
Neural representation of speech segmentation 

and syntactic structure discrimination 

  



 

 

Funding Body  
This research was funded by the Max Planck Society for the Advancement of Science (www.mpg.de/en) 
 
International Max Planck Research School (IMPRS) for Language Sciences 
The educational component of the doctoral training was provided by the International Max Planck 
Research School (IMPRS) for Language Sciences. The graduate school is a joint initiative between the 
Max Planck Institute for Psycholinguistics and two partner institutes at Radboud University – the 
Centre for Language Studies, and the Donders Institute for Brain, Cognition and Behaviour. The 
IMPRS curriculum, which is funded by the Max Planck Society for the Advancement of Science, 
ensures that each member receives interdisciplinary training in the language sciences and develops a 
well-rounded skill set in preparation for fulfilling careers in academia and beyond. More information 
can be found at www.mpi.nl/imprs 

The MPI series in Psycholinguistics 
Initiated in 1997, the MPI series in Psycholinguistics contains doctoral theses produced at the Max 
Planck Institute for Psycholinguistics. Since 2013, it includes theses produced by members of the 
IMPRS for Language Sciences. The current listing is available at www.mpi.nl/mpi-series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2022, Fan Bai  
ISBN: 978-94-92910-41-7 
Cover design and lay-out by Shuang Bi  
Printed and bound by Ipskamp Drukkers, Enschede  
All rights reserved. No part of this book may be reproduced, distributed, stored in a retrieval system, or 
transmitted in any form or by any means, without prior written permission of the author. The research 
reported in this thesis was conducted at the Max Planck Institute for Psycholinguistics, in Nijmegen, 
the Netherlands 

  



Neural representation of speech segmentation 

and syntactic structure discrimination 

Proefschrift  

ter verkrijging van de graad van doctor 

aan de Radboud Universiteit Nijmegen 

op gezag van de rector magnificus, prof. dr. J.H.J.M. van Krieken, 

volgens besluit van het college van de decanen 

in het openbaar te verdedigen op  

maandag 31 oktober 2022 

om 12.30 uur precies 

door 

Fan Bai 

geboren op 1 december 1986 

te Baicheng (China) 

  



 

 

Promotor: 

Prof. dr. Antje S. Meyer 

 

Copromotor: 

Dr. Andrea E. Martin  

 

Manuscriptcommissie: 

Prof. dr. Uta Noppeney  

Prof. dr. David Poeppel (ESI Frankfurt, Duitsland) 

Dr. A.V.M Kösem (Centre de Recherche en Neuroscience de Lyon, Frankijk) 

 



Neural representation of speech segmentation 

and syntactic structure discrimination 

Dissertation  

to obtain the degree of doctor  

from Radboud University Nijmegen  

on the authority of the Rector Magnificus prof. dr. J.H.J.M. van Krieken,  

according to the decision of the Doctorate Board  

to be defended in public on  

Monday, October 31, 2022  

at 12.30 pm  

by 

Fan Bai 

born on December 1, 1986 

in Baicheng (China) 

  



 

 

Supervisor: 

Prof. dr. Antje S. Meyer  

 

Co-supervisor: 

Dr. Andrea E. Martin 

 

Manuscript committee: 

Prof. dr. Uta Noppeney  

Prof. dr. David Poeppel (ESI Frankfurt, Germany) 

Dr. A.V.M Kösem (Lyon Neuroscience Research Centre) 

 

  



 

 

 

Contents 

 

1 | General introduction ........................................................................................................ 9 

1.1 Speech segmentation ........................................................................................ 9 

1.2 Syntactic representation ................................................................................ 13 

1.3 The current thesis ........................................................................................... 17 

2 | Neural representation of speech segmentation via statistical inference . 21 

2.1 Introduction ................................................................................................... 22 

2.2 Methods ......................................................................................................... 26 

2.3 Results ........................................................................................................... 34 

2.4 Discussion ...................................................................................................... 43 

3 | Generalization of the cortical tracking effect based on statistical 
inference ................................................................................................................................... 47 

3.1 Introduction ................................................................................................... 48 

3.2 Methods ......................................................................................................... 51 

3.3 Results ........................................................................................................... 56 

3.4 Discussion ...................................................................................................... 63 

4 | Phase consistency as a window onto syntactic structure representation  69 

4.1 Introduction ................................................................................................... 70 

4.2 Methods ......................................................................................................... 74 

4.3 Results ........................................................................................................... 87 

4.4 Discussion...................................................................................................... 93 

5 | Representing syntactic structure discrimination in the intensity of neural 
oscillations ............................................................................................................................... 99 

5.1 Introduction ................................................................................................. 100 

5.2 Methods ....................................................................................................... 102 



 

 

5.3 Results ......................................................................................................... 108 

5.4 Discussion .................................................................................................... 120 

6 | General discussion ........................................................................................................ 127 

6.1 Summary of core findings ............................................................................ 127 

6.2 Speech segmentation using statistical information .................................... 131 

6.3 Neural representation of syntactic structure discrimination ...................... 135 

6.4 Future research directions ........................................................................... 142 

References ............................................................................................................................... 145 

English summary ................................................................................................................. 163 

Nederlandse samenvatting ............................................................................................. 167 

Acknowledgements ............................................................................................................. 171 

Curriculum vitae .................................................................................................................. 175 

Publications ............................................................................................................................ 177 

MPI Series in Psycholinguistics ..................................................................................... 179 

 

 



 

  

1｜ General introduction  

Spoken language plays a key role in daily communication. For any type of 

spoken language, speech can be measured as sound waves, as the production 

process leads to the fluctuation of air pressure (Fry, 1979; Morse, America, & 

Physics, 1948; Stevens, Egan, & Miller, 1947). The temporal and spectral dynamics 

that are embedded in the speech stimuli include almost all the information that the 

speaker wants to express. However, that the information in the speech stimulus 

can only be extracted by speakers of the same language indicates that a language’s 

set of rules must be applied. The process by which we extract linguistic information 

from speech seems automatic and effortless; however, the large body of literature 

on speech perception and comprehension suggests that a series of complicated 

operations are required. In this thesis, I focus on investigating the neural 

representation of two fundamental and critical processes, which are speech 

segmentation and syntactic structure discrimination.  

1.1 Speech segmentation  

A speech signal is usually continuous in time. In order to understand the 

information that is embedded in the speech signal, it must be segmented into basic 

linguistic units (Cutler, 2012; Grosjean, 1980). However, unlike written language, 

the boundaries between linguistic structures, such as syllables, words etc., are not 

explicitly marked in a spoken form. So how are listeners still able to segment speech?  

Studies using traditional approaches suggest that speech segmentation 

benefits from the prosodic information. Cutler and Butterfield (1992) analyzed 

mishearing and natural slips by English listeners and found that boundaries were 

preferentially inserted before stressed syllables, and deletion of boundaries 

occurred before weak syllables. For instance, ‘conduct ascends uphill’ could be 

reported as ‘the doctor sends her bill’ (inserting boundaries before the strong final 

syllables in each word), or ‘sons expect enlistment’ might be reported as ‘sons 
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expectant listen’ (inserting a boundary before the stressed syllable ‘-list’, but also 

deleting the word boundary before weak syllable ‘en-‘). The misperceptions 

suggested that listeners preferred to segment speech by considering strong 

syllables as word onsets (Cutler, 2012; Cutler & Butterfield, 1992).  

In addition, using the word-spotting paradigm, where participants were asked 

to spot a real word in spoken nonsense strings, Cutler and Norris (1988) found that 

a real word (e.g. mint) was easier to extract from a nonsense string when it was 

combined with a weak syllable (e.g. mintef) than when it was associated with a 

strong syllable (e.g. mintayf). The authors proposed that the strong-strong 

structure led to a separation between the two syllables because strong syllables are 

often considered as onsets of words, i.e. mintayf separated into min and tayf. The 

postulation of a boundary between min and tayf made it much harder to detect the 

word mint in mintayf than mintef because one additional process of recombination 

of speech materials across the boundary was needed.  

In brief, investigations using empirical and behavioral approaches suggest 

that acoustic level information, such as prosody and stress pattern, is beneficial in 

speech segmentation (Cutler et al., 2008; Evans, Saffran, & Robe-Torres, 2009; 

Fear, Cutler, & Butterfield, 1995; Hay et al., 2011; Norris et al., 2006; Pelucchi, Hay, 

& Saffran, 2009; Peña et al., 2002; Romberg & Saffran, 2010; Saffran, Newport, & 

Aslin, 1996; Smith et al., 1989). 

However, speech segmentation using cues only at the phonological level, such 

as prosody or stress pattern, appears to omit the role of higher-level linguistic 

information. As such, many theories posit that linguistic structures could be 

extracted via an endogenous inference process (Bever & Poeppel, 2010; Brown, 

Tanenhaus, & Dilley, 2021; Friederici, 1995; Hagoort, 2013; Halle & Stevens, 1962; 

Marslen-Wilson & Tyler, 1980; Marslen-Wilson, 1987; Marslen-Wilson & Welsh, 

1978; Martin & Doumas, 2017; Martin & Doumas, 2019; Martin, 2016, 2020; 

Martin & Doumas, 2020; Meyer, Sun, & Martin, 2020; Phillips, 2003; Poeppel & 

Monahan, 2011).  

An MEG study conducted by Luo and Poeppel (2007) suggested that low 

frequency (~ 4 to 7 Hz) phase coherence reflects speech intelligibility and the 

extraction of basic linguistic units. In their study, participants were asked to listen 

to speech stimuli, for which the intelligibility was manipulated from low to high. 
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By decomposing neural activity into the frequency domain, the authors found that 

there was stronger phase coherence at the theta band (~4 to 7 Hz) when the speech 

stimuli were highly intelligible as compared to when the stimuli were degraded. 

The results indicated that the evoked neural response at low frequencies reflects 

the cortical analysis of speech signals. As the range of ~4 to 7 Hz approximately 

corresponds to the rhythm of the syllables in natural speech (Ding, Patel, et al., 

2017; Doelling et al., 2014; Pellegrino, Coupé, & Marsico, 2011), the authors 

concluded that this low-frequency phase coherence might reflect the extraction of 

syllables, and therefore, syllables could be primitive units for the neural 

representation of speech. Similar results have been found in several other studies 

(Doelling et al., 2014; Howard & Poeppel, 2010; Luo & Poeppel, 2007; Peelle, Gross, 

& Davis, 2013).  

Knowing syllables could be the primitive units for speech processing, 

researchers were looking for neural representations of linguistic structures that 

build upon syllables. An influential study conducted by Ding et al. (2016) suggested 

that speech segmentation can be performed via grammatical chunking or syntactic 

integration. More importantly, the authors found that the occurrence rate of 

hierarchical linguistic structures could be reflected by the intensity of the neural 

oscillations with the same frequencies. In their experiments, the researchers 

artificially synthesized three types of isochronous syllable sequences (four syllables 

per second, where the rhythm for syllables was 4 Hz) in Mandarin Chinese. The 

type-one sequences had a built-in hierarchy, where every two syllables form a 

phrase (the occurrence rate of phrases was 2 Hz, or two phrases per second) and 

every four syllables form a sentence (the occurrence rate of two-phrase sentences 

was 1 Hz, or one sentence per second). In contrast, the type-two and type-three 

sequences were control conditions involving random syllable sequences played 

forward and backward, respectively.  

After presenting these three types of stimuli to Chinese participants, the 

cortical activities reflected the rhythm of linguistic structures at different levels 

simultaneously; i.e., there were 1 Hz, 2 Hz and 4 Hz peaks to reflect the occurrence 

rates of sentences, phrases and syllables for the type-one sequences, but only a 4 

Hz peak to reflect the rhythm of syllables for the type-two and type-three sequences. 

More interestingly, when presenting these Chinese speech stimuli to English 
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speakers who did not understand Chinese, only a 4 Hz peak was appeared to reflect 

the rhythm of syllables for all three types of sequences. The contrast between 

various types of stimuli (three peaks for the type-one sequences vs. one peak for 

the control conditions) and different types of language users (three peaks for 

Chinese speakers vs. one peak for English speakers) suggested that the cortical 

response varied with the rhythm of linguistic structures and high-level linguistic 

knowledge (e.g., about the grammatical or syntactic relationships between units). 

Therefore, the authors concluded that a mechanism of grammatical chunking or 

syntactic integration was engaged, and the neural response that tracked the 

occurrence rates of hierarchical linguistic structures reflected the endogenous 

process of unit extraction. The neural tracking effect has been replicated and 

simulated in several recently conducted works (Gui, Jiang, Zang, Qi, Tan, Tanigawa, 

Jiang, Wen, Xu, Zhao, et al., 2020; Gwilliams & King, 2020; Jin, Lu, & Ding, 2020b; 

Jin et al., 2018a; Kaufeld et al., 2020; Keitel, Gross, & Kayser, 2018; Martin & 

Doumas, 2017; Martin & Doumas, 2019; Meyer & Gumbert, 2018; Obleser & 

Kayser, 2019; Zhou et al., 2016).  

Undoubtedly, speech segmentation benefits from high-level grammatical or 

syntactic knowledge. However, statistical information, such as the transitional 

probability between linguistic units, plays a key role in linguistic structure 

extraction and incorporates relationships between units at different levels. A 

behavioral study by Saffran, Newport, and Aslin (1996) suggested that speech 

segmentation can be performed using only the transitional probability (TP) 

between syllables (the probability that one syllable follows another, e.g., the 

probability of Pi given Tu). More specifically, the researchers constructed two-

minute continuous syllable sequences consisting of four three-syllable nonsense 

words (e.g., TuPiRo) repeated in random order. Then, they aurally presented the 

two-minute speech stimuli to eight-month-old infants, after which a 

discrimination task followed, where the previous nonsense words as well as new 

three-syllable words were played to the infants. Using the infants’ listening time 

(indexed by observing when they gazed at the researchers), the authors found that 

infants spent more time listening to the new words as compared to the old ones. 

The results are interesting as they suggest that infants could extract the three-

syllable structures from the continuous speech stream using statistical information. 

Specifically, during the two-minute listening stage, the TP relationships between 
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syllables (the TP between syllables within a word was 1 and the TP between word 

boundaries was 1/4) constitute an implicit cue that leads to the segmentation by 

the infants. As no semantic or acoustic cues were available during this listening 

stage, and the only cue that could be used to extract the ‘words’ was the TP, the 

authors concluded that statistical information was the key for segmenting the 

speech stimuli.  

In sum, numerous investigations in both psycholinguistics and neuroscience 

have suggested that acoustic-level information (e.g., stress pattern and prosody), 

high-level linguistic knowledge (e.g., grammatical and syntactic knowledge), and 

statistical regularities (the transitional probabilities between linguistic units) are 

all beneficial factors in speech segmentation.   

1.2 Syntactic representation 

Extracting basic linguistic units, such as syllables or words, from speech is not 

enough for language comprehension. Succesfully extracting the words the, red and 

vase from the phrase the red vase does not suffice to determine how these words 

are syntactically structured to form meaning. Therefore, in addition to extracting 

linguistic units, building the relationships between linguistic units is a necessary 

step for speech comprehension.  

Behavioral studies and early analyses of natural speech have suggested the 

existence of abstract mental representations of syntactic structures, which are 

independent of lexical items. Levelt and Kelter (1982) found that shopkeepers 

tended to repeat the form of a question in their answers. For example, when 

asked (At) what time do you close? the shopkeepers tended to answer: (At) five 

o'clock, matching the utterance to the surface form (with or without preposition) 

of the question. Weiner and Labov (1983) also found that the best predictor of the 

occurrence of a passive structure in an interview was the recent occurrence of 

another passive structure. A laboratory study using syntactic priming by Bock 

(1986) also confirmed the facilitation effect for abstract syntactic structures. 

Specifically, she asked participants to repeat sentences or describe pictures during 

a task where some of the sentences were actually primes for picture descriptions. 

She found that participants tended to use the same syntactic structure as in 
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previously repeated sentences to describe pictures; i.e., participants were more 

likely to describe a picture with a passive rather than active structure after 

repeating a passive prime sentence.  

All of the above-mentioned meta analyses and behavioral investigations 

indicate the existence of abstract syntactic representation, and therefore form a 

basis for electrophysiological research on syntactic representation. 

Electroencephalography (EEG) was the first neural imaging technique to visualize 

the process of syntactic processing in language comprehension. Osterhout and 

Holcomb (1992) conducted an EEG study and found that the neural response was 

sensitive to syntactic anomaly in a phase-locked manner. In their experiment, two 

types of sentences, e.g., the broker hoped to sell the stock was sent to jail (type-one 

sentence) and the broker persuaded to sell the stock was sent to jail (type-two 

sentence), were visually presented to participants word by word. Both types of 

sentences contain a clausal complement (e.g., to sell the stock). The intransitive 

verb hoped in the type-one sentence allows the clausal complement to be easily 

attached to the main clause; however, the transitive verb persuaded in the type-

two sentence is most commonly combined with a direct object. When it is followed 

by the phrasal complement to sell, the word persuaded needs to be reanalyzed as a 

past participle rather than a past-tense finite verb form, e.g., the broker (who was) 

persuaded to sell the stock was sent to jail. Therefore, the type-two sentence is 

syntactically anamolous compared to the type-one sentence.  Using these types of 

manipulated stimuli, the authors examined the syntactic anomaly recognition by 

measuring event-related potentials (ERPs). As expected, a positive phase-locked 

component (right hemisphere dominant) was found for the type-two sentences 

with a peak at approximately 600 ms after the infinitive to when compared to type-

one sentences. The authors defined this component as ‘P600’ and considered it as 

a reflection of syntactic anomaly. This result is important, as it is the first direct 

evidence to show that syntactic processing can be reflected in phase-locked (evoked) 

neural responses. Building on this seminal research, a large number of ERP studies 

have confirmed the robustness of this effect (Coulson, King, & Kutas, 1998; 

Friederici, Pfeifer, & Hahne, 1993; Hagoort, Brown, & Groothusen, 1993; 

Osterhout & Mobley, 1995; Patel et al., 1998).  
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To form compositional meaning, individual words need to be chunked into 

syntactic structures (Baddeley, Hitch, & Allen, 2009; Bonhage et al., 2017; 

Chomsky, 2002; Cowan, 2016; Meyer et al., 2017). The process of forming syntactic 

relationships using extracted linguistic units depends on the encoding and 

retrieving of these units (Futrell, Mahowald, & Gibson, 2015; Gibson et al., 2000; 

King & Just, 1991; Lewis, 1996; Lewis, Vasishth, & Van Dyke, 2006; Meyer et al., 

2015; Meyer, Obleser, & Friederici, 2013; Meyer et al., 2012; Nicol, Fodor, & 

Swinney, 1994). As syntactic processing builds on successful speech segmentation, 

at least two linguistic units are required to form a compositional structure. The 

syntactic processing might happen after the segmentation of necessary linguistic 

units or it could overlap with the stage of segmenting linguistic units. For instance, 

a syntactic phrase the red vase is formed by the brain after or possibly at the same 

time as the extraction of the lexical components (the, red and vase). As mentioned 

earlier, in the study of Osterhout and Holcomb (1992), the P600 also appeared 

after the extraction of the word of interest to, and the ongoing positive deflection 

overlapped with the processing of subsequent words. The dependency of the 

syntactic integration on the segmentation of linguistic units, and the potential 

overlap in time with non-syntactic processing stages, makes isolating syntactic 

processing challenging.  

Meyer et al. (2017) conducted an EEG study in which the researchers 

presented their participants with syntactically ambiguous German sentences. The 

sentences were disambiguated by prosodic cues that marked either the ending or 

the continuation of a phrase. For instance, the authors inserted a long pause at the 

end of the word verklagte (‘sued’, type-one) or the end of the word Mörder 

(‘murderer’, type-two) in the sentence Der Klient verklagte /den Mörder/ mit dem 

korrupten Anwalt (‘The client sued the murderer with the corrupt lawyer’). After 

listening, the participants answered questions such as wer hatte den korrupten 

Anwalt? (‘Who had the corrupt lawyer?’), probing the attachment of the 

prepositional phrase. Because of the different positions (prosodic cues) of the 

inserted long pause, the type-one sentences would form a one-phrase sentence. For 

example, the prepositional phrase mit dem korrupten Anwalt (‘with the corrupt 

lawyer’) and the preceding object phrase den Mörder (‘the murderer’) form the 

joint phrase den Mörder mit dem korrupten Anwalt (‘the murderer with the 
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corrupt lawyer’). Therefore, the answer to the probing question should be ‘the 

murderer had the corrupt lawyer’. However, the type-two sentences would form 

two phrases, e.g., the prepositional phrase mit dem korrupten anwalt (‘with the 

corrupt lawyer’) forms a separate phrase, interpreted as linking to the subject 

phrase der Klient (‘the client’). Therefore, the answer to the probing question 

should be ‘the client had the corrupt lawyer’. The behavioral results showed the 

participants’ sensitivity to the prosodic cues. They made significantly more two-

phrase choices for type-two sentences as compared to type-one sentences. More 

importantly, the delta band (< ~ 4 Hz) oscillatory phase robustly separated the two 

grouping choices; i.e., the delta band oscillations separated the one-phrase 

grouping from the two-phrase grouping. These results suggest that delta band 

oscillations play a key role in the mental representation of syntactic structures. In 

line with Meyer et al. (2017), Bonhage et al. (2017) also found that the intensity of 

delta band oscillations was increased when participants encoded sentence 

fragments (for which syntactic structures can be formed) as compared to random 

word lists (for which syntactic structures cannot be formed).  

As mentioned earlier in this section, encoding and retrieving extracted 

linguistic units is crucial for syntactic structure construction, and research into this 

has suggested the involvement of alpha band oscillations in verbal working 

memory (Haegens et al., 2010; Obleser et al., 2012; Ten Oever, De Weerd, & Sack, 

2020; Wilsch & Obleser, 2016). Alpha band oscillations were also shown to be 

related to auditory attention (Strauß, Wöstmann, & Obleser, 2014; Wöstmann et 

al., 2016; Wöstmann et al., 2015; Wöstmann, Lim, & Obleser, 2017). Furthermore, 

a neural physiology model of speech perception considered alpha band neural 

oscillations as a ‘top-down’ perceptual gating control (Ghitza, Giraud, & Poeppel, 

2013; Giraud & Poeppel, 2012). In short, the above-mentioned investigations 

support the role of alpha band oscillations in generalized auditory processing, 

which implies that alpha band oscillations may not be specific to speech processing. 

However, studies have also shown that neural activities at the alpha band reflect 

speech intelligibility (Becker et al., 2013; Dimitrijevic et al., 2017; Meyer et al., 

2012), which indicates the engagement of alpha band oscillations in syntactic or 

semantic processing. Overall, the question of whether or not alpha band 

oscillations are related to high-level speech processing, e.g. syntactic 

representation, is still debatable.   
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Lastly, work using modeling to investigate the encoding of acoustic features 

has added new information and broadened the scope for exploring syntactic 

representation. Studies using the spectral-temporal response function (STRF) have 

shown that acoustic features in speech can be reliably reflected in the low-

frequency neural response via a phase-locked manner (Ding & Simon, 2012a, 

2012b, 2013b) and phonemic-level processing can also be shown in the low-

frequency entrainment to speech (Di Liberto, O’Sullivan, & Lalor, 2015; Donhauser 

& Baillet, 2020; Weissbart, Kandylaki, & Reichenbach, 2020). The results of these 

modeling works revealed that low-frequency neural responses have a role in 

representing acoustic features. However, the extent to which syntactic-level 

information can be reflected by the encoding of acoustic features remains an open 

question.  

1.3 The current thesis 

Building on the above literature review, in this thesis, I present an 

investigation into the neural representation of speech segmentation and syntactic 

structure discrimination.  

In Chapter 2, I focus on the role of statistical information, i.e., the transitional 

probability, in speech segmentation. The effect of cortical activity that tracks the 

rhythm of hierarchical linguistic structures is an intriguing phenomenon (Ding et 

al., 2016) as it might suggest that the brain uses grammatical or syntactic 

knowledge to construct linguistic structures at different levels via an endogenous 

inference approach. However, as Saffran, Aslin, and Newport (1996) suggested, the 

relationships between linguistic units could also be reflected by statistical 

information, i.e., the transitional probability. Specifically, by comparing the studies 

of Saffran, Aslin, and Newport (1996) and Ding et al. (2016), we found that the 

high-level linguistic information (e.g., grammatical or syntactic relationships) 

coexists with the statistical regularities (e.g., the transitional probability) in syllable 

sequences with a built-in hierarchy, where syllables, words and sentences appear 

with a fixed rhythm. Therefore, the cortical tracking effect might be driven by both 

of these factors. Figuring out whether the neural activity that tracks the rhythm of 

linguistic structures could be introduced solely by statistical information is 

important, as structuring units via grammatical chunking or syntactic integration 
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requires high-level linguistic knowledge, whereas linguistic knowledge is not 

necessarily involved when structure extraction is conducted using statistical 

information. In addition, if unit extraction could be performed using statistical 

information, would it be reflected by the cortical tracking effect? In the study 

described in Chapter 2, we constructed several types of syllable sequences which 

were controlled for both linguistic and statistical properties, and used in six MEG 

experiments with Dutch participants. We focused on determining the role of 

statistical information in the speech segmentation, and checking whether the units’ 

extraction via statistical information could be reflected by the cortical tracking 

effect.  

In Chapter 3, a generalization question is considered. Specifically, I report 

another set of MEG experiments with Chinese participants. The hypothesis is that 

if speech segmentation can be conducted using statistical information and the 

segmentation process is reflected by the cortical tracking effect, then having users 

of a different language perform the same experiments as in Chapter 2 will not 

change the effect, because speech segmentation using a non-language-specific 

factor, i.e. transitional probability, is a generalized perceptual process. Therefore, 

I investigate whether speech segmentation via statistical information can be 

accomplished by a different type of language user, and more importantly, if the 

neural representation of this segmentation process varies between different types 

of language users.  

In Chapter 4, I describe an EEG study exploring how the phase-related neural 

activity reflects the discrimination between two types of syntactic structures (i.e., 

phrases and sentences). In each trial of the experiment, Dutch participants listened 

to a speech stimulus, which was either a phrase, e.g. de rode vaas (‘the red vase’), 

or a sentence, e.g. de vaas is rood (‘the vase is red’). To extract the optimized effect 

driven by syntactic structure discrimination, we matched the physical and 

semantic properties across the two types of stimuli (for details see Chapter 4). As 

this is an exploratory study, Chapter 4 addresses three questions. First, as previous 

studies have shown that low-frequency phase measures play a fundamental role in 

syntactic integration (Bonhage et al., 2017; Meyer et al., 2015; Meyer et al., 2017), 

we asked whether the low-frequency (< 8 Hz) phase coherence would reflect the 

discrimination between phrases and sentences. Second, if the brain could separate 
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the two types of syntactic structures, would this be reflected by the functional 

connectivity via temporal synchronization (phase connectivity)? Lastly, 

referencing the generalized speech perception model proposed by Giraud and 

Poeppel (2012), we asked if the low-frequency phase entrains with the high-

frequency amplitude that exists during spoken language comprehension, and if so, 

whether this coupling mechanism separates the two different types of syntactic 

structures.  

Chapter 5 presents a study that used the same dataset as in Chapter 4. We 

performed additional sets of analyses to show how syntactic structure 

discrimination would be reflected in the intensity-related brain measures. 

Furthermore, I describe modeling work using the STRF on the encoding of acoustic 

features. More concretely, as I mentioned before in the literature review on 

syntactic representation, there is still an ongoing debate about whether the alpha 

band neural oscillations are related to high-level (e.g. syntactic) speech processing. 

By considering this unsolved issue, we first asked whether the induced neural 

activity would reflect syntactic structure discrimination, and in particular, whether 

alpha band neural oscillations are involved in syntactic structure discrimination. 

Second, functional connectivity studies often paid attention on temporal 

synchronization (phase connectivity), so in this study, we further explored whether 

the neural networks that are constructed by the intensity of the neural activities 

(intensity connectivity) would separate the phrases from the sentences. Finally, as 

recently conducted works have shown that the acoustic features can be selectively 

represented in the neural response (Di Liberto & Lalor, 2017; Ding & Simon, 2012a, 

2012b, 2013b), we use a computational modeling approach, the STRF, to explore 

how acoustic features are phase-locked encoded in both temporal and spectral 

dimension to separate the phrases from the sentences.  

In the concluding section, Chapter 6, I summarize the core findings on the 

neural representation of speech segmentation and syntactic structure 

discrimination. This is followed by a discussion of the relationships between these 

findings and those of previous studies, to uncover the implications and 

contributions. Finally, I discuss the research questions that have arisen from our 

studies and might be tackled in future investigations.  
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Note that a certain amount of overlap exists across the chapters, as the same 

sets of MEG experiments were conducted with Dutch participants in Chapter 2 and 

Chinese participants in Chapter 3, and the same EEG dataset was analyzed from 

different directions in Chapter 4 and Chapter 5. Thus, some of the critical 

information in the general descriptions is reiterated in each chapter. 

 

 



 

  

2｜ Neural representation of speech segmentation 

via statistical inference 

Abstract 

A fundamental question in speech comprehension is how continuous speech 

signals are segmented by the brain. A study by Ding et al. (2016) suggested that the 

rhythm of hierarchical structures in speech can be reflected in the neural activities 

at the corresponding frequencies. They explained the phenomenon as the cortical 

tracking of linguistic units by endogenous grammatical chunking. However, online 

chunking clearly benefits from the statistical information (e.g., transitional 

probability) between linguistic units. Saffran, Aslin, and Newport (1996) found 

that infants could extract ‘words’ from fluent ‘speech’ after a two-minute exposure, 

in which transitional probabilities were considered as a key in the speech 

segmentation. A natural question raised by comparing the conclusions of these two 

studies is whether the cortical tracking effect could be driven by the transitional 

probabilities. We conducted a six-session magnetoencephalography experiment 

with Dutch native speakers to investigate the role of transitional probabilities (TPs) 

in the cortical tracking effect. Using the discrete Fourier transform with 

generalized eigen-decomposition, our analysis indicated that cortical tracking 

could be introduced solely by TPs, and the effect might not be a pure reflection of 

unit-chunking using high-level linguistic knowledge. 
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2.1 Introduction 

Speech contains an abundance of acoustic features in both the time and 

frequency domains (Shannon et al., 1995; Smith, Delgutte, & Oxenham, 2002; 

Zeng et al., 2005). While these features are crucial for speech comprehension, they 

do not themselves signpost the linguistic units and structures that give rise to 

meaning. Spoken language comprehension therefore relies on listeners to go 

beyond the information given and infer the presence of linguistic structure based 

on their knowledge of language. As such, many theories posit that linguistic 

structures – ranging from syllables to words to syntactic structures – are 

constructed via an endogenous inference process (Bever & Poeppel, 2010; Brown, 

Tanenhaus, & Dilley, 2021; Friederici, 1995; Hagoort, 2013; Halle & Stevens, 1962; 

Marslen-Wilson & Tyler, 1980; Marslen-Wilson, 1987; Marslen-Wilson & Welsh, 

1978; Martin & Doumas, 2017; Martin & Doumas, 2019; Martin, 2016, 2020; 

Martin & Doumas, 2020; Meyer, Sun, & Martin, 2020; Phillips, 2003; Poeppel & 

Monahan, 2011). Recent studies have begun to investigate the neural activity that 

corresponds to the emergence of linguistic structure (Kaufeld et al., 2020; Keitel, 

Gross, & Kayser, 2018; Martin & Doumas, 2017; Meyer & Gumbert, 2018), in 

particular in terms of the temporal and spatial dynamics of brain rhythms.  

An influential study by Ding et al. (2016) found that the occurrence rate of 

linguistic structures (syllables, phrases and sentences) in speech can be reflected 

in neural activities at the corresponding frequencies. They consider this effect to be 

a neural representation of the construction of linguistic structures. In one 

experiment of their study, the speech stimuli were isochronous syllable sequences, 

in which syllables were aurally presented four times per second. The authors 

manipulated the relationship between the syllables so that every two syllables 

formed a phrase and every four syllables formed a sentence. This yielded rates of 

syllables, phrases, and sentences of 4 Hz (four syllables in one second), 2 Hz (two 

phrases in one second), and 1 Hz (one sentence per second), respectively. When 

participants who knew the language of the stimuli listened to the sequences, neural 

activities with the same frequencies as these hierarchical linguistic units were 

observed (4 Hz, 2 Hz and 1 Hz). However, in participants who did not know the 

language, the neural response only showed a peak at 4 Hz, which corresponded to 

the occurrence rate of syllables. It is reasonable to explain the phenomenon as 
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cortical tracking of linguistic structures by endogenous syntactic integration 

because the additional peaks in the neural responses at the occurrence rate of 

phrases (2 Hz) and sentences (1 Hz) in participants who knew the language could 

reflect processes that chunk syllables into higher-level linguistic structures. Similar 

findings have been shown in many experimental and computational studies (Ding 

et al., 2016; Kaufeld et al., 2020; Keitel, Gross, & Kayser, 2018; Martin & Doumas, 

2017; Martin & Doumas, 2019).  

However, online chunking clearly benefits from variation in transitional 

probability (TP) between linguistic units. Saffran, Aslin, and Newport (1996) found 

that eight-month-old infants could extract artificial words from fluent speech after 

a two-minute training. Specifically, the researchers constructed a continuous 

speech stream consisting of four three-syllable nonsense words, e.g., TuPiRo, 

repeated in a random order. After two minutes of exposure to the sequence, a 

discrimination task followed, in which the trained ‘words’ and new three-syllable 

‘words’ were played one by one to the infants. Using the infants’ listening time 

(indicated by gazes to the speaker) as an index, the researchers found that the 

infants listened longer to new words as compared to the trained words. The results 

implied that infants could discriminate between the two. Since no semantic or 

acoustic boundaries were available during the training session, and the only cue to 

extract the ‘words’ from the continuous syllable sequence was the transitional 

probability between syllables (TP within words was 1, TP between words was 1/3). 

The authors thus suggested that the infants used a computational mechanism 

based on the statistical properties of the stimuli (Saffran, Aslin, & Newport, 1996).  

A question raised by comparing the conclusions of these two studies is whether 

the cortical tracking in Ding et al. (2016) was driven by the syntactic integration of 

linguistic units, or by the TP between syllables in the speech stimuli. In this study, 

syntactic integration and TP are confounded because the construction of higher-

level structures, i.e., phrases and sentences, can be explained by both syntactic 

integration and TP. A speaker of the language of the stimuli is familiar both with 

the syntactic structure and the TP relationships between linguistic units. Neither 

source of information is available to a listener who is not familiar with the language. 

