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Chapter 1

Introduction

Some passages in this chapter are based on:
de Lange FP., Heilbron M., and Kok, P. 2018. How do expectations shape perception? Trends
in Cognitive Sciences. 22.9



1. | Introduction

Introduction

As you are reading these words, your eyes are scanning the page by making short
erratic jumps, each time stopping just a fraction of a second – but long enough for
your brain to transform lile black marks into a conscious awareness of meaning.
is transformation is perhaps even more striking for spoken language. Natural
speech is a continuous stream, where words run into each other and oen overlap.
You hear it for what it is when hearing a foreign language: a seamless stream of
sounds without any boundaries – and it is all so fast. Yet the brain can transform this
stream into a chain of meaningful words and the relations between them, all virtually
in real time.

How does the brain achieve this remarkable feat? It has been suggested that a
key ingredient to the answer lies in the constant prediction of the incoming signal.
is suggestion is what I have been investigating over the past four years of my life.
It is a suggestion made by an emerging theoretical framework known as ‘predictive
processing’ which describes the brain as essentially a prediction machine. e infor-
mation processing schemes envisioned by the framework can account for a breath-
taking range of phenomena – from psychology to physiology – and promise to offer
unifying computational principles of brain function. Surprisingly, these very same
processing schemes are found (in a rudimentary form) in the speech recognition and
predictive text systems on our phones, and are the driving force behind some of the
most spectacular breakthroughs in artificial intelligence of the past few years.

So far, most empirical work on predictive processing has focussed on percep-
tion – in particular vision1. But as I will explain in this introduction, I believe that
predictive processing can also shine new light on language – and, conversely, that
studying language can provide unique insights into the predictive brain. To do so, I
first review the key ideas of the framework. en I discuss how they relate to similar
ideas about language processing that have been explored before, and outline what
the new framework may offer the study of language. Ultimately, the picture that
emerges from the work in this thesis is one of language processing as inherently pre-
dictive. A view in which the brain’s ability to understand or ‘follow’ any piece of
language depends on its ability to get ahead and predict it.

But I’m geing ahead of myself here. Let’s start with the basics: what is predic-
tive processing?

1Some notable exceptions notwithstanding (see e.g. Arnal, Wyart, and Giraud, 2011; Blank and Davis,
2016; Gagnepain, Henson, and Davis, 2012; Shain et al., 2020; Sohoglu and Davis, 2020; Sohoglu et al.,
2012 for work on language.)
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1. | Introduction

Predictive processing as a framework for studying the brain

Predictive processing is not a single model or even a single theory – instead it refers
to a broad class of models that propose that information processing in the brain fun-
damentally relies on predictions. e framework combines, unifies, and in some
cases rediscovers a range of ideas from psychology or neuroscience, machine learn-
ing and information theory. Many of these ideas have a long history, but only in the
past decade or so it was recognised that they can be unified into a single overarching
framework for studying the brain (Clark, 2013; Friston, 2010; Heeger, 2017; Hohwy,
2013; Huang and Rao, 2011). A key tenet of the framework is that the brain constructs
generative models of the world. A model is called generative when it captures the
full statistical structure of the data such that it can generate new data instances –
such as images in the case of vision or sentences in the case of language. Predictive
processing models typically focus on neocortex, which they cast as embodying a hier-
archical generative model – a model that can generate paerns of activity ‘from the
top-down’ that external stimuli would elicit ‘from the boom-up’ (Friston, 2005; Lee
and Mumford, 2003; Mumford, 1992; Rao and Ballard, 1999). Contrasting with tradi-
tional accounts of cortical processing as merely the boom-up detection of increas-
ingly abstract features (Marr, 1982; Riesenhuber and Poggio, 1999), the framework
proposes a more active notion of the brain constantly trying to predict the incoming
input and minimise the prediction error: the discrepancy between the prediction and
the signal.

Arguably, the primary appeal of predictive processing is the broad scope of its
explanatory potential. Supposedly, this single scheme of prediction and prediction-
error minimisation can account for breathtaking range of phenomena, from (classi-
cal) tuning of low-level sensory neurons and the (extra-classical) modulations thereof
(Huang and Rao, 2011; Rao and Ballard, 1999), via perceptual phenomena such as il-
lusions and gestalt principles (Bar, 2007; Yuille and Kersten, 2006), up to imagination,
sensorimotor control, action and motivation (Den Ouden, Kok, and De Lange, 2012;
Friston et al., 2017). As such, it is proposed as a fundamental neurocomputational
principle (Keller and Mrsic-Flogel, 2018) and has been even hailed by some a ‘grand
unified theory’ of mind and brain (Clark, 2013; Friston, 2010; Hohwy, 2013). Since we
are considering language processing (in the receptive sense, so excluding language
production), we are primarily interested in three putative functions of prediction,
which I detail below.

First, prediction can be used for recognition – or more generally, inference. is
is motivated by the insight that most recognition problems the brain faces are in-
verse problems: problems that require inverting the arrow of causality. For instance,
object recognition requires going from the activity paerns that make up a sensory
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1. | Introduction

impression back to the external object that caused them. Similarly, parsing can be
seen as inferring the hidden syntactic structure used to generate an incoming word
sequence. Solving inverse problems is difficult because they are typically ill-posed,
having multiple (oen infinitely many) possible solutions. Finding a solution there-
fore requires imposing constraints that can rule out alternative solutions. Drawing
on Bayesian and ‘analysis-by-synthesis’ approaches to perception (Kersten, Mamas-
sian, and Yuille, 2004; Lee and Mumford, 2003; Neisser, 1967; Yuille and Kersten,
2006), predictive processing proposes that predictions derived from generative mod-
els offer such constraints.

Some of these predictions stem from low-level distributional priors (such as that
light typically comes from above). However, recognition oen benefits from more
complex, contextual predictions – such as when a faint edge turns out to be a critical
boundary only in the light of a higher-level interpretation of a scene (Fig 1.1). Such
inferences are proposed to operate via an analysis-by-synthesis procedure, where
low-level cues deliver boom-up proposals which evoke higher-level hypotheses
which are then tested by comparing the input to a top-down prediction of the signal.
is top-down prediction can be seen as a knowledge-based reconstruction of the
input – and the procedure is called analysis by synthesis since perceptual analysis
is performed by comparing the raw incoming signal to the synthesised top-down
signal. Although algorithmic details differ, models generally propose that this is im-
plemented with a single operation, where each ‘level‘ of the cortical hierarchy tries
to predict the activity paerns at the level below (Friston, 2005; Lee and Mumford,
2003; Rao and Ballard, 1999). Bad predictions result in prediction errors which are
used to finesse the prediction at the higher level. is procedure is repeated, simul-
taneously throughout the hierarchy, until the error is minimised and perception is
achieved. Empirically, this scheme can account for a wide range of findings in per-
ception, and is more directly supported by studies reporting signatures of prediction
error and the effects of top-down predictive feedback (see de Lange, Heilbron, and
Kok, 2018; Heilbron and Chait, 2018 for reviews).

