived analytically using Itō calculus? :

σ2
x =

D

2k
. (S7)

Hence, we directly obtain an expression for ñ, using Eq. S7:

dn = − 1

τΦ

n

εr
dt

︸ ︷︷ ︸
dissipation

+

√
2

τΦ

kBTC0 dWt

︸ ︷︷ ︸
fluctuation

, (S8)

with τΦ := RC0. Clearly, taking the variance of Eq. S8 according to Eq. S7 satisfies

Eq. S5. Yet, we note that the fluctuation term is free of εr. By design, the deterministic

dissipation term is the only place where εr needs to be introduced.

We remind the reader, that our central working equation (1) in the main manuscript is

derived solving the Itō integral

dn = C0 fdt. (S9)
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Straightforward multiplication of Eq. S1 with C0 in order to obtain dn and substituting

for Φ using Eq. S3 yields:

dn = C0 fdt = − 1

τΦ

C0
n

εrC0︸ ︷︷ ︸
=:Φ

dt+

√
2

τΦ

kBTC0 dWt, (S10)

With Eq. S10, it is now clear that Eqs. S1 and S8 are formally identical. Our cen-

tral working equation (1) therefore already takes the polarizability - instantaneous or not -

implicitly into account.

Numerical and technical details

We carried out density functional theory (DFT) calculations within the Perdew-Burke-

Ernzerhof generalized gradient approximation? , using plane wave basis sets and projector

augmented wave pseudopotentials? with an energy cutoff of 400 eV. All calculations were

performed using the Vienna Ab Initio Simulation Package (VASP)? ? . We used the Γ point

for k-space integration. To integrate the equations of motion in our AIMD simulations and

ensure accurate energy conservation over a time scale of several 100 ps, we converged the

electronic total energies to 10−8 eV at each ionic step, used a discrete time step ∆t = 0.5 fs

and the 2nd order leapfrog scheme as implemented in VASP.

The simulation cells contain 2 computational Ne electrodes? with a lateral size of

14.5 × 14.5 Å2, separated by d = 10.7 Å, 17.4 Å and 31.4 Å, respectively, and include

32, 64 and 192 H2O molecules between the electrodes, respectively. The values for the elec-

trode separation d were chosen so that the bulk water density of 1 g/cm3 is reached in the

central part of the unit cell, after equilibration for 10 ps with the Langevin thermostat and

a relaxation time of τ = 50 fs.

From here on, the thermostat was switched off without exception and we sampled the
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Figure S1: Flowchart to conceptually show the integration of the thermopotentiostat in
second order velocity verlet. The potentiostat acts on the charge and positions of the first
force calculation and updates the charge according to the thermopotentiostat or any other
control logic. The new charge and the new positions are used to calculate the new forces
and thereby the new velocities and the next ionic step is performed.

ensembles for an additional 125 ps. In all simulations, we integrated the equations of motion

for the spatial degrees of freedom with the leapfrog scheme in the NVE ensemble. In addition

to potentiostating the system, the temperature is actively controlled by our thermopoten-

tiostat due to exposing the atoms to the fluctuating electric field, so that the simulation

samples the NVTΦ ensemble.

Both computational Ne electrodes are charged by equal and opposite amounts. The

amount of charge transferred between both electrodes is controlled by our thermopotentio-

stat. To that purpose, we use distinct Ne pseudopotentials for the left-hand side and right-

hand side Ne electrodes, respectively. The core charges of the pseudopotentials describing

the Ne electrodes are adjusted over the course of the simulation at each individual ionic step,

according to our central working equation (1). For the thermopotentiostat relaxation time

we use a value of τΦ = 100 fs.
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Velocity Verlet integration scheme

In the main text we provided a flowchart for integration via leapfrog. Velocity Verlet is

another widely used integration scheme. Here, the thermopotentiostat must be be included

in a slightly different way, cf. Fig. S1. After the initialization and a first calculation of

the forces the electrode charge is updated together with the positions. Subsequently, a

new calculation of the forces is performed which includes the updated charge and updated

positions. Next, the velocities are integrated and, if necessary, a thermostat can be applied.