Separating the effects of syntactic integration from those of TP is important 

because the former is based on high-level language processing, involving syntactic 
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and/or semantic knowledge. In contrast, structuring by statistical information (TP) 

is a low-level perceptual process, which means that the chunking of low-level 

linguistic units (e.g., syllables) into high-level structures (e.g., phrases) reflects the 

statistical properties of the stimuli. Linguistic knowledge such as syntactic or 

semantic information is not necessarily involved in this process. In the present 

magnetoencephalography (MEG) project, we asked whether TP information 

contributed to linguistic structure extraction and whether would be reflected in the 

cortical tracking effect.  

To answer these questions, we designed a series of experiments using a syllable 

recognition task (for details see section 2.2, Methods) to investigate the role of TPs 

in the extraction of hierarchical linguistic structures. In Experiment 1, we asked 

Dutch participants listen to Dutch syllable sequences. As in Ding et al. (2016), we 

constructed three types of isochronous syllable sequences with the occurrence rate 

of 4 Hz (four syllables in one second). In type-one sequences, syllable pairs formed 

existing singular nouns; e.g., the syllable tij and syllable ger formed the Dutch 

singular noun tijger (‘tiger’). Therefore, the occurrence rate of words was 

controlled to be 2 Hz (two nouns per second). In type-two sequences, syllables were 

randomly presented with an occurrence rate of 4 Hz (four syllables per second), in 

which successive syllables did not form Dutch words. Type-three sequences were 

random syllable sequences played backward. The reason for conducting 

Experiment 1 was to obtain a baseline for our following experiments, and to make 

sure that the effect of cortical tracking of hierarchical linguistic structures could be 

replicated in Dutch. Therefore, we expected that the same effect would appear as 

in the study by Ding and colleagues (2016). Our hypothesis for Experiment 1 was 

that we would see a 2 Hz and 4 Hz peak at the neural response when participants 

listened to the type-one sequences, and only a 4 Hz peak when they listened to type-

two and type-three sequences.   

To examine the role of TP in the tracking effect, we conducted Experiment 

2, where Dutch participants listened to the same three types of syllable sequences 

as in Experiment 1, but in Mandarin Chinese, which they did not understand. We 

set the TPs to be 1/10 between every two consecutive syllables to serve as a cue 

indicating a grouped structure (two-syllable words) in the type-one sequence. The 

aim was to remove high-level, language-related cues, such as syntactic and 
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semantic information from the stimuli, and to assess whether a frequency response 

could be introduced to reflect the occurrence rate of words (2 Hz) using only the 

TPs. Based on the findings by Saffran, Aslin, and Newport (1996), we predicted that 

there would be two peaks in neural activities corresponding to the occurrence rates 

of words (2 Hz, two nouns per second) and syllables (4 Hz, four syllables per second) 

when participants listened to the type-one sequence. In contrast, there should be 

only a 4 Hz peak in the neural response for the type-two and type-three sequences 

because the TPs in these types were not controlled. As the Dutch participants did 

not understand Chinese, the effects could not reflect syntactic or semantic 

integration. Finding results that are consistent with these predictions would 

therefore show that TPs are a key component of the cortical tracking effect.  

In Ding et al. (2016), cortical activity was found to track linguistic structures 

at different levels, i.e. syllables (4 Hz), phrases (2 Hz) and sentences (1 Hz), 

simultaneously. To match the hierarchy of our stimuli with the structure of their 

syllable sequences, we conducted Experiment 3, in which we trained Dutch 

participants to learn four-syllable (one-second) novel compounds (i.e. compounds 

that do not exist in Dutch), such as one made up of the Dutch words meaning ‘tiger’ 

and ‘noise’: tij-ger-la-waai. Specifically, we aurally presented a syllable sequence 

in each trial with one, two or three such compounds while holding the TP between 

these four-syllable structures at 1/25 using a Markov chain (for details see Methods. 

By doing so, participants would learn to segment syllable sequences using the 

statistical cue because the TP between these compounds was controlled (1/25). 

They would not be able to use syntactic integration since these compounds that 

concatenate two singular nouns do not exist in Dutch (see section 2.4, Discussion), 

and furthermore were produced with list intonation, i.e., were not prosodically 

marked as units.  

After this training stage, Experiment 4 was conducted to assess the cortical 

tracking effect using the trained stimuli. Specifically, we constructed the same 

three types of sequence as in Experiments 1 and 2, which are noun sequences (type-

one), and random syllable sequences played forward (type-two) and backward 

(type-three). However, as the participants had been trained to extract novel 

compounds in Experiment 3, we expected that there would be peaks in neural 

activity to reflect the occurrence rates of syllables (4 Hz), words (2 Hz) and novel 
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compounds (1 Hz) for the type-one sequences. There should only be a 4 Hz peak in 

the type-two and type-three sequences to reflect the rhythm of syllables.  

One important factor still needs to be eliminated in order to say that the 

cortical tracking effect can be solely driven by statistical information. In 

Experiments 3 and 4, participants listened to their own language, and hence they 

could construct compounds using semantic information. For instance, the 

sequence tij-ger-la-waai was not an existing compound, but because it has 

components that are meaningful lexical units, participants could construct a 

semantic relationship between them, e.g., ‘the tiger is making noise’. To address 

this concern, we designed Experiments 5 and 6, which used the same 

procedures as Experiments 3 and 4, but the stimuli were in Mandarin Chinese. 

Now semantic and syntactic integration processes were ruled out because the 

participants did not understand Chinese. This meant that if we still found a 

frequency response corresponding to the rhythm of the trained compounds (1 Hz) 

in the type-one sequences, we would be able to say that the cortical tracking effect 

could be solely driven by TPs. Our hypothesis for Experiment 6 was that there 

would be frequency peaks in the brain to reflect the rates of syllables (4 Hz), words 

(2 Hz), and the trained compounds (1 Hz) for the type-one sequences. As before, 

for the type-two and type-three sequences, we expected only a 4 Hz peak to reflect 

the rhythm of syllables.  

2.2 Methods 

Participants 

Fourteen Dutch native speakers (8 females and 6 males), aged 20 to 35, 

participated in the study. All of them were undergraduate or graduate students and 

were right-handed. They reported no history of hearing impairment or 

neurological disorder. The experimental procedure was approved by the Ethics 

Committee of the Social Sciences Department at Radboud University. Written 

informed consent was obtained from each participant before the experiment, and 

they were paid for their participation.  

Acoustic manipulations 
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To create the Dutch materials, 20 bi-syllabic singular nouns were synthesized 

by the ReadSpeaker synthesizer (https://www.readspeaker.com/, the male voice, 

Guus), and then 40 syllables were extracted manually without missing any 

meaningful dynamics (Table 1).  

Using the same method, 20 nouns from Mandarin Chinese (which has no 

singular vs. plural distinction) were synthesized by ReadSpeaker (the male voice, 

Liang), following which 40 syllables were extracted (Table 2). 

In both languages, syllables were 153 to 302 ms (mean 230 ms) in duration. 

To normalize the stimuli, each syllable was first resampled to 44.1 kHz, then 

adjusted to 250 ms by truncation or zero padding evenly at both ends. Five percent 

of both ends of each syllable was ramped by a cosine wave. The root-mean-square 

value of each syllable was normalized to -16 dB.  

For all experiments, auditory stimuli were isochronous syllabic sequences with, 

and the length varied depending on the particular experiment. No existing 

compounds could be constructed from any two of the 20 nouns (two-syllable 

singular nouns).  
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Table 1. Dutch materials used in the experiments. The first and second columns 

represent the first and second syllables of the Dutch bi-syllabic singular nouns. The third 

and fourth columns show each full Dutch word and its translation in English, respectively.  

 

Dutch items    

The 1st syllables The 2nd syllables Words In English 

tij ger tijger tiger 

ta fel tafel table 

la waai lawaai noise 

var ken varken pig 

be zem bezem broom 

tar we tarwe wheat 

hal te halte station 

ba naan banaan banana 

ri vier rivier river 

wei de weide pasture 

gor dijn gordijn curtain 

ze nuw zenuw nerve 

sei zoen seizoen season 

sui ker suiker sugar 

bo ter boter butter 

li moen limoen lemon 

ko ning koning king 

ha mer hamer hammer 

le pel lepel spoon 

wor tel wortel carrot 
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Table 2. Chinese items used in the experiments. The first two columns represent 

the first and second syllables of the Chinese bi-syllabic words. The third and fourth 

columns show each Chinese word and its translation in English, respectively. Note that 

the content in the brackets are phonetic labels for the corresponding items.  

Acoustic analysis 

The Hilbert transform was first applied on the half-wave rectified speech 

signal to extract the temporal envelopes, and then the discrete Fourier transform 

of the down-sampled (200 Hz) temporal envelope was calculated to reflect the 

frequency characteristics of the stimuli. 

Experimental procedure 

Chinese items    

The 1st syllables The 2nd syllables Words In English 

怀 (huái)  表 (biǎo) 怀表 (huái biǎo) pocket watch 

键 (jiàn) 盘 (pán) 键盘 (jiàn pán) keyboard 

相 (xiāng) 机 (jī) 相机 (xiàng jī) camera 

电 (diàn) 视 (shì) 电视 (diàn shì) televison 

熨 (yùn) 斗 (dǒu) 熨斗 (yùn dǒu) iron 

衣 (yī) 柜 (guì) 衣柜 (yī guì) wardrobe 

冰 (bīng) 箱 (xiāng) 冰箱 (bīng xiāng) refrigerator 

吉 (jí) 他 (tā) 吉他 (jí tā) guitar 

沙 (shā) 发 (fā) 沙发 (shā fā) sofa 

帐 (zhàng) 篷 (péng) 帐篷 (zhàng péng) tent 

腰 (yāo) 带 (dài) 腰带 (yāo dài) belt 

牙 (yá) 膏 (gāo) 牙膏 (yá gāo) toothpaste 

钢 (gāng) 笔 (bǐ) 钢笔 (gāng bǐ) pen 

篮 (lán) 球 (qiú) 篮球 (lán qiú) basketball 

汽 (qì) 车 (chē) 汽车 (qì chē) car 

围 (wéi) 巾 (jīn) 围巾 (wéi jīn) scarf 

台 (tái) 灯 (dēng) 台灯 (tái dēng) table lamp 

钱 (qián) 包 (bāo) 钱包 (qián bāo) wallet 

耳 (ěr) 环 (huán) 耳环 (ěr huán) earring 

皮 (pí) 鞋 (xié) 皮鞋 (pí xié) leather shoe 
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The study consisted of six experiments (including two training experiments) using 

a syllable recognition paradigm. On each trial, participants first listened to an 

isochronous syllabic sequence, and after two or three seconds of silence, a syllable 

target would be presented. Their task was to indicate by pressing a button (using 

the right hand), whether or not the syllable target had appeared in the preceding 

sequence. The next trial started between 2000 and 2800 ms (random jitter) after 

participants gave their response.  

In order to prevent the participants from transposing the higher-level 

structures from the Dutch to the Chinese stimuli, the experiments using Chinese 

stimuli preceded those using Dutch. Thus, the order of the experiments was as 

follows: Experiment 2 (Dutch listen to Chinese), Experiment 1 (Dutch listen to 

Dutch), Experiment 5 (Dutch receive training on Chinese compounds), 

Experiment 6 (Dutch listen to trained Chinese stimuli), Experiment 3 (Dutch 

receive training on Dutch compounds), and Experiment 4 (Dutch listen to 

trained Dutch stimuli). 

Experiment 1. The Dutch participants listened to Dutch syllable sequences 

in this experiment. We first randomly selected 10 singular nouns (20 syllables) 

from a pool of 20 words. Then using these selected words, five on each set, to 

stochastically concatenate a set of 100 noun sequences (type-one sequences, four 

seconds long, including eight singular nouns or 16 syllables, with a TP between 

nouns of 1/10). Then by shuffling all the selected syllables, a set of 80 random 

syllable sequences was constructed. We then randomly selected forty sequences 

from these 80 (type-two sequences, 16 syllables). The remaining 40 sequences 

were played backward and used as the last type of stimuli (type-three sequences, 

16 syllables). All of these sequences were pseudo-randomly arranged in six blocks 

with 30 sequences in each block. During the syllable detection task, the silent gap 

between the sequence and the target syllable was three seconds. To balance the 

response, for each type of sequence, the syllable target of half of the trials was 

selected from the preceding syllable sequence, and the syllable target of the other 

half of the trials was selected from the unused 20 syllables. 

Experiment 2. The Dutch participants listened to Chinese syllable sequences. 

The same arrangement and three types of sequences were used as in Experiment 1, 

except that the stimuli were Chinese rather than Dutch.   
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Experiment 3. The Dutch participants were trained on Dutch novel 

compounds. In this experiment, we first randomly selected 10 words from the 20-

word pool. Then arranging five words on one set with the remaining words on the 

other set, the full combination (5*5) of these words generated 25 four-syllable 

novel compounds. Using a Markov chain, we generated a series of syllable 

sequences containing either one such compound (four syllables, one second long), 

or two (eight syllables, two seconds), or three (12 syllables, three seconds). On each 

trial of this training session, participants listened to one of the syllable sequences, 

then performed a syllable recognition task with a silent interval of two seconds 

between the syllable sequence and syllable target. Note that the TP between each 

structural level was controlled to serve as cues for participants to segment the 

syllable sequence. The TP between syllables in a word was 1, between words in a 

compound it was 1/5, and between compounds it was 1/25.  

Experiment 4. The Dutch participants listened to Dutch syllable sequences 

with the trained stimuli (the 10 singular nouns from Experiment 3). As in 

Experiments 1 and 2, we constructed three types of syllable sequences: noun 

sequences (type-one), and random syllable sequences played forward (type-two) 

and backward (type-three). Note that Experiment 4 was conducted 15 to 30 

minutes after Experiment 3.  

Experiment 5. The Dutch participants were trained on Chinese novel 

compounds. The same procedure and arrangement were used as in Experiment 3, 

except the stimuli were in Chinese rather than Dutch. This is because we wanted to 

eliminate high-level language processing, e.g. of grammar, syntax and semantics, 

from the structuring processes.  

Experiment 6. The same procedure was applied as for Experiment 4, apart 

from the fact that the trained items were from Experiment 5. In this experiment, 

all the effects we observed reflected sequence segmentation by statistical 

information (TP) because opportunities for high-level language processing, such as 

chunking according to syntactic, grammatical and semantic information, are 

removed by using a language that participants do not understand.  
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Localizer task. A localizer task was performed as well, in which a ‘beep’ tone 

(1 kHz, 50 ms in duration) was played 100 times (jitter 2 to 3 seconds) to localize 

the auditory cortex by using the canonical M100 auditory response. 

Scalp surface scanning. Each subject's head shape was digitized using 

a Polhemus Fastrak three-dimensional digitizer (Polhemus, VT, USA). 

Anatomical MRI scanning. Anatomical magnetic resonance images 

(MRIs) of each participant’s brain were acquired using a 1.5 T Siemens Magnetom 

Sonata system.  

Neural recordings 

Neural responses were recorded using a 275-channel axial gradiometer MEG 

system (CTF, Canada), with a sampling rate of 1.2 kHz, in a magnetically shielded 

room. An infrared eye tracker (EyeLink, Canada) was used to monitor eye activity. 

In addition, online head position was recorded with three fiducial sensors 

referencing three anatomical landmarks (Nasion, left and right ear canals).  

Speech stimuli were presented using MATLAB 2019a (The MathWorks, Natick, 

MA) with Psychtoolbox-3 (Brainard, 1997). Auditory stimuli were played at 65 dB 

SPL and delivered through air-tube earplugs (Etymotic ER-3C, Etymotic Research, 

Inc.). Event markers were sent via serial port for tagging the onset of the events 

under investigation (i.e., speech onset, task index onset, etc.). 

MEG data preprocessing 

MEG data was preprocessed via MATLAB using FieldTrip (Oostenveld et al., 

2011), EEGLAB (Delorme & Makeig, 2004), and customized scripts. We first down-

sampled the data to 200 Hz, and then high-pass filtered it at 0.5 Hz (finite impulse 

response filter, FIR; zero-phase lag), and cleaned it using the time-sliding PCA 

(Chang et al., 2018; Kothe & Jung, 2016).  

Following the above steps, we extracted epochs of two seconds preceding and 

10 seconds after the auditory stimulus onset. We eliminated bad trials and artifacts 

in the following two steps. First, we used the short-time Fourier transform to 

calculate the power spectrum in every one-second window, in which we extracted 

a value that was calculated by the power summation between 15 and 50 Hz 

(instantaneous muscle artifacts). Then all the extracted values, one value per 
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window, formed a distribution for each sensor. From this distribution, we 

transformed all the extracted values into z-scores. The epochs with values outside 

the standard deviation range of plus or minus three were deleted. Second, ICA was 

conducted on the trial-rejected data for the elimination of heartbeat and eye-

related artifacts and sustained muscular activities.  

MEG data analysis 

Frequency tagging analysis. To eliminate the transient evoked neural 

(e.g. M100) response, each trial was initially epoched from two to four seconds (the 

neural response that corresponds to the first four syllables was removed) after the 

speech signal onset. Then a ramping taper (a cosine wave), smoothing 5% of each 

end, was applied to attenuate frequency leakage. We applied a bootstrapping 

approach to balance the number of trials across different conditions. More 

concretely, we generated 50 trials that each lasted 12 seconds by randomly 

concatenating four extracted epochs (of three seconds each) for every condition. 

The trial manipulations resulted in a frequency resolution of 1/12 Hz (~ 0.08 Hz). 

To optimize the frequency response, we performed the following three steps. First, 

we conducted a narrow band filtering via Gaussian frequency where the full-width-

half-maximum (FWHM) value equaled 0.1 Hz for each frequency bin. Then two 

covariance matrices, one for the filtered data and the other for the original data, 

were calculated for constructing a spatial filter using generalized eigen-

decomposition (GED). The spatial filter was defined as the generalized eigenvector 

corresponding to the biggest eigenvalue. Finally, after filtering the data, the 

discrete Fourier transform was applied to extract the specific frequency response. 

The harmonics of the fundamental frequency (1/3 Hz), which are introduced by the 

epochs’ concatenation, were regressed out by minus the average amplitude of its 

previous and post harmonic bins.  

Statistical analysis 

For spectral peaks of interest (1 Hz, 2 Hz and 4 Hz), a one-tailed paired sample 

t-test with the Bonferroni correction was conducted to test whether the peak 

activity at one frequency bin was significantly higher than the average of the 

neighboring four bins around it (two bins on each side).  
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2.3 Results 

The cortical tracking effect occurs when Dutch participants listen to 

Dutch hierarchical syllable sequences 

Experiment 1 served as an experimental baseline, in which we asked Dutch 

participants to listen to three types of Dutch syllable sequences (see Figure 1a). 

For the noun sequences (type-one), Dutch bi-syllabic words occurred at the rate of 

two times per second (2 Hz), while the syllables occurred four times per second (4 

Hz). As expected, the neural activity showed peaks corresponding to both words (2 

Hz, t (13) = 10.13, p<7.72e-8, Bonferroni-corrected) and syllables (4 Hz, t (13) = 

5.12, p<8.62e-5, Bonferroni-corrected). In contrast, the neural activity only 

showed a peak at the syllable rate for the random syllable sequences played forward 

(4 Hz, t (13) = 6.44, p<1.09e-5, Bonferroni-corrected) and backward (4 Hz, t (13) 

= 5.88, p<2.68e-5, Bonferroni-corrected). The results are shown in Figure 1b, in 

which the red line represents the frequency response of participants listening to 

the noun sequences (type-one), and the dark blue and light blue lines represent 

participants listening to the random syllable sequences played forward (type-two) 

and backward (type-three), respectively. The shaded areas represent two standard 

errors of the mean. The topographical distributions show the absolute values of the 

GED weights (for details see Methods) for the frequencies of interest (2 Hz and 4 

Hz), in which the size of the red circles indicates the weight of the sensors. Note 

that only the weight distribution of the type-one sequence is shown here, as in Ding 

et al. (2016).  

Our analysis supports the existence of cortical tracking of hierarchical 

linguistic structures in Dutch. However, the underlying mechanism can be 

explained by different accounts. Specifically, the effect could be the result of 

grammatical chunking since it might be a reflection of syllable grouping using high-

level linguistic knowledge (Ding et al., 2016). Alternatively, it could arise from 

syllable sequence segmentation using statistical information (Saffran, Aslin, & 

Newport, 1996) because participants had heard the grouped syllables (two-syllable 

nouns) repeatedly in their daily life, which means the TP relationships (the TP is 

higher between syllables within a word than across word boundaries) had been 

trained. From the results of this experiment, we are not able to determine whether 

speech segmentation can be performed using only statistical information, but the 
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occurrence of the cortical tracking effect in Dutch indicates that our experimental 

manipulations were effective.  

Figure 1. The replication of the cortical tracking effect in Dutch. (a) The 

structure of three types of syllable sequences, where the upper, middle and lower panels 

represent the structure of type-one, type-two and type-three sequences, respectively. In 

the type-one sequence, except for syllables which occurred at the rate of 4 Hz, Dutch 

singular nouns occurred at the rate of 2 Hz. In the type-two and type-three sequences, 

syllables occurred at the rate of 4 Hz, and no higher-level structures could be constructed 

either linguistically or statistically. (b) The neural response spectrum for each type of 

sequence, in which the 2 Hz peak was significant for only type-one sequences, whereas 

the 4 Hz peak was significant for all three types. The shaded areas for each line represent 

two SEM. The topographical distributions represent the GED weights for the peaks of 

interest.  

 

The cortical tracking effect can be introduced by statistically defined 

structures 

In Experiment 2, we assessed the account of sequence segmentation by 

statistical information (Saffran, Aslin, & Newport, 1996). More concretely, we 

constructed the same three types of syllable sequences as in Experiment 1, but the 

stimuli were in Mandarin Chinese rather than Dutch (see Figure 2a). Using the 

same frequency domain analysis as in Experiment 1, we found that there were two 

peaks corresponding to the occurrence rates of words (2 Hz, t (13) = 5.35, p < 6.5e-
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5, Bonferroni-corrected) and syllables (4 Hz, t (13) = 8.90, p<3.39e-7, Bonferroni-

corrected) for the type-one sequences, and only one peak of activity indicating the 

rate of syllables for the type-two (4 Hz, t (13) = 8.12, p<9.42e-7, Bonferroni-

corrected) and type-three sequences (4 Hz, t (13) = 5.98, p<2.28e-5, Bonferroni-

corrected). The results are shown in Figure 2b, in which the red line represents 

the frequency response corresponding to participants listening to the noun 

sequences (type-one), while the dark blue and light blue lines represent 

participants listening to the random syllable sequences played forward (type-two) 

and backward (type-three), respectively. The shaded area covers two SEM. The 

topographical distributions represent the GED weights of the frequencies of 

interest (2 and 4 Hz for the type-one sequences), where the bigger the red circle, 

the higher the weight of that sensor.  

The results are interesting because the peak response at 2 Hz that corresponds 

to Dutch participants listening to Chinese type-one sequences (noun sequences) 

has to reflect structural chunking (of bi-syllabic words) via statistical information 

(TP). The reason is that high-level language processing, such as grammatical, 

syntactic or semantic processing, is not available for Dutch participants who do not 

know Chinese. Consequently, the only cue to indicate the sequence structure was 

the TP information: the TP between words was 1/10 and the TP between syllables 

in a word was 1. Therefore, our results suggest that the cortical tracking effect can 

be introduced solely by the TP information even when lexical, grammatical and 

syntactic knowledge is not available.  
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Figure 2. The cortical tracking effect occurred when Dutch participants 

listened to Chinese syllable sequences. (a) The structure of three types of syllable 

sequences, where the upper, middle and lower panels represent the structure of type-one, 

type-two and type-three sequences, respectively. In the type-one sequence, except for 

syllables which occurred at the rate of 4 Hz, Chinese singular nouns occurred at the rate 

of 2 Hz. In the type-two and type-three sequences, syllables occurred at the rate of 4 Hz, 

and no higher-level structures could be constructed either linguistically or statistically.  

(b) The neural response spectrum for each type of sequence, in which the 2 Hz peak was 

significant for only type-one sequences, whereas the 4 Hz peak was significant for all 

three types. The shaded areas for each line represent two SEM. The topographical 

distributions represent the GED weights for the peaks of interest.  

 

The frequency response simultaneously tracks the rhythm of TP-

defined structures and lower-level structures 

The results of Experiment 2 suggest that the cortical tracking effect could be 

introduced solely by statistical information at one TP-manipulated rate (2 Hz). 

However, in the original study (Ding et al., 2016), frequency tagging was found in 

the simultaneous tracking of different levels of linguistic structure, i.e., syllables (4 

Hz), phrases (2 Hz), and sentences (1 Hz). To match the hierarchy of our syllable 

sequences with the structure of the stimuli in the original study, we first trained 

Dutch participants on TP-organized, four-syllable (one-second) structures such as 

tij-ger-la-waai (Experiment 3). Then, we recorded the neural response when 
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participants listened to the syllable sequences that were constructed using the 

trained items (Experiment 4).  

In Experiment 4, the three types of syllable sequence and manipulations 

from Experiments 1 and 2 were used, but one additional TP cue which reflects the 

trained four-syllable compounds was fitted into the type-one sequences. As 

expected, we found that the neural activity showed three peaks that corresponded 

to the occurrence rates of syllables (4 Hz, t (13) = 5.27, p<7.55e-5, Bonferroni-

corrected), words (2 Hz, t (13) = 13.00, p<3.97e-9, Bonferroni-corrected), and the 

novel compounds (1 Hz, t (13) = 6.02, p<2.12e-5, Bonferroni-corrected) for the 

type-one sequences. However, there was only a peak at 4 Hz corresponding to the 

rate of syllables for the type-two sequences (4 Hz, t (13) = 6.19, p<1.63e-5, 

Bonferroni-corrected) and type-three sequences (4 Hz, t (13) = 4.03, p<7.14e-4, 

Bonferroni-corrected). Figure 3a shows the statistical framework for 

constructing the 25 Dutch novel compounds and the probabilistic relationship 

between them, in which the TPs between syllables in a word, between words in a 

compound, and between compounds were 1, 1/5 and 1/25, respectively. Figure 3b 

shows the sample syllable sequences that were used during the training stage 

(Experiment 3), which were constructed using a Markov chain to make sure the 

statistical relationships between units hold constant. Each style of red outline 

around the syllable units (i.e. solid, dashed and dotted) represents a statistically 

defined novel compound. Figure 3c depicts the stimuli’s structure for each type 

of sequence. The three types were the same as in Experiments 1 and 2, except that 

this time the syllables had been trained. The results are shown in Figure 3d, in 

which the red, dark blue line and light blue line represent participants listening to 

the type-one, type-two and type-three sequences, respectively. The shaded area 

covers two SEM. The topographical distributions indicate the GED weights for the 

frequency peaks of interest (i.e., 1 Hz, 2 Hz and 4 Hz for the type-one sequences), 

in which the larger the red circle, the higher the weight of that sensor.  
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Figure 3. Neural activities track trained novel compounds together with the 

units that comprise them in Dutch. (a) The statistical framework for constructing 

syllable sequences in Dutch, in which the TPs between syllables in a word, between words 

in a compound, and between compounds were 1, 1/5 and 1/25, respectively. (b) Sample 

sequences that were presented during the training experiment. The sequences were 

generated using a Markov chain to stabilize the statistical relationships between units at 

different levels. To make sure participants could extract the statistically defined 

compounds, sequences were manipulated so that they were one, two or three seconds in 

length. (c) The sequence structure used in Experiment 4, where the upper, middle and 

lower panels represent the structure of type-one, type-two and type-three sequences, 

respectively. (d) The neural response spectrum for each type of sequence, in which the 1 

and 2 Hz peaks were significant for only type-one sequences, whereas the 4 Hz peak was 

significant for all three types. The topographical distributions represent the GED weights 

for the peaks of interest.  
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The results in this section are informative because, first, we constructed a type 

of sequences with structures at three different levels and found that the brain could 

track these hierarchies at the same time. This suggests that the brain can handle 

the boundaries at different levels simultaneously. Secondly and most importantly, 

the highest-level structures in our stimuli (one-second, four-syllable novel 

compounds) were tracked not in Experiment 1, but after training. This implies that 

these compounds were not linguistically marked as units as per the accounts based 

on syntactic integration. Therefore, the frequency tagging to the highest level 

cannot be explained by syntactic integration; instead, it can be explained by 

sequence segmentation using statistical information. Our manipulation of the 

highest-level structures forms a contrast between the accounts of syntactic 

integration and those of sequence segmentation by TP, and supports the notion 

that the cortical tracking effect can be manipulated using statistical information. 

The frequency-tagging effect occurs when high-level linguistic 

information is removed from the stimuli 

In Experiments 3 and 4, we showed that the frequency-tagging effect could be 

introduced by the TP-defined compounds. However, during these experiments, the 

Dutch participants were listening to the stimuli in their own language, which might 

raise concerns about the semantic combination of two singular nouns. It is possible 

that the brain tracks semantically associated structures that are formed by two 

singular nouns, e.g., tij-ger-la-waai (made up of the Dutch words meaning ‘tiger’ 

and ‘noise’), although the semantic content might not be consistent across 

participants.   

To address this concern, we conducted Experiments 5 and 6, in which the 

same procedures as in Experiment 3 and 4 were used, except that all stimuli were 

in Chinese, which the participants did not know. By doing so, we believe that the 

high-level, language-related cues, such as grammatical, syntactic and semantic 

information, are removed from participants’ processing of the stimuli.  

The results confirm our predictions: we found three peaks in the neural 

response to reflect the occurrence rates of syllables (4 Hz, t (13) = 9.39, p<1.83e-7, 

Bonferroni-corrected), words (2 Hz, t (13) = 3.02, p<4.9e-3, Bonferroni-corrected), 

and the four-syllable novel compounds (1 Hz, t (13) = 6.64, p<8.05e-6, Bonferroni-
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corrected) for the type-one sequences. As expected, there was only a 4 Hz peak to 

reflect the rate of syllables for the type-two sequences (4 Hz, t (13) = 10.58, 

p<4.63e-8, Bonferroni-corrected) and the type-three sequences (4 Hz, t (13) = 7.16, 

p<3.67e-6, Bonferroni-corrected). Figure 4a shows the statistical framework for 

constructing the 25 Chinese novel compounds and the probabilistic relationship 

between compounds, in which the TPs between syllables in a word, between words 

in a compound, and between compounds were 1, 1/5 and 1/25, respectively. 

Figure 4b shows the sample syllable sequences that were used during the training 

stage (Experiment 3), which were constructed using a Markov chain to make sure 

the statistical relationships between units at different levels hold constant. Each 

style of red outline around the syllable units (i.e. solid, dashed and dotted) 

represents a statistically defined novel compound. Figure 4c depicts the stimuli’s 

structure for each type of sequence. The three types were the same as in 

Experiments 1 and 2, except that this time the syllables had been trained. The 

results are shown in Figure 4d. The frequency responses corresponding to the 

type-one, type-two and type-three sequences are indicated by the red, dark blue 

and light blue lines, respectively. The shaded area covers two SEM. The 

topographical distributions represent the GED weights for the frequency peaks of 

interest, where the bigger the red circle, the higher the weight of the sensor.  

These results suggest that the brain can simultaneously track different levels 

of TP-defined structures, i.e., syllables (4 Hz), words (2 Hz), and novel compounds 

(1 Hz). In addition, our results are at odds with the account postulating that the 

cortical tracking of hierarchical linguistic structures is purely a reflection of 

grammatical chunking or syntactic integration (Ding et al., 2016). Instead, by 

connecting the TP with the cortical tracking effect and removing the high-level 

language information, we find that the frequency activities tagging the occurrence 

rate of hierarchical structures can be solely driven by statistical information (TP).  
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Figure 4. Neural activities of Dutch participants track statistically defined 

units in Chinese. (a) The statistical framework for constructing syllable sequences in 

Chinese, in which the TPs between syllables in a word, between words in a compound, 

and between compounds were 1, 1/5 and 1/25, respectively. (b) Sample sequences that 

were presented in each trial during the training experiment. The sequences were 

generated using a Markov chain to stabilize the statistical relationships between 

different levels’ units. To make sure participants could extract the statistically defined 

compounds, sequences were manipulated to be one, two or three seconds in length. (c) 

The sequence structure used in Experiment 6, where the upper, middle and lower panels 

represent the structure of type-one, type-two and type-three sequences, respectively. (d) 

The neural response spectrum for each type of sequence, in which the 1 Hz and 2 Hz peaks 

were significant for only type-one sequences, whereas the 4 Hz peak was significant for 

all three types. The topographical distributions represent the GED weights for the peaks 

of interest.  
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2.4 Discussion  

This chapter has reported the results of a series of MEG experiments 

investigating the role of statistical information on speech segmentation. By 

connecting the effect of cortical tracking to hierarchical linguistic structures with a 

statistical learning approach, we found that the frequency response in the brain 

that tags different levels of structure can be introduced solely by statistical cues 

(TP). Our results support the argument that speech segmentation (indexed by 

extracting structures) can be conducted without using high-level language 

knowledge such as grammatical, syntactic and semantic information.  

In Experiment 1, we replicated the cortical tracking effect, that was found by 

Ding et al. (2016), in Dutch. The results suggest that this effect might be a language 

independent phenomenon; at least, it can be introduced when Dutch participants 

listen to their own language. We found the occurrence rate of words (2 Hz) and 

syllables (4 Hz) to be reflected in the brain by using the same experimental 

paradigm as Ding et al. (2016). However, in Experiment 1, language-related cues 

such as grammatical, syntactic and semantic knowledge coexisted with the 

statistical information. Therefore, the observed effect, i.e. the neural activity 

tracking the rhythm of hierarchical linguistic structures, could be explained by 

either of these two types of cues.  

To remove the impact of linguistic knowledge, we constructed the same three 

types of syllable sequences as in Experiment 1, but in Mandarin Chinese which the 

participants did not know. Using the same experimental procedure and analysis 

methods, we found that frequency activity in the brain still tracked the occurrence 

rates of words (2 Hz) and syllables (4 Hz). The results can only be explained by 

structure chunking using statistical cues, as language-related information was not 

available during listening.   

