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A B S T R A C T   

Various fields such as mechanical engineering, materials science, etc., have seen a widespread use of linear 
elastic fracture mechanics (LEFM) at the continuum scale. LEFM is also routinely applied to the atomic scale. 
However, its applicability at this scale remains less well studied, with most studies focusing on non-linear elastic 
effects. Using a harmonic “snapping spring” nearest-neighbor potential which provides the closest match to 
LEFM on a discrete lattice, we show that the discrete nature of an atomic lattice leads to deviations from the 
LEFM displacement field during energy minimization. We propose that these deviations can be ascribed to 
geometrical nonlinearities since the material does not have a nonlinear elastic response prior to bond breaking. 
We demonstrate that crack advance and the critical stress intensity factor in an incremental loading scenario is 
governed by the collectively loaded region, and can not be determined analytically from the properties (max. 
elongation, max. sustained force, etc.) of the stressed crack tip bond alone.   

1. Introduction 

Linear elastic fracture mechanics (LEFM) has a long history in 
structural integrity and the design of fracture-resistant materials, and is 
well established in literature [1]. The roots of LEFM trace back to the 
works of Inglis [2] who introduced the concept of a stress concentration 
factor to describe the stresses due to an elliptical hole with respect to an 
applied macroscopic stress. Later, Griffith [3] assumed a linear elastic 
material to establish a thermodynamic criterion for perfectly brittle 
crack advance. According to this model, a crack would propagate when 
the the stored elastic energy released by crack propagation exceeds the 
energy required to create two new crack surfaces. The energy release 
rate G, which can be defined as the rate of change in potential energy 
with crack area, can then be related to Griffith’s criterion as follows: 

G ≤ GG = 2γ, (1)  

where GG is Griffith’s theoretical resistance of the material that needs to 
be overcome to create two crack new surfaces, with γ being their surface 
energy. Williams [4] and Irwin [5] then used a stress-based approach to 

establish the concept of a stress intensity factor (SIF). This factor K is a 
single loading parameter that describes the scaling of the amplitude of 
the stress field around the crack. The stress intensity factor is related to 
the energy release rate as follows: 

K =
̅̅̅̅̅̅̅̅̅
GE∗

√
, (2)  

where E∗ is the orientation dependent elastic modulus. Applying the 
Griffith criterion to the stress-based approach using Eqs. (1) and (2), we 
obtain the theoretical SIF KG required for crack advance: 

KG =
̅̅̅̅̅̅̅̅̅̅̅
GGE∗

√
. (3) 

In atomistic simulations of fracture [6,7], a SIF-controlled loading 
approach is usually employed by displacing atoms according to the 
linear elastic anisotropic solution in plane strain in mode I [8]. The LEFM 
displacement field is given by: 

ux(r, θ) =
KI

̅̅̅̅̅
2r

√

̅̅̅
π

√ [fx(θ)], (4) 
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uy(r, θ) =
KI

̅̅̅̅̅
2r

√

̅̅̅
π

√
[
fy(θ)

]
, (5)  

where KI is the stress intensity factor under mode I loading and r is the 
distance of the atom from the mathematical center of the crack tip. The 
angular distribution functions fx(θ) and fy(θ) are defined by the angle to 
the cleavage plane θ and the elastic constants for a given crystallo-
graphic orientation (the exact form of the functions are given in equa-
tion (4.44) in [8]). Although a crack is initially inserted by displacing all 
atoms, it is only the boundary layers that are kept fixed during the 
simulations while the remaining atoms are allowed to relax to their 
minimum energy configuration (see, e.g.,[6]). Furthermore, an explicit 

failure criterion is not required in atomistic simulations. Rather, the 
fracture toughness KIc is a result of these simulations. It can be consid-
ered to be reached when, as a result of an energy minimization under the 
applied KIc displacement field, the separation distance of the crack tip 
atom pair exceeds some critical value [9,10]. 

As the name suggests, a key assumption in LEFM is that the material 
exhibits linear elastic behavior. Deviations from linear elastic behavior 
could be due to material nonlinearities, geometrical nonlinearities and 
time-history dependence [11]. Material nonlinearities comprise of, for 
example, nonlinear elastic response or plasticity. Geometrical non-
linearities are due to large deformations where an explicit distinction is 
to be made between reference and deformed configurations [12]. De-
viations due to time-history dependence are usually ascribed to visco-
elasticity, creep and fatigue [11]. 