e strong emphasis on prior knowledge raises an obvious question: how does
the brain learn such powerful internal models? Intriguingly, learning can itself be
driven by prediction. Predictive processing models typically propose that the very
same error-correction algorithm that (over short timescales) drives inference also
(over longer timescales) drives learning (Friston, 2005; Rao and Ballard, 1999). Here
the framework integrates insights from predictive self-supervised learning, a form of
learning where by predicting the input, a system can use prediction errors to perform
error-driven learning without supervision. In AI, this form of predictive learning is
today one of the most rapidly developing areas, resulting in highly influential unsu-
pervised learning techniques like contrastive predictive coding (Henaff et al., 2019;
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1. | Introduction

Figure 1.1. Ambiguity in low-level vision and its resolution by high-level context.
When only analysing a small region of a natural image, even detecting simple features like
edges can be difficult. In the image, distinguishing the pedestrian’s shirt or hair from the
background – or their arm from an edge in the sidewalk – is practically impossible based on
a local analysis of low-level features. But at a high level the image is not ambiguous: we can
easily see a pedestrian and a row of parked cars. Critically, this high-level information in turn
allows us to disambiguate the low-level information: having identified a walking person we
can recognise a subtle difference in luminance as the key boundary between the pedestrian
and the sidewalk. Predictive processing models propose that this disambiguating effect of
high-level context on low-level features is implemented by top-down connections from high-
level cortical neurons (analysing abstract features at larger spatial scales) to low-level neurons
(analysing simple features at smaller spatial scales). Image adapted from UIUC cars dataset.

LeCun, 2016; Liu et al., 2021; Oord, Li, and Vinyals, 2019). In neuroscience, such
generative-model based predictive learning has been theoretically explored as an
alternative to (Dayan et al., 1995; Hinton et al., 1995) or implementations of (Whit-
tington and Bogacz, 2019) standard backpropagation, and can empirically account
for a range of learning and plasticity effects observed in the brain (Bakhtiari et al.,
2021; Gillon et al., 2021; Jehee et al., 2006; Rao and Ballard, 1999).

Finally, prediction can be used for compression. e term predictive coding was
originally coined as the name of a signal compression technique. e key idea here is
that if only the deviation or prediction error is encoded, the predictable component
of the signal can be discarded, resulting in a more efficient code. Predictive coding
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1. | Introduction

models implement this kind of compression strategy as an integral part of neural
processing, by postulating that only the error term is transmied to higher-order
areas2 (Friston, 2005; Rao and Ballard, 1999). Here the framework connects to and
unifies key notions from efficient and sparse coding (Barlow, 1961; Chalk, Marre,
and Tkacik, 2018; Olshausen and Field, 1996; Smith and Lewicki, 2006). Empirically,
this form of predictive compression can account for many low-level physiological
phenomena such as response properties of neurons, ranging from the retina (Hosoya,
Baccus, and Meister, 2005; Srinivasan, Laughlin, and Dubs, 1982) to sensory cortex
(Huang and Rao, 2011; Rubin et al., 2016).

Summing up, predictive processing proposes how prediction can drive recogni-
tion or inference, learning, and compression. e principles can account for, and
are supported by, a range of findings from the perceptual system – suggesting that
predictions may be fundamental to neural computation.

Predictive language processing: a pre-history

Language seems like an ideal domain for the predictive processing approach. Aer
all, language is full of regularities that must be learned and can be used to predict
(Chang, Dell, and Bock, 2006), as wel as redundancies that can be compressed (Jaeger,
2010; Shannon, 1951). At the same time, language is rife with ambiguities – at all
levels of analysis – that require priors or contextual predictions to resolve (Hindle
and Rooth, 1993; Piantadosi, Tily, and Gibson, 2012). It should perhaps come as no
surprise, then, that most of the key ideas of predictive processing have long been
explored within the realm of language – oen before being applied to perception
or cognition more broadly. To assess what the contemporary view of the predic-
tive brain can offer the study of language processing, I will first briefly review this
theoretical and empirical ‘pre-history’ of predictive processing of language.

Theoretical arguments for predictive language processing

For recognition, the idea that perceptual analysis cannot only consist of a passive de-
tection of features but must involve some active, reconstructive (i.e. generative) com-
ponent was recognised early on in the cognitive science of language. For instance,
already in the late fiies and early sixties, Halle and Stevens proposed the analysis
by synthesis model of speech perception (Halle and Stevens, 1962; Stevens, 1960).
is model proposed that listeners generate hypotheses about the incoming words

2 In hierarchical predictive coding models of cortex, the error coding scheme is in an important way
different from purely-compression-based schemes (such as those in the retina), because the predictable
information is not just discarded but is still represented and internally reconstructed from top-down (or
lateral) connections.
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1. | Introduction

..

Box 1.1 | What’s in a prediction?

.

In psycholinguistics, the term prediction is typically used in a temporal sense
only: it is reserved for anticipatory pre-activation of information. Here, I fol-
low the predictive processing framework and use a more inclusive definition.
In fact, while some predictive processing models deal with temporal predic-
tion (e.g. Heeger, 2017; Loer, Kreiman, and Cox, 2017) most models (all
models of vision) do not even include a temporal dimension, and only gener-
ate so-called nowcasts – predictions of the present. While this may seem like
a misnomer, it makes sense when we consider the statistical definition of the
term. Statistically, a prediction is an extrapolation from a model to potential
observations. Whereas a model is specified via parameters over latent vari-
ables, a prediction is specified in terms of observable data. In other words,
given a model and a higher-level hypothesis, a prediction tells us what obser-
vations to expect. e essence of prediction lies in the absence of sufficient
data. Whether this is because the prediction is about the future – or because
it is about current but not yet (fully) observed events – is irrelevant. Essential
is the inference from a latent to expected observations that goes beyond the
data given.

is definition is useful because it shows how seemingly unrelated phe-
nomena – from biases in orientation perception to anticipatory effects in
recognition – may be examples of the same principle and can be explained
in the same mathematical terms. In language, most of the interesting reg-
ularities unfold over time, such that the statistical and colloquial sense of
prediction will oen align. However, this is not always the case, such as
when the brain can ‘predict’ a leer from its neighbouring leers (Chapter
2). For me, whether such an inference is a ‘prediction’ depends on the mech-
anism – whether it involves inferences about expected observations from a
generative model – but not on whether it involves prediction over time.

and that recognition is achieved by comparing the incoming signal to internally syn-
thesised top-down predictions of the most likely potential phonemes. Interestingly,
while its direct impact on models of language understanding was limited (Bever and
Poeppel, 2010), the analysis by synthesis framework became more widely known
aer of its extension into a framework for visual perception (Neisser, 1967). In its
own way, the more influential (and contentious) motor theory of speech perception
also casted speech perception as the matching of acoustic input to actively generated
predictions derived from a generative (articulatory) model – and did so in the sixties
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1. | Introduction

already (Liberman et al., 1967).
Regarding processing architecture, the very mechanism of top-down recognition

itself – at least its computationally explicit form – was pioneered in early connection-
ist models of language: the interactive activation model of visual word recognition
(McClelland and Rumelhart, 1981; Rumelhart and McClelland, 1982) and its exten-
sion to speech, TRACE (McClelland and Elman, 1986; McClelland, Rumelhart, and
Group, 1986). ese models explained context effects via top-down connections that
allowed information from the higher-order (e.g. word) level to directly guide recog-
nition at the lower-order (e.g. leer) level. Because these top-down connections
encode which lower-level features to expect given some higher-level expectation,
they formally embody a top-down generative model. While the authors did not yet
use this term (nor the term ‘prior’ or ‘prediction’), these interactive models of word
recognition are precursors of later hierarchical bayesian models of perception more
broadly (Lee and Mumford, 2003; McClelland, 2013; Yuille and Kersten, 2006). 3