In the study by Ding et al. (2016), the frequency response was found to track  

multiple levels of linguistic structure, namely syllables (4 Hz, one-syllable 

structure), phrases (2 Hz, two-syllable structure), and sentences (1 Hz, four-

syllable structure), simultaneously. However, in Experiments 1 and 2, we only 

showed that the brain tracked units at two levels (syllables and words). To match 

the gap between our experiments (two levels of tracking) with the original study 
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(three levels of tracking) and test if we could introduce the cortical tracking effect 

that tracks multiple levels’ units, we first need a type of structure that is built on 

top of words. More importantly, if we want to introduce an additional peak to 

reflect structure chunking by statistical information, this type of structure needs to 

be statistically but not syntactically defined. In addition, to satisfy the rule of thumb, 

which is using the same stimuli to introduce different neural responses, the 

characteristics of the stimuli in the new experiment should be the same as the old 

one (Experiment 1, Dutch participants listen to Dutch). To satisfy these criteria, we 

constructed four-syllable (one-second-long) novel compounds using singular 

nouns from Experiment 1, and then trained participants to learn these compounds 

in Markov chain manipulated sequences (Experiment 3, for details see section 2.2, 

Methods). After this learning took place, we conducted Experiment 4, in which the 

same three types of sequences, namely the noun sequences (type-one) and random 

syllable sequences played forward (type-two) and backward (type-three), were 

constructed using the trained items (10 bi-syllabic nouns in Experiment 3). By 

doing so, we found that there were three peaks in the brain’s frequency response to 

reflect the occurrence rates of syllables (4 Hz), words (2 Hz), and novel compounds 

(1 Hz) when Dutch participants listened to Dutch noun sequences (type-one 

sequences). The results are quite interesting. First of all, we found that the 

occurrence rate of different levels of structure were reflected in the neural response, 

which indicates that the brain can handle the boundaries from different levels’ 

structures simultaneously. Secondly, the additional peak corresponding to the 

rhythm of novel compounds (1 Hz) reflected statistical chunking (and could reflect 

semantic association) because this 1 Hz peak did not occur in Experiment 1, in 

which the same noun sequences only introduced frequency responses 

corresponding to the rates of words (2 Hz) and syllables (4 Hz). For the same 

reason, we argue that this additional 1 Hz peak was not a reflection of syntactic 

integration, because if the singular nouns can be chunked into a higher-level 

structure syntactically, such as compounds, there should be a 1 Hz neural activity 

to reflect this process in Experiment 1. Lastly, by comparing Experiment 1 and 

Experiment 4, we can say that the cortical tracking effect reflects an endogenous 

inference process that sensitive to statistical information as the same stimuli can 

introduce different neural responses, i.e., two peaks (2 and 4 Hz) in Experiment 1 

and three peaks (1, 2 and 4 Hz) in Experiment 4.  
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However, in Experiments 3 and 4, Dutch participants listened to their own 

language, which means we cannot construct a type of purely TP-defined structure, 

as the semantic association has always existed. For instance, tij-ger-la-waai is not 

a compound in Dutch, but participants could semantically associate them together 

(even though the semantic content might not be consistent across participants). 

Therefore, one might hold concerns that the additional 1 Hz response could be a 

reflection of semantic association. To address these concerns, we conducted 

Experiments 5 and 6, in which the same experimental procedure and parameters 

as Experiments 3 and 4 were used, but with the stimuli in a language unknown to 

the participants (Mandarin Chinese). This allowed us to remove all higher-level 

language related cues that lead to structure chunking from the processing of the 

syllable sequence. As expected, we still identified three peaks corresponding to the 

rhythm of syllables (4 Hz), words (2 Hz), and novel compounds (1 Hz) when 

participants listened to the Chinese noun sequences. In addition to the conclusions 

drawn from Experiments 3 and 4, the results at this stage could be evidence that 

the cortical activity tracking multiple levels’ structures in speech may be introduced 

solely by statistical information (TP), which is at odds with the account that the 

effect is purely a reflection of syntactic integration.  

In sum, across all the results explored in this chapter, we showed that speech 

segmentation can be performed solely using statistical information. More 

importantly, this inference segmentation process using statistical information 

could be reflected by the cortical tracking effect which was originally considered as 

a pure reflection of syntactic integration or grammatical chunking. Demonstrating 

that the cortical tracking effect can be driven by statistical information alone is 

important. One reason is that this finding helps to establish how speech 

segmentation can be performed prior to acquiring high-level language knowledge. 

From this perspective, our results are in accordance with those of Saffran, Aslin, 

and Newport (1996) suggesting that speech segmentation using statistical 

information could be an initial inference mechanism in language acquisition. In 

addition, we showed that the cortical response which simultaneously tracks the TP-

defined boundaries could be the neural representation of this endogenous process. 

Furthermore, in contrast to the account of grammatical chunking or syntactic 

integration, our experiments provide evidence that the cortical tracking effect does 
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not necessarily constitute a pure reflection of the generation of hierarchical 

structures; instead, the fact that the effect can be introduced without the 

involvement of high-level linguistic knowledge suggests it might be a generalized 

perceptual process. It is undeniable that higher-level linguistic knowledge is 

helpful for speech segmentation, and that successful speech comprehension needs 

grammatical and syntactic information. However, the neural representation of 

higher-level linguistic information, e.g., syntactic structure, is not necessarily the 

only information reflected in the cortical tracking effect.  

 

 



 

  

3｜ Generalization of the cortical tracking effect 

based on statistical inference 

Abstract 

In Chapter 2, we showed that speech segmentation could be performed via 

statistical inference without understanding the speech stimuli, and the endogenous 

inference process was robustly reflected by the cortical activity tracking the rhythm 

of multiple layers of units. However, all six magnetoencephalography (MEG) 

experiments in Chapter 2 were conducted with Dutch participants, and it is 

possible that all the effects we reported were driven by participants’ specific 

linguistic knowledge (e.g., the Dutch participants had Dutch linguistic knowledge). 

To test whether the cortical tracking effect driven by statistical information could 

be generalized to different types of language users, and especially to see if the 

cortical response tracking the rhythm of hierarchical units reflects a general 

perceptual processing, we conducted the same sets of experiments with Chinese 

participants. The findings, which are explored in this chapter, were that linguistic 

knowledge itself did not affect the statistical inference process. In other words, each 

experiment discussed in this chapter obtained the same pattern of results as its 

counterpart in the last chapter. Our results support the idea that the cortical 

tracking effect can be solely driven by statistical information and is independent of 

the linguistic knowledge that participants have. 
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3.1 Introduction 

In Chapter 2, using six MEG experiments with Dutch native speakers, we 

showed that statistical information (i.e., transitional probability) plays an 

important role in speech segmentation, and the extraction of units via statistical 

inference can be reflected by the cortical tracking effect. The results in Chapter 2 

revealed that neural oscillations are robust indices that varied according to the 

rhythm of the statistically defined units. Based on these findings, we argue that the 

cortical tracking effect is not a pure reflection of linguistic units’ extraction via 

grammatical chunking or syntactic integration; rather, it also reflects an 

endogenous inference that can be evoked solely by statistical information. However, 

we have only demonstrated this in the case of Dutch native speakers, which means 

the conclusions are only applied to Dutch speakers. A straightforward question is 

whether the statistical cue-based segmentation process would be represented 

differently in the brain when a different type of speaker, i.e. Chinese native 

speakers, perform the same sets of experiments. The concern is important for two 

reasons. First, in Chapter 2, the conclusion was drawn by removing the availability 

of high-level linguistic information (i.e., contrasting Dutch participants listening to 

Dutch speech stimuli with Dutch participants listening to Chinese syllable 

sequences), but whether the language knowledge itself that participants had 

(Dutch vs. Chinese) would affect the cortical tracking effect is not known. It is 

possible that all the effects we presented in Chapter 2 were driven by participants’ 

specific linguistic knowledge of Dutch. Second, referencing the previous studies on 

speech segmentation via statistical inference (Henin et al., 2021; Saffran, Aslin, & 

Newport, 1996) and the results in Chapter 2, we hypothesized that the 

phenomenon of neural activity tracking the rhythm of linguistic structures could 

reflect a generalized perceptual processing (statistical inference). If this is the case, 

then the effect should be independent of participants’ linguistic knowledge, which 

means we would get the same pattern of results when experiments are conducted 

with users of a different language (i.e. Chinese). In contrast, if our hypothesis was 

not supported, the critical question would be how the statistical inference process 

is represented in the brain when users of a different language are doing the 

experiments. In short, the experiment reported in Chapter 2 served to assess 

whether the cortical tracking effect could be introduced after removing the 

availability of high-level linguistic knowledge. To draw a full picture, the present 
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chapter discusses six MEG experiments with Chinese native speakers designed to 

check the weight of participants’ linguistic knowledge in the frequency-tagging 

effect and ascertain whether the endogenous statistical inference has a consistent 

neural representation across different types of language users. 

Specifically, in Experiment 1, we asked Chinese participants to listen to 

Chinese syllable sequences. The same three types of syllable sequences as in 

Chapter 2 were constructed, i.e., noun sequences (type-one) and random syllable 

sequences played forward (type-two) and backward (type-three). The reason for 

conducting Experiment 1 was the same as for its counterpart in Chapter 2: to 

obtain an experimental baseline and make sure that the manipulations are effective 

enough to introduce the cortical tracking effect in Chinese. Therefore, we expected 

that we would see a 2 Hz and 4 Hz peak at the neural response when participants 

listened to the noun sequences, and only a 4 Hz peak when they listened to type-

two and type-three sequences.   

In Experiment 2, the Chinese participants listened to Dutch syllable 

sequences, in which the same three types of sequences as in Experiment 1 were 

used. We set the TP (at 1/10 between two-syllable nouns) to serve as a statistical 

cue to indicate grouped structures in the type-one sequence (for details, see section 

3.2, Methods). The aim was the same as its counterpart in Chapter 2 (Experiment 

2), which was to remove the availability of high-level language-related information. 

In addition, by involving users of a different language, we wanted to check whether 

the particular linguistic knowledge itself that participants had would affect the 

inference process. Based on the findings of Saffran, Aslin, and Newport (1996) and 

the results of the corresponding experiment in Chapter 2, we predicted that we 

would get the same pattern of results, i.e. two peaks in the brain to reflect the 

rhythm of words (2 Hz) and syllables (4 Hz) when Chinese participants listened to 

Dutch type-one sequences. In contrast, there would be only a 4 Hz peak in the brain 

for the remaining two control conditions.  

Experiments 3 and 4 were conducted in order to match the hierarchy of 

our syllable sequences with the structure of stimuli in the original study (Ding et 

al., 2016) and check whether multiple levels of units can be handled by the brain 

simultaneously when Chinese participants listen to Chinese speech stimuli. These 

experiments were expected to give us the data necessary to compare the neural 
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representation of statistical inference between the two different types of language 

users (Dutch speakers vs. Chinese speakers). In short, we first trained the Chinese 

participants in Experiment 3 with the same procedures as its counterpart in 

Chapter 2 to learn four-syllable, one-second novel compounds (i.e., compounds 

that do not exist in Chinese), such as jí-tā-bīng-xiāng (made up of words meaning 

‘guitar’ and ‘refrigerator’). Then in Experiment 4, using the trained stimuli we 

assessed the cortical tracking effect after training. Like before, three types of 

sequences were constructed, namely, the noun sequences (type-one) and random 

syllable sequences played forward (type-two) and backward (type-three). As 

participants had learned to extract the novel compounds in Experiment 3, the 

statistical information indicating the trained novel compounds was fitted into the 

type-one sequences in Experiment 4. Therefore, we expected that there would be 

peaks in neural activity to reflect the occurrence rate of syllables (4 Hz), words (2 

Hz), and the novel compounds (1 Hz) for the type-one sequence. There should only 

be a 4 Hz peak in the type-two and type-three sequences to reflect the rhythm of 

syllables.  

To address the concern about semantic association (for details see Chapter 2, 

section 2.4), we performed Experiments 5 and 6, in which the same procedure 

as in Experiments 3 and 4 was used, but the stimuli were in Dutch. By doing so, we 

were able to rule out semantic and syntactic integration processes, as the 

participants did not understand Dutch. Furthermore, the experiments were 

conducted to draw a comparison between how the two types of language speakers 

(Dutch speakers in Chapter 2 vs. Chinese speakers in Chapter 3) chunk units from 

speech input in an unknown language. If we still get a frequency response 

corresponding to the rhythm of the trained compounds (1 Hz), we would say that 

the cortical tracking effect could be solely driven by statistical information (i.e., the 

TP) and any language-specific knowledge that the participants had is an unrelated 

factor. Our hypothesis for Experiment 6 was that there would be frequency peaks 

in the brain to reflect the rate of syllables (4 Hz), words (2 Hz), and the trained 

compounds (1 Hz) for the type-one sequences. As before, for the type-two and type-

three sequences, we expected only a 4 Hz peak to reflect the rhythm of syllables.  
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3.2 Methods 

Participants 

Fourteen Chinese native speakers (12 females and 2 males), aged 20 to 35, 

participated in all six experiments. All of them were undergraduate or graduate 

students and were right-handed. They reported no history of hearing impairment 

or neurological disorder. The experimental procedure was approved by the Ethics 

Committee of the Social Sciences Department at Radboud University. Written 

informed consent was obtained from each participant before the experiment, and 

they were paid for their participation.  

Acoustic manipulations 

As noted in Chapter 2, to create the original Dutch materials, 20 Dutch bi-

syllabic singular nouns were synthesized by the ReadSpeaker synthesizer 

(https://www.readspeaker.com/, the male voice, Guus), and then 40 syllables were 

extracted manually without missing any meaningful dynamics (see Table 1 in 

Chapter 2). Using the same method that we used to construct the Dutch materials, 

20 Mandarin Chinese nouns (not marked for number, as there is no lexical 

distinction between singular and plural in Chinese) were synthesized by 

ReadSpeaker (the male voice, Liang), following which 40 syllables were extracted 

(see Table 2 in Chapter 2).  

In both languages, the syllables were 153 to 302 ms (mean 230 ms) in duration. 

To normalize the stimuli, each syllable was first resampled to 44.1 kHz, and then 

adjusted to 250 ms by truncation or zero padding evenly at both ends. Five percent 

of both ends of each syllable was ramped by a cosine wave. The root-mean-square 

value of each syllable was normalized to -16 dB.  

For all experiments, the auditory stimuli were isochronous syllabic sequences, 

and the length varied depending on the particular experiment. No existing 

compounds could be constructed from any two of the 20 nouns (two-syllable 

nouns).  

Acoustic analysis 

The Hilbert transform was first applied on the half-wave rectified speech 

signal to extract the temporal envelopes, and then the discrete Fourier transform 
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of the down-sampled (200 Hz) temporal envelope was calculated to reflect the 

frequency characteristics of the stimuli. 

Experimental procedure 

The experimental procedure is the same as in Chapter 2. The study consisted 

of six experiments (including two training experiments) using a syllable 

recognition paradigm. On each trial, participants first listened to an isochronous 

syllabic sequence, and after two or three seconds of silence, a syllable target would 

be presented. Their task was to indicate by pressing a button (using the right hand), 

whether or not the syllable target had appeared in the preceding sequence. The 

next trial started between 2000 and 2800 ms (random jitter) after participants 

gave their response.  

In order to prevent the participants from transposing the higher-level 

structures from the Chinese to the Dutch stimuli, the experiments using Dutch 

stimuli preceded those using Chinese. Thus, the order of the experiments was as 

follows: Experiment 2 (Chinese listen to Dutch), Experiment 1 (Chinese listen 

to Chinese), Experiment 5 (Chinese receive training on Dutch compounds), 

Experiment 6 (Chinese listen to trained Dutch stimuli), Experiment 3 (Chinese 

receive training on Chinese compounds), and Experiment 4 (Chinese listen to 

trained Chinese stimuli). 

Experiment 1. The Chinese participants listened to Chinese syllable 

sequences in this experiment. We first randomly selected 10 singular nouns (20 

syllables) from a pool of 20 words. Then using these selected words, five on each 

set, to stochastically concatenate a set of 100 noun sequences (type-one sequences, 

four seconds long, including eight singular nouns or 16 syllables, with a TP between 

nouns of 1/5). Then by shuffling all the selected syllables, a set of eighty random 

syllable sequences was constructed. We then randomly selected 40 sequences from 

these 80 (type-two sequences, 16 syllables). The remaining 40 sequences were 

played backward and used as the last type of stimuli (type-three sequences, 16 

syllables). All of these sequences were pseudo-randomly arranged in six blocks 

with 30 sequences in each block. During the syllable detection task, the silent gap 

between the sequence and the target syllable was three seconds. For each type of 

sequence, the syllable target of half of the trials had appeared in the preceding 
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syllable sequence, and the syllable target of the other half of the trials was selected 

from the unused 20 syllables (unused 10 words). 

Experiment 2. The Chinese participants listened to Dutch syllable sequences. 

The same arrangement and three types of sequences were used as in Experiment 1, 

except that Dutch rather than Chinese stimuli were used.   

Experiment 3. The Chinese participants were trained on Chinese novel 

compounds. In this experiment, we first randomly selected 10 words from the 20-

word pool. Then arranging five words on one set with the remaining words on the 

other set, the full combination (5*5) of these words generated 25 novel compounds 

(four syllables each). Using a Markov chain, we generated a series of syllable 

sequences containing either one such compound (four syllables, one second long), 

or two (eight syllables, two seconds), or three (12 syllables, three seconds). On each 

trial of the training session, participants listened to one of the syllable sequences, 

then performed a syllable recognition task with a silent interval of two seconds 

between the syllable sequence and syllable target. Note that the TP between each 

structural level was controlled to serve as cues for participants to segment the 

syllable sequence. The TP between syllables in a word was 1, between words in a 

compound it was 1/5, and between compounds it was 1/25.  

Experiment 4. The Chinese participants listened to Chinese syllable 

sequences with the trained stimuli (the 10 singular nouns from Experiment 3). Like 

in Experiments 1 and 2, we constructed three types of syllable sequences, noun 

sequences (type-one) and random syllable sequences played forward (type-two) 

and backward (type-three). Note that Experiment 4 was conducted 15 to 30 

minutes after Experiment 3.  

Experiment 5. The Chinese participants were trained on Dutch novel 

compounds. The same procedure and arrangement were used as in Experiment 3, 

except the stimuli were in Dutch rather than Chinese. This is because we wanted to 

remove high-level grammatical, syntactic, and semantic processing from 

perceptual processing.  

Experiment 6. The same procedure was applied as in Experiment 4, apart 

from the fact that the trained items were from Experiment 5. In this experiment, 

all the effects we observed reflected sequence segmentation by statistical 

information (TP) because opportunities for high-level language processing, such as 
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chunking according to syntactic, grammatical, and semantic information, are 

removed by using a language that participants do not understand.  

Localizer task. A localizer task was performed as well, in which a ‘beep’ tone 

(1 kHz, 50 ms in duration) was played 100 times (jitter 2 to 3 seconds) to localize 

the auditory cortex by using the canonical M100 auditory response. 

Scalp surface scanning. Each subject's head shape was digitized using 

a Polhemus Fastrak three-dimensional digitizer (Polhemus, VT, USA). 

Anatomical MRI scanning. Anatomical magnetic resonance images 

(MRIs) of each participant’s brain were acquired using a 1.5 T Siemens Magnetom 

Sonata system.  

Neural recordings 

Neural activity was recorded using a 275-channel axial gradiometer MEG 

system (CTF, Canada), with a sampling rate of 1.2 kHz, in a magnetically shielded 

room. An infrared eye tracker (EyeLink, Canada) was used to monitor eye activity. 

In addition, online head position was recorded with three fiducial sensors 

referencing three anatomical landmarks (Nasion, left and right ear canals). Speech 

stimuli were presented using MATLAB 2019a (The MathWorks, Natick, MA) with 

Psychtoolbox-3 (Brainard, 1997). Auditory stimuli were played at 65 dB SPL and 

delivered through air-tube earplugs (Etymotic ER-3C, Etymotic Research, Inc.). 

Event markers were sent via serial port for tagging the onset of the events under 

investigation (i.e., speech onset, task index onset, etc.). 

MEG data preprocessing 

MEG data was preprocessed via MATLAB using FieldTrip (Oostenveld et al., 

2011), EEGLAB (Delorme & Makeig, 2004), and customized scripts. We first down-

sampled the data to 200 Hz, and then high-pass filtered it at 0.5 Hz (finite impulse 

response filter, FIR; zero-phase lag), and cleaned it using the time-sliding PCA 

(Chang et al., 2018; Kothe & Jung, 2016). Following the above steps, we extracted 

epochs of two seconds preceding and 10 seconds after the auditory stimulus onset. 

We eliminated bad trials and artifacts in the following two steps. First, we used the 

short-time Fourier transform to calculate the power spectrum in every one-second 

window, in which we extracted a value that was calculated by the power summation 

between 15 and 50 Hz. Then all the extracted values, one value per window, formed 



     Chapter 3 
 

     

 

 

 

 

 

 

 

55 

3 

a distribution for each sensor. From this distribution, we transformed all the 

extracted values into z-scores. The epochs with values outside the standard 

deviation range of plus or minus three were deleted. Second, ICA was conducted 

on the trial-rejected data for the elimination of heartbeat and eye-related artifacts 

and sustained muscular activities.  

MEG data analysis 

Frequency tagging analysis 

To eliminate the transient evoked neural (e.g. M100) response, each trial was 

initially epoched from two to four seconds (the neural response that corresponds 

to the first four syllables was removed) after the speech signal onset. Then a 

ramping taper (a cosine wave), smoothing 5% of each end, was applied to attenuate 

frequency leakage. We applied a bootstrapping approach to balance the number of 

trials across different conditions. More concretely, we generated 50 trials that each 

lasted 15 seconds by randomly concatenating four extracted epochs (of three 

seconds each) for every condition. The trial manipulations resulted in a frequency 

resolution of 1/15 Hz (~ 0.07 Hz). To optimize the frequency response, we 

performed the following three steps. First, we conducted a narrow band filtering 

via Gaussian frequency where the full-width-half-maximum value equaled 0.1 Hz 

for each frequency bin, e.g., 0.46 Hz. Then two covariance matrices, one for the 

filtered data and the other for the original data, were calculated for constructing a 

spatial filter using the generalized eigen-decomposition (GED). The spatial filter 

was defined as the generalized eigenvector corresponding to the biggest eigenvalue. 

Finally, after filtering the data, the discrete Fourier transform was applied to 

extract the specific frequency response. The harmonics of the fundamental 

frequency (1/3 Hz), which are introduced by the epochs’ concatenation, were 

regressed out by minus the average amplitude of its pre- and post-harmonic bins.  

Statistical analysis 

For spectral peaks of interest (1 Hz, 2 Hz and 4 Hz), a one-tailed 

paired sample t-test with the Bonferroni correction was conducted to test whether 

the peak activity at one frequency bin was significantly higher than the average of 

the neighboring four bins around it (two bins on each side).  
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3.3 Results 

The cortical tracking effect occurs when Chinese participants listen to 

Chinese hierarchical syllable sequences 

In Experiment 1, we asked Chinese participants to listen to three types of 

Chinese syllable sequences. For the noun sequences (type-one), Chinese bi-syllabic 

words occurred at the rate of two times per second (2 Hz), while the syllables 

occurred four times per second (4 Hz). In contrast, for the remaining two control 

conditions, i.e. the random syllable sequences played forward and backward, only 

the rhythm of syllables was controlled to be 4 Hz. The sample structures for each 

type of sequence are shown in Figure 1a. As expected, the neural activity showed 

peaks corresponding to both words (2 Hz, t (13) = 8.81, p<3.86e-7, Bonferroni-

corrected) and syllables (4 Hz, t (13) = 10.52, p<4.94e-8, Bonferroni-corrected) for 

the noun sequences (type-one). However, the neural activity only showed a peak at 

the rate of syllables for the random sequences played forward (type-two, 4 Hz, t (13) 

= 8.52, p<5.50e-7, Bonferroni-corrected) and backward (type-three, 4 Hz, t (13) = 

6.61, p<8.47e-6, Bonferroni-corrected). The results are shown in Figure 1b, in 

which the red line represents the frequency response of participants listening to 

the noun sequences (type-one), and the dark blue and light blue lines represent 

participants listening to the random syllable sequences played forward (type-two) 

and backward (type-three), respectively. The shaded areas represent two SEM. The 

topographical distributions show the absolute values of the GED weights (for 

details see section 3.2, Methods) for the frequencies of interest (2 and 4 Hz), in 

which the size of the red circles indicates the weight of the sensors.  

The results replicated the cortical tracking effect found by Ding et al. (2016) in 

Chinese. By considering the results of this experiment with its counterpart in 

Chapter 2 (Experiment 1, wherein Dutch participants listened to Dutch speech 

stimuli), our analysis indicated that neural oscillations tracking the rhythm of 

hierarchical linguistic units could be independent of the linguistic knowledge that 

participants had. The same inference mechanism was engaged across different 

types of language users (Dutch speakers vs. Chinese speakers). However, two 

comparable accounts, which are the grammatical chunking and statistical 

structuring, both explain the effect. 
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Figure 1. The cortical tracking effect occurred when Chinese participants 

listened to Chinese hierarchical syllable sequences. (a) The structure of three 

types of syllable sequences, where the upper, middle and lower panels represent the 

structure of type-one, type-two and type-three sequences, respectively. In the type-one 

sequence, except for syllables which occurred at the rate of 4 Hz, Chinese nouns occurred 

at the rate of 2 Hz. In the type-two and type-three sequences, syllables occurred at the 

rate of 4 Hz, and no higher-level structures could be constructed either linguistically or 

statistically. (b) The neural response spectrum for each type of sequence, in which the 2 

Hz peak was significant for only type-one sequences, whereas the 4 Hz peak was 

significant for all three types. The shaded areas for each line represent two SEM. The 

topographical distributions represent the GED weights for the peaks of interest.  

 

The cortical tracking effect reflects speech segmentation via 

statistical inference 

In Experiment 2, we constructed the same three types of syllable sequences 

as in Experiment 1, but the stimuli were in Dutch rather than Chinese (as shown in 

Figure 2a). By doing so, we wanted to test the effect after removing the 

availability of higher-level linguistic information and check whether speech 

segmentation via statistical inference could be introduced by users of a different 

language (Chinese participants). Using the same frequency decomposition as in 

Experiment 1, we found that there were two peaks corresponding to the occurrence 

rates of words (2 Hz, t (13) = 16.79, p < 1.70e-10, Bonferroni-corrected) and 
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syllables (4 Hz, t (13) = 10.63, p<4.38e-8, Bonferroni-corrected) for the type-one 

sequences, and only one peak of activity indicating the rate of syllables for the type-

two (4 Hz, t (13) = 6.49, p<1.00e-5, Bonferroni-corrected) and type-three 

sequences (4 Hz, t (13) = 7.53, p<2.16e-6, Bonferroni-corrected). The results are 

shown in Figure 2b, in which the red line represents the frequency response 

corresponding to participants listening to the noun sequences (type-one), while the 

dark blue and light blue lines represent participants listening to the random 

syllable sequences played forward (type-two) and backward (type-three), 

respectively. The shaded area covers two SEM. The topographical distributions 

show the GED weight of the frequencies of interest, where the bigger the red circle, 

the higher the weight of that sensor.  

The results confirmed our hypothesis which is that the neural response 

tracking the rhythm of units at different levels is not a pure reflection of unit 

structuring using high-level linguistic knowledge. Instead, by comparing the 

results of this experiment with those of its counterpart in Chapter 2 (Experiment 

2, where Dutch participants listened to Chinese stimuli), we found that the 

linguistic knowledge that participants had did not affect the tracking regime. In 

addition, as high-level linguistic information was not available when participants 

listened to the speech in an unfamiliar language, the effect has to reflect statistical 

inference.  

Figure 2. Cortical tracking effect reflects speech segmentation via statistical 

inference. (a) The structure of three types of syllable sequences, where the upper, 

middle and lower panels represent the structure of type-one, type-two and type-three 
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sequences, respectively. In the type-one sequence, except for syllables which occurred at 

the rate of 4 Hz, Dutch singular nouns occurred at the rate of 2 Hz. In the type-two and 

type-three sequences, syllables occurred at the rate of 4 Hz, and no higher-level 

structures could be constructed either linguistically or statistically. (b) The neural 

response spectrum for each type of sequence, in which the 2 Hz peak was significant for 

only type-one sequences, whereas the 4 Hz peak was significant for all three types. The 

shaded areas for each line represent two SEM. The topographical distributions represent 

the GED weights for the peaks of interest.  

 

The cortical response tracks the rate of multiple levels’ units 

regardless of what linguistic knowledge the participants had 

The results of Experiment 2 in both Chapter 2 and Chapter 3 suggest that the 

cortical tracking effect could be solely introduced via statistical inference at one 

TP-manipulated rate (2 Hz, nouns). However, as stated in Chapter 2, frequency 

tagging was found in the tracking of different levels of linguistic structure, i.e., 

syllables (4 Hz), phrases (2 Hz), and sentences (1 Hz), simultaneously in the 

original study (Ding et al., 2016). To match the hierarchy of our syllable sequences 

with the structure of the stimuli in the original study and check the role of 

participants’ linguistic knowledge in the tracking phenomenon, we first trained 

Chinese participants on Chinese TP-organized novel compounds (Experiment 3), 

such as jí-tā-bīng-xiāng (made up of words meaning ‘guitar’ and ‘refrigerator’). 

The statistical framework for constructing these novel compounds is shown in 

Figure 3a, in which the green, yellow and blue circles represent syllables, words 

and novel compounds, respectively. The TPs between syllables in a word, between 

words in a novel compound, and between novel compounds were controlled to be 

1, 1/5 and 1/25, respectively. To make sure the statistical cues (the TP between units 

at different levels) were held constant, we extracted syllable sequences from the 

framework using a Markov chain. The extracted sequences could be one, two or 

three seconds in length. Sample sequences that were used in the training stage of 

Experiment 3 are shown in Figure 3b, in which each style of red outline indicates 

one novel compound.  

In Experiment 4, the same three types of syllable sequences and 

manipulations were used as before (in Experiments 1 and 2), except that one 
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additional TP cue which reflects how to extract the trained compounds was fitted 

into the type-one sequences (Figure 3c). As expected, we found that the neural 

activity showed three peaks that corresponded to the occurrence rates of syllables 

(4 Hz, t (13) = 10.38, p<5.79e-8, Bonferroni-corrected), words (2 Hz, t (13) = 8.16, 

p<9.00e-7, Bonferroni-corrected) and the TP-organized compounds (1 Hz, t (13) = 

4.49, p<2.98e-4, Bonferroni-corrected) for the type-one sequences. However, 

there was only a peak at 4 Hz corresponding to the rate of syllables for the type-two 

sequences (4 Hz, t (13) = 7.36, p<2.72e-6, Bonferroni-corrected) and the type-three 

sequences (4 Hz, t (13) = 9.25, p<2.18e-7, Bonferroni-corrected). The results are 

shown in Figure 3d, in which the red, dark blue and light blue lines represent 

participants listening to the type-one, type-two and type-three sequences, 

respectively. The shaded area covers two SEM. The topographical distributions 

show the GED weights of the peaks of interest, in which the bigger the red circle, 

the higher the weight of that sensor.  

Figure 3. Neural activities track trained novel compounds together with the 

units that comprise them. (a) The statistical framework for constructing syllable 

sequences in Chinese, in which the TPs between syllables in a word, between words in a 

compound and between compounds were 1, 1/5 and 1/25, respectively. (b) Sample 
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sequences that were presented during the training experiment. The sequences were 

generated using a Markov chain to stabilize the statistical relationships between units at 

different levels. To make sure participants could extract the statistically defined 

compounds, sequences were manipulated so that they were one, two or three seconds in 

length. (c) The sequence structure used in Experiment 4, where the upper, middle and 

lower panels represent the structure of type-one, type-two and type-three sequences, 

respectively. (d) The neural response spectrum for each type of sequence, in which the 1 

and 2 Hz peaks were significant for only type-one sequences, whereas the 4 Hz peak was 

significant for all three types. The topographical distributions represent the GED weights 

for the peak of interest.  

 

The results of this experiment were a perfect replication of its counterpart 

in Chapter 2. First, it indicates that the brain can handle several boundaries 

between different levels’ units simultaneously. Second, it suggests that the 

occurrence of frequency peaks can be manipulated via statistical learning (for 

details see Chapter 2). Lastly and most importantly, we found that the linguistic 

knowledge that participants had did not change the pattern of results across 

different types of language users, which indicates that the frequency response 

tracking the rhythm of different levels’ units could reflect a generalized perceptual 

inference (i.e., statistical inference). 

Neural oscillations tracking the rhythm of units at multiple levels 

reflect statistical inference 

In Experiment 3 and 4, when Chinese participants were listening to the stimuli 

in their own language, the same concerns about semantic association were held as 

for their counterparts in the previous chapter (see Experiments 5 and 6 in Chapter 

2). To address this issue, we conducted Experiments 5 and 6, where the same 

procedures as in Experiment 3 and 4 were used, except that all stimuli were in 

Dutch. By doing so, we removed the availability of higher-level linguistic 

knowledge, such as grammatical, syntactic and semantic information. In addition, 

we could check whether the language-specific knowledge that participants had 

(about Dutch vs. Chinese) would alter the frequency tracking effect. Figure 4a 

and Figure 4b show the statistical framework for generating novel compounds 

and the statistically controlled sample sequences (from Experiments 3 and 4) that 
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were used in Experiment 5. The structures of the three types of syllable 

sequences that were used in Experiment 6 are represented in Figure 4c. 

The results of Experiment 6 confirmed our predictions, as we still found 

three peaks in the neural response to reflect the occurrence rates of syllables (4 Hz, 

t (13) = 9.30, p<1.6e-3, Bonferroni-corrected), words (2 Hz, t (13) = 17.62, p<9.33e-

11, Bonferroni-corrected), and the four-syllable artificial structures (1 Hz, t (13) = 

3.60, p<2.07e-7, Bonferroni-corrected) for the type-one sequences. As expected, 

there was only a 4 Hz peak to reflect the rate of syllables for the type-two sequences 

(4 Hz, t (13) = 8.03, p<1.06e-6, Bonferroni-corrected) and the type-three 

sequences (4 Hz, t (13) = 6.08, p<1.92e-5, Bonferroni-corrected). The results are 

shown in Figure 4d. The frequency responses corresponding to the type-one, 

type-two and type-three sequences are signified by the red, dark blue and light blue 

lines, respectively. The shaded area covers two SEM. The topographical 

distributions show the GED weights for the peaks of interest, where the larger the 

red circle, the higher the weight of the sensor.  