Previous works with material-specific models such as [10,13] have 
shown that there is generally a good agreement between LEFM and at-
omistics as far as stresses are concerned. The atomic stresses match 
LEFM away from the crack tip and close to the boundaries where the 
LEFM displacement field is imposed throughout the simulations. De-
viations arise only below about 1 nm distance from the crack tip and 
resolve to finite values. However, these deviations do not invalidate the 

Table 1 
Summary of parameters and relevant properties of the 
harmonic potential used in this study (pair potential at 
equilibrium Umin, equilibrium distance d0, cutoff distance 
dc, cohesive energy Ecoh, lattice constant a, surface energy 
of (hkl) plane γ(hkl)), elastic constants Cij (cubic 
symmetry)).  

Parameters / Properties Value 

Umin (eV) 1.00 
d0 (Å) 2.54 
dc (Å) 3.07 
Ecoh (eV) -6.00 
a (Å) 3.60 
γ(100) (J/m2) 4.95 
C11 (GPa) 642.92 
C12 (GPa) 321.59 
C44 (GPa) 321.59  

Fig. 1. Schematic of the used simulation setup. In this study, the geometrical 
center of the configurations coincided with the mathematical center of the 
LEFM displacement field in all simulations. Red atoms are free to move, blue 
atoms are fixed. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 2 
Comparisons of the initial load (Kin) for the simulations, critical stress intensity 
factor from Griffith’s criterion (KG) calculated using Eq. (3), critical stress in-
tensity factors from simulations with incremental loading (Kinc

Ic ), and critical 
stress intensity factors from simulations with total loading (Ktot

Ic ). All values are in 
MPa

̅̅̅̅
m

√
.   

(100)[001] (100)[011] 

Kin 1.70 1.28 
KG 2.46 2.52 
Kinc

Ic 3.15 4.54 
Ktot

Ic 2.36 2.64  

Fig. 2. Positions of atoms around crack tips after relaxation at Kin. The blue 
arrows show the (magnified) difference between the atom positions according 
to LEFM (Eqs. (4) and (5) and after relaxation. Similar deviating displacements 
are observed at all higher loads with both loading procedures. The crack tip 
atom pair is circled and highlighted by green atoms. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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loading procedure in the simulations since the accompanying changes in 
energy are localized close to the crack tip [6]. Such deviations are 
generally ascribed to material nonlinearities, without explicitly taking 
into account possible other nonlinearities. 

It should also be noted that the determination of atomic stresses at 
the crack tip is non-trivial. For example, the study by Möller et al. [10] 
observed that the Virial method [14] used to measure stresses led to 
deviations at the crack tip due to atomic volumes being ill-defined at 
surfaces. 

The phenomenon of lattice trapping (which can be generalized to 
bond trapping for interfaces [15]) represents a deviation for atomic 
structures from Griffith’s energy based approach to LEFM (see [16]). 
The discrete nature of a lattice prevents the continuous increase of crack 
surfaces by a continuously propagating crack. Instead, cracks propagate 
by breaking individual atomic bonds. This leads to cracks remaining 
stable above and below the Griffith stress intensity factor KG during 
loading and unloading, respectively. While the phenomenon of bond 
trapping is well established in the literature (see, e.g, the references in 
[7]), the influence of geometrical nonlinearities on lattice trapping have 
not yet been studied in detail. 

In this study, we provide an example to quantify deviations from the 
SIF-controlled LEFM displacement field arising from geometric non-
linearities and their contribution to the lattice trapping phenomenon. As 
a consequence, we show that fracture toughness cannot be analytically 
determined based on knowledge of maximal bond length of crack tip 
bonds alone. Towards this end, we use a harmonic potential with a local 
cutoff to circumvent nonlinear elastic response prior to cleavage, similar 
to studies such as [9,17]. The use of such a potential between atoms is 

analogous to a “network of springs” model, which is widely used in the 
study of fracture mechanics [18]. It should be noted that for a fully 
linear model, the nonlinearity is eliminated in the material behaviour 
and the geometry description by essentially expressing equilibrium of 
interaction forces in the undeformed geometry. This can be accom-
plished by projecting out the effects of rotation in the displacements 
with respect to the ideal lattice. However, the study of such a model is 
beyond the scope of this work. 