Meanwhile, and largely isolated from developments in cognitive science, engi-
neers working on language converged on their own kind of predictive processing
solution, with the statistical approach to automatic speech recognition (ASR; Bahl,
Jelinek, and Mercer, 1983; Baker, 1975; Jelinek, Bahl, and Mercer, 1975). A signature
characteristic of the approach is that recognition systems constitute not just an acous-
tic model but also a language model – a generative model computing the probability
of a word given the preceding words. In other words, these systems recognise speech
not just as a function of the incoming acoustics but also as a function of its internal
predictions of which word is coming next (Jelinek, 1998). Current ASR systems use
end-to-end neural networks instead of explicit probabilistic models (Baevski et al.,
2020; Bahdanau et al., 2016; Chan et al., 2016; Graves, Mohamed, and Hinton, 2013);
however, they still use language models and fundamentally rely on the same predic-
tive strategy (Jurafsky and Martin, 2021; Toshniwal et al., 2018). While the success
of this engineering solution does not necessarily tell us anything about the brain,
it is a striking fact that in all these decades, every successful recognition system –
for spoken and wrien language alike – has relied on linguistic predictions from a
generative model (Jelinek, 1998; Jurafsky and Martin, 2021; Schroeder, 2004).

e statistical approach also came to dominate other domains of computational
linguistics, notably models of grammar and parsing (Bod, Scha, and Sima’an, 2003;
Charniak, 1997; Manning and Schutze, 1999). Psycholinguists built on these devel-
opments by combining probabilistic context-free grammars (PCFG) with top-down
probabilistic parsers to formulate theories of syntactic comprehension (Hale, 2001;

3While top-down connections are an elegant implementation of priors – especially in a hierarchical
scheme (Lee and Mumford, 2003) – they should not be equivocated: it is perfectly possible to construct a
boom-up Bayesian model.
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1. | Introduction

Levy, 2008). By casting comprehension as an expectation-based process in which
the brain is constantly predicting all potential full-sentence analyses consistent with
the input so far, these theories could explain a wide range of syntactic processing
phenomena, and became considerably influential.

Beyond recognition or inference, other functions of prediction proposed by the
predictive processing framework have also been explored in the domain of language.
Notably, the idea that prediction can drive learning was explored by Elman in his
pioneering work on recurrent neural networks (RNNs; Elman, 1990, 1991). Elman
showed that by predicting the next word given the previous words, a neural network
could perform error-driven learning without supervision. Strikingly, the represen-
tations learned by these networks captured abstract distinctions (such as between
nouns and verbs) and multiple levels of subcategories within them (such as animate
vs. inanimate objects; Elman, 1990). In other words, by simply training the networks
to predict, the models learned to ‘understand’. While Elman worked with highly sim-
plified ‘toy languages’, these findings are the foundation for recent breakthroughs
in natural language processing. Recently, deep learning based language processing
systems have dramatically improved and are now deployed in many applications –
mostly by leveraging the predictive learning explored by Elman. ese models are
trained simply to predict words in a context, but then learn about language much
more broadly, and can be applied to practically any language processing task (Brown
et al., 2020; Devlin et al., 2019; Peters et al., 2018; Radford et al., 2018, 2019; Ruder
et al., 2019); and develop representations that can be used to predict brain response
paerns to language (Caucheteux and King, 2020; Schrimpf et al., 2020). Careful
analysis of these networks has revealed that they are not just practically useful, but
‘understand’ a striking amount of linguistic structure – all discovered by simply pre-
dicting language, without any supervision (Linzen and Baroni, 2021; Manning et al.,
2020).

Finally, the idea that prediction can be used for compression also has long been
applied to language. For instance, linear predictive coding (LPC; Elias, 1955) has
been used for speech compression for decades (Atal and Schroeder, 1970) and is still
being applied, for instance in the speech codec of Skype (Gray, 2010; Koen, Skak, and
Vandborg, 2010). In the study of perception, predictive compression principles have
been used to explain various neural/cognitive phenomena, such as the response char-
acteristics of sensory neurons (Bialek, Nemenman, and Tishby, 2001; Chalk, Marre,
and Tkacik, 2018; Gill et al., 2008; Huang and Rao, 2011; Rubin et al., 2016). For the
neuroscience of language, I am not aware of such usages of compression principles
– it seems that prediction-for-compression has so far remained a feat of engineering
only.
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1. | Introduction

Figure 1.2. Top-down perceptual insight in ambiguous stimuli. a) A spectrogram of
a spoken sentence (lower row) and its heavily reduced sine-wave speech representation (top
row). e sine wave speech lacks spectral detail: traditional acoustic cues like distinctive
features are completely absent and the sound is oen not even perceived as speech initially.
However, appropriate context can introduce dramatic gestalt switch such that the sine waves
are perceived as a fully intelligible sentence. For a demonstration, click here to listen to the
sine wave speech recording and here for the clear recording.4b) Two-tone or Mooney image.
e upper panel may appear as a random arrangement of black and white shapes – but to
people who have taken a linguistics class or have otherwise seen the lower panel before, the
image can be recognised as the contours of a famous thinker. Image: Wikimedia commons.

Empirical support for predictive language processing

Empirically, there have also long been findings well in line with predictive process-
ing.

For instance, there is a wealth of behavioural work showing strong effects of
context on word recognition. In fact, one of the earliest phenomena described in em-
pirical psychology is such an effect: the fact that leers are more easily recognised
when embedded in a word (Caell, 1886), also known the word superiority effect (Re-
icher, 1969; Wheeler, 1970). Contextual effects are perhaps even stronger in speech,
where linguistic context can greatly enhance recognition of degraded speech (Miller,
Heise, and Lichten, 1951). One of the most dramatic example of such enhancement
is found in sine wave speech (Remez et al., 1981). is is a technique that reduces
the full speech spectrogram to only three or four sinusoids, resulting in something
like the acoustic version of a Mooney image (Mooney, 1957; see Figure 1.2). As with
Mooney images, higher-level context can induce dramatic gestalt switches, trans-

4Or type tinyurl.com/swsent or tinyurl.com/normsent in your browser, respectively. Sounds are from the
personal website of Dr Ma Davis at the University of Cambridge.
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forming the perception from some strange beeps and whistles into a fully intelligible
spoken sentence – oen considered a hallmark of top-down effects in speech (Davis
and Johnsrude, 2007). Context effects in speech also exist at the lexical level. In
the phonemic restoration effect, one segment of a word is replaced by noise (e.g.
el_phant) but subsequently restored or ‘filled-in’ during perception. is effect is
so strong that participants oen report having heard the missing segment (Warren,
1970). Even sub-lexical knowledge can such effects, as illustrated by illusory vow-
els. When subjects are presented with consonant clusters that are phonotactically
illegal in their native language, their brain ‘restores’ the stimulus by perceptually in-
serting a vowel such that the percept confirms to their language. Native speakers of
Japanese, for instance, would perceive the nonword /ebzo/ as /ebuzo/ (Dupoux et al.,
1999).