Figure 4. Neural activities of Chinese participants track statistically defined 

units in Dutch. (a) The statistical framework for constructing syllable sequences in 

Dutch, in which the TPs between syllables in a word, between words in a compound, and 
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between compounds were 1, 1/5 and 1/25, respectively. (b) Sample sequences that were 

presented in each trial during the training experiment. The sequences were generated 

using a Markov chain to holding the statistical relationships between different levels’ 

units. To make sure participants could extract the statistically defined compounds, 

sequences were manipulated to be one, two or three seconds in length. (c) The sequence 

structure used in Experiment 6, where the upper, middle and lower panels represent the 

structure of type-one, type-two and type-three sequences, respectively. (d) The neural 

response spectrum for each type of sequence, in which the 1 and 2 Hz peaks were 

significant for only type-one sequences, whereas the 4 Hz peak was significant for all 

three types. The topographical distributions represent the GED weights for the peaks of 

interest.  

 

Therefore, the data from Experiment 6 showed the same pattern as its 

counterpart in Chapter 2, suggesting that neural oscillations can simultaneously 

tag statistically defined units at different levels. In addition, the linguistic 

knowledge that participants had did not vary the pattern of results across users of 

different languages (Dutch vs. Chinese). More importantly, our results are at odds 

with the account of frequency tagging as an exclusive readout of unit extraction via 

inference using high-level linguistic knowledge, in that the neural readout cannot 

be said to be purely a reflection of grammatical processing or syntactic integration 

(Ding et al., 2016). Instead, by fitting statistical information into the cortical 

tracking effect, removing the availability of high-level language information and 

conducting experiments with different types of language users, we found that the 

frequency activities tagging the occurrence rate of hierarchical structures could be 

solely driven by statistical information. Moreover, by comparing the results in 

Chapters 2 and 3, we are able to argue that the cortical tracking effect (can also) 

reflect a generalized perceptual process – statistical inference. 

3.4 Discussion  

Both Chapter 2 and Chapter 3 have reported the results of a series of MEG 

experiments that investigate the fundamental question of how the brain segments 

speech into unit representations. By connecting the effect of the cortical tracking 

of hierarchical linguistic structures with statistical inference, we found that the 
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frequency-tagging response in the brain can be induced at different levels of 

structure solely by manipulating statistical cues (TP). Our results support the 

notion that speech segmentation (indexed by extracting statistically defined 

structures) can be conducted without using high-level language knowledge such as 

grammatical, syntactic and semantic information. This finding suggests that 

speech tracking or frequency tagging could be a general perceptual processing 

readout. 

In the Experiment 1 of both chapters, we replicated the cortical tracking effect 

that was found by Ding et al. (2016), in both Dutch and Chinese. The results 

support the argument that the effect could be a language-independent 

phenomenon, and shows that it can at least be introduced when Dutch and Chinese 

participants listen to their own language. The occurrence rates of words (2 Hz) and 

syllables (4 Hz) were robustly reflected in the brain by using the same experimental 

paradigm as Ding et al. (2016). However, language-related cues such as 

grammatical, syntactic and semantic knowledge coexisted with the statistical 

information. Therefore, the frequency response tagging the rhythm of words and 

syllables could be explained by either of these two types of cues.  

In Experiment 2 of both chapters, we removed the impact of linguistic 

knowledge by constructing three types of syllable sequences in a language that the 

participants did not know. Using the same experimental procedure and analysis 

methods, we found that frequency activity in the brain still tracked the occurrence 

rates of words (2 Hz) and syllables (4 Hz). The results can only be explained by 

structure chunking using statistical cues, as language-related information was not 

available to the participants. In addition, to determine whether the tracking 

mechanism could be independent of the linguistic knowledge that participants had, 

we conducted the experiment with both Dutch and Chinese participants. Our 

results pointed to a consistent conclusion which is that the effect is not a pure 

reflection of unit chunking using high-level linguistic knowledge. Instead, the 

neural oscillations which track the rhythm of linguistic structures could also be 

reflected by unit structuring via statistical inference. 

However, in Experiments 1 and 2, we only showed that the brain tracked units 

at two levels (syllables and words). To fill the gap between our findings (two levels 

of tracking) and the original study (three levels of tracking) and see if we could 
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introduce the cortical tracking effect that tracks units at multiple levels, we needed 

a type of structure that is built on top of words. More importantly, if we wanted to 

introduce an additional peak to reflect structure chunking by statistical 

information, this type of structure needed to be statistically but not syntactically 

defined. In addition, to satisfy the rule of thumb, which is using the same stimuli 

to introduce a different neural response, the characteristics of the stimuli in the 

new experiment should be the same as the old one (Experiment 1). To satisfy these 

criteria, we constructed a type of four-syllable (one-second) novel compound using 

words from Experiment 1, and then training participants to extract these 

compounds in Markov-chain-manipulated sequences (Experiment 3, for details 

see section 3.2, Methods). After training, we conducted Experiment 4, in which the 

same three types of sequences, namely the noun sequences (type-one) and random 

syllable sequences played forward (type-two) and backward (type-three), were 

constructed using the trained items (10 bi-syllabic nouns from Experiment 3). By 

doing so, we found that there were three peaks in the brain’s frequency response to 

reflect the occurrence rates of syllables (4 Hz), words (2 Hz), and novel compounds 

(1 Hz) when participants listen to the noun sequences (type-one sequences) in their 

own language.  

The results are quite compelling. First, we found that the occurrence rates of 

different levels of structure were reflected in the neural response, which indicates 

that the brain can handle the boundaries from different structural levels 

simultaneously. Second, the additional peak corresponding to the rhythm of novel 

compounds (1 Hz) reflected statistical chunking (and could reflect semantic 

association, as noted below) because this 1 Hz peak did not occur in Experiment 1, 

in which the same noun sequences only introduced frequency responses 

corresponding to the rates of words (2 Hz) and syllables (4 Hz). For the same 

reason, we argue that this additional 1 Hz peak was not a reflection of unit chunking 

using high-level linguistic knowledge, because if the singular nouns can be chunked 

into a higher-level structure syntactically, there should be a 1 Hz neural activity to 

reflect this process in Experiment 1. Moreover, by comparing Experiment 1 and 

Experiment 4, it appears that the cortical tracking effect reflects an endogenous 

perceptual mechanism for segmenting speech into chunked structures, because the 

same stimuli can introduce different types of neural responses, i.e., two peaks (2 

and 4 Hz) in Experiment 1 and three peaks (1, 2 and 4 Hz) in Experiment 4. Lastly, 
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we conducted the experiments with both Dutch and Chinese participants, and the 

consistent pattern across different types of participants indicated that linguistic 

knowledge itself was not sensitive to the tagging effect, which implicitly suggested 

that the effect might be associated with a general inference process.  

Showing cortical activities tracking the statistically defined compounds is 

necessary to prove that the effect could be introduced by statistical information; 

however, in Experiments 3 and 4 of both chapters, the participants still listened to 

their own language, which means semantic association will inevitably occur. 

Therefore, one might hold a concern that the additional 1 Hz response 

corresponding to the compounds could reflect semantic association. To address 

this issue, we conducted Experiments 5 and 6, in which the same experimental 

procedures and parameters as Experiments 3 and 4 were used, but with the stimuli 

in an unfamiliar language. This enabled all higher-level, language-related cues that 

lead to structure chunking to be removed from the processing of the syllable 

sequence. As expected, we still found three peaks that correspond to the rhythm of 

syllables (4 Hz), words (2 Hz), and novel compounds (1 Hz) when participants 

listened to noun sequences in a language they did not know. In addition to the 

conclusions drawn from Experiments 3 and 4, the results at this stage could be 

evidence that the cortical activity tracking multiple levels’ structures in speech can 

be introduced by statistical information alone (TP), which is at odds with the 

account that the effect is purely a reflection of unit chunking using high-level 

linguistic knowledge. The fact that the data from users of different languages 

showed the same pattern also suggests that the cortical tracking effect can be 

introduced by perceptual statistical inference.  

Demonstrating that the cortical tracking effect can be solely driven by 

statistical information is important. One reason is that it enables us to establish 

whether speech segmentation can be performed prior to acquiring high-level 

language-related knowledge. For instance, as humans, our language acquisition 

starts with exposure to a language environment that is not yet meaningful to us; 

when we listen to speech as infants, the mechanism of segmenting speech into 

analyzable units might be our initial steps toward acquiring a language. From this 

perspective, the results are consistent with Saffran, Aslin, and Newport (1996), 

suggesting that speech segmentation could be conducted via statistical inference. 

In addition, our results show that different levels of TP-defined boundaries can be 
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tracked by the brain simultaneously. Another motivation behind the study is to 

check whether this effect is a purely reflection of inference using high-level 

linguistic knowledge. Apparently, our results do not support this account; instead, 

our experiments provide evidence that the neural activity tagging the rhythm of 

linguistic structures can be introduced without the presence of high-level linguistic 

knowledge. By conducting all of the experiments with both Dutch and Chinese 

participants, we also found that the type of linguistic knowledge that participants 

had was not a related factor. Therefore, based on our findings, we argue that the 

effect cannot be purely a reflection of an inference process using high-level 

linguistic knowledge. Instead, it can also be introduced via statistical inference 

(without language knowledge). 
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4｜ Phase consistency as a window onto syntactic 

structure representation1 

Abstract 

Speech stands out in the natural world as a biological signal that 

communicates formally-specifiable complex meanings. However, the acoustic and 

physical dynamics of speech do not injectively mark the linguistic structure and 

meaning that we perceive. Linguistic structure must therefore be inferred through 

the human brain’s endogenous mechanisms, which remain poorly understood. 

Using electroencephalography (EEG), we investigated the neural responses to 

synthesized spoken phrases and sentences that were closely matched physically but 

differed in syntactic structure. Differences in syntactic structure were well-

captured in theta band (~ 2 to 7 Hz) phase coherence, with phase synchronization 

at low frequencies (< ~ 2 Hz). Theta-gamma phase-amplitude coupling was found 

when participants listened to speech, but it did not discriminate between syntactic 

structures. Our findings provide a comprehensive description of how the brain 

separates linguistic structures in the dynamics of neural responses, and imply that 

phase synchronization and connectivity strength can be used as readouts for 

constituent structure, providing a novel basis for future neurophysiological 

research on linguistic structure representation in the brain.  

  

 

1 Adapted from Bai, F., Meyer, A. S., & Martin, A. E. (2022). Neural dynamics differentially encode phrases 
and sentences during spoken language comprehension. PLoS Biology, 20(7), e3001713. 
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4.1 Introduction 

To successfully understand speech, syntactic representations have to be 

formed via an inferential (top-down) process where grammatical relationships 

between hierarchical linguistic structures are constructed (Berwick et al., 2013; 

Chomsky, 2009; Phillips, 2003). Previous research has shown that neural activity 

synchronizes with the presence of linguistic structures in speech, which suggests 

the temporal properties of the neural oscillations (e.g., phase coherence) could 

reflect the building of linguistic structures by the brain (Ding et al., 2016; Kaufeld 

et al., 2020; Keitel, Gross, & Kayser, 2018). However, the construction of syntactic 

structures is often hard to isolate as both perceptual-level (e.g. evoked auditory) 

and linguistic-level (e.g. speech chunking via grammatical knowledge) processes 

are paralleled with it. Therefore, how the brain represents and discriminates 

syntactic structures is largely unknown. In this chapter, we investigate how the 

discrimination between two types of syntactic structures (i.e., a phrase vs. a 

sentence which has highly similar temporal-spectral features) is represented in the 

temporal synchronization of neural oscillations.    

Low-frequency phase coherence (< 8 Hz) was heavily weighted as a critical 

neural readout for speech comprehension (Doelling et al., 2014; Howard & Poeppel, 

2010; Luo & Poeppel, 2007; Peelle, Gross, & Davis, 2013). In the MEG study by 

Luo and Poeppel (2007), participants listened to sentences with systematically 

varied intelligibility from low to high. By fitting the low-frequency (theta band, 4 

to 7 Hz) phase coherence as a function of the degree of intelligibility, the 

researchers found that the consistency of the theta band phase reliably reflected 

the intelligibility of the speech stimuli, in which higher-level phase coherence was 

evoked by highly intelligible sentences compared to degraded ones. This stimulus-

driven temporal synchronization of the neural activities provided initial evidence 

that low-frequency phase tracking is an important component leading to 

comprehension. As such, the authors concluded that theta-phase entrained with 

the rhythm of syllables (often represented by the temporal envelope of speech 

stimuli) was a necessary condition for spoken language comprehension. Therefore, 

low-frequency phase coherence could reflect the neural representation of syllables.  

Following the investigation by Luo and Poeppel (2007), an MEG study by Ding 

et al. (2016) further showed that neural oscillations simultaneously track the 
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occurrence rates of hierarchical linguistic structures. Specifically, the authors 

artificially synthesized isochronous syllable sequences with a built-in hierarchy 

and found that the frequency of cortical activity robustly reflected the occurrence 

rates of linguistic structures at different levels. The phenomenon of the frequency 

of neural activity tracking the rhythm of linguistic structures has been replicated in 

many other studies (Ding, Melloni, et al., 2017; Gui, Jiang, Zang, Qi, Tan, Tanigawa, 

Jiang, Wen, Xu, Zhao, et al., 2020; Jin, Lu, & Ding, 2020b; Jin et al., 2018a; Zhou 

et al., 2016).  

Low-frequency neural oscillations may be especially important for speech 

processing because they occur roughly at the average syllable rate across various 

human languages (Ding, Patel, et al., 2017; Pellegrino, Coupé, & Marsico, 2011; 

Varnet et al., 2017). The brain may use syllables, which are abstract linguistic units, 

as the primitive units to analyze spoken language (Giraud & Poeppel, 2012; Luo & 

Poeppel, 2007; Poeppel & Assaneo, 2020). Indeed, a view has emerged wherein the 

brain employs an inherent cortical rhythm at a syllabic rate that can be altered by 

manipulations of linguistic structure or intelligibility. One possible synthesis of 

previous results is that low-frequency power reflects the construction of linguistic 

structures (Ding et al., 2016; Kaufeld et al., 2020; Keitel, Gross, & Kayser, 2018), 

whereas low-frequency phase coherence reflects the parsing and segmenting of 

speech signals (Doelling et al., 2014; Howard & Poeppel, 2010; Luo & Poeppel, 

2007; Peelle, Gross, & Davis, 2013). Inspired by these hypotheses and empirical 

works, Martin and Doumas (2017) provided a theoretical, computationally explicit 

framework for understanding the role of low-frequency neural oscillations in 

generating linguistic structure. They reproduced the frequency-tagging results 

reported by Ding et al. (2016) in an artificial neural network model that uses time 

(unit firing asynchrony) to encode structural relations between words (Martin & 

Doumas, 2019). Based on their model, Martin and Doumas hypothesized that low 

frequency power and temporal synchronization should depend on the number of 

constituents that are represented at a given time step. In their model’s coding 

scheme, constituents are represented as (localist) relations between distributed 

representations in time. Thus, the ongoing dynamics of the neural ensembles 

involved in coding linguistic units and their structural relations are what constitute 

‘linguistic structure’ in such a neural system (Martin, 2016, 2020).  
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Indeed, we saw that the inherent cortical rhythm at the syllabic rate can be 

altered by both syntactic structures and semantic manipulations. As such, 

extracting the isolated neural readout for syntactic representation is helpful for 

better understanding speech perception and language comprehension. As an 

exploratory study, the current chapter investigated the role of the temporal 

synchronization of neural oscillations in syntactic structure discrimination and 

tested the hypothesis proposed by Martin and Doumas (Martin & Doumas, 2017; 

Martin & Doumas, 2019; Martin, 2016, 2020; Martin & Doumas, 2020). In order 

to increase the likelihood that any observed patterns are due to representing and 

processing syntactic structures, we strictly controlled the physical and semantic 

features of our materials. We extend the work of Ding et al. (2016) and others to 

ask whether the 1 Hz neural response can be decomposed to reflect the 

discrimination of syntactic structures (phrases versus sentences). To assess this, 

we used two types of natural speech stimuli in Dutch, namely determiner phrases 

such as de rode vaas (‘the red vase’) and sentences such as de vaas is rood (‘the 

vase is red’), which combine a subject with a verb into a proposition. These phrases 

and sentences were given matching properties in both physical and semantic 

dimensions, such as the number of syllables (four), the semantic components 

(same color and object), the duration in time (one second), the sampling rate (44.1 

k Hz), and the overall energy (root-mean-square value equals -16 dB). 

We formulated a general hypothesis that low-frequency neural oscillations 

would be sensitive to the difference in syntactic structure of the phrases and 

sentences. However, we did not limit our analysis to low-frequency phase 

coherence, as previous researchers had done (Brennan & Martin, 2020; Ding et al., 

2016; Kaufeld et al., 2020; Keitel, Gross, & Kayser, 2018). We hypothesized that 

the neural response difference between phrases and sentences may manifest itself 

in a number of dimensions that are outside of the view of typical analyses of low-

frequency phase coherence. We therefore employed additional methods to 

decompose the neural response to phrases and sentences, in order to address the 

following three questions: 

Question 1. As previous studies have demonstrated the fundamental role of 

theta-band phase coherence in speech perception, our first concern was to test 

whether low-frequency (< 8 Hz) phase coherence could separate speech stimuli 

with different syntactic structures. To assess this, two types of speech stimuli were 
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constructed, such as de rode vaas (a phrase, ‘the red vase’) and de vaas is rood (a 

sentence, ‘the vase is red’), with strict controls on the physical and semantic 

properties (for details see section 4.2, Methods). The number of constituents for 

sentences (a noun phrase and a verb phrase) is higher than and the number of units 

in phrases (a noun phrase), and the syntactic complexity is higher for sentences 

than phrases (Chomsky, 2009). Therefore, based on the theoretical model 

proposed by Martin and Doumas, we expected to see a higher-level phase 

coherence for sentences than phrases.  

Question 2. We wondered whether phrases and sentences have different 

effects on brain dynamics as reflected at the functional neural network level (viz., 

functional connectivity). In the field of neuroscience, there is a rapidly growing 

interest in investigating functional connectivity to study whole-brain dynamics in 

sensor space (Cabral, Kringelbach, & Deco, 2014; Cohen, 2014; Cohen, 2015; 

Hutchison et al., 2013; Sporns, 2010), which can reveal temporal synchronization 

(viz., phase coherence) between brain regions. Neurophysiological techniques such 

as EEG and MEG have a high temporal resolution and are suitable for calculating 

synchronization across frequency bands in functional brain networks (Stam, Nolte, 

& Daffertshofer, 2007). Describing the temporal synchronization of the neural 

activity over the whole brain is the first step in decomposing neural responses to 

high-level variables like syntactic structure. We therefore investigated whether 

phrases and sentences have different effects on inter-site phase coherence (ISPC), 

which are considered to reflect the temporal synchronization of neural activity 

across different brain regions (Cohen, 2014; Lachaux et al., 2000; Mormann et al., 

2000). 

Question 3. We asked whether phrases and sentences have different effects 

on the coupling between the lower frequency phase and high frequency intensity. 

This question is related to the theoretical model proposed by Giraud and Poeppel 

(2012) on a generalized neural mechanism for speech perception. The model 

suggests that presentation of the speech stimulus first entrains an inherent neural 

response at low frequencies (< ~ 8 Hz) in order to track to the speech envelope, 

from which the neural representation of syllables is then constructed. Then, this 

low frequency response evokes a neural response at a higher frequency (~25 to ~35 

Hz), which reflects the brain’s analysis of phonemic-level information. The model 

proposes that the coupling of the low- and high-frequency neural responses (theta 
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and gamma, respectively) is the fundamental neural mechanism for speech 

perception up to the syllable. We therefore investigated whether theta-gamma 

frequency coupling may also differentiate higher-level linguistic structures, namely 

phrases and sentences. 

In sum, by performing an electroencephalography (EEG) experiment, we 

explored how the discrimination between two types of (normalized) syntactic 

structures would be reflected in the temporal characteristics of the neural response. 

As set out in this chapter, our investigations may serve as a trail marker on the path 

towards a theory of the neural computations underlying the formation of syntactic 

structure. 

4.2 Methods 

Participants 

Fifteen Dutch native speakers (8 females and 7 males), aged 22 to 35, 

participated in the study. All of them were undergraduate or graduate students and 

were right-handed. They reported no history of hearing impairment or 

neurological disorder. The experimental procedure was approved by the Ethics 

Committee of the Social Sciences Department at Radboud University. Written 

informed consent was obtained from each participant before the experiment, and 

they were paid for their participation.  

Stimuli 

Fifty line-drawings of common objects were selected from a standardized 

corpus (Snodgrass & Vanderwart, 1980). The Dutch names of all the objects were 

mono-syllabic and had non-neuter gender. In our experiment, the objects 

appeared as colored line-drawings on a grey background. More specifically, we 

presented each line-drawing in five colors: blue (blauw), red (rood) yellow (geel), 

green (groen), and purple (paars). In total, this yielded 250 pictures. The line-

drawings were sized to fit into a virtual frame of 4 by 4 cm, corresponding to a 2.29° 

visual angle for the participants.  

We then selected 50 drawings of different objects, 10 for each color, to create 

the speech stimuli. For each selected line-drawing, a four-syllable phrase-sentence 

pair was created, e.g. de rode vaas (‘the red vase’) and de vaas is rood (‘the vase is 
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red’). This means that in total, we had 100 speech stimuli (50 phrases and 50 

sentences; see Appendix 1). All stimuli were synthesized by an online synthesizer 

(www.neospeech.com) using a Dutch male voice, Guus. All stimuli were 733 to 1125 

ms in duration (mean = 839 ms, SD = 65 ms). To normalize the synthesized 

auditory stimuli, they were first resampled to 44.1 kHz. Then each speech stimulus 

was cut or zero-padded to fit in a 1000 ms window without missing any meaningful 

dynamics. Ten percent at both ends of each stimulus was smoothed by a linear 

ramp (a cosine wave) to remove the abrupt sound burst. To normalize the intensity 

of the stimuli, the root-mean-square value of each stimulus was controlled to be -

16 dB (see Figure 3).  

Experimental procedure 

Each trial started with a fixation cross being visible at the center of the screen 

(for 500 ms). Participants were asked to look at the screen. Immediately after the 

fixation cross had disappeared, the participants heard a 1000 ms spoken stimulus, 

either a phrase or a sentence, followed by a three-second silence; then the 

participants were asked to perform one of three types of task, indicated to them by 

an index number (1, 2 or 3 showing at the center of the screen, for 500 ms in 

duration). If the index number was ‘1’, they did a linguistic structure discrimination 

task (type one), in which they had to judge whether the spoken stimulus was a 

phrase or a sentence. If the index number was ‘2’, there was a 1000 ms pause and 

then a picture was shown for 200 ms. Then participants would do a color-matching 

task (type two), in which they had to judge whether the color described in the 

spoken stimulus matched the color shown in the picture. If the index was ‘3’, they 

would experience the same procedure as the type-two task, except instead of 

matching colors, they would do an object-matching task (type three), judging 

whether the objects in the spoken stimulus were the same as in the picture. All 

responses were recorded via a parallel port response box, in which the two buttons 

were labeled as ‘phrase/match’ and ‘sentence/mismatch’. Each response was 

followed by a silent interval of 3 to 5.2 seconds (jittered).  

The data collection was broken down into five blocks, with 48 trials in each 

block. Before the core data collection, several practice trials were conducted for 

each participant to make sure they understood the task. Trials in each block were 

fully matched in across linguistic structure (phrase or sentence) and task type (1, 2 
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or 3). For instance, half of the spoken stimuli were phrases and half were sentences 

(24 of each type), and six combinations (eight trials for each type) were evenly 

distributed in each block (eight trials times two linguistic structures times three 

task types). The order of the trials was pseudo-random throughout the whole 

experiment. The behavioral results indicated that the task was relatively easy and 

no difference was found between the phrases and the sentences. For all tasks 

combined, the accuracy rates for phrases and sentences were 97.9 ± 3% and 97.3 ± 

3% (p = 0.30), respectively. The experimental procedures are shown in Figure 1. 

Figure 1. An illustration of the experimental procedure. Participants were asked 

to look at the center of the screen, and after hearing the speech stimulus they would do a 

task indexed by a number that appeared on the screen. If the number was ‘1’, they would 

discriminate whether the stimulus they heard was a phrase or a sentence. If the number 

was ‘2’, they would see a picture and then judge whether the color in the picture was the 

same as the color described in the speech stimulus. If the number was ‘3’, they would 

judge whether the object in the picture was the same as the object described in the speech 

stimulus. Trial type was pseudo-randomly assigned throughout the whole experiment.  
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After the main experiment, a localizer task was performed, in which a ‘beep’ 

tone (1 kHz, 50 ms in duration) was played 100 times (jitter 2 to 3 seconds) for each 

participant, in order to localize the canonical auditory response (N1-P2 complex). 

The topographies for N1 and P2 are shown in Figure 2. The upper panel shows 

the averaged N1-P2 complex of all participants over the time bin from 90 to 110 ms 

for N1 and 190 to 210 ms for P2. The lower panel shows the N1-P2 complex after 

applying surface Laplacian, in which the effect of the volume conduction was 

attenuated. The topographies indicated that all participants had the canonical 

auditory response.     

  

Figure 2. Effect of volume conduction attenuation. The topographical 

distribution of the canonical auditory N1-P2 complex evoked by the localizer task. The 

upper panel shows the N1-P2 complex that was averaged across all participants (N=15). 

The lower panel shows the N1-P2 complex after applying surface Laplacian (current 

source density), in which the effect of volume conduction was attenuated.   

 

EEG recording 

EEG data was recorded using a 64-channel active sensor system from Brain 

Products (GmbH) in a sound-dampened, electrically shielded room. Signals were 

digitized online at 1000 Hz, with high-pass and low-pass at 0.01 Hz and 249 Hz, 
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respectively. Two electrodes, AFz and FCz, were used as ground and reference. All 

electrodes were placed on the scalp based on the international 10-20 system and 

the impedance of each one was kept below 5 kΩ.  

The experimental procedure was controlled by MATLAB 2019a (The 

MathWorks, Natick, MA) with Psychtoolbox-3 (Brainard, 1997). Auditory stimuli 

were played at 65 dB SPL and delivered through air-tubes earplugs (Etymotic ER-

3C, Etymotic Research, Inc.). Event markers were sent via a parallel port for 

tagging the onset of the events under investigation (i.e., speech onset, task index 

onset, etc.). 

EEG data preprocessing 

The EEG data preprocessing was conducted via MATLAB using the EEGLAB 

toolbox (Delorme & Makeig, 2004) and customized scripts. The data were first 

down-sampled to 256Hz then high-pass filtered at 0.5 Hz (finite impulse response 

filter, FIR; zero-phase lag). The raw data were first cleaned by the time-sliding PCA 

(Chang et al., 2018; Kothe & Jung, 2016). Then all bad channels were interpolated 

with spherical interpolation. After transferring the data to average reference, the 

online reference FCz was recovered and the line noise, 50 Hz and its harmonics, 

was removed.     

Following the above steps, epochs of two seconds preceding and nine seconds 

following the auditory stimulus onset were extracted. The deletion of bad trials and 

removal of artifacts were conducted in two steps. First, independent component 

analysis (ICA) was used for decomposing the data into the component space 

(number of components equals data rank). Then for each independent component, 

we used the short-time Fourier transform to convert each trial into the power 

spectrum, in which we extracted a value that was calculated by the power 

summation between 15 and 50 Hz. Then all the extracted values in each component 

formed a distribution. From this distribution, we transformed all the extracted 

values into z-scores, and the epochs with values outside the range of plus or minus 

three standard deviation were deleted. Second, ICA was conducted again on the 

trial-rejected data for eye-related artifact removal and muscle activity elimination. 

Artifact components were identified and removed using an automatic classification 

algorithm (Winkler, Haufe, & Tangermann, 2011). All the preprocessing steps 

resulted in the removal of, on average, 7 components (range 4 to 11) and 22 trials 
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(including incorrect trials and trials with excessively slow responses, range 10 to 

30, 4% to 12.5%) per participant. Finally, volume conduction was attenuated by 

applying surface Laplacian (Cohen, 2014; Srinivasan et al., 2007; Winter et al., 

2007). 

EEG data analysis 

Time frequency decomposition 

To perform time-frequency decomposition, the single-trial time series were 

convolved with a family of complex wavelets (1 to 50 Hz in 70 logarithmically 

spaced steps). Temporal and spectral resolution were optimized by changing the 

cycle from 3 to 30 in logarithmical steps. Phase coherence was calculated by inter-

trial phase clustering (ITPC) (Cohen, 2014; Lachaux et al., 1999). At each time-

frequency bin, the wavelet coefficients of all trials were divided by their 

corresponding magnitude and averaged across trials. The magnitude of the 

averaged complex output was represented as phase coherence (ITPC). 

Phase connectivity 

Trials in each condition first experienced the wavelet convolution (with the 

same parameters as the time-frequency decomposition). Then the cross-spectral 

density (CSD) was calculated for each sensor pair at each frequency-time-trial bin. 

Phase connectivity over the sensor space was calculated by inter-site phase 

coherence (ISPC) (Cohen, 2014; Lachaux et al., 2000; Mormann et al., 2000), in 

which we divided the complex coefficients from the CSD output by the 

corresponding amplitude at each frequency-time-trial bin. Then averaging was 

conducted across all trials. The amplitude of the averaged output was represented 

as phase connectivity between sensors (ISPC). After the above steps, the phase 

connectivity at each time-frequency bin had a matrix representation where the 

connectivity between all sensor pairs was represented as an all-channels-by-all-

channels matrix (graph), in our case 65 channels * 65 channels. 

For comparing the phase connectivity level between the phrases and sentences 

in the time-frequency space, a statistical threshold method was deployed. More 

specifically, at each time-frequency bin, we formed a distribution by pooling 

together all the connectivity values from both conditions, and then defined the 

threshold as the value at half the standard deviation above the median. We then 



Chapter 4     
 

 80

binarized the connectivity graph for both conditions by using this threshold at each 

bin. The connectivity level at each time-frequency bin was represented as the total 

number of connectivity values that were above this threshold. Finally, we 

transferred the connectivity level at each time-frequency bin as the percentage 

change relative to the baseline, which was calculated as the average connectivity 

level at 800 to 200 ms before the audio onset.  

Phase-amplitude coupling (PAC)  

Since the low-frequency phase and high-frequency amplitude were supposed 

to show coupling when the speech stimuli were processed, we initially defined the 

frequency range for the phase series as 1 to 16 Hz in a linear step of 1.5 Hz, and the 

frequency range for the amplitude series as 8 to 50 Hz in 12 logarithmic steps. Then, 

the wavelet convolution was performed to extract the analytic signal, in which the 

phase time series and amplitude time series were extracted at the specified 

frequency ranges from 50 ms before to 1500 ms after the audio onset. At each 

phase-amplitude bin, a complex time series composed of the phase angle of the 

phase time series and the magnitude of the amplitude time series was constructed. 

The PAC at each bin was calculated by extracting the magnitude of the average of 

all the vectors in the complex time series (Canolty et al., 2006; Cohen, 2014). Since 

the variation of the amplitude response, a z-score normalization was also 

performed for each phase-amplitude bin. More specifically, we first calculated the 

real PAC value by using the raw complex time series. Then the random PAC value 

was computed 1000 times by using the constructed complex time series. These 

constructed series were built by temporally shifting the power time series with a 

random temporal offset without changing the phase time series. These 1000 

random PAC values formed a reference distribution for each phase-amplitude bin. 

Then the z-score of the real PAC value in this distribution was represented as the 

index of the phase-amplitude coupling, PAC-Z.   

Statistical analysis 

In addition to using parametric statistical methods to check whether the 

difference between phrases and sentences was significant, a cluster-based non-

parametric permutation test was applied. This method deals with the multiple-

comparisons problem and at the same time takes the data’s dependency (temporal, 

spatial and spectral adjacency) into account. For all types of analysis that followed 



     Chapter 4 
 

     

 

 

 

 

 

 

 

81 

4 

this inference method, the subject-level data were initially averaged over trials and 

for each single sample, i.e. a time-frequency-channel point, a dependent t-test was 

performed. We selected all samples for which the t-value exceeded an a priori 

threshold, p<0.025, and these samples were subsequently clustered based on 

spatial and temporal-spectral adjacency. The sum of the t-values within a cluster 

was used as a cluster-level statistic. The cluster with the maximum sum was 

subsequently used as test statistic. By randomizing the data across the two 

conditions and recalculating the test statistic 1000 times, we obtained a reference 

distribution of the maximum cluster t-values. This distribution was used to 

evaluate the statistics of the actual data. This statistical method was carried out 

using the FieldTrip toolbox (Maris & Oostenveld, 2007; Oostenveld et al., 2011). 

Acoustic normalization and analyses 

In order to normalize the synthesized auditory stimuli, they were first 

resampled to 44.1 kHz. Then all speech stimuli were adjusted by truncation or zero 

padding at both ends to 1000 ms without missing any meaningful dynamics. Then 

10% at both ends of each stimulus was smoothed by a linear ramp (a cosine wave) 

for removing the abrupt sound burst. Finally, to control the intensity of the speech 

stimuli, the root-mean-square value of each stimulus was normalized to -16 dB.  

The intensity fluctuation of each speech stimulus was characterized by the 

corresponding temporal envelope, which was extracted by the Hilbert transform of 

the half-wave rectified speech signal. Then each extracted temporal envelope was 

down-sampled to 400 Hz. For checking the acoustic properties in the frequency 

domain, the discrete Fourier transform was performed to extract the spectrum of 

the temporal envelope. Decibel transformation for the spectrum of each speech 

stimulus was performed by using the highest frequency response in the 

corresponding phrase-sentence pair as the reference.  