2. Method 

The pair force of the harmonic “snapping spring” potential was given 
by: 

F(d) =

⎧
⎪⎨

⎪⎩

2Umin

[d0 − dc]
2 [d − d0], if d ≤ dc

0, otherwise
(6)  

where − Umin is the potential energy at the equilibrium distance d0, dc is 
the cutoff distance, and d is the inter-atomic separation distance. This 
potential leads to a face-centered-cubic (fcc) equilibrium structure. The 
parameters and potential properties are listed in Table 1. The cutoff of 
the potential has to be small enough to be strictly local so that linearity is 
ensured and that cleavage of bonds at the crack tip can take place [17]. 
Consequently, the critical separation distance between atoms for 
cleavage coincides with the cutoff dc. The local nature of the potential 

Fig. 3. Separation distance of crack tip atoms (see Fig. 2) as a function of KI 

according to LEFM and the two loading procedures. 
Fig. 4. Potential energy per atom as a function of KI. The plots are focused 
around the loads at which the crack tip bonds underwent cleavage with the 
total loading procedure (Ktot

Ic ). 
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also results in the simulations not displaying any surface related phe-
nomena, which are not accounted for in LEFM, making this potential 
suitable for comparisons with LEFM. Two different parameterization of 
this harmonic potential have been investigated and resulted in compa-
rable conclusions (the details and results of the second potential are in 
Appendix A and Appendix C). 

Cylindrical pacman-like configurations with radii of 300 Å and 
depths of about 10 Å were used, see Fig. 1. Without removing atoms or 
deleting bonds, LEFM near crack tip solutions according to Eqs. (4) and 
(5) were used to create and load cracks. A boundary region of about 15 Å 
thickness was kept fixed throughout the simulations, whereas the 
remaining domain was allowed to relax. The sizes of the configurations 
were large enough to converge to the infinite limit assumed by LEFM 
with respect to KIc (see Appendix B). Hence, flexible boundary condi-
tions as detailed in [19] were not required. Instead, the LEFM 
displacement field and boundaries were always centered on the 
geometrical center of the configurations, similar to works such as [10, 
20,21]. The crack systems (characterized by crack plane and crack front 
direction) studied were (100)[001] and (100)[011]. 

The initial prescriptions of the displacement field were done at a load 
where the cracks were stable at the center of the configurations (Kin), see 
Table 2 for the values of KG and Kin. The configurations were then 
minimized using FIRE [22]. Two procedures were used in this study to 
impose further loads: incremental and total loading. In incremental 
loading, further loads ΔK in the form of prescribed displacements Δu 
according to Eqs. (4) and (5) were incrementally applied on all the atoms 
in the relaxed configuration of the previous load increment until the 
crack tip bonds underwent cleavage (d > dc). The fracture toughness 
determined that way are referred to by Kinc

Ic . In the case of total loading, 
displacements u according to the total desired load Kin +ΔK were 
directly applied to the initial, uncracked cylinder. The samples was then 
relaxed and the procedure was repeated, until the separation distance of 
the crack tip atom pair exceeded dc. The fracture toughness determined 
by total loading is Ktot

Ic . 
All calculations were performed with LAMMPS [23] and analysis was 

done with the help of OVITO [24]. 

3. Results and discussion 

Prior to cleavage of crack tip bonds, both crack systems with both 
loading procedures show deviations from the LEFM prescribed positions 
due to relaxation, see Fig. 2. These deviating displacements indicate 
inconsistency with the linear behavior assumed by LEFM. Since the 
elastic response of the material before cleavage is linear, these de-
viations can only be ascribed to geometrical nonlinearities. In other 
words, collective relaxation processes ahead of the crack tip lead to 
changes in geometry of the crack tip neighborhood which is no longer 
compatible with linear elasticity. 

Although these deviating displacements seem minor, they have a 
significant impact on the separation distances of the crack tip atom 
pairs. It can be seen from Fig. 3 that large deviations exist in both crack 
systems between the separation distance according to the atomic posi-
tions determined by LEFM and the atomistic response, independent of 
loading procedure. In the case of total loading, the crack tip bonds, 
however, cleave in accordance with the analytical LEFM Eqs. (4) and 
(5). This is due to the atoms being positioned by the LEFM displacement 
field so that the crack tip bonds are already cleaved at Ktot

Ic , and the bonds 
do not heal during minimization. Until then, the separation distance d1 
remains nearly identical for both loading procedures. In the case of in-
cremental loading, the deviations add up and lead to fracture toughness 
values that are > 30% larger than the corresponding analytically 
determined LEFM values. 