Another set of suggestive clues comes from electrophysiology, which has long
shown that the brain responds differently to words that violate linguistic expecta-
tions or regularities. In fact, this goes back to one of the first reported and most
discussed neural signatures of language: the N400 (Kutas and Hillyard, 1980; Kutas
and Hillyard, 1984). e amplitude of this negative deflection peaking at 400 ms post
word onset is stronger for unpredictable or anomalous words – and this effect is a
graded, continuous function of the degree of unexpectedness (Kutas and Hillyard,
1984). Interestingly, different responses have been shown to be sensitive to viola-
tions of linguistic regularities at different levels, such as the P600 to syntactic vio-
lations (Hagoort, Brown, and Groothusen, 1993; Osterhout and Holcomb, 1992), or
the N200 to phonological violations (Brink, Brown, and Hagoort, 2001). More recent
computational approaches have shown that the amplitude modulation of the N400 by
predictability can be well-captured in terms information-theoretic surprisal (the neg-
ative log probability; Frank et al., 2015). Although alternative interpretations exist
(see below), this modulation by predictability fits neatly with a phenomenon found
in neuroscience more widely: that response strength is proportional to a stimulus’
unexpectedness – and specifically its negative log probability (Friston, 2005).

Eye movements provide another rich source of clues. For instance, words that
are unexpected in context are read more slowly, as measured by fixation durations
in eye tracking or response times in self-paced reading (Ehrlich and Rayner, 1981;
Staub, 2015). e effect is analogous to the predictability effect on the N400, strongly
suggesting that predictable words are processed more efficiently. Strikingly, compu-
tational modelling of large datasets of reading times has shown that this effect exists
not just for highly predictable ‘target’ words, but was found to scale logarithmically
with a word’s contextual probability (i.e. linear in surprisal) up to 6 orders of mag-
nitude (Smith and Levy, 2013). In other words, the effect is not just present when
comparing words of probability of 0.9 vs 0.09, but is equally strong for seemingly sub-
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1. | Introduction

tler differences such as between p = 0.009 vs p = 0.0009. While the predictability
effect has been known since the 1980’s (Ehrlich and Rayner, 1981), a more recent and
highly influential line of work comes form the visual world paradigm. Here, partic-
ipants view visual scenes while being presented with spoken sentences (Allopenna,
Magnuson, and Tanenhaus, 1998). is revealed that the eyes move spontaneously
to the object that the unfolding sentence could be referring to – oen in clear antici-
pation of presentation of the predicted target word.

Together, the empirical literature work has long shown that that language pro-
cessing is highly contextual and incremental, and that unpredictable words are pro-
cessed less efficiently.

Controversies and open questions

And yet – despite the long history of appealing theoretical arguments and empiri-
cal clues – the idea of predictive language processing has for decades been rejected
in psycholinguistics and remains contentious until today. While in the sixties psy-
cholinguists still proposed that comprehenders constantly generate hypotheses about
upcoming words (Goodman, 1967; Miller and Isard, 1963) this idea was then dis-
carded and remained almost taboo until at least the early 2000s. is state of affairs
is well characterised in an inventory by Van Berkum et al. (2005), who note that
(shy of one exception) “the authors of recent psycholinguistics textbooks (e.g., Harley,
2001; Jay, 2003; Whitney, 1998) make no reference to the possibility that people might
predict upcoming language”; and that “prediction has also been notably absent in au-
thoritative monographs and survey chapters on language comprehension (e.g., Cutler &
Clion, 1999; Frazier, 1999; Kintsch, 1998; Perfei, 1999; Pinker, 1994).”

A major reason for this enduring skepticism is the the influence of two theoreti-
cal frameworks. First, the modularity of mind in cognitive science, with its informa-
tional encapsulation and boom-up processing (Fodor, 1983; Forster, 1981; Forster,
1989); and second generative grammar in linguistics which, since Chomsky’s famous
critiques of Markov models (Chomsky, 1957), treated statistical approaches to lan-
guage with deep suspicion (Pereira, 2000). e idea was that prediction would be
unduly costly and hopelessly inefficient since the open-ended, generative nature of
language makes it fundamentally unpredictable. is argument is well illustrated by
an oen cited footnote by Jackendoff (2003, p. 59) where he explains why it is not
“useful to conceive of understanding the sentence in terms of predicting what word will
come next”: “One might well predict that what comes aer lile in ‘e big star’s be-
hind a lile …’ is likely to be a noun (though it might be “blue” or even “very old”)
but that still leaves open some tens of thousands of other choices.” (Note how this casu-
ally glosses over the fact that even inferring that the next word will likely be a noun
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1. | Introduction

can represent a considerable reduction in uncertainty – a testament to the historical
aversion to think about language in statistical, information-theoretic terms.)

Apart from these powerful theoretical inclinations, a key empirical motivation
for rejecting the role of prediction was the perceived lack of misprediction costs.
For instance, already from the pioneering work by Marta Kutas (Kutas and Hillyard,
1984), the N400 seemed primarily sensitive to the semantic relatedness between a
word and the preceding context, but lile or not to whether it matched the specif-
ically predicted ‘target’ word (see Van Peen and Luka, 2012 for a comprehensive
discussion). As such, the well-known predictability effects on N400 amplitude and
reading times were explained as a kind of confound. Because words that are more
predictable in a context also tend to be more semantically related to that context,
they could therefore – by virtue of mere ‘intra-lexical priming’ (Van Berkum et al.,
2005) – be easier to integrate (see, e.g. Brown and Hagoort, 1993). Context effects
in recognition were similarly explained in a boom-up fashion, as reflecting easier
integration and reduced thresholds at a downstream, post-perceptual decision stage
(Norris, 1994; Norris, Mceen, and Cutler, 2000).

But in the past decade or so, the tides have been turning. Due to the rise of
probabilistic/Bayesian models in psycholinguistics (Chater and Manning, 2006; Ju-
rafsky, 2003) and psychology and neuroscience (Knill and Pouget, 2004), and a range
of ingenious experimental designs (Allopenna, Magnuson, and Tanenhaus, 1998; De-
Long, Urbach, and Kutas, 2005; Van Berkum et al., 2005) the idea of top-down and
predictive language processing steadily gained traction (Altmann and Mirkovic, 2009;
Davis and Johnsrude, 2007; Dell and Chang, 2014; Pickering and Garrod, 2013). How-
ever, the precise role of prediction remains hotly debated, especially aer one of the
most influential studies supporting a strong form of prediction (DeLong, Urbach, and
Kutas, 2005) recently failed to replicate (Nieuwland et al., 2018; see also Nieuwland,
Arkhipova, and Rodriguez-Gomez, 2020).

e literature on predictive processes in language spans multiple subproblems –
from top-down effects in word recognition (Balota, Yap, and Cortese, 2006; Davis and
Johnsrude, 2007; McClelland, Mirman, and Holt, 2006; Norris, Mceen, and Cutler,
2000) to anticipation in sentence processing (Kutas, DeLong, and Smith, 2011) – and
subfields – such as the ERP literature (Federmeier, 2007; Nieuwland, 2019) and the
eye movement literature (Hueig, Rommers, and Meyer, 2011; Staub, 2015). ere-
fore, a comprehensive overview of the empirical debate is beyond the scope of this
introduction. However, one way to roughly characterise the discussion at large, is
to notice that much disagreement centers around two key questions in particular
(see also Hueig, 2015; Ryskin, Levy, and Fedorenko, 2020 for a similar characterisa-
tion). Namely, when does language processing involve prediction, and what is being
predicted? I will briefly elaborate on each question in turn.