Figures 3a and 3b show the syntactic representation of the phrases and 

sentences. Since all the phrases, as well as all the sentences, have the same syntactic 

structure, we selected a sample pair, de rode vaas (‘the red vase’) and de vaas is 

rood (‘the vase is red’), to show the syntactic decomposition. Four syllables were 

strictly controlled to be the physical input for both conditions. Syntactic integration, 

i.e. the way in which the physical input is combined into a linguistically logical 

structure, is different. The syntactic structure for the sentences is more 
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complicated than that of the phrases with respect to numbers and types of 

constituents. Figure 3c and 3d show the spectrogram of a sample phrase-

sentence pair. The comparison suggests a similar temporal-spectral pattern in this 

sampled pair. Figure 3e shows the temporal envelopes of this sample pair, the 

blue line for the phrase and the red line for the sentence, respectively. The 

comparison suggests a highly similar energy fluctuation between the phrase and 

the sentence. Figure 3f shows the intensity relationship of this sample pair in each 

frequency bin. The Pearson correlation was calculated to reveal the similarity 

between the spectrum of this sample pair (r = 0.94, p < 1e-4 ***). The comparisons 

indicated that they are highly similar in acoustic features. In this figure, the darker 

the dots, the lower the frequency of the spectrum.  

Figure 3g shows the temporal envelope averaged across all the stimuli 

(N=50), with the blue and red lines representing the phrases and sentences, 

respectively. The shaded areas cover two SEM. To check the similarity of the 

instantaneous intensity on the temporal envelopes between the phrases and 

sentences, we first calculated the cosine similarity. For each time bin (400 bins in 

total), the similarity measure simultaneously treats the activity of all stimuli as one 

vector while considering each stimulus as one dimension (50 dimensions in total). 

To add the signal-to-noise ratio, the energy fluctuation was averaged using a 50 ms 

window centered on each bin. Statistical significance was evaluated via a 

permutation approach. Specifically, we generated a reference distribution with 

1000 similarity values, each of which was selected as the largest value of the cosine 

similarities that were calculated using the raw phrase envelopes with the time-

shuffled sentence envelopes. Our simulations suggested a threshold of 0.884 

corresponding to the p-value of 0.05, as shown on the right-hand vertical axis. The 

statistical analysis indicated a high similarity between the phrases and sentences 

on the temporal dimension of the energy profile.  

Figure 3h shows the comparison between the averaged spectrums of all 

phrases and all sentences. These spectrums were considered to reflect the prosodic 

information of the speech stimulus (Ding et al., 2016; Gui, Jiang, Zang, Qi, Tan, 

Tanigawa, Jiang, Wen, Xu, & Zhao, 2020; Henin et al., 2021; Jin, Lu, & Ding, 

2020a; Jin et al., 2018b). In this figure, the shaded area covers two SEM across the 

stimuli. A statistical comparison using a paired sample t-test was conducted at each 

frequency bin, in which no evidence was found to indicate a significant physical 
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difference between the phrases and sentences. In addition, to show a statistically 

similar frequency response on the energy profiles between the phrases and 

sentences, a robust Bayesian inference on all frequency bins above 1 Hz was 

conducted. Specifically, for each frequency bin, we first combined the 

instantaneous intensities across conditions into one pool. Then, a prior gamma-

distribution for the mean of each condition was generated, where the mean equals 

the average value of the pool and the standard deviation equals five times the 

standard deviation of the pool. The normality for both conditions was governed by 

a constant value of 30. The posterior distribution was recurrently updated using a 

Markov chain Monte Carlo (MCMC), and the statistical significance was 

determined according to whether zero was located in the 95% highest density 

interval (HDI) of the posterior distribution for the difference of the means. A robust 

Bayesian estimation allows us to accept the null hypothesis when the 95% HDI is 

entirely located within the empirical range (-0.1 to 0.1) for the region of practical 

equivalence (ROPE) (Carlin & Louis, 2009; Freedman, Lowe, & Macaskill, 1984; 

Freeman, Spiegelhalter, & Parmar, 1994; Hobbs & Carlin, 2007; Kruschke, 2014; 

Kruschke, 2011, 2013, 2018). Our analysis on all frequency bins suggested that 

there is no difference in the spectral dimension of the envelopes (the 95% HDI 

located in the ROPE range from -0.1 to 0.1) between the phrases and sentences. 

Figure 3i shows the simulation results using TRF. The reason for doing this is to 

demonstrate that any effect observed in this study is not driven by acoustic 

differences, and that the acoustic features are statistically matched in the temporal 

dimension. The underlying assumption is that if the physical-acoustical properties 

of the phrases and sentences are similar, then fitting a kernel (TRF) using these 

speech stimuli with the same signal would give similar results. By testing this 

hypothesis, we fitted two TRFs for each condition 15 times (to imitate the number 

of participants), each time with 100 simulated acoustic-response pairs. The 

acoustic input was constructed by randomly selecting 15 speech stimuli in the 

corresponding condition, and the simulated response was sampled from the 

standard Gaussian distribution. Optimization was performed using ridge 

regression and leave-one-out cross validation. After fitting the kernels, a paired 

sample t-test on each time point was conducted, and the comparison suggested no 

difference between the TRFs. Therefore, the simulation results also indicate that 
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the phrases and sentences had statistically similar acoustic properties with regard 

to time.  

As one might be interested in the acoustic comparison not only of the targeted 

pairs (e.g., the pairs with the same semantic components), but also the pairs within 

conditions (e.g., a comparison of two phrases), we performed a similarity analysis 

on all the possible pairs in our stimuli. To do so, we first calculated the cosine 

similarity on the energy profile between any two of our stimuli, then depicted the 

results in a representational similarity matrix (RSM). Our analysis suggested a high 

similarity pattern, in which the mean similarity value was 0.74 (maximum 1, 

ranging from 0.43 to 0.94 when omitting pairs with the same stimuli which equals 

1). To test the statistical significance, we performed a permutation test 1000 times 

to form a null distribution. In each iteration, we calculated the cosine similarity 

between a randomly selected real envelope and another randomly selected 

envelope that was shuffled in time. Our manipulations suggested a threshold of 

0.496 corresponding to a p-value of 0.05. The results indicated that 98.91% of all 

pairs were statistically similar. Note that only one targeted pair (i.e., the pair with 

controlled semantic components) did not reach the threshold. The results are 

shown in Figure 3j, in which the pairs with the similarity values lower than the 

threshold are represented by dark blue squares. (Note that the dark blue cross that 

separates the RSM into four regions serves merely as a reference grid, not data 

points.)  

In order to check whether syllables were the initial processing units, and also 

whether the syntactic integration would be reflected at the one-second interval we 

conducted a frequency-tagging analysis. In doing so, we constructed 40 trials of 15 

seconds for each participant by randomly selecting the neural responses 

corresponding to the phrase condition and the sentence condition. Then the 

discrete Fourier transform was performed to extract the frequency neural response. 

Decibel transformation was conducted based on the neural response at the baseline 

stage. A grand average was calculated to check the frequency domain 

characteristics. Figure 3k shows that there was a 1 Hz peak for both conditions. 

To check the statistical significance, a paired sample t-test, for both conditions, was 

conducted between the 1 Hz peak and the averaged frequency response around it, 

with a window of five bins on each side. The 1 Hz peak was statistically significant 

for both the phrase condition (t (14) = 8.72, p < 4.9e-7 ***) and the sentence 
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condition (t (14) = 8.46, p < 7.1e-7 ***). The results indicate that syntactic 

integration (Ding et al., 2016) happened at the one-second interval and our one-

second-duration normalization was effective. However, we can see that using the 

frequency-tagging approach makes it difficult to separate the two types of syntactic 

structures (t (14) = 0.63, p=0.53).  

Figure 3l shows the response spectrum around 4 Hz. A paired sample t-test 

suggests that there was a strong 4 Hz response for both the phrases (t (14) = 7.79, 

p < 1.8e-6 ***) and the sentences (t (14) = 9.43, p < 1.9e-7 ***). The results suggest 

that syllables were the initial processing units for both phrases and sentences (Ding 

et al., 2016).  

Figure 3. Stimulus comparison between phrases and sentences. (a) The 

syntactic structure of the phrases, which is represented by a sample phrase, de rode vaas 

(‘the red vase’). The determiner phase (DP) can first be decomposed into a determiner (D) 

and a noun phrase (NP), in which the NP can be separated into an adjective phrase (AP), 

which constitutes an adjective (A) and a noun (N). Finally, these words can be 

decomposed into four syllables. (b) The syntactic structure of sentences, which is 

represented by a sample sentence, de vaas is rood (‘the vase is red’). The sentence can be 

decomposed into two parts, which are a determiner phrase (DP) and a verb phrase (VP). 
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The DP can then be separated into a determiner (D) and a noun (N), and the VP can be 

separated into a verb (V) and an adjective (A). All these words are finally decomposed 

into four syllables. (c) and (d) The spectrograms of the sample phrase and sample 

sentence. The comparison between the spectrograms indicates a similar pattern between 

these two types of stimulus. (e) The comparison of the temporal envelopes of the sample 

phrase-sentence pair, i.e., de rode vaas (‘the red vase’) vs. de vaas is rood (‘the vase is red’), 

which were down-sampled to 400 Hz. The comparison suggests a similar energy profile 

across the sample pair. (f) The spectrum for the sample phrase-sentence pair, in which 

the horizontal and vertical axes indicate the frequency response of the temporal envelope 

of the phrase and sentence, respectively. The darker the dot indicates the higher the 

frequency. The Pearson correlation suggested that the spectrum of the sample phrase 

and sample sentence are highly similar (r = 0.94, p < 1e-5 ***). (g) The averaged 

temporal envelope of these two types of stimuli, blue for phrases and red for sentences. 

The black dotted line indicates highly similar physical properties between them in the 

time domain by cosine similarity. The statistical analysis on the similarity measure using 

a permutation test indicated an inseparable pattern. (h) Spectrum of the averaged 

envelopes for the two types of speech stimuli. The shaded area for each condition covers 

two SEM (N=50). Statistical analysis using Bayesian inference suggested a highly 

similar frequency response. (i) The results of the simulations using the temporal 

response function. Statistical analysis using a pairwise t-test indicated no difference 

between the two types of stimuli in any time point, which suggests similar acoustic 

properties between the two types of stimuli. (j) Similarity comparison for all possible 

stimuli pairs. As shown in the RSMs, the upper-left and lower-right panels show the 

comparison of all phrase pairs and all sentence pairs, respectively. The upper-right and 

lower-left matrices show the comparison of all possible phrase-sentence pairs. Statistical 

comparison using a permutation test indicated highly similar acoustic properties across 

all possible pairs. (k) The frequency-tagging effect at 1 Hz. The figure shows a strong 

peak at 1 Hz for the phrases (t(14) = 8.72, p < 4.9e-7 ***) and the sentences (t(14)=8.46, 

p < 7.1e-7 ***). It reflects that syntactic integration happened at 1 Hz, and our duration 

normalization (at one second) was effective. However, no difference in the 1 Hz activity 

was found between the two conditions, which points to the difficulty of separating the 

two types of syntactic structures (t(14) = 0.63, p=0.53) using the frequency-tagging 

approach. (l) The frequency-tagging effect at 4 Hz. The strong 4 Hz peak for the phrases 
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(t(14) = 7.79, p < 1.8e-6 ***) and the sentences (t(14) = 9.43, p < 1.9e-7 ***) suggests that 

syllables were the initial processing units for syntactic integration.   

4.3 Results 

Low-frequency phase coherence distinguishes phrases from sentences 

To answer our first question, whether the low frequency neural oscillations 

distinguish phrases and sentences, we calculated the inter-trial phase coherence. 

We then performed non-parametric cluster-based permutation tests (1000 

permutations) on a time window of 1200 ms starting at the audio onset and over 

the frequencies from 1 Hz to 8 Hz. The comparison indicated that phase coherence 

was significantly higher for sentences than phrases (p < 1e-4 ***, two-tailed). In 

the selected latency and frequency range, the effect was most pronounced at central 

electrodes. Figure 4a shows the temporal evolution, in steps of 50 ms, of the effect 

which is computed as the phase coherence of the phrase condition minus the 

phrase coherence of the sentence condition. Figure 4b shows the time-frequency 

plot using all the sensors in this cluster, in which the upper and lower panels are 

the plots for the phrase condition and sentence condition, respectively. 

The results indicate that the low-frequency phase coherence can reliably 

distinguish phrases and sentences, consistent with the hypothesis that low-

frequency phase coherence represents cortical computations over speech stimuli 

(Brennan & Martin, 2020; Doelling et al., 2014; Howard & Poeppel, 2010; Kaufeld 

et al., 2020; Luo & Poeppel, 2007; Martin, 2016, 2020; Meyer & Gumbert, 2018; 

Peelle, Gross, & Davis, 2013; Rimmele et al., 2018). Our findings therefore suggest 

that low-frequency phase coherence is involved in speech comprehension at the 

level of syntactic inference.  
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Figure 4. Phase coherence separates phrases from sentences at the theta 

band. Statistical analysis on the phase coherence (ITPC) was conducted by using the 

non-parametric cluster-based permutation test (1000 times) on a time window of 1200 

ms, which started at the audio onset and over the frequencies from 2 to 8 Hz. The results 

indicated that the phase coherence was higher for the sentences than the phrases (p < 1e-

4 ***, two-tailed). (a) The temporal evolution of the cluster that corresponds to the 

separation effect. The activity was drawn by using the ITPC of the phrases minus the 

ITPC of the sentences. The topographies were plotted in steps of 50 ms. (b) The ITPC 

averaged over all the sensors in the cluster. The upper and lower panels show the ITPC 

of the phrase condition and the sentence condition, respectively.  

 

The degree of low-frequency (< ~ 2 Hz) phase connectivity separates 

phrases and sentences  

We initially calculated the phase connectivity over the sensor space by ISPC at 

each time-frequency bin (for details see section 4.2, Methods). We then used a 

statistical threshold method to transform each connectivity representation into a 

super-threshold count at each bin. After baseline correction, we conducted a 

cluster-based permutation test 1000 times on a time window of 3500 ms starting 

at the audio onset and over the frequencies from 1 to 8 Hz, to compare the degree 
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of the phase connectivity between the phrases and sentences. The two structures 

showed a significant difference in connectivity (p < 0.01 **, two-tailed). The effect 

corresponded to a cluster extended from ~1800 ms to ~2600 ms after the speech 

stimulus onset, and was mainly located at a very low frequency range (< ~2 Hz). In 

the selected latency and frequency range, the effect was most pronounced at the 

right posterior region. Figure 5a shows the temporal evolution of this separation 

effect, which is represented by the degree of connectivity of the phrase condition 

minus that of the sentence condition (in steps of 100 ms). Figure 5b shows the 

time-frequency plot of the degree of phase connectivity, which is averaged across 

all sensors in this cluster. The left and right panels are the time-frequency plots for 

the phrase condition and the sentence condition, respectively.  

Since the statistical analysis indicated a difference between phrases and 

sentences in the degree of phase connectivity, we assessed how this effect was 

distributed in the sensor space. To do so, we extracted all binarized connectivity 

matrices that corresponded to the time and frequency range of the cluster and 

averaged all the matrices in this range for both conditions. Figure 5c shows the 

averaged matrix representation of the sentence condition minus that of the phrase 

condition. This result suggests that the connectivity difference was mainly localized 

at the frontal-central area. After extracting the matrix representation, we used all 

sensors of this cluster as seeds to plot connectivity topographies for both 

conditions. Figure 5d shows the pattern of the thresholded phase connectivity. 

The black triangles represent the seed sensors. The upper and lower panels 

represent the phrase and sentence condition, respectively. The figure shows how 

the phase connectivity (synchronization) is distributed on the scalp in each 

condition. From this figure we can see that the overall degree of the phase 

connectivity was stronger for the sentence condition than the phrase condition.  
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The analysis indicated that the degree of phase connectivity over the sensor 

space at the low frequency range (< ~ 2 Hz) could reliably separate the two 

syntactically different stimuli and that the effect was most prominent at the right 

posterior region.  

Figure 5. Low-frequency phase connectivity separates phrases and 

sentences. Statistical analysis on the phase connectivity degree was conducted by using 

the non-parametric, cluster-based permutation test (1000 times) on a time window of 

3500 ms, which started at the audio onset and over the frequencies from 1 to 8 Hz. The 

results indicated that the degree of phase connectivity was higher for the sentences than 

the phrases (p < 0.01**, two-tailed). (a) The temporal evolution of this cluster. The 

activity was drawn by using the degree of connectivity of the phrase condition minus 

that of the sentence condition. The topographies were plotted in steps of 100 ms. (b) The 

time-frequency plot of the degree of connectivity, which was averaged over all the 

sensors in this cluster. The left and right panels show the degree of connectivity of the 

phrase condition and sentence condition, respectively. (c) The matrix representation of 

the difference in phase connectivity between phrases and sentences. The figure was 

drawn by using the averaged connectivity matrix of the phrases minus that of the 

sentences. (d) All the sensors in this cluster were used as the seed sensors to plot the 

topographical representation of the phase connectivity. The upper and lower panels 

show the phase connectivity of the phrases and sentences, respectively.  
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Phase-amplitude coupling (PAC) as a generalized neural mechanism 

for speech perception 

To assess whether PAC distinguished phrases from sentences, we calculated 

the PAC value at each phase-amplitude bin for each condition, and then 

transformed it into the PAC-Z (for details see section 4.2, Methods). The grand 

average of the PAC-Z (average across sensors, conditions and participants) showed 

a strong activation over a region from 4 to 10 Hz for the frequency of phase and 

from 15 to 40 Hz for the frequency of amplitude. We therefore used the average 

PAC-Z value in this region of interest (ROI) for sensor clustering. For each 

participant, we first selected eight sensors that had the highest PAC-Z (conditions 

averaged) at each hemisphere. Averaging over sensors was conducted separately 

for the two conditions (phrase and sentence) and two hemispheres (see Figure 

6a). The Bonferroni correction was performed to address the multiple comparison 

problem. This resulted in a z-score of 3.73 for statistical significance (p=0.05; the 

z-score corresponded to the p-value of 0.05 ÷ 11 (the number of phase bins) * 12 

(the number of amplitude bins) * 4 (the number of conditions)). From the results, 

we can see that there was a strong low-frequency phase response (4 to 10 Hz) 

entrained to high frequency amplitude (15 to 40 Hz). The results indicate that the 

PAC was introduced when participants listened to the speech stimuli.  

Figure 6b shows how the sensors were selected. The larger the red circle, the 

more often the sensor was selected across participants. Figure 6c shows the 

topographical representation of the PAC-Z. The results indicate that when the 

participants listened to the speech stimuli, PAC was introduced symmetrically at 

both hemispheres over the central area. This could be evidence for the existence of 

PAC when speech stimuli are being processed. However, both the parametric and 

non-parametric statistical analyses failed to show a significant difference in the 

PAC-Z of phrases vs. sentences, which means we do not have evidence to show that 

the PAC was related to syntactic information processing. Therefore, our results 

suggest that PAC could be a generalized neural mechanism for speech perception, 

rather than a mechanism specifically recruited during the processing of higher-

level linguistic structures. 
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Figure 6. Phase-amplitude coupling as a general mechanism for speech 

perception. The figure shows PAC transformed into a z-score, PAC-Z. (a) The PAC-Z 

for the phrases and the sentences at each hemisphere. Each figure was created by 

averaging the eight sensors which showed the biggest PAC-Z over the ROI. A z-score 

transformation with Bonferroni correction was conducted to test the significance, which 

led to a threshold of 3.73, corresponding to p=0.05. (b) How sensors were selected at 

each hemisphere. The bigger the red circle, the more times the sensor was selected. (c) 

The topographical distribution of the PAC-Z, which indicates that PAC was largely 

localized at the bilateral central areas.  
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4.4 Discussion 

In this chapter, we reported on an investigation into how the temporal 

dimension of neural oscillations distinguishes the linguistic structure of phrases 

from that of sentences. Using a series of analytical techniques, we gave a 

comprehensive description of the dimensions of neural readouts that were 

sensitive to the syntactic structure discrimination. We found that phrases and 

sentences have different effects on phase coherence; i.e., sentences show more 

phase coherence compared to phrases. In addition, we demonstrated that while 

phrases and sentences recruit similar functional networks that are constructed by 

temporal synchronization, the engagement of those networks is scaled according 

to the syntactic information of the linguistic structures. The connectivity pattern 

suggests that phrases and sentences have different impacts on the distribution and 

intensity of the neural networks involved in speech comprehension. Furthermore, 

we found that phase-amplitude coupling between theta and gamma, which has 

been implicated in speech processing, is not sensitive to syntactic structure 

differences in speech. In the following sections we give more detail about our 

findings and discuss potential interpretations of them.  

Consistent with previous studies that showed the role of low-frequency phase 

coherence in the neural representation of speech (Doelling et al., 2014; Luo & 

Poeppel, 2007; Peelle & Davis, 2012; Peelle, Gross, & Davis, 2013), our analysis 

indicated that the degree of low-frequency phase coherence differed between 

phrases and sentences. In addition, at the selected range of interest, the statistical 

comparison of the phase coherence between phrases and sentences indicated a 

discrimination effect, which corresponded to a cluster that was expanded from 450 

ms to 900 ms at a low frequency range (~2 to ~8 Hz) and was most pronounced 

over the central sensors. Our results reinforce the role of low frequency 

synchronization in speech representation, and more importantly, show the 

engagement of low-frequency neural oscillations in syntactic structure 

discrimination. As we have matched the physical intensity in both the temporal and 

spectral dimensions between the phrases and the sentences, the effect of the phase 

coherence separating the two conditions should not reflect acoustic-level 

differences. Instead, as the effect occurred during the listening stage, we consider 

that it reflects the online extraction of critical information, such as a verb in a 
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sentence, for further syntactic representation. In this view, our results are 

consistent with the notion of ‘phase sets’ in computational models of structured 

representations that exploit oscillatory dynamics. Phase sets are representational 

groupings that are formed by treating distributed patterns of activation as a set 

when units are in (or out) of phase with one another across the network (Doumas 

& Martin, 2018; Martin & Doumas, 2017; Martin & Doumas, 2019; Martin, 2020; 

Martin & Doumas, 2020). 

Phase connectivity was also a robust neural readout for discriminating 

between phrases and sentences. In the predefined time and frequency range of 

interest, the statistical comparison indicated a difference corresponding to a 

cluster approximately 800 to 1600 ms after the audio offset, occurring at the very 

low frequency range (< ~2 Hz) that was most pronounced over the right posterior 

region. Phrases and sentences thus differentially impact the temporal 

synchronization of neural responses. 

Several aspects of the results are noteworthy. First of all, the relatively late 

latency suggests that the effect on temporal synchronization occurs after the initial 

presentation the speech stimulus. In our experiment, participants were randomly 

presented with a prompt for one of three possible tasks (color discrimination, 

object discrimination, and structure discrimination), which asked them to identify 

either ‘semantic’ information (object or color) or ‘syntactic’ information (whether 

the stimulus was a phrase or sentence) from the speech stimulus. Because of the 

random order of the task trials, participants had to pay close attention to the 

stimuli and continue to represent each stimulus after hearing it, namely until they 

received the task prompt. The tasks also ensured that participants could not select 

only one dimension of the stimulus for processing. Similarly, because we used an 

object and a color task, participants had to distribute their attention evenly across 

the adjectives and nouns, mitigating word-order differences between structures. In 

light of these controls and task demands, we consider it unlikely that the observed 

phase connectivity effects reflect mere differences in attention to phrases or 

sentences. Rather, we attribute the observed effects to differences in syntactic 

structure representation.  

Secondly, the low frequency range (< 2 Hz) of the observed effect is consistent 

with previous research (Brennan & Martin, 2020; Ding et al., 2016; Kaufeld et al., 
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2020; Keitel, Gross, & Kayser, 2018; Meyer et al., 2017). In Ding et al. (2016), the 

cortical response was modulated by the timing of the occurrence of linguistic 

structure; low-frequency neural responses (1-2 Hz) were found to track the highest-

level linguistic structures (phrases and sentences) in their stimuli. Here we 

extended their work to ask whether the 1 Hz response could be decomposed to 

reflect separate syntactic structures (phrases vs. sentences), and we identified the 

role of the phase in discriminating between these structures. In our study, all 

speech stimuli lasted one second, and except for the presence of syntactic structure, 

the stimuli were normalized to be highly similar. Our pattern of results therefore 

suggests that functional connectivity, as reflected in the temporal synchronization 

of the induced neural response, distinguishes between phrases and sentences.  

Lastly, phrases and sentences differed most strongly over the right posterior 

region of the brain, which is broadly consistent with previous research on speech 

comprehension. Functional magnetic resonance imaging (fMRI) studies implicate 

the posterior right hemisphere in processing syntactic structure (de Bode et al., 

2015; Grodzinsky, 2000; Grodzinsky & Friederici, 2006; Maess et al., 2001). 

Neurophysiological research also suggests the involvement of the right hemisphere 

in the extraction of slow timescale information (Abrams et al., 2008; Giraud et al., 

2007; Morillon et al., 2012; Poeppel, 2003). In addition, the P600, a positive ERP 

component often associated with syntactic processing, has a robust right-posterior 

topographical dominance (Coulson, King, & Kutas, 1998; Friederici, Pfeifer, & 

Hahne, 1993; Hagoort, Brown, & Groothusen, 1993; Osterhout & Holcomb, 1992; 

Osterhout & Mobley, 1995; Patel et al., 1998). In light of the existing literature, 

therefore, the right posterior distribution of the phase connectivity effects is 

consistent with the processing of syntactic structures, although we refrain from 

claims about underlying neural sources based on our EEG data. 

We observed PAC during speech comprehension, as the low frequency phase 

(~ 4 to 10 Hz) strongly entrained with high frequency amplitude (~ 15 to 40 Hz). 

This effect appeared largely over the bilateral central area. The bilateral central 

topographical distribution has been repeatedly shown to reflect sensory-motor 

integration (Babiloni et al., 2011; Klimesch, Sauseng, & Hanslmayr, 2007; Neuper, 

Wörtz, & Pfurtscheller, 2006; Pfurtscheller et al., 2006; Pfurtscheller et al., 1998; 

Schlögl et al., 2005; Suffczynski et al., 2001), which is consistent with the proposal 

from Giraud and Poeppel (2012) that PAC reflects an early step in speech encoding 
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involving sensory-motor alignment between the auditory and articulatory systems. 

Crucially, however, this effect did not distinguish phrases from sentences. Despite 

this null result, the pattern is compatible with the generalized model for speech 

perception (Giraud & Poeppel, 2012). This early step is presumably similar for 

phrases and sentences, and perhaps for any type of structure above the syllable 

level. 

In this chapter, we mainly focused on investigating the role of the temporal 

properties of neural oscillations in representing syntactic structure discrimination 

(phrases vs. sentences). Our results indicated a strong involvement of low-

frequency phase coherence and phase connectivity in syntactic representation. In 

addition, consistent with Giraud and Poeppel (2012), we showed that PAC was 

present when participants listened to speech, although it did not reach the level of 

syntactic structure discrimination. Our investigations provided a comprehensive 

picture on how the phase-related measures reflected syntactic structure 

discrimination. However, to draw a full picture, we need to explore the role of the 

intensity of the neural oscillations in syntactic structure representation and model 

how the acoustic features are encoded when differences in syntactic structure are 

being represented.  

 

Appendix 1: All the phrase-sentence pairs used in the 

experiment  

1. de blauwe bal (‘the blue ball’) / de bal is blauw (‘the ball is blue’) 

2. de blauwe knoop (‘the blue button’) / de knoop is blauw (‘the button is blue’) 

3. de blauwe sok (‘the blue sock’) / de sok is blauw (‘the sock is blue’) 

4. de blauwe strik (‘the blue bow’) / de strik is blauw (‘the bow is blue’) 

5. de blauwe stoel  (‘the blue chair’) / de stoel is blauw (‘the chair is blue’) 

6. de blauwe pijl (‘the blue arrow’) / de pijl is blauw (‘the arrow is blue’) 

7. de blauwe bel (‘the blue bell’) / de bel is blauw (‘the bell is blue’) 

8. de blauwe helm (‘the blue helmet’) / de helm is blauw (‘the helmet is blue’) 

9. de blauwe boot (‘the blue boat’) / de boot is blauw (‘the boat is blue’) 
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10. de blauwe mok (‘the blue mug’) / de mok is blauw (‘the mug is blue’) 

11. de groene tas (‘the green purse’) / de tas is groen (‘the purse is green’) 

12. de groene laars (‘the green boot’) / de laars is groen (‘the boot is green’) 

13. de groene bijl (‘the green ax’) / de bijl is groen (‘the ax is green’) 

14. de groene schoen  (‘the green shoe’) / de schoen is groen (‘the shoe is green’) 

15. de groene ster  (‘the green star’) / de ster is groen (‘the star is green’) 

16. de groene kom (‘the green bowl’) / de kom is groen (‘the bowl is green’) 

17. de groene deur  (‘the green door’) / de deur is groen (‘the door is green’) 

18. de groene kam (‘the green comb’) / de kam is groen (‘the comb is green’) 

19. de groene pen (‘the green pen’) / de pen is groen (‘the pen is green’) 

20. de groene brug (‘the green bridge’) / de brug is groen (‘the bridge is green’) 

21. de rode trui (‘the red sweater’) / de trui is rood (‘the sweater is red’) 

22. de rode doos (‘the red box’) / de doos is rood (‘the box is red’) 

23. de rode vaas (‘the red vase’) / de vaas is rood (‘the vase is red’) 

24. de rode vis (‘the red fish’) / de vis is rood (‘the fish is red’) 

25. de rode bank (‘the red couch’) / de bank is rood (‘the couch is red’) 

26. de rode mier (‘the red ant’) / de mier is rood (‘the ant is red’) 

27. de rode bus (‘the red bus’) / de bus is rood (‘the bus is red’) 

28. de rode tent (‘the red tent’) / de tent is rood (‘the tent is red’) 

29. de rode bloem (‘the red flower’) / de bloem is rood (‘the flower is red’) 

30. de rode draak (‘the red dragon’) / de draak is rood (‘the dragon is red’) 

31. de gele hoed (‘the yellow hat’) / de hoed is geel (‘the hat is yellow’) 

32. de gele riem (‘the yellow belt’) / de riem is geel (‘the belt is yellow’) 

33. de gele sjaal (‘the yellow scarf’) / de sjaal is geel (‘the scarf is yellow’) 

34. de gele broek (‘the yellow pants’) / de broek is geel (‘the pants is yellow’) 

35. de gele kan (‘the yellow pitcher’) / de kan is geel (‘the pitcher is yellow’) 

36. de gele lamp (‘the yellow lamp’) / de lamp is geel (‘the lamp is yellow’) 
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37. de gele eend (‘the yellow duck’) / de eend is geel (‘the duck is yellow’) 

38. de gele jas (‘the yellow jacket’) / de jas is geel (‘the jacket is yellow’) 

39. de gele fles (‘the yellow bottle’) / de fles is geel (‘the bottle is yellow’) 

40. de gele fiets (‘the yellow bicycle’) / de fiets is geel (‘the bicycle is yellow’) 

41. de paarse vlag (‘the purple flag’) / de vlag is paars (‘the flag is purple’) 

42. de paarse tas (‘the purple bag’) / de tas is paars (‘the bag is purple’) 

43. de paarse mand (‘the purple basket’) / de mand is paars (‘the basket is purple’) 

44. de paarse jurk (‘the purple dress’) / de jurk is paars (‘the dress is purple’) 

45. de paarse bril (‘the purple glasses’) / de bril is paars (‘the glasses is purple’) 

46. de paarse kerk (‘the purple church’) / de kerk is paars (‘the church is purple’) 

47. de paarse pop (‘the purple doll’) / de pop is paars (‘the doll is purple’) 

48. de paarse muur (‘the purple wall’) / de muur is paars (‘the wall is purple’) 

49. de paarse veer (‘the purple feather’) / de veer is paars (‘the feather is purple’) 

50. de paarse kast (‘the purple closet’) / de kast is paars (‘the closet is purple’) 

 



 

  

5｜ Representing syntactic structure 

discrimination in the intensity of neural 

oscillations2 

Abstract 

Using the same dataset as in Chapter 4, we extended our investigation into the 

neural representation of syntactic structure discrimination. Unlike the analysis in 

the last chapter, where temporal synchronization was heavily weighted, this 

chapter explores how syntactic structure discrimination is reflected in the intensity 

of neural oscillations, and how acoustic features are differently encoded to separate 

phrases from sentences. We found that syntactic structure discrimination was well 

captured in both the intensity and degree of power connectivity of induced neural 

responses in the alpha band (~ 7.5 to 13.5 Hz). In addition, our modeling suggested 

that there were different encoding states in both the temporal and spectral 

dimensions as a function of the quantities and types of linguistic structures 

perceived, over and above the acoustically driven neural response. Complementing 

the findings in the last chapter, our results in this chapter provide new insights into 

the neural readout for syntactic structure discrimination. 

  

 

2 Adapted from Bai, F., Meyer, A. S., & Martin, A. E. (2022). Neural dynamics differentially encode phrases 
and sentences during spoken language comprehension. PLoS Biology, 20(7), e3001713. 
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5.1 Introduction 

In the last chapter, we explored how the temporal synchronization of the 

neural oscillations separates the syntactically different linguistic structures. In our 

phase-related analysis, we found that the low-frequency (< 8 Hz) phase measures 

contributed to separating the phrases from the sentences even when the two types 

of stimuli had highly similar temporal-spectral properties. However, the intensity 

of the neural oscillations might also be involved in discriminating the two types of 

speech stimuli (phrases vs. sentences). Building upon the work in Chapter 4 and 

using the same dataset, we now address the following three questions. The first is 

how the intensity (e.g. power) of the induced neural response contributes to the 

differentiation between the phrases and sentences. The second is whether the 

structural differences between the phrases and sentences could be reflected by the 

intensity connectivity of neural oscillations. The third and final question is how the 

acoustic features of the phrases and sentences are represented in the brain to 

reflect the discrimination of syntactic structures.  

Research into speech perception and comprehension has shown evidence that 

the intensity of neural oscillations from almost all canonical bands were correlated. 