Under incremental loading, the material shows high lattice trapping 
as evidenced by Kinc

Ic >> KG. This has been observed in earlier works 

under similar loading conditions and is a consequence of its local and 
linear nature [9,17]. Thus, for incremental loading, geometric non-
linearities significantly influence lattice trapping. 

However, material-specific, more realistic material models show 
much lower lattice trapping, see, e.g., the work by Hiremath et al. [25] 
on cracks in Tungsten under incremental loading. There it was found 
with a newly developed, DFT fitted, modified embedded atom method 
potential that the value of Kinc

Ic was just 2% larger than KG ((001)[1–10] 
crack system). 

They also published the traction-separation curves. The position of 
the peak of these curves (δ) can be considered for the critical separation 
distance (dc = d(010) + δ) for a vertically orientated crack tip bond (as is 
the case in this orientation). One can then use the LEFM Eqs. (4) and (5) 
to determine KIc(d = dc). With δ ≈ 0.5 Å and the values of d(010) and the 
elastic constant for the potential, see [25], the so calculated KIc is 
however about 125% larger than the measured one. This again high-
lights that using only the critical bond separation distance is not suffi-
cient to calculate the fracture toughness with LEFM. In this example, 
however, not only geometrical nonlinearities are at play, but also ma-
terial nonlinearities and surface effects like surface relaxation. 

Finally, the two loading procedures are compared. As noted by Sin-
clair [17], the transition from a pristine crystal to a fractured surface will 
not be sudden. Hence, the fracture toughness values from total loading 
may not be realistic (when used with realistic materials). The two 
loading procedures start at the same Kin, at which the corresponding 
structures have identical total energies. As shown in Fig. 4, with further 
loading the energies deviate from each other, however, at Ktot

Ic the dif-
ference is less than 1 meV per atom in both crack systems. This energy 
difference seems relatively low, however, the structural difference are 
located close to the crack tip and can therefore play an important role. If 
fracture is assumed to be sufficiently slow so that atoms have time to 
find their minimum energy configuration, the procedure that provides 
the lowest energies for the given load KI would have to be considered. 

4. Conclusions 

The results presented in this work show that geometrical non-
linearities cause deviations from LEFM even if the material has a linear 
elastic response prior to bond cleavage. In the case of incremental 
loading, which can be assumed to be relevant in the determination of 
crack initiation toughness, geometrical nonlinearities also influence 
lattice trapping. Real materials further deviate from LEFM due to their 
nonlinear elastic responses and surface effects. We show, however, that 
even in the absence of such complications, fracture toughness cannot be 
re-conciliated with LEFM by using the critical separation distance of the 
crack tip atom pair in an incremental loading procedure. Rather, frac-
ture is a collective phenomenon at the atomic scale, even with purely 
local and linear interactions. Therefore actual fracture simulations have 
to be performed to determine fracture toughness. 
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Appendix A. Potentials 

The formulation of the potentials is given by 

V(d) =
Umin

[d0 − dc]
2

[
[d − d0]

2
− [dc − d0]

2]
, (A.1)  

where, V is the effective pair potential, with − Umin being the potential at the equilibrium distance d0, dc being the cutoff distance, and d being the inter- 
atomic separation distance. The pair force is then given by the first derivative of (A.1): 

F(d) =
2Umin

[d0 − dc]
2 [d − d0]. (A.2) 

Two potentials labelled “Harmonic-A” and “Harmonic-B” were used, with the properties listed in Table A.1. Due to the underlying symmetries of 
the crystallographic lattice (fcc), the material models are elastically anisotropic. The results of Harmonic-A are presented in the main manuscript. The 
results of Harmonic-B are in Section Appendix C. 

Appendix B. Tests of setup and simulation parameters 

Convergence of Kinc
Ic with respect to configuration radius R was tested with Harmonic-A using the incremental loading procedure (see Table B.1). It 

can be seen that R=300 Å was sufficient for both crack systems, with further increase in configuration size resulting in negligible change to KIc. 
Simulations of Harmonic-B were done only with R=300 Å. 