15



1. | Introduction

When does language processing involve prediction? Whether it is from first-
person impressions – such as the temptation to finish someone’s sentences when
talking to a person with a stuer – or from ingenious experimental designs – such
as shadowing (Marslen-Wilson, 1973) or visual world paradigms (Allopenna, Mag-
nuson, and Tanenhaus, 1998) – it is clear that language comprehension can, at least
sometimes, invoke predictions. One of the key disagreements, however, regards the
conditions under which this occurs. While some suggest that prediction occurs con-
stantly as an integral part of language processing (Federmeier, 2007; Kuperberg and
Jaeger, 2016; Kutas, DeLong, and Smith, 2011) others suggest that comprehenders
might only predict in (relatively rare) highly constraining contexts, “and otherwise
adopt a laissez-faire “wait and see” strategy” (Van Peen and Luka, 2012).

A complicating factor here, noted by various authors (Hueig and Mani, 2016;
Kutas, DeLong, and Smith, 2011; Van Peen and Luka, 2012), is that many studies
on prediction focus on precisely such highly constraining contexts. Other aspects of
popular experimental designs, such as the presence of the predicted target in visual
world paradigms, or the use of slow, word-by-word visual presentation of sentence
materials in ERP studies (but see Brink and Hagoort, 2004; Hagoort and Brown, 2000),
have also been criticised as being ‘prediction-encouraging’ (Hueig and Mani, 2016;
Van Peen and Luka, 2012). erefore, even when studies can rule out alternative ex-
planations like integration difficulty, it oen remains unclear whether the observed
prediction effect is representative of language processing in general (see Mantegna
et al., 2019; Nieuwland et al., 2020 for recent examples of this conundrum). In sim-
ilar vein, even the well-established effects of lexical and sentential context on word
recognition – which supposedly reflect the active nature of the process – have been
shown to be variable and can for instance depend on the ambiguity of the input (Bur-
ton, Baum, and Blumstein, 1989; Mceen, 1991). In other words, perhaps word
recognition is strongly driven by prior knowledge only when the input is noisy or
ambiguous, such as in many studies – sine wave speech here being the extreme case.

What is being predicted? Aside from when the brain relies on predictions, a sec-
ond key question regards the representational content and nature of such predictions.
Arguably the least controversial proposal is that the brain is engaged in prediction
at a highly abstract, semantic level (Federmeier, 2007). Other proposals like surprisal
theory, primarily describe forward-looking, predictive effects at the level of syntax
(Hale, 2001; Levy, 2008). Beyond these more abstract levels of representations – and
much more controversially – some have suggested, both based on empirical results
(Van Berkum et al., 2005) and theoretical considerations (Smith and Levy, 2008) that
predictions are made at the lexical level. e strongest proposals take this notion
even further and propose that prediction occurs at all representational levels simul-
taneously, down to visual and auditory word forms (Dikker et al., 2010; Kuperberg
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and Jaeger, 2016). e discussion on top-down effects in word recognition can be
understood as revolving around this same question, as it boils down to whether con-
textual information (anticipatory or not) is propagated down to the earliest levels or
whether it is confined to later processing stages.

One complicating factor in the issue of processing levels is that an unexpected
word is almost always unexpected in multiple ways. For instance, when replacing a
highly predicted noun with a verb, the word not only has a different syntactic cate-
gory but also (at least slightly) a different meaning, phonological form, etc. Analo-
gously, a single effect can oen be explained at multiple levels. For instance, effects
of word unexpectedness (e.g. on reading tines or the N400) can be explained predic-
tively either as reflecting prediction at the lexical level directly (Frank et al., 2015;
Smith and Levy, 2008; Szewczyk and Schriefers, 2018); or, in the case of the N400,
as reflecting prediction error at the semantic level (Rabovsky, Hansen, and McClel-
land, 2018). However, effects of lexical unexpectedness could also reflect expectation-
based parsing, where a word’s predictability determines the size of the update (in KL
divergence) of each potential whole-sentence syntactic interpretation (Hale, 2001;
Levy, 2008).

Independent of the issue of processing level is the question whether predictions
are probabilistic. To many in psycholinguistics, the notion of prediction was by def-
inition reserved for the all-or-none pre-activation of specific lexical items (Luke and
Christianson, 2016; Van Berkum et al., 2005; Van Peen and Luka, 2012). A concep-
tual (or at least terminological) difficulty thus arrises that what one person might con-
sider e.g. a probabilistic semantic prediction (Federmeier, 2007; Rabovsky, Hansen,
and McClelland, 2018) would to others not count as a prediction at all (Van Peen
and Luka, 2012). Some results might seem to suggest a probabilistic view, such as
correlations between the extent of a word’s expectedness and the N400 amplitude it
evokes. However, because data is analysed in the aggregate, such a correlation on
average could both reflect trial-by-trial sensitivity to the amount of predictability, or
the trial-by-trial (or participant-by-participant) probability that the word was either
(categorically) predicted or not (Van Peen and Luka, 2012).

Language in a predictive processing framework

Given this long history of work on and debate about predictive processes in language,
what can an extremely general framework like predictive processing still offer to the
study of language? And conversely, what can studying language – of all cognitive
faculties – teach us about the predictive brain?
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Why predictive processing?

eoretically, placing language in a predictive processing perspective offers theo-
retical unification. Many of the key notions (generative models, predictive recogni-
tion, predictive learning, top-down effects) are not technically new to the study of
language but have been studied somewhat independently across psycholinguistics,
computational linguistics and artificial intelligence. Predictive processing offers to
unify these ideas and connect them to neuroscience and psychology more broadly
by understanding them in terms of universal principles of neural computation.

Empirically, the framework offers principled and testable – and rather bold –
answers to the two key questions surrounding the role of prediction in language pro-
cessing outlined above. In response to the first question (i.e. the when question),
predictive processing suggests that language processing should always involve a de-
gree of prediction, and not be limited to specific conditions or tasks. is question is
addressed in Chapter 4 and more indirectly in chapter Chapter 3, 5, and 6. Regard-
ing the representational nature of predictions (i.e. thewhat question), the framework
proposes that prediction should in principle occur at all levels of analysis 5 and that
predictions should be probabilistic. Moreover, following hierarchical inference, pro-
cessing at higher levels should extensively inform processing at lower levels. is
implies that context effect in recognition should (at least in part) involve top-down,
interactive processing, and that high-level predictions should inform low-level ones.
I test these hypotheses in Chapter 2, 4, and 6. Finally, predictive processing (or
at least dominant incarnations thereo) inspire neural hypotheses linking specific as-
pects of prediction to top-down and boom-up signalling, which have been linked
to neural oscillations in specific frequency bands. I test this in chapter Chapter 5.

Why language?

But we should also ask the opposite question: what can studying language tell us
about the predictive brain? Why not study something ‘simpler’ (like visual percep-
tion) where the boom-up processing stream is beer characterised? Indeed, trying
to test fundamental principes of neural information processing by studying some-
thing as complex as language may even seem absurd. However, I believe language
is an appealing test ground, because it has least two properties which offer unique
opportunities for studying predictive processing.