As for neural oscillations at slow (< ~8 Hz) and fast (> ~25 Hz) timescales, 

researchers are largely in agreement regarding their role in speech processing. For 

instance, the intensity of low-frequency (< 8 Hz) neural oscillations has proved to 

be related to the representation of hierarchical linguistic structures (Ding et al., 

2016; Kaufeld et al., 2020; Keitel, Gross, & Kayser, 2018) and speech intelligibility 

(Brennan & Martin, 2020; Doelling et al., 2014; Luo & Poeppel, 2007; Peelle & 

Davis, 2012; Peelle, Gross, & Davis, 2013). The high frequency (> 25 Hz) amplitude 

has also revealed its engagement in encoding the phonemic-level units (Gross et 

al., 2013; Kerlin, Shahin, & Miller, 2010; Morillon et al., 2012; Palva et al., 2002; 

Peña & Melloni, 2012; Shahin, Picton, & Miller, 2009). However, whether the 

induced power of alpha band (~ 8 to ~13 Hz) oscillations is a reflection of auditory 

processing or language processing is still under debate. Studies have shown that 

alpha band oscillations correlate with verbal working memory (Obleser et al., 2012; 

Wilsch & Obleser, 2016) and auditory attention (Strauß, Wöstmann, & Obleser, 

2014; Wöstmann et al., 2016; Wöstmann et al., 2015; Wöstmann, Lim, & Obleser, 

2017). A neural physiology model of speech perception also considered the induced 
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neural response at alpha band as an endogenous (top-down) gating control (Ghitza, 

Giraud, & Poeppel, 2013; Giraud & Poeppel, 2012). However, studies have further 

shown that alpha band oscillations reflect speech intelligibility (Becker et al., 2013; 

Dimitrijevic et al., 2017; Obleser & Weisz, 2012).  

Due to these inconsistencies, we wanted to check how the intensity of neural 

oscillations would reflect the discrimination between the two types of syntactic 

structures (phrases vs. sentences). If the induced neural activities reflect the 

syntactic differences between the phrases and sentences, which frequencies are 

involved in this separation? Could we find evidence that alpha band oscillations are 

engaged in representing the differences between phrases and sentences?   

 Successful speech comprehension involves inter-communication among 

different brain regions, and one impacted neural physiological model (Hickok & 

Poeppel, 2000, 2004, 2007) emphasized the critical role of functional connectivity 

via neural oscillations. Unlike the phase connectivity, which indicates the temporal 

synchronization across brain regions, the neural networks that are generated by 

intensity describe an energy-organized network reflecting the encoding and 

representing of the information extracted from the sensory input. As far as we 

know, studies of high-level linguistic processing, e.g. syntactic structure 

discrimination, rarely use this approach.  

As this is an exploratory study, we wanted to know whether the functional 

connectivity via the intensity of neural oscillations would reflect the separation 

between the phrases and the sentences. If so, which frequency bands would be 

involved in discriminating different types of syntactic structures?  

Analyzing the neural activities that correspond to participants doing a 

cognitive task is sort of indirect in terms of showing how the stimuli were encoded. 

A more straightforward approach is to model how the pertinent features of the 

stimuli are being represented (encoded) in the brain. Previous research using the 

spectral-temporal response function (STRF) has shown that low-frequency neural 

activities reflect the encoding of acoustic features in speech (Ding & Simon, 2012a, 

2012b, 2013b), and phonemic-level information can be reflected in the low-

frequency neural response entrained to speech (Di Liberto, O’Sullivan, & Lalor, 

2015). Inspired by studies using the STRF, we aimed to find out whether the 

syntactic structure discrimination would be reflected in the encoding of acoustic 
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features, which is especially interesting as the physical properties of our speech 

stimuli are fully matched. We expected to see that a different encoding regime 

would be employed in order to represent the two different syntactic structures.   

In sum, using the same dataset as Chapter 4, in this chapter we convey 

additional information on how the intensity of neural oscillations works when 

discriminating between phrases and sentences, as well as whether the acoustic 

features are encoded differently to represent the two syntactically different 

structures.  

5.2 Methods 

Note that the experiments presented in this chapter used the same dataset as 

those in Chapter 4; therefore, some parts are reiterated here for easy reference.  

Participants 

Fifteen Dutch native speakers (8 females and 7 males), aged 22 to 35, 

participated in the study. All participants were undergraduate or graduate students, 

and were right-handed. They reported no history of hearing impairment or 

neurological disorder. The experimental procedure was approved by the Ethics 

Committee of the Social Sciences Department at Radboud University. Written 

informed consent was obtained from each participant before the experiment, and 

they were paid for their participation.  

Stimuli 

Fifty line-drawings of common objects were selected from a standardized 

corpus (Snodgrass & Vanderwart, 1980). The Dutch names of all the objects were 

mono-syllabic and had non-neuter gender. The objects appeared as colored line-

drawings on a grey background. We presented each line-drawing in five colors: 

blue (blauw), red (rood) yellow (geel), green (groen), and purple (paars). In total, 

this yielded 250 pictures. The line-drawings were sized to fit into a virtual frame of 

4 by 4 cm, corresponding to a 2.29° of visual angle for the participants.  

We then selected 50 figures (50 different objects in five colors) to create the 

speech stimuli. For each selected line-drawing, a four-syllable phrase-sentence pair 

was created, e.g. de rode vaas (‘the red vase’) and de vaas is rood (‘the vase is red’). 
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This means that in total, we had 100 speech stimuli (50 phrases and 50 sentences). 

All stimuli were synthesized by an online synthesizer (www.neospeech.com), using 

a Dutch male voice, Guus. All speech stimuli were 733 to 1125 ms in duration (mean 

= 839 ms, SD = 65 ms). To normalize the synthesized auditory stimuli, they were 

first resampled to 44.1 kHz. Then any speech stimuli that were longer than 1000 

ms were cut at both sides to shorting them to less than 1000 ms without missing 

any meaningful dynamics. The 10% at both ends of each stimulus was smoothed by 

a linear ramp (a cosine wave) to remove the abrupt sound burst. All stimuli were 

fitted into 1000 ms with symmetric zero paddings. Finally, to normalize the 

intensity of the stimuli, the root-mean-square value of each stimulus was 

normalized to -16 dB.  

Experimental procedure 

Each trial started with a fixation cross being visible at the center of the screen 

(for 500 ms in duration). Participants were asked to look at the screen. 

Immediately after the fixation cross had disappeared, the participants heard a 

1000 ms spoken stimulus, either a phrase or a sentence, followed by a three-second 

silence; then the participants were asked to perform one of three discrimination 

tasks, indicated to them by an index number (1, 2 or 3 showing at the center of the 

screen for 500 ms). All responses were recorded via a parallel port response box, 

in which the two buttons were labeled as ‘phrase/match’ and ‘sentence/mismatch’. 

Each response was followed by a silent interval of 3 to 5.2 seconds.  

The data collection was broken down into five blocks, with 48 trials in each 

block. Before the core data collection, several practice trials were conducted for 

each participant to make sure they understood the task. Trials in each block were 

fully matched in across linguistic structure (phrase or sentence) and task type (1, 2 

or 3). For instance, half the spoken stimuli were phrases and half were sentences 

(24 of each structure), and six combinations (eight trials for each type) were evenly 

distributed in each block (eight trials times two linguistic structures times three 

task types). The order of the trials was pseudo-random throughout the whole 

experiment. The behavioral results indicated that the task was relatively easy and 

no differences were found between the phrases and the sentences. For all tasks 

combined, the accuracy rates for phrases and sentences were 97.9 ± 3% and 97.3 ± 

3% (p = 0.30), respectively.  
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After the main experiment, a localizer task was performed, in which a ‘beep’ 

tone (1 kHz, 50 ms in duration) was played 100 times (jitter 2 to 3 seconds) for each 

participant, in order to localize the canonical auditory response (N1-P2 complex).  

EEG recording  

EEG data was recorded using a 64-channel active sensor system from Brain 

Products (GmbH) in a sound-dampened, electrically shielded room. Signals were 

digitized online at 1000 Hz, with high-pass and low-pass at 0.01 Hz and 249 Hz, 

respectively. Two electrodes, AFz and FCz, were used as ground and reference. All 

electrodes were placed on the scalp based on the international 10-20 system and 

the impedance of each one was kept below 5 kΩ. The experimental procedure was 

controlled by MATLAB 2019a (The MathWorks, Natick, MA) with Psychtoolbox-3 

(Brainard, 1997). Auditory stimuli were played at 65 dB SPL and delivered through 

air-tube earplugs (Etymotic ER-3C, Etymotic Research, Inc.). Event markers were 

sent via a parallel port for tagging the onset of the events under investigation (i.e., 

speech onset, task index onset, etc.). 

EEG data preprocessing 

The EEG data preprocessing was conducted via MATLAB using the EEGLAB 

toolbox (Delorme & Makeig, 2004) and customized scripts. The data were first 

down-sampled to 256Hz then high-pass filtered at 0.5 Hz (finite impulse response 

filter, FIR; zero-phase lag). The raw data were first cleaned by the time-sliding PCA 

(Chang et al., 2018; Kothe & Jung, 2016). Then all detected bad channels were 

interpolated with spherical interpolation. After transferring the data to average 

reference, the online reference FCz was recovered and the line noise, 50 Hz and its 

harmonics, was removed. 

Following the above steps, epochs of two seconds preceding and nine seconds 

following the auditory stimulus onset were extracted. The deletion of bad trials and 

removal of artifacts were conducted in two steps. First, independent component 

analysis (ICA) was used for decomposing the data into the component space 

(number of components equals data rank). Then for each independent component, 

we used the short-time Fourier transform to convert each trial into the power 

spectrum, in which we extracted a value that was calculated by the power 

summation between 15 and 50 Hz. Then all the extracted values in each component 
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formed a distribution. From this distribution, we transformed all the extracted 

values to z-scores, and the epochs with values outside the range of plus or minus 

three standard deviation were deleted. Second, ICA was conducted again on the 

trial-rejected data for eye-related artifact removal and muscle activity elimination. 

Artifact components were identified and removed using an automatic classification 

algorithm (Winkler, Haufe, & Tangermann, 2011). All the preprocessing steps 

resulted in the removal of, on average, 7 components (range 4 to 11) and 22 trials 

(including incorrect trials and trials with excessively slow responses, range 10 to 

30, 4% to 12.5%) per participant. Finally, volume conduction was attenuated by 

applying surface Laplacian (Cohen, 2014; Srinivasan et al., 2007; Winter et al., 

2007). 

EEG data analysis  

Time frequency decomposition 

 To perform time-frequency decomposition, the single-trial time series were 

convolved with a family of complex wavelets (1 to 50 Hz in 70 logarithmically 

spaced steps). Temporal and spectral resolution were optimized by changing the 

cycle from 3 to 30 in logarithmic steps. The induced response (power) was then 

extracted from the analytical output at each time-frequency bin by taking the 

summation of the squared wavelet coefficients. Decibel transformation was 

performed at each frequency, in which the average power at the duration from 800 

to 200 ms before the audio onset was used as the baseline. 

Power connectivity 

After time-frequency decomposition, the induced power at each channel-time-

frequency-trial bin was extracted. For each condition, the power connectivity 

between each sensor pair at each time-frequency bin was calculated as the rank 

correlation between the power response of all trials in one sensor and the power 

response of all trials in the other sensor. The power connectivity calculation 

resulted in an all-sensors-to-all-sensors (65*65 in our data) representation at each 

time-frequency bin for each condition.  

To compare the power connectivity levels between the phrases and sentences 

in the time-frequency space, a statistical threshold method was used. More 

specifically, at each time-frequency bin, we formed a distribution by pooling 
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together all the connectivity values from both conditions, and then defined the 

threshold as the value at half the standard deviation above the median. We then 

binarized the connectivity matrix at each bin for each condition by applying the 

corresponding threshold. The connectivity level at each time-frequency bin was 

represented as the total number of connectivity values that were above this 

threshold. Finally, we transferred the connectivity level at each time-frequency bin 

as the percentage change relative to the connectivity level of the baseline, which 

was calculated as the average connectivity level in the duration from 800 to 200 

ms before the audio onset.  

Spectral-temporal response function (STRF) 

The STRF is a linear kernel which convolves with the specified features of the 

speech signal to estimate the neural response in time. It can be interpreted as a 

linear filter which transforms the stimulus feature into the neural response (Crosse 

et al., 2016; Di Liberto, O’Sullivan, & Lalor, 2015). 

In our study, the stimulus features were defined as the narrow-band temporal 

envelopes, which were obtained by first filtering the speech stimulus into 16 

logarithmically spaced frequency bands between 0.05 and 8 kHz to simulate the 

frequency decomposition by the brain (Greenwood, 1990). These were then 

extracted by the Hilbert transform.  

To construct the stimulus-response pairs, we first applied a linear ramp to 

both sides of each neural response corresponding to a trial (10% at each side) to 

attenuate the abrupt onset and offset. Then, we matched each one-second neural 

response with the corresponding stimulus features.  

Since each trial was one second long, to optimize the estimation of the STRF, 

a randomization procedure was applied to create a new data structure. We first 

randomly selected 80% of all unique speech stimuli, and then the stimulus-

response pairs that corresponded to the selected speech stimuli were extracted as 

the seed data to construct the dataset for performing the cross validation. We 

constructed 35 stimulus-response pairs lasting 10 seconds each, which were all 

concatenations of the 10 randomly selected one-second stimulus-response pairs 

(bootstrapping).  

The STRF was estimated using the ridge regression with the leave-one-out 

cross validation. Since the ridge regression weights the diagonal elements of the 
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covariance matrix of the stimulus features with a lambda parameter (Crosse et al., 

2016; Tikhonov & Arsenin, 1977), we predefined the range of lambda as 10 values 

from 6 to 100 in linear steps before the cross validation. We used the extracted 

dataset (35 stimulus-response pairs lasting 10 seconds each) to conduct the cross 

validation for optimizing the STRF. The Pearson correlation between each real 

neural response and each predicted response was calculated. The average of all the 

coefficients of the Pearson correlation (across all sensors and all trials) was defined 

as the performance of the STRF. The model with the lambda parameter which gave 

the best performance was used as the optimized STRF.  

Since previous research has shown that a slow (low-frequency) neural 

response reliably reflects the neural representation of the acoustic features in 

speech (Ding & Simon, 2012a, 2012b), we initially checked whether the STRFs for 

different frequency bands faithfully reflect the encoding of the acoustic features. 

To do so, we first filtered the neural responses corresponding to each trial into five 

canonical frequency bands, which were delta (< 4 Hz), theta (4 to 7 Hz), alpha (8 

to 13 Hz), beta (14 to 30 Hz), and low-gamma (31 to 50 Hz). Then, the STRF for 

each condition at each frequency band was estimated using the procedure 

mentioned above. In order to check the performance of each estimated STRF, the 

stimulus-response pairs (the unseen pairs for each STRF) that corresponded to the 

remaining 20% of the speech stimuli were extracted as the seed data for 

constructing the testing dataset. We extracted five stimulus-response pairs of four 

seconds each from the testing data for each STRF. All of them were concatenations 

of four randomly selected pairs lasting 1 seconds each.  

The real performance of each STRF was calculated by using the frequency- and 

condition-matched stimulus-response pairs. The random performance was 

calculated 1000 times by using randomly selected stimulus-response pairs.  

For fitting the low frequency STRF (< 9 Hz), the same procedure was followed. 

The performance of the averaged STRF (averaged across participants) in each 

condition was computed using the average of the Pearson correlations for the real 

neural responses and the predicted responses across sensors.  

The temporal response function (TRF) and the spectral response function 

(SRF) for each participant in each condition were extracted by averaging the STRF 

over the frequencies from 0.1 kHz to 800 kHz and by averaging the STRF over the 
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time from 0 to 400 ms, respectively. All the calculations in this section were 

conducted using customized scripts, the scripts from the EEGLAB toolbox 

(Delorme & Makeig, 2004) and the Multivariate Temporal Response Function 

Toolbox  (Crosse et al., 2016).  

Statistical analysis 

In addition to using parametric statistical methods to check whether the 

difference between phrases and sentences was significant, a cluster-based non-

parametric permutation test was applied. This method deals with the multiple-

comparisons problem and at the same time takes the data’s dependency (temporal, 

spatial and spectral adjacency) into account. For all types of analysis that followed 

this inference method, the subject-level data were initially averaged across trials 

and for each single sample, i.e. a time-frequency-channel point, a dependent t-test 

was performed. We selected all samples for which the t-value exceeded an a priori 

threshold, p<0.05, and these were subsequently clustered on the basis of spatial 

and temporal-spectral adjacency. The sum of the t-values within a cluster was used 

as a cluster-level statistic. The cluster with the maximum sum was subsequently 

used as test statistic. By randomizing the data across the two conditions and 

recalculating the test statistic 1000 times, we obtained a reference distribution of 

the maximum cluster t-values. This distribution was used to evaluate the statistics 

of the actual data. This method was carried out using the FieldTrip toolbox (Maris 

& Oostenveld, 2007; Oostenveld et al., 2011). 

Acoustic normalization and analyses 

See the corresponding section in Chapter 4.  

5.3 Results 

Alpha band inhibition reflects discrimination between phrases and 

sentences 

To query whether neural oscillations at the alpha band reflect the processing 

of syntactic structure, we calculated the induced power. The grand average (over 

all participants and all conditions) of the induced power showed a strong inhibition 

at the alpha band (~7.5 to 13.5 Hz). Therefore, we checked whether this alpha band 
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inhibition could separate the two types of linguistic structures. A statistical analysis 

was conducted using the non-parametric cluster-based permutation test (1000 

times) over the frequencies of the alpha band with a 1000 ms time window that 

started at the audio onset. The results indicated that the alpha band inhibition was 

stronger for the phrase condition than the sentence condition (p < 0.01 **, two-

tailed). In the selected time and frequency range, this effect corresponded to a 

cluster that lasted from ~350 to ~1000 ms after the audio onset and was largely 

localized at the left hemisphere, though the right frontal-central sensors were also 

involved during the temporal evolution of this cluster. Figure 1a shows the 

temporal evolution of this cluster in steps of 50 ms using the induced power of the 

phrase condition minus the induced power of the sentence condition. Figure 1b 

shows the time-frequency plot of the induced power using the average of all the 

sensors in this cluster. The upper and lower panels show the phrase and sentence 

condition, respectively. From these figures, we can see that the alpha band 

inhibition was stronger for the phrase condition than the sentence condition. These 

results show that the processing of phrases and sentences is reflected in the 

intensity of the induced neural response in the alpha band.  

Figure 1. Alpha band inhibition suggests a separation between phrases and 

sentences. Statistical analysis on the induced neural response was conducted by using 
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the non-parametric cluster-based permutation test (1000 times) on a time window of 

1000 ms, which started at the audio onset and over the frequencies from 7.5 to 13.5 Hz. 

The results indicated that the power was significantly higher for sentences than phrases 

(p < 0.01 **, two-tailed). (a) The temporal evolution of the cluster that corresponds to 

this separation effect. The activity was drawn by using the induced power of the phrase 

condition minus that of the sentence condition. The topographies were plotted in steps of 

50 ms. (b) The induced power averaged over all the sensors in this cluster. The upper 

and lower panels show the induced power of the phrases and sentences, respectively.  

 

The power connectivity in the alpha band indicates a network-level 

separation between phrases and sentences 

We calculated power connectivity in each sensor-pair at each time-frequency 

bin using a rank correlation (for details see section 5.2, Methods). The grand 

average of the power connectivity level (over all participants and all conditions) 

showed a strong inhibition at the alpha band from 100 to 2200 ms after the audio 

onset. Because it revealed a strong power connectivity inhibition, this region was 

defined as the ROI. For each participant, we selected eight sensors at each 

hemisphere that indicated the greatest inhibition on the condition-averaged power 

connectivity. This was followed by averaging across all the selected sensors, which 

resulted in four conditions for each participant (left-phrase, left-sentence, right-

phrase, and right-sentence).  

Figure 2a shows the degree of power connectivity, which was averaged over 

all participants for each condition. To check whether this metric could separate the 

phrases and the sentences, a Stimulus-Type*Hemisphere two-way repeated-

measure ANOVA was conducted. The comparison revealed that the main effect was 

derived from Stimulus-Type (F (1, 14) = 5.28, p = 0.033 *). A planned post-hoc 

comparison using paired sample t-tests on the main effect of the Stimulus-Type 

showed that the power connectivity inhibition was stronger for the phrases than 

the sentences (t(29) = 2.82, p = 0.0085 ***). Figure 2b shows the power 

connectivity degree for each extracted condition. Figure 2c illustrates what 

sensors were used. The larger the red circle, the more times the sensor was selected.  

Since the degree of the power connectivity over the alpha band indicated a 

separation between the phrases and sentences, we also checked how this difference 
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was distributed in the sensor space. To do so, we extracted the binarized power 

connectivity representations (matrices) that are located in the ROI, and then 

averaging was performed for each condition across all connectivity matrices. 

Figure 2d shows the difference in the degree of power connectivity over the sensor 

space using the average of the binarized sentence connectivity matrix minus the 

average of the binarized phrase connectivity matrix. The results indicate that the 

inhibition of the power connectivity was stronger for phrases than for sentences. 

In other words, the overall level of the power connectivity was higher for sentences 

than phrases. Figure 2e is the topographical representation of this, which was 

plotted using the binarized power connectivity of the selected sensors. The upper 

and lower panels indicate the phrase condition and the sentence condition, 

respectively. From this figure, we can see that the difference was largely localized 

at the bilateral central area, and more strongly present in the left than the right 

hemisphere. These results reflect that the neural network which was organized by 

the intensity of the induced power at the alpha band was different for the two types 

of syntactic structure.  

Figure 2. Power connectivity in the alpha band suggests a separation 

between phrases and sentences. (a) The degree of power connectivity for all 

conditions. Each plot was clustered by the sensors at each hemisphere that showed the 

biggest inhibition of the power connectivity (as a grand average). (b) The results of a 

two-way repeated-measure ANOVA for the power connectivity on the factors of 

stimulus-type (phrase or sentence) and hemisphere (left or right). The results indicate a 
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significant main effect of Stimulus-Type, and a post-hoc comparison on the main effect 

indicated that the overall inhibition of the power connectivity was stronger for the 

phrases than the sentences (t(29) = 2.82, p = 0.0085 ***, two-sided). (c) The selection of 

sensors for the clustering. The bigger the red circle, the more times the sensor was 

selected across participants. (d) The connectivity differences between the phrases and 

sentences on all sensor pairs. The figure was drawn using the average of the binarized 

connectivity matrix of the sentence condition minus that of the phrase condition. The 

results indicate that the degree of connectivity over the sensor space for the sentence 

condition was higher than for the phrase condition. (e) Topographical plot of the 

binarized connectivity that was clustered by the sensors showing the most inhibition of 

power connectivity. The upper and lower panels show the phrase and sentence condition, 

respectively.  

 

Different encoding states for phrases versus sentences in both 

temporal and spectral dimensions  

Previous research has shown that the low-frequency neural response reliably 

reflects the phase-locked encoding of the acoustic features of speech (Ding & Simon, 

2012a, 2012b). Therefore, we initially tested whether the neural response from all 

canonical frequency bands could equally reflect the encoding of the acoustic 

features. To do so, we fitted the STRF for each condition at all frequency bands, 

which are delta (< 4 Hz), theta (4 to 7 Hz), alpha (8 to 13 Hz), beta (14 to 30 Hz), 

and low-gamma (31 to 50 Hz). Then we compared the real performance of the 

STRFs to their random performance (for details see section 5.2, Methods). Figure 

3a shows the results of this comparison. The blue and red dots represent the real 

performance of the STRFs, and the error bar indicates one SEM on each side. The 

small gray dots represent the random performance (1000 times in each frequency 

band per condition). The upper border delineated by these gray dots represents the 

percentile of 97.5 for the random performance. The performance of the STRFs was 

above chance level only at the low frequency (delta and theta) bands, which is 

consistent with previous research (Ding & Simon, 2012a, 2012b). Our results 

verified that the low frequency STRF reliably reflected the relationship between the 

acoustic features of speech and the neural response at low frequencies.  
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Since only low-frequency neural responses robustly reflected the encoding of 

the speech stimuli, we fitted the STRF for both conditions using the neural 

response that was low-passed at 9 Hz. Leave-one-out cross validation was used to 

maximize the performance of the STRFs. Figure 3b shows the performance of the 

STRF for each condition. The light dots, blue for phrases and red for sentences, 

represent the model’s performance on each testing trial. The solid dots represent 

the model’s performance that was averaged over all trials, and the error bars 

represent one SEM on each side. A paired sample t-test was used to compare the 

performance between the phrase condition and the sentence condition. No 

evidence was found to indicate a difference in performance between these two 

conditions (t (74) = 1.25, p = 0.21). The results indicate that the STRFs fitted 

equally well for phrases and sentences. Thus, any difference in temporal-spectral 

features between the STRFs of phrases vs. sentences cannot be driven by the 

model’s performance. Figure 3c shows the comparison between the real neural 

response and the response predicted by the model at a sample sensor, Cz. The 

upper and lower panels show the performance of the STRF for phrases (r = 0.47, 

N=1024, p < 1e-5 ***) and sentences (r = 0.41, N=1024, p < 1e-5 ***), respectively.  

The grand average of the STRFs was negative from 0 to 400 ms in the time 

dimension and from 100 to 1000 Hz in the frequency dimension, and the sensor 

clustering of the STRF was conducted based on the average activation in this ROI. 

More concretely, we selected eight sensors at each hemisphere for each participant, 

which showed the strongest average magnitude (negative) in this region. Figure 

3d shows the clustered STRFs that were averaged across all participants. Figure 

3e depicts the sensors that were selected across the participants: the bigger the red 

circle, the more often the given sensor was selected.  

To compare the differences in the kernel (STRF) for both the temporal and 

spectral dimensions, the temporal response function (TRF) and the spectral 

response function (SRF) were extracted separately for each condition. Figure 3f 

shows the TRFs that were averaged across all participants. The grand average of all 

TRFs showed two peaks at ~100 ms and ~300 ms. We therefore defined the first 

temporal window as 50 to 150 ms (center at 100 ms) and the second temporal 

window as 250 to 350 (center at 300 ms) to search for the magnitude and latency 

of these two peaks. The latency of each peak was defined as the time when it 

appeared, and the magnitude was defined as the average strength over a 5 ms 



Chapter 5     
 

 114

window on both sides around each peak. After extracting these measurements, a 

Stimulus-type*Peak-type*Hemisphere three-way repeated-measure ANOVA was 

conducted on both the magnitude and the latency.  

For the magnitude of the TRF (Figure 3g), the statistical comparison showed 

that there was a significant main effect from the Stimulus-Type (F (1, 14) = 13.58, 

P = 0.002 ***) and a significant three-way interaction involving Stimulus-

type*Peak-type*Hemisphere (F (1, 14) = 15.25, P = 0.001 ***).  

The post-hoc comparison on the main effect of Stimulus-Type using paired 

sample t-tests showed that the magnitude for phrases was significantly stronger 

than the magnitude for sentences (t(59) = 4.55, P <  2e-5 ***). The results suggest 

that the instantaneous neural activity in response to phrases had a stronger phase-

locked dependency on the acoustic features than in response to sentences.  

To investigate the three-way interaction of Stimulus-Type*Peak-

Type*Hemisphere, two-way repeated-measure ANOVAs with the Bonferroni 

correction were conducted on the factors of Hemisphere and Stimulus-Type at each 

level of the Peak-Type. The results indicated a main effect of Stimulus-Type at the 

first peak (F (1, 14) = 8.19, p = 0.012 *) and a two-way Hemisphere*Stimulus-Type 

interaction at the second peak (F (1, 14) = 6.42, p = 0.023 *).  

At the first peak, we conducted a post-hoc comparison on the main effect of 

Stimulus-Type using paired sample t-tests, which showed that the magnitude of 

the phrase condition was higher than the magnitude of the sentence condition (t(29) 

= 3.49, p = 0.001 ***). The results indicate that the instantaneous neural activity 

was more strongly driven by the acoustic features that were presented ~100 ms ago 

when phrases than when sentences were presented.  

For the two-way Hemisphere*Stimulus-Type interaction at the second peak, 

the paired sample t-tests with Bonferroni correction were conducted to compare 

the difference in the magnitude between phrases and sentences at each hemisphere. 

The results indicate that the magnitude at the second peak was stronger for phrases 

than sentences in the right hemisphere (t (14) = 3.21, p = 0.006 **), but not the left 

hemisphere (t (14) = 0.86, p = 0.40).  The findings suggest that, at the right 

hemisphere, the instantaneous neural activity of the phrases was more strongly 

driven by the acoustic features that were present approximately 300 ms than it was 

under sentences.  
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For the latency of the TRF (Figure 3h), the comparison showed a main effect 

of the Peak-type (F (1, 14) = 1e+3, p<1e-14 ***) and a three-way interaction of 

Stimulus-Type*Peak-Type*Hemisphere (F (1, 14) = 8.04, p = 0.013 *). The post-

hoc comparison for the main effect of the Peak-Type with paired sample t-tests 

showed, as expected, that the latency of the first peak was significantly shorter than 

the second one (t(59) = 38.89, p < 2e-16 ***). The result is unsurprising since 

regardless of the method for searching the time windows, the latency of the first 

one will always be shorter than the second.  

To investigate the three-way Stimulus-type*Peak-type*Hemisphere 

interaction, two-way repeated-measure ANOVA with the Bonferroni correction 

were conducted on the factors of Hemisphere and Stimulus-Type for each level of 

the Peak-Type. The comparison suggested a two-way Hemisphere*Stimulus-Type 

interaction at the first peak (F (1, 14) = 12.83, p = 0.002 **). The post-hoc 

comparison on this two-way interaction using paired sample t-tests with the 

Bonferroni correction indicated that the latency at the first peak was significantly 

longer for sentences than for phrases at the right hemisphere (t(14) = 3.55, p = 

0.003 **), but not the left (t(14) = 0.58, p = 0.56). The results suggest that, within 

the first temporal window (~50 to 150 ms), and only at the right hemisphere, the 

neural response to the sentences was predominantly driven by the acoustic features 

earlier in time than the response to the phrases.  

Figure 3i shows the SRFs that were averaged across all participants. The 

grand average of the STRFs suggested that the activation of the kernel was most 

prominent in the frequency range from 0.1 to 0.8 kHz. To compare the differences 

in the encoding of acoustic features in the spectral dimension, we separated the 

SRF into three frequency bands: lower than 0.1 kHz; 0.1 to 0.8 kHz; and higher 

than 0.8 kHz. We then averaged the response in each extracted frequency band for 

each condition. The statistical comparison was conducted using a three-way 

repeated-measure ANOVA on the factors of Hemisphere, Stimulus-Type and 

Band-Type. The results (Figure 3j) indicated a main effect of Band-Type (F (2, 28) 

= 119.67, p < 2e-14 ***) and a two-way interaction of Band-Type*Stimulus-Type (F 

(2, 28) = 27.61, p < 3e-7 ***).  

It was revealed by the post-hoc comparison on the main effect of Band-Type 

using paired sample t-tests with the Bonferroni correction that the magnitude of 
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the middle frequency band was stronger than that of the low frequency band (t(59) 

= 17.9, p < 4e-25 ***) and high frequency band (t(59) = 18.7, p < 5e-26 ***). The 

results indicate that the acoustic features from different frequency bands 

contributed differently to the evoked neural response. In other words, for both 

conditions, the neural response was predominantly driven by the encoding of the 

acoustic features from 0.1 to 0.8 kHz, which are considered as the spectral-

temporal features at the range of the first formant (Catford, 1988; Jeans, 1968; 

Titze et al., 2015; Titze & Martin, 1998). 

The post-hoc comparison using paired sample t-tests with the Bonferroni 

correction on the Band-Type*Stimulus-Type interaction showed that the 

amplitude of the SRF was stronger for the phrase condition than the sentence 

condition only at the middle frequency band (t (29) = 4.67, p < 6e-5 ***). The 

results signify that at the middle frequency range, the neural response of phrases 

was more strongly predicted solely by modeling the encoding of the acoustic 

features than it was in the sentence condition. This pattern of results suggests that 

the neural representation of sentences is more abstracted away from the neural 

response that is driven by the physicality of the stimulus. 
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Figure 3. Acoustic features are encoded differently for phrases vs. sentences 

in a phase locked manner. (a) Comparison between the real and random 

performance of the STRF in each frequency band. The results suggested that only the 

performance of the STRF in the delta band (< 4 Hz) and theta band (4-8 Hz) was better 
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than the random performance. The blue and red dots represent the real performance of 

the STRFs for the phrases and sentences, respectively. The gray dots represent the 

random performance, and the error bar represents two SEM. (b) The performance of 

the low frequency (< 8 Hz) STRF that was averaged across all participants. The solid 

blue and red dots represent the average performance across all the testing trials. The 

error bar represents two SEM. The light blue and red dots represent the model’s 

performance on each testing trial for the phrase condition and the sentence condition, 

respectively. The results indicate no difference in the kernel between the phrase and 

sentence condition. (c) The comparison between the real neural responses (dashed lines) 

and the average responses predicted by the model (solid blue for the phrases, solid red 

for the sentences) at a sample sensor, Cz. The results suggest that the STRFs performed 

equally well for the phrases (r = 0.47 ***, n=1024) and sentences (r=0.41 ***, n=1024). 

(d) The STRF clustered according to the selected sensors that showed the biggest 

responses (negative) on the ROI. The figures on the left and right sides of the upper panel 

represent the clustered STRF for the phrases at the left and right hemisphere, respectively. 

The corresponding positions on the lower panel represent the clustering for the sentence 

condition. (e) The selection of sensors. The bigger the red circle, the more times the sensor 

was selected across all participants. (f) The TRFs that were decomposed from the STRFs. 

The blue and red lines represent the phrase condition and sentence condition, 

respectively. The solid and dashed lines respectively indicate the left and right 

hemisphere.  