The integration loop is then closed by a new integration of the positions and electrode

charges.

Convergence of the bound charges and dielectric profiles

Computing dielectric constants from molecular dynamics simulations is commonly performed

using Kirkwood-Fröhlich theory or the theory of polarization fluctuations. Both approaches

rely on the variance of the dipole moment fluctuations, typically requiring several nanosec-

onds of statistical sampling to obtain converged results. Our approach outlined in the main

text uses only thermodynamic averages, which converge significantly faster.

In order to determine the statistical sampling necessary to converge the dielectric prop-

erties, we computed the dielectric constants within the bulk and interfacial water regions as

a function of sampling time. Statistical error bars are obtained as running variances:

σ(z, t) := V ar

(
1

t

∫ t

0

dt′ε⊥(z, t′)

)
, (S11)

where ε⊥(z, t′) denotes the dielectric constant at position z′ at timestep t′. The position-

dependent error bars of ε(z) for the total sampling time are shown in Fig. 6c in the main text.

In Fig. S2 we show the evolution of the error bars as a function of time for the interfacial

and bulk water regions. For interfacial water, the standard error of ε−1 falls below 0.1 after
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Figure S2: Evolution of variances of bulk water dielectric constant with increasing statistics.
This plot serves as a guideline to estimate the required number of steps to get a sufficiently
accurate dielectric profiles.

a sampling time of 50 ps. Consistent with Fig. 6c in the main text, the dielectric properties

of interfacial water converge significantly faster compared to those of bulk water, since the

water reorientation dynamics is less pronounced close to the interface.

Interfacial water structure

In order to probe the orientation of interfacial water in response to the applied electric bias,

we computed the probability distributions of the angles enclosed between the surface normal

and the water bisector (α, Fig. S3a) or the water OH-bond (θ, Fig. S3b). Solid and dashed

lines refer to the left hand side (negatively charged) and right hand side (positively charged)

electrodes. We consider only the first layer of interfacial water up to a normal distance of

4 Å with respect to the electrode, corresponding to the density minimum between the first

and the second stratified water layer, cf. Fig. 5 in the main text.

For Φ0 = 0 V, the angle distributions obtained for the left and right hand side electrodes

agree within the numerical accuracy (blue solid and dashed lines, Fig. S3), reflecting the
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Figure S3: Probability distributions of a) the angle α enclosed between the surface normal
and the water bisector and b) the angle θ enclosed between the surface normal and the
water OH-bond. Solid and dashed lines indicate distributions computed for negatively and
positively charged surfaces, respectively.

symmetry of our computational setup. Both the α and θ distributions are centered around

90◦, indicating that for our hydrophobic electrodes interfacial water adopts largely planar

configurations on average, where the molecular planes are parallel to the electrode surfaces.

At an applied voltage of Φ0 = 4 V, we observe a field-induced reorientation of the

interfacial water molecules. On the negatively charged left hand electrode (solid red lines,

Fig. S3) the interfacial water layer features a clear net dipole moment. The maximum of the

probability distribution for the angle α between the water bisector and the surface normal

is located at 126◦. In agreement with recent findings by Li et al.? for Au(111) surfaces, the

OH-bond angle distribution becomes bimodal: one OH-bond remains in-plane (maximum at

96◦), whereas the other OH-bond is now pointing towards the electrode surface (maximum

at 162◦) in an H-up configuration. On the positively charged right hand electrode (dashed

red lines, Fig. S3), in contrast, such a bimodal distribution is absent since here the oxygen

atoms of the water molecules are oriented towards the electrode surface.

We note that Li et al.? used explicit counter ions to induce a surface charge. The inter-
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facial water structure is sampled hence for surface charges that amount to an integer number

of electrons and, by extension, for potentials that correspond to those integer charges. The

thermopotentiostat approach introduced here, in contrast, allows us to perform simulations

under potential control for arbitrary continuous potentials.
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