First, language is governed by complex and yet relatively transparent regularities.
More technically, linguistic regularities are – compared to for instance visual regu-

5Note that this is a key difference with predictive recognition as currently used in e.g. speech recogni-
tion systems, where prediction is only used during decoding and only at a single representational level,
typically the lexicon.
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larities – relatively low-dimensional. is makes it comparatively straightforward to
develop powerful, broad-coverage generative models which can approximate hypo-
thetical linguistic priors or predictions in the brain for arbitrary linguistic input. In a
high-dimensional domain like vision or audition, by contrast, priors/predictions are –
beyond highly constrained, simplified problems – oen rather elusive. Instead of try-
ing to quantify predictions or priors, studies on predictive processing in perception
have therefore largely resorted to experimentally-imposed regularities, which are
typically extremely simple (such as arbitrary associations between stimuli). When
studying language, by contrast, one can simply use natural language and approxi-
mate the linguistic expectations that ostensibly arise spontaneously using a gener-
ative model (see, e.g. Frank et al., 2015; Smith and Levy, 2013; Willems et al., 2016).
Language, in other words, allows for studying predictive processing in the wild. is
is important because predictive processing supposedly applies to all neural process-
ing, not just to the specific case of actively engaged subjects perceiving extremely
simple regularities. In my doctoral work, I have extensively leveraged this opportu-
nity by studying predictions during natural language comprehension, see Chapter
3, 4, 5, 6.

Second, because language consists of discrete symbols that combine in a strictly
compositional fashion, language also has a uniquely transparent set of hierarchical
levels. is is important because multi-level and hierarchical prediction is central to
the framework (see Friston, 2008; Lee and Mumford, 2003 for more technical discus-
sions). Vision is also hierarchical and arguably compositional, but while the lowest
levels are well-characterised (e.g. Gabor filterbanks) the higher levels get very mys-
terious very quickly. At a high level, one could say that scenes are composed of
objects, but for most objects we have no idea what they would be composed of. Sen-
tences, by contrast, consist of words, which in turn consist of phonemes (or leers).
is allows to manipulate and quantify the predictions at different levels and scales,
such as local predictions (of leers or phonemes within words) and global predictions
(of words within sentences). In perception, this has been done before, but typically
using experimentally-imposed and slightly contrived processing levels (e.g. tones-
within-stmuli vs stimuli-within-block, see Chao et al., 2018; Wacongne et al., 2011).
In language, by contrast, we can probe predictions at processing levels that are in-
trinsic to language and directly relate to the processing hierarchy itself. Apart from
timescales, language also has distinct processing levels at the same scale (e.g. syntax
and semantics) which can also be explicitly dissociated relatively easily. roughout
this thesis, I have greatly made use of this property, by manipulating and modelling
predictions at different processing levels (Chapter 2, 4), and by testing which levels
of contextual information are taken into account (Chapter 4, 6).
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Outline of this thesis

e overarching goal of this thesis is to evaluate the predictive processing framework
using language processing as a testbed. Given the scope of the framework, however,
this is an admiedly daunting endeavour. In none of the chapters I therefore aempt
(or pretend) to address it directly. Instead, I take an indirect route. Each chapter fo-
cusses on a specific question that touches on predictive processing more broadly –
and can be construed as a testcase for the framework – while being specific enough
to address. In the spirit of this broad framework, I take a wide-ranging approach,
studying wrien and spoken language processing, in experiments ranging from par-
ticipants viewing single leers to reading an entire novel.

InChapter 2 I take on the classic Word Superiority Effect – the phenomenon that
leers are more easily recognised when embedded in a word. Top-down models of
visual word recognition (and predictive processing more broadly) propose that this
effect is at least in part perceptual in nature, with linguistic knowledge enhancing let-
ter perception from the top-down. I tested this prediction in a tightly controlled fMRI
experiment, and found strong evidence for representational enhancement, which
was functionally coupled to the activation level in key areas of the reading network.
ese results are the first neural evidence of top-down representational enhancement
in leer perception, and demonstrate how lexical context can modulate perceptual
processing already at the earliest visual regions.

Chapter 3 is a short proof-of-principle chapter. Inspired by the publication of
GPT-2 – a neural network that constituted a giant leap in the quality of generative
language models – I explore how this model can be combined with deconvolution
techniques to study word predictability effects on EEG in naturalistic conditions (au-
diobook listening). Using public domain EEG data, I show that the unexpectedness
estimates from the network correlate with the brain response – revealing a modula-
tion that exactly reproduces the N400 – and provide a beer fit than previously used
trigram language models. e results demonstrate that predictability effects are not
a side-effect of ‘prediction encouraging‘ designs, and highlight the potential of recent
advances in AI for the cognitive neuroscience of language.

In Chapter 4, I build on and extend this work by more explicitly testing both
the ubiquity and representational status of linguistic predictions – i.e. the when and
what questions. I also include another dataset of high-quality MEG recordings that
allow for high-precision source localisation. Prediction effects were clearly found
over and above those of non-predictive confounds (such as acoustics and semantic
integration) and were best explained by a model of casting prediction as probabilistic
and ubiquitous. Next, by mathematically disentangling the lexical predictions from
GPT-2 into distinct linguistic dimensions, I find dissociable signatures of syntactic,
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phonemic and semantic predictions. Finally, I show that high-level (word-in-context)
predictions inform low-level (phoneme-in-word) predictions, supporting hierarchi-
cal prediction. Together, the results demonstrate that language processing is inher-
ently predictive, showing that the brain spontaneously predicts upcoming language
at multiple levels of abstraction – even when passively listening to something as
complex as a novel.

In Chapter 5 I use the same datasets and modelling framework to test a popular
neurophysiological hypothesis: that top-down probabilistic predictions are signalled
via oscillations in the beta (12-30 Hz) and alpha (8-12 Hz) range. I test this by mod-
elling contextual predictions about the incoming words on a phoneme-by-phoneme
basis. In line with this idea, I find that prior confidence in the prediction about the
incoming word is related to beta band amplitude. However, and more preliminarily,
the effect seems opposite to what I expected: pre-stimulus beta was weaker when
prior predictions were stronger. I discuss how this relates to the empirical literature
(potentially highlighting a weakness in the original hypothesis), and outline ways in
which the results in this chapter could be further strengthened.

In Chapter 6, I return to reading, this time focussing on eye movements in read-
ing. e literature suggests that how long a word is looked at, and whether it is fix-
ated at all (skipping), depends on both the extent to which a word could be predicted
from context and discerned from a parafoveal preview. In this chapter, I estimate the
relative importance of these two sources of information. I address this question in
natural reading, combining deep neural network and Bayesian ideal observer mod-
elling to quantify prediction and preview from moment to moment. Surprisingly, the
most interesting dissociation was not between prediction and preview, but between
skipping and reading times. For skipping, neither prediction nor preview was im-
portant - the vast majority of skipping was explained by a simple oculomotor model.
For reading times, by contrast, we found clear and roughly equal (but independent)
effects of prediction and preview. Together, the results challenge dominant models
of eye movements in reading, by showing that skipping is driven by low-level factors.
However, they also reveal a limit on hierarchical prediction by showing that predic-
tions based on linguistic context do not inform parafoveal preview – highlighting a
difference between reading and speech perception (cf. Chapter 4).