(g) The comparison of the magnitude of the TRFs. The blue and red bars represent the 

condition and sentence condition, respectively. The error bar shows one SEM on each 

side. A three-way repeated-measure ANOVA of the peak magnitude was conducted on 

the factors of Stimulus-Type (phrase or sentence), Hemisphere (left or right) and Peak-

Type (~100 ms or ~300 ms). The results indicated a main effect of Stimulus-Type and a 

three-way interaction. The post-hoc comparison on the former suggested that the 

amplitude (negative) was stronger for the phrase condition than the sentence condition 

(t (59) = 4.55, P < 2e-5 ***). To investigate the three-way interaction of Stimulus-

Type*Peak-Type*Hemisphere, two-way repeated-measure ANOVA with the Bonferroni 

correction were conducted on the factors of Hemisphere and Audio-Type at each level of 

the Peak-Type. The results indicated a main effect of Stimulus-Type at the first peak (F 

(1, 14) = 8.19, p = 0.012 *) and a two-way Hemisphere*Stimulus-Type interaction at the 

second peak (F (1, 14) = 6.42, p = 0.023 *). At the first peak, a post-hoc comparison on the 
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main effect of Stimulus-Type was conducted using paired sample t-tests, and the results 

showed that the magnitude of the phrase condition was higher than the magnitude of the 

sentence condition (t(29) = 3.49, p = 0.001 ***). For the two-way Hemisphere*Stimulus-

Type interaction at the second peak, paired sample t-tests with the Bonferroni correction 

were conducted to compare the difference in the magnitude between the phrase and 

sentence condition at each hemisphere. The results revealed that the magnitude at the 

second peak was stronger for the phrase condition than the sentence condition in the 

right hemisphere (t (14) = 3.21, p = 0.006 **), but not the left hemisphere (t (14) = 0.86, p 

= 0.40).  (h) The comparison of the peak latency of the TRFs, with the blue and red bars 

representing the phrase condition and sentence condition, respectively. The error bar 

shows one SEM on each side. A three-way repeated-measure ANOVA of the peak latency 

was conducted on the factors of Stimulus-Type (phrase or sentence), Hemisphere (left or 

right), and Peak-Type (~100 ms or ~300 ms). The results pointed to a main effect of Peak-

Type and a three-way interaction. The post-hoc comparison on the former suggested that 

the latency of the first peak was significantly faster than the second peak (t (59) = 38.89, 

p < 2e-16 ***). The post-hoc comparison on the latter with the Bonferroni correction on 

the factors of Hemisphere and Stimulus-Type for each level of the Peak-Type suggested 

a two-way interaction between them at the first peak (F (1, 14) = 12.83, p = 0.002***). 

The results of the post-hoc comparison on this two-way interaction using paired sample 

t-tests with the Bonferroni correction showed that the latency at the first peak was 

significantly longer for the sentences than the phrases at the right hemisphere (t(14) = 

3.55, p = 0.003 ***), but not the left hemisphere (t(14) = 0.58, p = 0.56). (i) The SRFs 

which were decomposed from the STRFs. The red and blue lines signify the phrase 

condition and the sentence condition, respectively, and the solid and dashed lines 

represent the left and right hemisphere. (j) The comparison of the amplitude of the SRFs. 

The SRF was first separated into three bands, low (< 0.1 kHz), middle (0.1 to 0.8 kHz) 

and high (> 0.8 kHz) based on the averaged frequency response of the STRF. Then a 

three-way repeated-measure ANOVA of the amplitude was conducted on the factors of 

Stimulus-Type (phrase or sentence), Hemisphere (left or right), and Frequency-Band 

(low, middle or high). The results indicated a main effect of Band-Type (F (2, 28) = 119.67, 

p < 2e-14 ***) and a two-way Band-Type*Stimulus-Type interaction (F (2, 28) = 27.61, p 

< 3e-7 ***). The post-hoc comparison on the former using paired sample t-tests with the 

Bonferroni correction showed that the magnitude of the middle frequency band was 

stronger than the low frequency band (t(59) = 17.9, p < 4e-25 ***) and high frequency 
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band (t(59) = 18.7, p < 5e-26 ***). The post-hoc comparison on the Band-Type*Stimulus-

Type interaction using paired sample t-tests with the Bonferroni correction showed that 

the amplitude of the SRF was stronger for the phrases than the sentences only at the 

middle frequency band (t (29) = 4.67, p < 6e-5 ***). 

 

5.4 Discussion 

Using the same dataset as in Chapter 4, our analysis in this chapter indicated 

that the intensity of the induced power at the alpha band represented the 

differentiation between the phrases and sentences, which could be evidence that 

alpha band neural oscillations are involved in syntactic structure discrimination. 

Moreover, the functional connectivity via induced intensity suggested that the 

degree of alpha band connectivity was stronger for the sentences than the phrases. 

As the degree of connectivity was reflected by the inhibition level, the results 

indicated that the inhibition of the alpha band connectivity was stronger for the 

phrases than the sentences. The results revealed that the intensity-organized 

neural network was a robust readout for syntactic structure discrimination 

between the phrases and the sentences. Lastly, using the STRF we showed that the 

brain exploited different encoding mechanisms for representing the syntactically 

different linguistic structures. In both the temporal and spectral dimensions, the 

STRF showed different encoding characteristics between the phrases and the 

sentences, which suggests that similar acoustic features can be represented 

differently via an endogenous phase-locked encoding.  

As I mentioned in the introduction to this chapter, the core debate about the 

role of alpha band oscillations is whether they reach to high-level linguistic 

processing (e.g., syntactic representation). In the work described in this chapter, 

using two types of normalized speech stimuli, we found evidence showing the 

involvement of the induced alpha power in syntactic structure discrimination. 

Previous studies have shown that different physical loads for attention (Strauß, 

Wöstmann, & Obleser, 2014; Wöstmann et al., 2016; Wöstmann et al., 2015; 

Wöstmann, Lim, & Obleser, 2017) or working memory (Obleser et al., 2012; Wilsch 

& Obleser, 2016) across conditions can be represented in the alpha band activities. 

Therefore, researchers have agreed on the role of alpha band oscillations in 
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perceptual-level processing (e.g. auditory processing). However, this perceptual-

level account does not fit well with our results. We matched both the physical and 

semantic features between the phrases and sentences (see Figure 3 in Chapter 4), 

so no physical differences existed in the stimuli itself across conditions. Moreover, 

our experimental task, which asked participants to evenly distribute their attention 

to three types of properties of the stimuli (color, object and syntactic structure), 

had made sure that participants listened to the speech stimuli and the perceptual-

level load was the same across the two conditions. In other words, there were no 

differences in the load placed on working memory or attention.  

Therefore, the finding that the alpha-band-induced power separated 

sentences and phrases pointed to the role of alpha band neural oscillations in 

syntactic structure representation. In addition, the topographical distribution of 

this representation was largely localized at the left hemisphere, which suggests 

high-level language processing (Cutting, 1974; Hickok & Poeppel, 2000; Kimura, 

1961; Strauss & Wada, 1983). Furthermore, the temporal evolution of this 

discrimination effect was largely consistent with the study showing that alpha band 

oscillations reflect speech intelligibility (Obleser & Weisz, 2012). From this 

perspective, our results suggest that the intelligibility effect found by Obleser and 

Weisz (2012) could be an indication of syntactic structure integration.  

It needs to be noted that neural oscillations reflect participants’ mental 

processes when facing a perceptual task. This stems from the fact that the neural 

activity varies as a function of the task (Hickok & Poeppel, 2000); it is not a 

necessary condition that the response at one band (e.g. alpha) has to reflect one 

specific mental process. The fact that alpha band activity reflects low-level 

perceptual gating does not rule out its role in high-level linguistic processing. 

Therefore, the inherent alpha band oscillations could be altered by both perceptual 

and language-level tasks. 

The power connectivity analysis also suggested a separation between the 

phrases and sentences. The overall inhibition degree of the power connectivity at 

the alpha band (~ 7.5 to ~ 13.5 Hz) was stronger for the phrases than the sentences. 

Several aspects are worth mentioning, starting with the duration of the 

connectivity effect. In the results relating to induced power, we saw that the 

syntactic structure discrimination was well captured in the alpha band, as observed 



Chapter 5     
 

 122

within the listening stage, from ~350 to ~1000 ms. In contrast, the separation 

effect reflected by the power connectivity lasted from ~100 to ~2200 ms after the 

stimulus onset. The long-lasting effect of the power connectivity, which extended 

beyond the listening stage, suggests that the brain needed more time to construct 

a distributional syntactic structure representation. Apparently, to perform the 

experimental task, participants would first extract the necessary components, then 

consecutively integrate and represent the extracted units. It makes sense that the 

integration and representation of the extracted components lasted beyond the 

stage of listening. In this view, the timing effect of the power connectivity could 

reflect syntactic structure integration. Second, previous research using P600 has 

consistently found that the posterior region is involved in syntactic integration 

(Coulson, King, & Kutas, 1998; Friederici, Pfeifer, & Hahne, 1993; Frisch et al., 

2002; Hagoort, Brown, & Groothusen, 1993; Kaan et al., 2000; Neville et al., 1991; 

Osterhout & Holcomb, 1992; Osterhout & Mobley, 1995; Patel et al., 1998; Van 

Herten, Kolk, & Chwilla, 2005). In accordance with this body of work, our analysis 

also found that the largest connectivity inhibition was located at the posterior 

region. The spatial consistency between our findings and previous results indicates 

that the readout reflected syntactic structure representation. Third, after 

determining the power connectivity differences between the phrases and sentences, 

we extracted the connectivity distribution using the ROI (which was 100 to 2200 

ms in time and 7.5 to 13.5 Hz in frequency). The connectivity pattern showed that 

the overall degree of connectivity was stronger for the sentences than the phrases, 

which suggests that the phrases and sentences are represented by a similar 

connectivity network, but the inter-regional connectivity was stronger for the 

sentences than the phrases. The results are consistent with the prediction of the 

computational model proposed by Martin and Doumas (Martin & Doumas, 2017; 

Martin & Doumas, 2019; Martin, 2016, 2020; Martin & Doumas, 2020), who 

hypothesized that higher-level connectivity is required to represent a more abstract 

syntactic structure (the sentences have a more complicated syntactic 

decomposition than the phrases; see Figure 3 in Chapter 4). Lastly, our analysis 

showed that the inhibition of the power connectivity was stronger for the phrases 

than the sentences. A stronger inhibition of connectivity indicates a weaker 

connection. Because the inter-regional connectivity inhibition was stronger for the 

phrases than the sentences, this implied that a higher-level connectivity was 
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constructed for the sentences to separate it from the phrases. In sum, our analysis 

suggests that the syntactic structure discrimination between the phrases and 

sentences can be represented by the degree and the pattern of the power 

connectivity. The two types of syntactic structures had a similar distributional 

representation; however, the intensity of the connectivity was higher for the 

sentences than the phrases.  

The STRF analysis highlighted that acoustic features for the phrases and the 

sentences are encoded differently by the brain in both the temporal and the spatial 

dimension. In the following section, I discuss the implications of this finding.  

First, consistent with previous research (Ding & Simon, 2012a, 2012b), for 

both phrases and sentences we found that only the low-frequency (< 8 Hz) neural 

activity robustly reflected the representation of the acoustic features. This suggests 

that the acoustic features of speech are represented in a relatively slow neural 

response via phase-locked encoding.  

Second, by fitting STRFs using low frequency (< 8 Hz) activities with the 

narrow band envelopes, we demonstrated that the slow temporal modulations of 

speech (low-frequency acoustic features, < 1 kHz) were represented bilaterally in 

the brain. Moreover, the sensors that prominently reflected the phase-locked 

relationship between the acoustic features and the low frequency activities were 

localized at the posterior region of both hemispheres. Neurophysiological studies 

have repeatedly shown the relatedness of the posterior regions in syntactic 

integration (Coulson, King, & Kutas, 1998; Friederici, Pfeifer, & Hahne, 1993; 

Frisch et al., 2002; Hagoort, Brown, & Groothusen, 1993; Kaan et al., 2000; Neville 

et al., 1991; Osterhout & Holcomb, 1992; Osterhout & Mobley, 1995; Patel et al., 

1998; Van Herten, Kolk, & Chwilla, 2005). Associating our findings with previous 

studies on syntactic integration, we found that the encoding of the acoustic features, 

which were represented by narrow-band temporal envelopes, indicates the neural 

representation of syntactic structures.  

Third, to explore how the acoustic features are encoded in both the temporal 

and spectral dimensions, we decomposed the STRF into the TRF and SRF. The 

results from both suggested that acoustics for phrases and the sentences are 

encoded differently. More specifically, from the results of the TRF, we know that 

the brain represents acoustic features in the low-frequency neural response with a 
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two-peak temporal dependency (~100 and ~300 ms), which reflects that the 

instantaneous low-frequency neural activity was predominantly driven by the 

encoding of acoustic features that were presented ~100 and ~300 ms ago.  

When we only consider intensity (approximately 100-ms time window), 

sentences depended on acoustic features less strongly than phrases. This result is 

consistent with the idea that sentence representations are more abstracted away 

from the physical input because they contain more linguistic structural units (i.e., 

constituents) that are not vertically present in the physical or sensory stimulus. 

Consistent with previous research, we found that the instantaneous neural 

response was strongly driven by the encoding of the acoustic features presented 

approximately 100-ms ago (Brodbeck, Hong, & Simon, 2018; Crosse & Lalor, 2014; 

Di Liberto, O’Sullivan, & Lalor, 2015; Ding & Simon, 2012a, 2012b, 2013b; 

Golumbic et al., 2013; Puvvada & Simon, 2017; Wang et al., 2019).  

When we only consider the latency (approximately 100-ms time window), and 

only the right hemisphere, the low-frequency neural response to sentences was 

predominantly driven by the acoustic features that appeared earlier in time than 

the acoustic features that drove the neural response to phrases. Our results imply 

that the brain distinguishes syntactically different linguistic structures by how its 

responses are driven by the acoustic features that appeared approximately 100-ms 

ago. More importantly, over the right hemisphere, our findings suggest that the 

low-frequency neural response to sentences reflected the encoding of the acoustic 

features that appeared earlier in time than the acoustic features that drove the 

neural response to phrases. This could be evidence that the right hemisphere is 

dominant in extracting the slow timescale information of speech that is relevant 

for, or even shapes, higher-level linguistic structure processing, e.g., syntactic 

structure building (Ding & Simon, 2012a, 2012b; Poeppel, 2003). It is noteworthy 

to see that the distribution in time and space of these patterns is consistent with 

the idea that the brain is extracting information from the sensory input at different 

timescales and that this process is, in turn, is reflected in the degree of departure 

(in terms of informational similarity) of the neural response from physical features 

of the sensory input. 

At ~300 ms, when we only consider the intensity of the acoustic features, the 

low-frequency neural response to the phrases more strongly depended on the 
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acoustic features than the response to the sentences did. However, the TRF 

comparison indicated that the brain exploited a different encoding mechanism 

across the hemispheres to discriminate between the phrases and sentences. 

Specifically, our analysis shows that the low-frequency neural response to the 

phrases had a stronger dependency on the intensity of the acoustic features than 

the sentence condition did at the right hemisphere, but not at the left hemisphere. 

These results first imply that the instantaneous low-frequency neural response 

reflects the encoding of the acoustic features that were present ~300 ms ago for 

both conditions. Moreover, only at the right hemisphere, the low-frequency neural 

response of the phrases more strongly depends on the acoustic features from ~300 

ms ago when compared with the response to the sentences. The findings remind us 

of the results of the phase connectivity study reported in Chapter 4, in which the 

degree of phase connectivity also showed a different pattern between the phrases 

and sentences at the right posterior region. Consistent with previous works that 

point to the involvement of the right hemisphere in processing the slow 

modulations (Abrams et al., 2008; Ding & Simon, 2012a, 2012b; Giraud et al., 2007; 

Kerlin, Shahin, & Miller, 2010; Luo & Poeppel, 2007; Poeppel, 2003), our results 

further underline that the brain can discriminate these two types of structures by 

differently representing the acoustic features that appeared ~300 ms ago at the 

right hemisphere. That sentence representations were more abstract and less 

driven by the acoustics in the left hemisphere is consistent with contemporary 

neurobiological models of sentence processing (Friederici, 1995; Hagoort, 2013). 

The results of the SRF indicated that the brain can discriminate between 

phrases and sentences by representing acoustic features in the first formant 

(Catford, 1988; Jeans, 1968; Titze et al., 2015; Titze & Martin, 1998). More 

specifically, within the range of the first formant, the low-frequency neural 

response to the phrases reflected a stronger dependency on the acoustic features 

than the response to the sentences did. Unlike consonants, the intensity of vowels 

can be well reflected at the first formant (<1 kHz) (Catford, 1988; Jeans, 1968; Titze 

et al., 2015; Titze & Martin, 1998). Given that the stimuli were not physically 

different, this pattern of results convincingly suggests that the brain is ‘adding’ 

information, for example by actively selecting and representing linguistic 

structures that are cued by the physical input and its sensory correlate. This is 

consistent with the finding that low-frequency cortical entrainment to speech 
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reflects phoneme-level processing (Di Liberto & Lalor, 2017; Di Liberto, O’Sullivan, 

& Lalor, 2015; Keitel, Gross, & Kayser, 2018; Khalighinejad, da Silva, & Mesgarani, 

2017). In addition, our results imply that this phonemic-level representation of 

acoustic features can reflect the syntactic differences between linguistic structures. 

In complement to Chapter 4, in this chapter, we found that syntactic structure 

differences can be represented in the intensity and connectivity of the induced 

neural response. More interestingly, by modeling the encoding of acoustic features, 

we showed that the brain can represent the syntactic differences between phrases 

and sentences by conveying the phonemic-level acoustic features in the low-

frequency neural response. On the whole, combining the results of Chapters 4 and 

5, we have provided a comprehensive readout on how the syntactic differences 

between phrases and sentences are reflected in the brain.  

 

 



 

  

6｜ General discussion 

Speech segmentation and syntactic representation are crucial steps leading to 

language comprehension. In the previous chapters, I reported a series of MEG 

experiments, first with Dutch native speakers to show how the brain segments 

speech stimuli into chunked units at different levels of linguistic representation, 

and especially how statistical information is used to perform cue-based structure 

extraction (Chapter 2). Then, a parallel series of MEG experiments with Chinese 

native speakers showed the stability and consistency of the involvement of this 

statistical information in the inference process (Chapter 3). Finally, I reported 

findings of an EEG experiment assessing differences between two types of syntactic 

structures, phrases and sentences, in various dimensions of the neural response 

(Chapters 4 and 5). In the following parts of this section, I first provide a brief 

summary of the findings concerning speech segmentation and syntactic 

representation during language comprehension. Then I discuss the implication of 

the findings in a broader context and the progression of our investigation into 

speech segmentation and syntactic representation. Finally, I outline some 

questions arising from our research and possible directions for further studies.  

6.1 Summary of core findings 

In Chapter 2, the results of six MEG experiments with Dutch native speakers 

were reported to explore the role of statistical information, i.e., transitional 

probability, in speech segmentation. Using a revised paradigm from Saffran, Aslin, 

and Newport (1996) with isochronous syllable sequences (four syllables per second, 

4 Hz) in a language which was either known or unknown to participants, we 

determined the role of transitional probability in the cortical tracking of 

hierarchical linguistic structures (Ding et al., 2016). We found that neural 

oscillations indicating the occurrence rate of linguistic structures at multiple levels 
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could be solely introduced by statistical information, namely, transitional 

probability (TP).  

More specifically, in Experiment 1, using three types of Dutch syllable 

sequences, i.e. noun sequences and random syllable sequences played forward and 

backward, we first showed that the cortical tracking effect exists in Dutch for native 

speakers. Then, in Experiment 2, by changing the three types of speech stimuli 

to Mandarin Chinese (which the Dutch participants did not know), we removed 

high-level language information, such as semantic and grammatical knowledge, 

and showed that the neural activities tracking the rhythm of linguistic structures 

could be introduced solely by statistical information. Moreover, to check whether 

the cortical tracking effect still exists when multiple layers of units are fitted in and 

to match the structure of our syllable sequences with the hierarchy of the stimuli 

in Ding et al. (2016), we conducted Experiments 3 and 4. In Experiment 3, we 

first trained participants to statistically combine noun pairs into novel compounds 

that do not exist in Dutch. Then in Experiment 4, we scanned participants when 

they listened to the materials trained before, i.e. in Experiment 3. As expected, we 

found three peaks reflecting the rhythm of novel compounds (1 Hz), words (2 Hz), 

and syllables (4 Hz) for the noun sequences. The results show that neural activities 

can track multiple levels of structures simultaneously. More importantly, the 

neural activity that appeared at the frequency of the highest-level structures (novel 

compounds) was not found in Experiment 1, which underlines the effectiveness of 

training and indicates that the cortical response to the rhythm of linguistic 

structures can be manipulated by using statistical information.  

However, in Experiment 3, participants were trained on stimuli in their own 

language. Except for the statistical information (TP) that was learned during the 

training stage, participants could also semantically associate word pairs. To assess 

the concerns about semantic association, we conducted Experiments 5 and 6, 

in which the same procedures and manipulations as Experiments 3 and 4 were 

used, except that the stimuli were in Mandarin Chinese. This meant that higher-

level linguistic information was removed from the processing, as the Dutch 

participants did not understand the stimuli. Using the same analytical methods, as 

expected, we got the same results: there were still frequency peaks to reflect the 

rhythm of compounds (1 Hz), words (2 Hz), and syllables (4 Hz) for the noun 

sequences. We concluded that the cortical tracking effect can be solely introduced 
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by statistical information, and the brain can track the statistically defined 

structures at different levels simultaneously. Note that this does not preclude the 

possibility of cortical tracking signatures for native language processing in the 

absence of statistical learning. In other words, the fact that cortical tracking occurs 

in response to statistically defined stimuli on different timescales does not mean 

that linguistic representations, recognized from speech input based on endogenous 

linguistic knowledge of a native language, are not also subject to cortical tracking. 

In Chapter 3, I reported the results of the same six MEG experiments as in 

Chapter 2, but with Chinese participants. The reason for doing so is that we 

hypothesized that structure chunking via statistical information could be a 

generalized perceptual mechanism, which means the cortical tracking effect that 

reflects this endogenous process could be independent of language comprehension 

in some circumstances. Therefore, we predicted that we would obtain the same 

results if we conducted these experiments with users of a different language; i.e., 

the findings would be the same regardless of whether the speaker could 

comprehend the language of the speech input. Our results fully confirm this 

prediction: the results of Experiments 1 to 6 in Chapter 3 closely correspond to the 

results of the analogous experiments reported in Chapter 2. Finding the same 

pattern of results across different language users suggests that the frequency-

tagging effect reflects generalized perceptual processing, and higher-level linguistic 

knowledge is not necessary to introduce the effect.  

In Chapter 4, we investigated how two types of syntactic structures, i.e., 

phrases and sentences, are differently represented in phase-related measures of 

neural readouts. First, we calculated the inter-trial phase coherence (ITPC). The 

cluster-based permutation tests suggested that the phase coherence for the 

sentences was significantly higher than for the phrases. The differences were found 

at the theta band (~2 to 7 Hz) during listening (~ 450 to 900 ms) over the central 

electrodes. The results reflect the processes by which the brain can extract a key 

component, e.g. a verb in a sentence, from physically inseparable stimuli via 

temporal synchronization to separate the two types of syntactic structure. Second, 

we calculated phase connectivity, indexed by inter-site phase coherence (ISPC), 

across the sensor space. Cluster-based permutation tests suggested that the degree 

of phase connectivity was significantly higher for the sentence condition than the 

phrase condition. The differences were found between ~1800 and ~2600 ms after 
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audio onset and were largely localized in the right posterior region with frequencies 

falling within a very low range (<~2 Hz). The long latency of the effect suggested a 

long-lasting process of building spatial connectivity distributions to distinguish the 

two types of structures. Third, low-frequency (< ~ 2 Hz) phase connectivity 

indicates a slow temporal synchronization over the sensor space, which could 

reflect the act of integrating information extracted during listening. Lastly, the 

differences in the degree of connectivity that were localized in the right posterior 

region emphasize that the right hemisphere is strongly engaged in syntactic 

representation. Our last concern was the role of phase-amplitude coupling in 

representing syntactic differences, as the low frequency phase entrained with high 

frequency amplitude was considered as a generalized neural mechanism for speech 

perception (Giraud & Poeppel, 2012). To examine this, we calculated the 

normalized phase-amplitude coupling (PAC-Z) values and found that there was a 

strong coupling between the low frequency phase (~4 to 10 Hz) and high frequency 

amplitude (~15 to 40 Hz) during the listening stage. However, there was no 

evidence suggesting a difference between the phases and sentences. Consistent 

with Giraud and Poeppel (2012), we considered PAC to be a generalized 

mechanism for speech perception, and our analysis suggested that it might not 

reflect processing at the syntactic level.  

In Chapter 5, using the same data as in Chapter 4, we investigated how the 

intensity of the neural response would reflect the differences between the two types 

of syntactic structure. In addition, STRF (spectral-temporal response function) 

modeling was conducted to show how acoustic features are encoded to separate 

phrases from sentences in a phase-locked manner. First, the comparison of the 

induced power suggested a difference between the phrases and sentences over the 

alpha band (7.5 to 13.5 Hz). The effect was largely localized at the left hemisphere 

and extended from ~350 to 1000 ms after the audio onset. The results suggested 

that alpha band inhibition could reflect syntactic structure discrimination between 

phrases and sentences.  

Then, an intensity (power) connectivity analysis showed that alpha band 

connectivity was higher for sentences than phrases. The analysis indicated that 

alpha band connectivity could effectively separate phrases and sentences without 

hemisphere dominance.  
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Lastly, a phase-locked encoding model using STRFs was conducted to show 

the differences between the phrases and sentences. We first demonstrated that 

only low-frequency (< 9 Hz) neural responses effectively reflect the encoding of 

acoustic features. Then, using the neural activity below 9 Hz, we fitted STRFs for 

both conditions. As the temporal and spectral dimensions might feature different 

encoding characteristics, we extracted the temporal response function (TRF) and 

spectral response function (SRF) separately.  

For the magnitude of the TRF, statistical comparisons suggested that the 

instantaneous neural activity in response to phrases had a stronger phase-locked 

dependency on the acoustic features than in response to sentences. In addition, the 

overall dependency on acoustic features was statistically higher for the phrase 

condition than the sentence condition within a temporal window of ~50 to ~150 

ms. However, in the window from ~250 to ~350 ms, the magnitude was stronger 

for phrases than sentences only in the right hemisphere.  

As for the latency of the TRF, statistical comparisons indicated that the latency 

at the first peak was significantly longer for sentences than for phrases only at the 

right hemisphere. The results highlight that within the first temporal window (~50 

to 150 ms), only at the right hemisphere, the low-frequency neural response to 

sentences reflected the encoding of the acoustic features that appeared earlier in 

time than the acoustic features that drove the neural response to phrases. 

For the SRF, the statistical analysis indicated that the neural response was 

predominantly driven by the encoding of the acoustic features from 0.1 to 0.8 kHz 

corresponding to the range of the first formant (Catford, 1988; Jeans, 1968; Titze 

et al., 2015; Titze & Martin, 1998) for both conditions. Additionally, in this range, 

the neural response to phrases was more strongly predicted solely by modeling the 

encoding of the acoustic features than it was in the sentence condition.  

6.2 Speech segmentation using statistical information 

Investigations have showed that information in both the temporal and spectral 

dimensions of speech contributes to structure extraction (Shannon et al., 1995; 

Smith, Delgutte, & Oxenham, 2002; Zeng et al., 2005). For instance, speech 

segmentation can be performed using cues that naturally reside in acoustics such 

as prosody (Cutler, Dahan, & Van Donselaar, 1997; Peña et al., 2002; Steinhauer, 
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Alter, & Friederici, 1999) and stress pattern (Cutler, 2012; Cutler & Butterfield, 

1992). Although these acoustic-level features are crucial for structure extraction, 

segmenting speech using only phonological characteristics seems to omit the 

grammatical and semantic relationships between hierarchical linguistic structures. 

As such, many theories posit that linguistic structures can be extracted via an 

endogenous inference process (Bever & Poeppel, 2010; Brown, Tanenhaus, & 

Dilley, 2021; Friederici, 1995; Hagoort, 2013; Halle & Stevens, 1962; Marslen-

Wilson & Tyler, 1980; Marslen-Wilson, 1987; Marslen-Wilson & Welsh, 1978; 

Martin & Doumas, 2017; Martin & Doumas, 2019; Martin, 2016, 2020; Martin & 

Doumas, 2020; Meyer, Sun, & Martin, 2020; Phillips, 2003; Poeppel & Monahan, 

2011). In accordance with this inference argument, several studies have suggested 

that higher-level linguistic knowledge, such as grammatical or syntactic 

information, is crucial in structure extraction (Ding et al., 2016; Kaufeld et al., 

2020; Keitel, Gross, & Kayser, 2018; Meyer & Gumbert, 2018). The neural activities 

tracking the occurrence rate of hierarchical linguistic structures were considered 

to be a reflection of speech segmentation using higher-level linguistic knowledge. 

Under this account, grammatical or syntactic information appears to be the key 

factor driving the cortical tracking effect. However, the endogenous cue-based 

segmentation also benefits from statistical information, i.e., the transitional 

probability between multiple levels of linguistic structures (Saffran, Aslin, & 

Newport, 1996).  

The TP often reflects the relationships between upper- and lower-level 

linguistic units as well. For instance, the TP between syllables in a word is higher 

than the TP between syllables at word boundaries, and the TP between words in a 

phrase is also higher than the TP between two words that cannot form a phrase. By 

comparing the two accounts, i.e. grammatical chunking vs. structuring via TP in 

speech segmentation, we designed an investigation into whether the cortical 

tracking effect could be solely introduced by statistical information. Building on 

previous studies (Ding et al., 2016; Saffran, Aslin, & Newport, 1996), we connected 

the effect of cortical tracking to linguistic structures (Ding et al., 2016) with the 

account of structure extraction via statistical information (Saffran, Aslin, & 

Newport, 1996). Using artificially synthesized speech stimuli, we first eliminated 

the cues at the acoustic level (e.g. prosody and stress pattern) from the structure 

chunking by presenting the syllables isochronously, i.e. four times per second (4 
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Hz). Furthermore, by holding the statistical information consistent between 

experiments, we were able to compare the effect introduced by stimuli in 

participants’ own language (linguistic knowledge involved) with the effect evoked 

by stimuli in an unfamiliar language (linguistic knowledge removed). In addition, 

to show whether the statistically defined structures could be tracked 

simultaneously at different levels, we also trained participants to extract 

statistically defined novel compounds. Finally, to check whether the statistically 

driven effect is independent of language, we repeated all the experiments with 

Chinese participants. All these operations and manipulations led to one conclusion, 

which is that the cortical tracking effect can be introduced without higher-level 

linguistic knowledge.  

Our findings are informative as to the flexibility of cortical tracking. Firstly, we 

showed that the tracking effect could be introduced solely by statistical information, 

which is at odds with the account that the effect is purely a reflection of syntactic 

integration or grammatical chunking via higher-level linguistic knowledge. In 

natural language, one important source of information that defines boundaries 

between linguistic units is the transitional probability. Within a corpus of speech, 

this kind of statistical information is available in measurable quantities which can 

be used to extract sound sequences that comprise linguistic structures. The 

transitional probability from one sound to the next will generally be higher when 

the two sounds follow one another within a unit than when they are located at a 

boundary between units (Chomsky, 2014; Saffran, Aslin, & Newport, 1996). 

Behavioral studies have also shown that the measurable transitional probabilities 

can be used to extract structures from continuous speech stimuli (Pelucchi, Hay, & 

Saffran, 2009; Saffran, 2003; Saffran et al., 1999; Saffran, Newport, & Aslin, 1996). 

However, to examine the role of statistical information in structure chunking, 

artificial speech stimuli have often been the first choice. Using such stimuli with 

unnatural language would potentially disrupt the language-specific characteristics 

and limit the applicability of the conclusions. In contrast, our experimental 

manipulations used natural speech stimuli while holding the statistical 

information (TP) between the hierarchical units constant, effectively separating the 

role of statistical information from the role of higher-level linguistic information 

that coexists with statistical information in structure extraction. This enabled us to 

demonstrate that structure chunking via statistical information can introduce the 
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cortical tracking effect, which shed light on the neural representation of how 

statistical information is utilized to segment speech.   

Secondly, consistent with Saffran, Aslin, and Newport (1996), our results 

suggested that the endogenous process of extracting structures from continuous 

speech via statistical information could play a fundamental role in language 

acquisition, which implies that grammatical analysis and syntactic integration can 

be performed after unit extraction. A generalized speech-perception model 

proposed by Giraud and Poeppel (2012) also considered that extracting syllables 

via low-frequency phase alignment is the first step toward linguistic analysis via 

higher-frequency neural activities. This might be obvious when considering how 

language learners try to understand a piece of speech. For instance, an English 

learner may have a perfect understanding of a sentence in its written form, but fail 

to extract meaning from it in its spoken form. The difficulty of understanding the 

sentence in the latter form could be due to the learner failing to perform a linguistic 

analysis, as this requires successful speech segmentation. It is undeniable that 

higher-level linguistic knowledge is helpful for speech segmentation, and 

successful comprehension requires grammatical and syntactic information. 

However, the neural representation of higher-level linguistic information, e.g. 

syntactic structure, is not necessarily the only data reflected in the cortical tracking 

effect.  

Lastly, our experiments were conducted with both Dutch and Chinese 

speakers. The consistent results across languages suggest that structure extraction 

via statistical information, which was reflected by the cortical tracking effect, could 

be a generalized perceptual mechanism. Despite the differences between Dutch 

and Chinese ranging from physical characteristics (e.g., Dutch is a stress-based 

language and Chinese is a tone-based language) to high-level linguistic regularities 

(e.g., there is a difference between singular and plural nouns in Dutch, but not in 

Chinese), consistent results were always acquired no matter what language the 

participants listened to. The results indicated that linguistic properties did not vary 

the frequency response tagging the rhythm of hierarchical linguistic structures, 

which could be a sign that frequency peaks in the brain are not a function of 

linguistic properties. In addition, experiments conducted using artificial speech 

sequences and visual stimuli with manipulated transitional probabilities have 

shown the same cortical tracking effect (Henin et al., 2021). The existence of this 
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effect in visual-perceptual tasks further strengthens the argument that cortical 

activity tracking the rhythm of stimuli might not be a language-specific 

phenomenon. 

In sum, we pinpointed the role of statistical information, i.e. transitional 

probabilities, in speech segmentation by conducting a number of MEG 

experiments. As the frequency response tagging the rhythm of units was sensitive 

to the manipulation of statistical properties, but insensitive to the physical and 

language-specific properties, we argue that the cortical tracking effect could reflect 

a generalized perceptual mechanism for structure extraction. Our investigations 

provide new evidence and readouts on the neural representation of speech 

segmentation via statistical information. However, since our exploration focused 

on speech segmentation via TP and was conducted using isochronous syllable 

sequences, future studies might aim to examine the neural representation of 

grammatical chunking or syntactic integration, prioritizing the use of stimuli that 

are more natural. An especially fruitful pursuit would be to compare how the 

acoustic features that are encoded when segmenting speech differ depending on 

whether or not the individual understands the given language. 