Influence of convergence threshold (fnorm-thr) was tested with Harmonic-A using the incremental loading procedure (see Table B.2). It can be seen 
that a convergence threshold of fnorm-thr = 1e-6 eV/Å was sufficient, and using a tighter threshold produced no change in Kinc

Ic . Simulations with 
Harmonic-B were performed only with fnorm-thr = 1e-6 eV/Å. 

Influence of loading increment (ΔKI) on Kinc
Ic (MPa

̅̅̅̅
m

√
) was tested with Harmonic-A using the incremental loading procedure (see Table B.3). It can 

be seen that having smaller increments than 0.028 MPa
̅̅̅̅
m

√
has little influence, whereas it increases computational cost (more steps needed). Hence, 

ΔKI = 0.028 MPa
̅̅̅̅
m

√
was used (also for Harmonic-B). 

Table A.1 
Summary of parameters and relevant properties of the harmonic potentials (pair potential at equilibrium Umin, equilib-
rium distance d0, cutoff distance dc, cohesive energy Ecoh, lattice constant a, surface energy of (hkl) plane γ(hkl)), elastic 
constants Cij (cubic symmetry)).  

Parameters / Properties Harmonic-A Harmonic-B 

Umin (eV) 1.00 1.00 
d0 (Å) 2.54 2.54 
dc (Å) 3.07 2.90 
Ecoh (eV) -6.00 -6.00 
a (Å) 3.597 3.597 
γ(100) (J/m2) 4.95 4.95 
C11 (GPa) 642.92 1401.76 
C12 (GPa) 321.59 700.95 
C44 (GPa) 321.59 700.79  

Table B.1 
Kinc

Ic (MPa
̅̅̅̅
m

√
) values of crack systems with varying configuration radii (R) using Harmonic-A. The convergence threshold (fnorm-thr) was 1e-6 eV/Å and load 

increment (ΔKI) was 0.028 MPa
̅̅̅̅
m

√
.  

Crack system R=150 Å R=300 Å R=600 Å 

(100)[001] 3.12 3.15 - 
(100)[011] 4.48 4.54 4.57  

Table B.2 
Kinc

Ic (MPa
̅̅̅̅
m

√
) values of crack systems for varying convergence thresholds (fnorm-thr) with Harmonic-A. The configuration radius (R) was 300 Å and load increment 

(ΔKI) was 0.028 MPa
̅̅̅̅
m

√
.  

Crack system fnorm-thr = 1e-6 eV/Å fnorm-thr = 1e-8 eV/Å 

(100)[001] 3.15 3.15 
(100)[011] 4.54 4.54  
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Appendix C. Results with Harmonic-B 

The results of the simulations with Harmonic-B are qualitatively similar to Harmonic-A with respect to displacements from LEFM-prescribed 
positions during relaxations, as well as with respect to fracture toughness values and energetics with both loading procedures (see Figs. C.1–C.3). 

Table B.3 
Kinc

Ic (MPa
̅̅̅̅
m

√
) values of crack systems for varying load increments (ΔKI) with Harmonic-A. The configuration radius (R) was 300 Å and the convergence threshold 

(fnorm-thr) was 1e-6 eV/Å.  

Crack system ΔKI = 0.028 MPa
̅̅̅̅
m

√
ΔKI = 0.014 MPa

̅̅̅̅
m

√

(100)[001] 3.15 3.14 
(100)[011] 4.54 4.53  

Fig. C.1. Positions of atoms around 
crack tips after relaxation at Kin with 
Harmonic-B. The blue arrows show the 
(magnified) difference between the 
atom positions according to LEFM (Eqs. 
(4) and (5) and after relaxation. Similar 
deviating displacements are observed at 
all higher loads with both loading pro-
cedures. The crack tip atom pair is 
circled and highlighted by green atoms. 
(For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this 
article.)   

Fig. C.2. Separation distance of crack tip atoms (see Fig. C.1) with Harmonic-B as a function of KI according to LEFM and the two loading procedures.  

Fig. C.3. Potential energy per atom as a function of KI with Harmonic-B. The plots are focused around the loads at which the crack tip bonds underwent cleavage 
with the total loading procedure. 
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