Finally, inChapter 7, I discuss and synthesise the empirical findings in this thesis,
highlight the remaining open questions, and discuss avenues for future research.
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Chapter 2

Word contexts enhance the neural representation of
individual leers in early visual cortex

Abstract

Visual context facilitates perception, but how this is neurally implemented remains
unclear. One example of contextual facilitation is found in reading, where leers are
more easily identified when embedded in a word. Boom-up models explain this
word advantage as a post-perceptual decision bias, while top-down models propose
that word contexts enhance perception itself. Here, we arbitrate between these ac-
counts by presenting words and nonwords and probing the representational fidelity
of individual leers using functional magnetic resonance imaging. In line with top-
down models, we find that word contexts enhance leer representations in early vi-
sual cortex. Moreover, we observe increased coupling between leer information in
visual cortex and brain activity in key areas of the reading network, suggesting these
areas may be the source of the enhancement. Our results provide evidence for top-
down representational enhancement in word recognition, demonstrating that word
contexts can modulate perceptual processing already at the earliest visual regions.

is chapter is based on:
Heilbron M, Richter, D., Ekman, M., Hagoort P, de Lange FP. (2020). Word contexts enhance
the neural representation of individual leers in early visual cortex. Nature Communications
11(1), 1-11.



2. | Word contexts enhance representations of individual leers in early visual cortex

Introduction

Context-based expectations can strongly facilitate perception, but how this is neu-
rally implemented remains a topic of debate (Bar et al., 2006; de Lange, Heilbron, and
Kok, 2018). One famous and striking example of contextual facilitation is found in
reading, where leers are more easily identified when embedded in a linguistic con-
text such as a word or name (e.g., a road sign) than in a random string (e.g., a license
plate; Caell, 1886).

Historically, two opposing accounts have been proposed to explain this so called
‘word superiority effect’. Under the guessing-based account, leer identification oc-
curs in a boom-up fashion and the advantage offered by words constitutes only a
post-perceptual advantage in ‘guessing’ the correct leer (Paap et al., 1982; omp-
son and Massaro, 1973). Alternatively, the perceptual account explains word supe-
riority as a top-down effect, proposing that higher-order linguistic knowledge can
enhance perceptual processing of the individual leers (McClelland and Rumelhart,
1981; Rumelhart and McClelland, 1982). A rich behavioural literature, dating back
several decades(Reicher, 1969; Wheeler, 1970) has documented that even when the
ability to guess the correct leer is experimentally controlled, the word advantage
persists (Balota, Yap, and Cortese, 2006). is has been interpreted as evidence that
the effect must (at least in part) reflect top-down perceptual enhancement – a view
that remains dominant until today (Dehaene, 2009).

However, some lingering doubts have persisted. For instance, ideal observer anal-
ysis has shown that the efficiency of leer recognition is much lower than that of a
fully holistic (word-based) observer, and lies within the theoretical limits of a strictly
leer-based (feedforward) observer – even when considering word superiority (Pelli,
Farell, and Moore, 2003). Moreover, advances in deep learning have shown that let-
ters and other complex objects can be accurately recognized in context by boom-up
architectures, further questioning the need to invoke top-down explanations (LeCun,
Bengio, and Hinton, 2015). Beyond these theoretical arguments, neural evidence for
the perceptual locus of this supposedly top-down effect is lacking. is is remarkable,
since the top-down interpretation of word superiority makes a clear neural predic-
tion: if the behavioural word advantage is due to a perceptual enhancement of leer
stimuli, then it should be accompanied by an enhancement of sensory information
in the early visual areas that process the individual leers already.

Here, we test this prediction using a simple paradigm involving streams of words
and nonwords. We use neural network simulations of the paradigm to confirm
that top-down models would uniquely predict the enhancement of leer represen-
tations by word contexts. When we then perform the same experiment in human ob-
servers while recording brain responses using functional magnetic resonance imag-
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ing (fMRI), we find that word contexts robustly enhance leer representations in
early visual cortex. Moreover, compared to nonwords, words are associated with in-
creased information-activation coupling between leer information in early visual
cortex on the one hand, and blood-oxygen-level-dependent (BOLD) activity in key
areas of the reading network on the other. ese results suggest that word superior-
ity is (at least in part) a perceptual effect, supporting prominent top-down models of
word-recognition.

Results

Word contexts facilitate orthographic decisions

Participants (n=34) were presented with streams of words or nonwords consisting
of five leers (see Fig. 1a), while maintaining fixation. We used a blocked design
in which word and nonword (i.e. unpronounceable leer string) stimuli were pre-
sented in long trials of 10 items of which the middle leer (U or N) was kept fixed
while the outer leers varied, creating a word or nonword context (each 10s trial con-
taining only stimuli of one condition). To make reading visually challenging, stimuli
were embedded in Gaussian noise (see Methods). To keep participants engaged, they
performed an spelling discrimination task on specific target stimuli that occurred oc-
casionally (1-2 times) per trial. Target stimuli were learned during a prior training
session. Targets were presented either in their regular form or with one leer per-
muted, and participants had to categorize targets as ’spelled’ correctly or incorrectly
(i.e. presented in the learned form or permuted).

Participants were faster (median RT difference: -29.2 ms; Wilcoxon signed rank,
T34 = 40,p = 1.07 × 10−5,r = 0.87) but not significantly more accurate (mean ac-
curacy difference: 1.62%; t-test, t34 = 1.70, p = 0.098,d = 0.29) for word compared
to nonword targets. is observation is in line with the word superiority effect, but
from the behaviour alone it is unclear whether the word advantage was perceptual
or post-perceptual.

Representational enhancement is a hallmark of top-down models

Because our paradigm is different from the traditional paradigms in the (behavioural)
word superiority literature, we performed simulations of our experiment to confirm
that the top-down account indeed predicts the representational enhancement we set
out to detect. We used a predictive coding implementation (Spratling, 2016) of the in-
fluential Interactive Activation architecture proposed by McClelland and Rumelhart
(1981) (see Methods).
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Figure 2.1. Experimental paradigm. (a) Example stimuli for each condition. Participants
observed words or nonwords (i.e. orthographically illegal, unpronounceable strings) with a
U or N as middle leer, resulting in four conditions. (b) Functional localiser. During the
functional localiser, the key leers (U and N) were presented in isolation and without visual
noise, while participants performed an irrelevant task at fixation. (c) Trial structure. We
used a blocked design, in which each 14 s trial consisted of 10 words or nonwords with a
fixed middle leer. Participants performed an orthographic discrimination task on specific,
prelearned targets that occurred once or occasionally twice per trial. Participants were trained
in a separate session to perform the task while maintaining fixation at the centre of the screen.