6.3 Neural representation of syntactic structure 

discrimination 

In Chapters 2 and 3, we explored the role of statistical information in 

speech segmentation; we showed that the frequency responses in the brain also 

reflect the statistical properties of the stimuli. If the cortical response tracking 

linguistic structures at different levels reflects structure chunking via statistical 

information, how then does the brain represent the syntactic structure as it extracts 

it from the speech input? Which dimensions of the neural response could reflect 

syntactic structures? To address these questions, we investigated various neural 

readouts to look for links to syntactic representation, as reported in Chapters 4 

and 5. We increased our chances of finding such links by maximizing the physical 

and semantic similarities between the linguistic structures. More specifically, we 

investigated which dimensions of neural activity distinguish the linguistic structure 

of phrases and sentences and used a series of analytical techniques to better 

describe the dimensions of neural readouts that were sensitive to the distinctions. 
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We asked whether phrases and sentences have different effects on functional 

connectivity, and found, first, that while phrases and sentences recruit similar 

functional networks, the intensity of those networks was scaled with different types 

of linguistic structure. Sentences showed more phase coherence and power 

connectivity compared to phrases. This pattern suggests that phrases and 

sentences differently impact the distribution and intensity of the neural networks 

involved in speech comprehension. Second, we found that phase-amplitude 

coupling between theta and gamma, which has been implicated in speech 

processing, is not sensitive to structural differences in spoken language. Third, we 

found that activity in the alpha band was sensitive to linguistic structure. Lastly, by 

modeling acoustic fluctuations in the stimulus and brain response with STRFs, we 

found that during perception of phrases and sentences, the neural readout 

differentially relied on the encoding of acoustic features in the brain, and that 

sentences were more abstracted away from acoustic dynamics in the brain 

response. In the following three sections I give more details about these findings 

on phase coherence, phase connectivity, phase-amplitude coupling, induced alpha 

power, and power connectivity, and discuss potential interpretations of them.  

Phase coherence. Consistent with previous research (Doelling et al., 2014; 

Luo & Poeppel, 2007; Peelle & Davis, 2012; Peelle, Gross, & Davis, 2013), our phase 

synchronization analysis detected low-frequency phase coherence during speech 

comprehension. Moreover, phase coherence distinguished between phrases and 

sentences, yielding a cluster between ~450 and ~900 ms after the audio onset and 

with frequencies from ~2 Hz to ~8 Hz, which was most pronounced over the central 

electrodes. These results therefore suggest that syntactic structure may be encoded 

by low-frequency phase coherence, through the systematic organization of activity 

in neural networks, in particular their temporal dynamics. Our results are 

consistent with the notion of ‘phase sets’ in computational models of structured 

representations that exploit oscillatory dynamics. Phase sets are representational 

groupings that are formed by treating distributed patterns of activation as a set 

when units are in (or out) of phase with one another across the network (Doumas 

& Martin, 2018; Martin & Doumas, 2017; Martin & Doumas, 2019; Martin, 2020; 

Martin & Doumas, 2020). They are key to the representation of structure in 

artificial neural network models.  
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Phase connectivity. Phrases and sentences also yielded differences in 

phase connectivity. In the predefined time and frequency range of interest, the 

statistical comparison indicated a difference corresponding to a cluster from ~800 

to ~1600 ms after the audio offset, occurring at the very low frequency range (< ~2 

Hz) that was most pronounced over the right posterior region. Phrases and 

sentences thus differentially impact the temporal synchronization of neural 

responses. 

Several aspects of the results are noteworthy. First, the relatively late effect 

suggests that the impact on temporal synchronization occurs after the initial 

presentation of the speech stimulus. In our experiment, participants were 

randomly presented with a prompt for three possible tasks (color discrimination, 

object discrimination, and linguistic structure discrimination), which asked them 

to identify either ‘semantic’ information (object or color) or ‘syntactic’ information 

(whether the stimulus was a phrase or sentence) from the speech stimulus. Because 

of the random order of the task trials, participants had to pay close attention to the 

stimuli and maintain each stimulus in working memory until they received the task 

prompt. The tasks also ensured that participants could not select just one 

dimension of the stimulus for processing. Similarly, because we used an object and 

a color task, participants had to distribute their attention evenly across the 

adjectives and nouns. Due to these controls and task demands, it was unlikely that 

the observed connectivity effects reflected mere differences in attention to phrases 

or sentences. Rather, we were able to attribute the observed effects to the syntactic 

differences between them.  

Second, the low frequency range (< 2 Hz) of the observed effect is consistent 

with previous research (Brennan & Martin, 2020; Ding et al., 2016; Kaufeld et al., 

2020; Keitel, Gross, & Kayser, 2018; Meyer et al., 2017). In Ding et al. (2016), the 

cortical response was modulated by the timing of the linguistic structure’s 

occurrence; low-frequency neural responses (1 to 2 Hz) were found to track the 

highest-level linguistic structures (phrases and sentences) in their stimuli. Here we 

extended their work to ask whether the 1 Hz response could be decomposed to 

reflect separate syntactic structures (phrases vs. sentences), and we identified the 

role of phases in discriminating between these structures. In our study, all speech 

stimuli lasted for one second, and except for the presence of syntactic structure, the 

stimuli were normalized to be highly similar. Our pattern of results therefore 
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suggests that functional connectivity, as reflected in the temporal synchronization 

of the induced neural response, distinguishes between phrases and sentences.  

Lastly, phrases and sentences differed most strongly over the right posterior 

region of the brain, which is broadly consistent with previous research on speech 

comprehension. Functional magnetic resonance imaging (fMRI) studies implicate 

the posterior right hemisphere in processing syntactic structure (de Bode et al., 

2015; Grodzinsky, 2000; Grodzinsky & Friederici, 2006; Maess et al., 2001). 

Neurophysiological research also suggests the involvement of the right hemisphere 

in slow-timescale information extraction (Abrams et al., 2008; Giraud et al., 2007; 

Morillon et al., 2012; Poeppel, 2003). Additionally, the P600, a positive ERP 

component often associated with syntactic processing, has a robust right-posterior 

topographical dominance (Coulson, King, & Kutas, 1998; Friederici, Pfeifer, & 

Hahne, 1993; Hagoort, Brown, & Groothusen, 1993; Osterhout & Holcomb, 1992; 

Osterhout & Mobley, 1995; Patel et al., 1998). In light of the existing literature, 

therefore, the right posterior distribution of the phase connectivity effects is 

consistent with the processing of syntactic structures, although we refrain from 

claims about underlying neural sources based on our EEG data. 

Phase-amplitude coupling (PAC). We observed PAC during speech 

comprehension, as a low-frequency phase response (~ 4 to 10 Hz) entrained with 

high frequency amplitude (~ 15 to 40 Hz). This effect appeared largely over the 

bilateral central area. The bilateriality of the topographical distribution has been 

observed in sensory-motor integration (Babiloni et al., 2011; Klimesch, Sauseng, & 

Hanslmayr, 2007; Neuper, Wörtz, & Pfurtscheller, 2006; Pfurtscheller et al., 2006; 

Pfurtscheller et al., 1998; Schlögl et al., 2005; Suffczynski et al., 2001), which is 

consistent with the proposal from Giraud and Poeppel (2012) that PAC reflects an 

early step in speech encoding involving sensory-motor alignment between the 

auditory and articulatory systems. Crucially however, this effect did not differ 

between phrases and sentences. Although this is a null result, the pattern is 

compatible with the generalized model for speech perception (Giraud & Poeppel, 

2012). This early step is presumably similar for phrases and sentences, and perhaps 

for any type of structure above the syllable level. 

Induced alpha power. Induced alpha-band power was also found to 

distinguish phrases from sentences, and this effect was most pronounced at the left 
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hemisphere. This pattern implies the involvement of alpha band oscillations in 

syntactic structure processing. Although alpha band activity is often associated 

with processing related to attention or working memory (Haegens et al., 2010; 

Obleser et al., 2012; Strauß, Wöstmann, & Obleser, 2014; Ten Oever, De Weerd, & 

Sack, 2020; Wilsch & Obleser, 2016; Wöstmann et al., 2016; Wöstmann et al., 2015; 

Wöstmann, Lim, & Obleser, 2017), we do not consider this a very plausible 

alternative explanation for our results, due to the following reasons. First, it is not 

clear why phrases and sentences would differ in their attentional demands. Second, 

we employed an experimental task to ensure that participants had to pay similar 

attention to phrases and sentences, and these two structures were associated with 

similar behavioral performance in each task (with a caveat that performance was 

at ceiling and therefore may not have detected small differences between 

conditions). Thus, we do not claim that that all speech-elicited alpha band effects 

reflect syntactic processing. Some observed effects may well reflect perceptual 

processing during speech comprehension (e.g. Obleser & Weisz, 2012), especially 

in experiments designed to manipulate perceptual processing, such as speech-in-

noise manipulations. Neural responses in a given band, e.g. the alpha band, need 

not reflect only one particular perceptual process. Likewise, the fact that the alpha-

band neural response could reflect lower-level perceptual processes or working 

memory load in certain contexts does not necessarily rule out its role in the 

representation of higher-level linguistic information such as syntax.  

Power connectivity. Phrases and sentences elicit differences in induced 

power connectivity in alpha band activity (7.5 to 13.5 Hz). Phrases showed more 

inhibition in power connectivity than sentences; in other words, sentences showed 

a stronger degree of connectivity over the sensor space in the alpha band than 

phrases did. Several aspects of these results are notable. First, we observed this 

effect from ~100 to ~2200 ms after the stimulus onset, which suggests that the 

functional connectivity persisted and outlasted the observed effects in induced 

alpha power, which we observed from ~350 to ~1000 ms after the audio onset 

(during the listening stage). The extended nature of the functional connectivity 

effect could reflect the continuing integration and representation of syntactic and 

semantic components. Second, alongside differences between phrases and 

sentences in power connectivity, we also extracted the sensor connectivity pattern 

(over an ROI ranging from 100 to 2200 ms in time and 7.5 to 13.5 Hz in frequency). 
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Whereas phrases and sentences showed similar functional connectivity in the 

intensity of the neural response, sentences showed stronger inter-regional (sensor) 

connectivity than phrases. By design, in our stimuli the sentences had more 

constituents than the phrases did. If local network activity is more organized or 

coherent as a function of linguistic structure, then the difference observed here 

could reflect the encoding of additional constituents in sentences as compared to 

phrases. Lastly, phrases elicited a stronger inhibition of induced power 

connectivity than sentences did. This indicates weaker cooperation between brain 

regions. In contrast, inter-regional connectivity was stronger for the sentence 

condition than the phrase condition, which suggested a higher intensity of 

connectivity between the brain regions for the sentences in order to separate them 

from the phrases.  

In sum, phrases and sentences elicited robust differences in induced power 

connectivity. A similar functional connectivity pattern was deployed for 

representing phrases and sentences, but the intensity of the connectivity was 

stronger for sentences than phrases. This finding is consistent with the prediction 

that low frequency power and network organization should increase as linguistic 

structure increases. Our stimuli were designed to allow the measurement of 

differences in neural dynamics between phrases and sentences, and as such 

differed in the number and type of linguistic constituents that were perceived. 

Beyond the number and type of constituents, the phrase and sentence structures 

also differed in terms of the relations between their constituents, or with respect to 

the linguistic notion of hierarchy.  

Spectral-temporal response function (STRF). We performed an STRF 

analysis to investigate whether phrases and sentences are encoded differently. 

Firstly, consistent with previous research (Ding & Simon, 2012a, 2012b), only low-

frequency (< 9 Hz) neural responses robustly reflected the phase-locked encoding 

of the acoustic features. Secondly, we observed a bilateral representation of the 

slow temporal modulations of speech, in particular at the posterior sensors. The 

posterior region has consistently been found to be involved in syntactic integration 

(Coulson, King, & Kutas, 1998; Friederici, Pfeifer, & Hahne, 1993; Hagoort, Brown, 

& Groothusen, 1993; Osterhout & Holcomb, 1992; Osterhout & Mobley, 1995; Patel 

et al., 1998). The low-frequency neural response that models the phase-locked 

encoding of acoustic features can capture structural differences between phrases 
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and sentences, even without explicitly using a hand-coded annotation on the 

syntactic level to reconstruct the data. Thirdly and most importantly, we explored 

these patterns further in both the temporal and spectral dimensions, by 

decomposing the STRF into the TRF and SRF. Both functions pointed to a different 

encoding mechanism for phrases vs. sentences. More specifically, the TRF results 

showed that the brain transduces the speech stimulus into the low-frequency 

neural response via an encoding mechanism with two peaks in time (at ~100 and 

~300 ms). The two peaks reflect the instantaneous low frequency response that is 

predominantly driven by the encoding of acoustic features that were presented 

~100 and ~300 ms ago. In the two windows that centered at ~100 and ~300 ms, 

phrases and sentences showed a different dependency on the acoustic features in 

terms of both latency and intensity. 

When we only consider intensity (at ~100 ms time window), sentences depend 

on acoustic features less strongly than phrases. This result is consistent with the 

idea that representations of sentences are more abstracted away from the physical 

input because they contain more structural linguistic units (i.e., constituents) that 

are not present in the physical or sensory stimulus. In accordance with previous 

research, we found that the instantaneous neural response was strongly driven by 

the encoding of the acoustic features presented ~100 ms ago (Brodbeck, Hong, & 

Simon, 2018; Crosse & Lalor, 2014; Di Liberto, O’Sullivan, & Lalor, 2015; Ding & 

Simon, 2012a, 2012b, 2013a; Golumbic et al., 2013; Puvvada & Simon, 2017; Wang 

et al., 2019). 

When we only consider the latency (again using a ~100 ms time window), and 

only the right hemisphere, the low-frequency neural response of the sentences was 

predominantly driven by the acoustic features that appeared earlier in time than 

the features that drove the response to the phrases. Our results imply that the brain 

distinguishes syntactically different linguistic structures according to how its 

responses are driven by the acoustic features that appeared ~100 ms ago. More 

importantly, at the right hemisphere, the findings suggest that the low-frequency 

neural response of the sentences reflects the encoding of acoustic features that 

appeared earlier than the features which triggered the response to the phrases. This 

could be evidence that the right hemisphere is dominant in extracting the slow-

timescale information of speech that is relevant for, or even shapes, higher-level 
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linguistic processing such as the building of syntactic structures (Ding & Simon, 

2012a, 2012b; Poeppel, 2003).  

Turning to the SRF results, these indicated that the brain can begin to separate 

phrases and sentences via a differential reliance on the encoding of the acoustic 

features from roughly the first formant, and in a phase-locked manner. More 

particularly, in the range of the first formant, the low-frequency neural response 

reflected a stronger dependency on the acoustic features in the phrases than in the 

sentences. Unlike consonants, the intensity of vowels is well reflected at the first 

formant (<1 kHz) (Catford, 1988; Jeans, 1968; Titze et al., 2015; Titze & Martin, 

1998). Although the overall physical intensity of the speech stimulus of the phrases 

was not different from the sentences, the neural response contains information 

that discriminates between these syntactic structures. Given that the stimuli were 

not physically different, this pattern of results strongly suggests that the brain is 

‘adding’ information, for example by actively selecting and representing linguistic 

structures that are cued by the physical input and its sensory correlate. For example, 

the brain could be adding phonemic-level information such as vowels via a top-

down mechanism; in certain situations and languages, even a single vowel can cue 

a differential syntactic structure. In fact, in our stimuli, the schwa carries 

agreement information that indicates the phrasal relationship between roode (‘red’) 

and vaas (‘vase’) in the phrase de roode vaas. Our results, which feature both 

dependence on, but also departure from, the acoustic signal, are consistent with 

previous findings that have demonstrated low-frequency cortical entrainment to 

speech and argued that it can reflect phonemic-level processing (Di Liberto & Lalor, 

2017; Di Liberto, O’Sullivan, & Lalor, 2015; Keitel, Gross, & Kayser, 2018; 

Khalighinejad, da Silva, & Mesgarani, 2017). We extend these findings by showing 

that when lower-level variables in the stimuli are modeled, the brain can 

discriminate between syntactic structures even without the addition of higher-level 

linguistic annotations. 

6.4 Future research directions 

In the thesis, I first reported our exploration of how speech segmentation 

using statistical information is reflected in the brain (Chapters 2 and 3), and then 

presented our investigation into which dimensions of the neural response could 
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reflect the discrimination between two types of syntactic structures, i.e. phrases 

and sentences (Chapters 4 and 5). Several extended questions for further 

investigation are discussed in this final section.  

In Chapters 2 and 3 our results suggested that statistical information can 

be used as an effective cue to segment speech, and the statistical cue-based 

endogenous process could be reflected in the neural activities tracking the rhythm 

of hierarchical linguistic structures. Consistent effects across different types of 

language users were observed no matter whether the language of the stimuli was 

known or unknown to participants. However, several aspects still need to be 

investigated. First, the mental processes will be different when same stimuli are 

presented as a function of whether or not the participants can understand the 

stimulus language. For instance, the neural response of Dutch participants 

listening to Dutch stimuli has to be different from Chinese participants listening to 

the same stimuli, because automatic high-level linguistic processing, e.g. semantic 

and grammatical processing, is involved in the former situation. Although it is not 

necessary for the processing differences to be reflected by the frequency-tagging 

effect, other dimensions of neural activity could still reflect this linguistic-level 

difference. More extensive documentation of neural readouts that reflect this 

difference would provide valuable information on the neural representation of 

high-level language processing. Second, the encoding of acoustic features might 

vary when users of different languages listen to the same type of speech stimuli. An 

analytical approach such as STRF or mutual information could be harnessed to 

show how acoustic features in both the temporal and spectral dimension are 

utilized differently to discriminate the mental activities that involve high-level 

language processing (e.g., Dutch participants listening to Dutch) from the 

processes that do not (e.g., Chinese participants listening to Dutch). Third, using 

GED, we extracted the most optimized source-level frequency response for each 

frequency bin; however, this decomposition method was limited in that we could 

not obtain information on where the neural activities had originated. A source-level 

analytical method such as the beamforming approach could be deployed to find the 

answer to this question. Fourth, as outlined in Chapters 4 and 5, a functional 

connectivity analysis could be carried out to show the network-level differences in 

comparisons within or between different types of stimuli or participants. Lastly, 

our investigation was conducted only with Chinese and Dutch participants, so to 
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further assess the extent to which the cortical tracking effect reflects a generalized 

perceptual mechanism, studies using other types of language users such as German 

speakers could be performed.  

In Chapters 4 and 5 we found a neural differentiation between spoken 

phrases and sentences that were physically and semantically similar. Moreover, we 

found that this differentiation was captured in several readouts, or dimensions of 

brain activity. In addition, by modeling the phase-locked encoding of the acoustic 

features, we further showed that the brain can represent the syntactic difference 

between phrases and sentences in the low-frequency neural response, but that the 

more structured a stimulus is, the more it departs from the acoustically-driven 

neural response to the stimulus, even when the physicality of the stimulus is held 

constant. Across all our results, we provide a comprehensive picture of how the 

brain separates two different types of syntactic structures. However, further 

research is still needed to explore the relationship between these different neural 

readouts that index syntactic differences, e.g., how the induced neural response at 

the alpha band interacts with phase coherence in the low frequency range (< 8 Hz), 

and how these separation effects are represented at the neural source level. Finally, 

more extensive comparisons between additional types of syntactic structures could 

also be conducted in future studies.  
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English summary 

Speech segmentation and syntactic representation are intriguing fields in 

neuroscience and psycholinguistics as they are critical and necessary steps leading 

to spoken language comprehension. In my doctoral thesis, I investigate the neural 

representation of speech segmentation via statistical inference and explore how 

syntactic structure discrimination could be reflected in various dimensions of 

neural activities.  

Specifically, in Chapter 2, I report on six MEG experiments with Dutch 

native speakers. By varying the speech stimuli so that it they are either 

understandable or not to participants, and by manipulating the statistical 

information between multiple layers of units, we found that speech segmentation 

or linguistic unit extraction can be conducted via statistical inference without 

comprehending the stimuli. More importantly, the segmentation process can be 

represented by cortical activity that tracks the rhythm of linguistic structures. The 

results provide new insights into the phenomenon of cortical tracking of 

hierarchical linguistic structures, and are at odds with previous views that 

considered the tracking effect only as a reflection of chunking using high-level 

linguistic knowledge. Furthermore, our findings shed light on the role of statistical 

learning in language acquisition. Consistent with Saffran, Aslin, and Newport 

(1996), our results reveal that speech segmentation via statistical inference may be 

an initial step in speech perception and a necessary building block in spoken 

language comprehension.    

In Chapter 3, we mainly focus on expanding our findings into a broader 

context and eliminating the possibility that the effects we reported in Chapter 2 

were driven by the specific type of linguistic knowledge that participants had. To 

do so, we conducted the same sets of MEG experiments as in Chapter 2 but with 

Chinese participants. Our hypothesis was that if the cortical activity tracking the 

rhythm of multiple layers of units can reflect speech segmentation via statistical 

inference, then the process should be independent of participants’ linguistic 

knowledge. As expected, the same pattern of results as in Chapter 2 was obtained, 

indicating that the linguistic knowledge itself did not vary the cortical tracking 

effect. This first supports the consistency and stability of the neural representation 

of speech segmentation via statistical inference across different types of language 
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users and indicates the insensitivity of the effect to participants’ linguistic 

knowledge. Second, the consistent results across experiments reveals that the 

cortical tracking effect could reflect a generalized perceptual process, i.e., speech 

segmentation using statistical information, as regardless of what type of linguistic 

knowledge the participants had and whether they understood the stimuli, the 

tracking regime did not change. In sum, combining the results of Chapters 2 and 3, 

our findings demonstrate that speech segmentation can be performed via statistical 

inference, and the perceptual-level endogenous process can be reflected by cortical 

activities that simultaneously track the rhythm of multiple layers of linguistic 

structures.  

Building syntactic relationships from extracted units is a necessary step in the 

acquisition of semantics. In complement to Chapters 2 and 3, which explored the 

neural representation of speech segmentation, Chapters 4 and 5 report our 

exploratory investigations into the neural representation of syntactic structure 

discrimination. Both chapters used the same dataset from an EEG experiment, in 

which we asked participants to listen to two types of artificially synthesized speech 

stimuli, i.e. phrases and sentences. The stimuli were normalized in terms of both 

physical and semantic properties across conditions in order to highlight the 

differences between syntactic structures. Concretely, in Chapter 4, we put 

weights on the temporal synchronization of the neural response in representing 

syntactic structure discrimination. Building on the previous studies that showed 

the role of low-frequency neural oscillations in speech perception and 

comprehension, our results indicate that syntactic structure extraction may be a 

feedback process in which acoustic features are encoded in an endogenous 

approach that is guided by high-level linguistic knowledge. In addition, our 

analysis using functional connectivity via phase coherence suggests that syntactic 

structure differences can be represented in a distributional approach. These 

differences were represented by the temporal synchronization of neural 

oscillations at a very low frequency range (< ~2 Hz). Our results are highly 

consistent with physiological works showing that the neural indices of syntactic 

structure representation have the characteristics of late latency (e.g., P600, 600 ms 

after the onset of the target) and right hemisphere dominance. Moreover, the 

results are consistent with the hypothesis proposed by Martin and Doumas (Martin 

& Doumas, 2017; Martin & Doumas, 2019; Martin, 2016, 2020; Martin & Doumas, 
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2020), which predicted that the more complicated the syntactic structure is, the 

more phase coherence will be evoked in the neural response. The last test described 

Chapter 4 was designed to check whether low frequency phase entrained with high 

frequency amplitude (Giraud & Poeppel, 2012) would be introduced when 

participants listened to the speech stimuli, and if so, whether the coupling readout 

would reflect syntactic structure discrimination. Consistent with the hypothesis of 

Giraud and Poeppel (2012), we found a strong phase-amplitude coupling (4 to 10 

Hz for phase, 15 to 40 Hz for amplitude) when speech stimuli were presented for 

both conditions. However, no evidence was shown to indicate whether the 

entrainment reaches the syntactic level. The results suggest that low frequency 

phase entrained with high frequency amplitude could reflect generalized aspects of 

speech perception, such as semantic analyses of extracted units.  

In Chapter 5, we expand our exploration into how syntactic structure 

discrimination might be reflected in the intensity of neural oscillations. We 

modeled how acoustic features are encoded to represent syntactic structure 

differences. By doing so, we first found that alpha-band-induced (~8 to 13 Hz) 

power and connectivity could robustly reflect the syntactic discrimination between 

phrases and sentences. The findings could be evidence of the involvement of alpha 

band oscillations in the representation of syntactic structures. Furthermore, our 

modeling work using the STRF showed that acoustic features in both the temporal 

and spectral dimensions could be selectively encoded to represent the differences 

between syntactic structures.  

In the last chapter, Chapter 6, I summarize the implications of all our 

findings, connect the results to previous studies, and point out the directions for 

further research. In sum, the chapter concludes that our work has provided a 

comprehensive picture of the neural representation of speech segmentation via 

statistical inference and syntactic structure discrimination. The results in this 

doctoral thesis also point to the value of studying neural oscillations as an effective 

approach for uncovering issues in speech perception and spoken language 

comprehension. 
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Nederlandse samenvatting 

Spraaksegmentatie en syntactische representaties zijn intrigerende gebieden 

in de neurowetenschappen en psycholinguïstiek, omdat dit cruciale en 

noodzakelijke stappen zijn die leiden tot het begrip van gesproken taal. In mijn 

proefschrift heb ik de neurale representatie van spraaksegmentatie via statistische 

inferentie onderzocht, en ik heb onderzocht hoe het discrimineren van syntactische 

structuur weerspiegeld kan worden in verschillende dimensies van neurale 

activiteit. 

In hoofdstuk 2 rapporteer ik zes MEG-experimenten met moedertaalsprekers 

van het Nederlands. Door de gesproken stimuli in deze experimenten zo te variëren 

dat ze wel of niet te begrijpen zijn voor de proefpersonen, en door de statistische 

informatie tussen meerdere lagen van linguïstische eenheden te manipuleren, 

ontdekten we dat spraaksegmentatie, ofwel de extractie van linguïstische eenheden, 

uitgevoerd kan worden via statistische inferentie zonder dat de stimuli 

daadwerkelijk begrepen worden. Wat nog belangrijker is, is dat het 

segmentatieproces gerepresenteerd kan worden door corticale hersenactiviteit die 

het ritme van de linguïstische structuren volgt (“trackt”). De resultaten bieden 

nieuwe inzichten in het fenomeen van corticale tracking van hiërarchische 

linguïstische structuren, en zijn in strijd met eerdere opvattingen die het tracking-

effect beschouwen als een weerspiegeling van een “chunking” proces dat gebruik 

maakt van linguïstische kennis van hogere orde. Daarnaast schijnen onze 

resultaten licht op de rol van statistisch leren in taalverwerving. In 

overeenstemming met Saffran, Aslin, en Newport (1996) laten onze resultaten zien 

dat spraaksegmentatie via statistische inferentie een eerste stap zou kunnen zijn in 

spraakperceptie, en dat het een noodzakelijke bouwsteen zou kunnen zijn in het 

begrijpen van gesproken taal. 

In hoofdstuk 3 hebben we ons voornamelijk gericht op het uitbreiden van onze 

bevindingen naar een bredere context en op het uitsluiten van de mogelijkheid dat 

de effecten uit hoofdstuk 2 gedreven werden door een specifiek type linguïstische 

kennis dat de proefpersonen hadden. Hiervoor hebben we dezelfde set MEG-

experimenten uitgevoerd, maar dan met Chinese proefpersonen. Onze hypothese 

was dat als de corticale activiteit, die het ritme van meerdere lagen van eenheden 

volgt, spraaksegmentatie via statistische inferentie weerspiegelt, dan zou het 
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proces onafhankelijk moeten zijn van de linguïstische kennis die de proefpersonen 

hebben. Zoals verwacht vonden we hetzelfde patroon aan resultaten als in 

hoofdstuk 2. Dit geeft aan dat de linguïstische kennis die de proefpersonen hadden 

het corticale tracking-effect niet beïnvloedde. In de eerste plaats liet het de 

consistentie en stabiliteit zien van de neurale representatie van spraaksegmentatie 

via statistische inferentie over verschillende soorten taalgebruikers, en wees het op 

de ongevoeligheid voor het effect van de linguïstische kennis die deelnemers 

hadden. Ten tweede geven de consistente resultaten in de experimenten en 

hoofdstukken aan dat het corticale tracking-effect een algemeen perceptueel 

proces zou kunnen weerspiegelen, namelijk spraaksegmentatie met behulp van 

statistische informatie, ongeacht of de stimuli worden begrepen en ongeacht de 

soorten linguïstische kennis die de deelnemers hebben. Kortom, als we de 

resultaten van hoofdstuk 2 en 3 combineren, wijzen onze bevindingen erop dat 

spraaksegmentatie zou kunnen worden uitgevoerd via statistische inferentie en dat 

het endogene proces op perceptueel niveau kan worden weerspiegeld door corticale 

activiteit die tegelijkertijd het ritme van meerdere lagen van linguïstische 

structuren volgt. 

Het opbouwen van syntactische relaties van geëxtraheerde eenheden is een 

noodzakelijke stap bij het verwerven van betekenis. Als aanvulling op hoofdstuk 2 

en 3, waarin de neurale representatie van spraaksegmentatie werd onderzocht, 

rapporteer ik in hoofdstuk 4 en 5 de bevindingen van onze verkennende 

onderzoeken naar de neurale representatie van het discrimineren van syntactische 

structuur. Beide hoofdstukken gebruikten dezelfde dataset van een EEG-

experiment waarin we proefpersonen vroegen te luisteren naar twee soorten 

kunstmatig geproduceerde spraakstimuli, namelijk constituenten en zinnen. Om 

de verschillen in syntactische structuren naar voren te brengen werden de stimuli 

in verschillende condities op elkaar afgestemd in zowel fysieke als semantische 

eigenschappen. In hoofdstuk 4 benadrukten we de temporele synchronisatie van 

de neurale respons bij het representeren van syntactische structuurdiscriminatie. 

Voortbouwend op de eerdere studies die de rol van laagfrequente neurale 

oscillaties aantoonden in spraakperceptie en spraakbegrip, lieten onze resultaten 

allereerst zien dat fasecoherentie in de theta band (~ 2 tot 7 Hz) een belangrijke 

component is, bijvoorbeeld een lettergreep 'is' voor een zin, extractie bij het 

representeren van syntactische structuren gezien de fysieke gelijkenis van de 
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stimuli in verschillende condities. De resultaten geven aan dat extractie van 

syntactische structuren een feedbackproces kan zijn, waarbij akoestische 

kenmerken worden gecodeerd in een endogene benadering die wordt geleid door 

linguïstische kennis van hogere orde. Daarnaast suggereert onze analyse met 

behulp van functionele connectiviteit via fasecoherentie dat verschillen in 

syntactische structuur weergegeven zouden kunnen worden in een distributieve 

benadering. Verschillen in syntactische structuur werden gerepresenteerd door de 

temporele synchronisatie van neurale oscillaties op een zeer lage frequentie (< ~2 

Hz). Onze resultaten zijn in lijn met fysiologisch onderzoek dat heeft aangetoond 

dat de neurale eigenschappen van de representatie van syntactische structuur de 

kenmerken hebben van een late respons (bijvoorbeeld de P600, die 600 ms na een 

target begint) en dominantie van de rechterhersenhelft. Bovendien komen de 

resultaten overeen met de hypothese van Martin en Doumas (2017; 2019, 2020;; 

Martin, 2016, 2020;, die stelt dat hoe ingewikkelder de syntactische structuur is, 

hoe meer fasecoherentie wordt opgeroepen in de neurale respons. Het laatste dat 

we in dit hoofdstuk onderzochten, was of er een koppeling (“entrainment”) tussen 

de fase van laagfrequente activiteit en de amplitude van hoogfrequente activiteit 

(Giraud & Poeppel, 2012) zou ontstaan wanneer de proefpersonen naar de 

spraakstimuli luisterden. Zo ja, dan zou dat betekenen dat het het discrimineren 

van syntactische structuur weerspiegelt. In overeenstemming met de hypothese 

van Giraud en Poeppel (2012) vonden we een sterke fase-amplitudekoppeling (4 

tot 10 Hz voor fase, 15 tot 40 Hz voor amplitude) wanneer spraakstimuli werden 

gepresenteerd in beide condities. Er werd echter geen evidentie gevonden die 

aangaf dat de koppeling een syntactisch niveau bereikt. Deze resultaten suggereren 

dat de koppeling tussen laagfrequente fase en hoogfrequente amplitude 

gegeneraliseerde aspecten van spraakperceptie zou kunnen weerspiegelen, zoals 

bijvoorbeeld semantische analyse van geëxtraheerde eenheden. 

In hoofdstuk 5 hebben we verder onderzocht hoe het discrimineren van 

syntactische structuur weerspiegeld zou kunnen zijn in de intensiteit van neurale 

oscillaties. We hebben gemodelleerd hoe akoestische kenmerken worden 

gecodeerd om verschillen in syntactische structuur weer te geven. Allereerst 

ontdekten we dat geïnduceerde “power” en connectiviteit in de alfaband (~8 tot 13 

Hz) de syntactische structuurdiscriminatie tussen constituenten en zinnen kan 

weerspiegelen. De bevindingen zouden kunnen wijzen op de betrokkenheid van 
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alfa-bandoscillaties bij de representatie van syntactische structuren. Bovendien 

toonde ons modelleringswerk met STRFs aan dat akoestische kenmerken in zowel 

de temporele als de spectrale dimensie selectief kunnen worden gecodeerd om 

syntactische structuurverschillen weer te geven.  

In het laatste hoofdstuk, hoofdstuk 6, vatte ik de implicaties van al onze 

bevindingen samen, verbond ik onze resultaten met eerdere studies en gaf ik de 

richting aan voor verder onderzoek. Onze resultaten geven een uitgebreid beeld 

van de neurale representatie van spraaksegmentatie via statistische inferentie en 

syntactische structuurdiscriminatie. De resultaten in dit proefschrift tonen ook aan 

dat neurale oscillaties een effectieve benadering kunnen zijn om vraagstukken over 

spraakperceptie en gesproken taalbegrip te behandelen. 
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