In the simulation, we ran artificial ’runs’ in which we presented sets of word and
nonword stimuli used in the experiment to the network (Figure 2.2a). To simulate
experimental viewing conditions, we added Gaussian noise and ran the network until
convergence so as to mimic long stimulus duration (see Methods) resulting in stimuli
that were presented well-above recognition threshold (Figure S2.2). Representational
strength was quantified by dividing the activity level for the correct leer unit by
the sum of activity levels of all leers – a fraction that asymptotically goes to 1 as
representational strength increases. Aer running 34 simulated runs with the top-
down model, the relative evidence for the middle leer was confirmed to be much
higher in words than nonwords (paired t-test, t34 = 50.5, p = 7.72 × 10−33),
despite the signal-to-noise ratio of the simulated stimuli being identical (Fig 2.3a).
Importantly, when the same stimuli were presented to a network lacking word-to-
leer feedback connections, no such difference was found (paired t-test, t34 = −0.24,
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Figure 2.2. Probing representational enhancement in neural networkmodels and the
brain. (a) Modelling representational enhancement in a hierarchical neural network model
(McClelland and Rumelhart, 1981; Spratling, 2016). Stimuli used in the experiment were en-
coded into vectors of visual features and overlaid with Gaussian noise (boom rows). Inputs
were presented to a network with or without word-to-leer feedback connections. For both
networks, representational strength was quantified from the distribution of activity levels of
leer units for the third position (principle illustrated for the fih leer, E). Solid circles in-
dicate units (representing features, leers or words); lines indicate feedforward connections,
and doed lines with arrows indicate feedback connections. Note that we used a predictive
coding formulation of the network (Spratling, 2016) but for simplicity only the state estimator
(prediction) units are shown in the schematic (see Methods for details) (b) antifying repre-
sentational leer enhancement using multivariate paern analysis. To probe leer representa-
tions in the brain, we used two multivariate paern analysis (MVPA) techniques: classification
(upper panel) and paern correlation (lower panel).

p = 0.81), resulting in a significant interaction (two-sample t-test t34 = 31.1, p =

3.5× 10−41). is confirmed that despite the differences between our and the classic
paradigm, representational enhancement of leers by word contexts is a hallmark of
top-down models of leer perception.

Word contexts enhance leer representations

Next, we tested whether we could find a similar enhancement effect in early visual
cortex in our participants. To do so, we first trained a classifier for each participant on
an independent dataset from a functional localiser run, during which the two middle
leers (U or N) were presented in isolation and without Gaussian noise (see Figure
2.2a). We then tested the classifier’s ability to identify the middle leer of the words
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and non-words presented in the main experiment, in a trial-based fashion (each trial
lasting 14 s and consisting of 10 stimuli). We reasoned that if word context enhances
the *sensory* representations of leers (e.g. enhancing the leer features in noise),
this should be apparent in early visual areas, which we defined as the union of V1 and
V2 (see *Methods).* To focus on voxels sensitive to the relevant part of the visual field,
we selected the 200 voxels (the same number we used in a previous study(Richter et
al., 2018)) most responsive during the localiser run. We were able to classify leer
identity well above chance level (one sample t-test, t34 = 18.84, p = 3.13 × 10−19

, d = 3.23) reaching a mean overall decoding accuracy of 81.4% averaged over both
conditions (see Figure 2.3).

Having established that leer identity can be extracted with high fidelity from
early visual cortex, we went on to test if representational content was enhanced by
word context. Strikingly, we found that classification accuracy was indeed higher
for words compared to nonwords (Wilcoxon sign rank test,T34 = 141.5, p = 7.55 ×
10−3, r = 0.52; Fig 2.3b). To further examine this enhancement effect, we quanti-
fied representational content using an (arguably simpler) supplementary multi-voxel
paern analysis (MVPA) technique: paern correlation analysis – the difference in
voxel response paern correlation that could be aributed to leer identity (‘Pearson
ρ within-leer’ minus ‘Pearson ρ between-leer’; see Methods). Reassuringly, the re-
sults aligned with those of the classification analysis: the correlation difference score
being significantly higher for words than nonwords (Wilcoxon sign ran  k, T34 = 103,
p = 8.83 × 10−4, r = 0.67).

 To confirm that the differences revealed by the classification and paern correla-
tion analysis were related to differences in representations of stimulus information
and not to unrelated confounding factors, we performed a number of controls. First,
we tested the stability of the results over different ROI definitions. Since both repre-
sentational analyses used the 200 voxels that were most responsive during an inde-
pendent functional localiser, we wished to ensure that the results were not unique to
this a priori specified (but arbitrary) number. We therefore   re-ran the same analyses
for ROIs ranging from 50 to 1000 voxels with steps of 10. is revealed that the same
paern of effects was found over practically the entire range of ROI sizes **(Fig S2.3).

Another possibility is that the increased estimates of representational content
could be explained by a simple difference in signal amplitude, potentially related
to participants being more aentive to words than nonwords. To address this, we
quantified BOLD amplitude per condition using a standard GLM-based approach (see
Methods) but found no significant difference between conditions in the amplitude
estimates for the corresponding voxels (paired t-test, t34 = −0.57, p = 0.57, d =

0.10; Bayesian paired t-test, BF10 = 0.21; see Figure S4). Importantly, we found
no significant differences in eye-movement deviation from fixation between words
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Figure 2.3. Word contexts enhance letter representations. (a) eoretical predictions.
We simulated 34 artificial ‘runs’ in which we exposed a network with (top-down model) and
without (feedforward model) word-to-leer feedback connections to the experimental stimuli,
and computed the average representational strength of the middle leer in word and nonword
contexts. Note that the strong dissociation was observed despite the fact that the middle leer
was well-above threshold in all conditions for both models (S2.2). (b) Leer representation in
early visual cortex of 34 human observers. Two multivariate paern analysis methods (see
Methods) revealed that neural representations of leers were enhanced in word compared
to nonword contexts, supporting the top-down model. In both panels, grey dots represent
individual simulated ‘runs’ (a) or individual participants (b). Lines represent paired differ-
ences. White dots, boxes and whiskers represent between-subject medians, quartiles and 1.5
interquartile ranges, respectively. Significance levels correspond to p < 0.01 (**) or p < 0.001
(***) in a paired, 2-tailed Student’s t or Wilcoxon sign rank test.

and nonwords (Wilcoxon T 32 = 197, p = 0.21,r = 0.25; Bayesian paired t-test,
BF10 = 0.48; see Figure S6 andMethods), confirming participants’ ability to maintain
fixation during the task did not differ significantly between conditions.

As a final control analysis, we wanted to confirm that the MVPA results relied
on retinotopically specific information. is would be an important indication that
both the leer information extracted from visual cortex, and its enhancement by
word contexts, indeed originate from sensory representations. To this end, we per-
formed a searchlight variant of the classification and paern correlation analysis (see
Supplement for details). is revealed (see Figures S2.7 and S2.8) that leer iden-
tity information was only visible in neural activity paerns in visual cortex, ruling
out that decoding relied on a brain-wide signal. We further tested for retinotopic
specificity within visual cortex by comparing the functionally defined central ROI
(described above), to a functionally defined peripheral ROI (see Methods and Sup-
plementary Note 1 for more details). is revealed (Figure S2.9) that overall leer
decoding was greatly reduced for the peripheral ROI compared to the central ROI,
both for classification (paired t-test, t34 = 15.59, p = 8.86 × 10−17, d = 2.67) and
paern correlation analysis (paired t-test, t34 = 8.06, p = 2.65 × 10−9, d = 1.38).

29



2. | Word contexts enhance representations of individual leers in early visual cortex

Importantly, we found a similar reduction in the peripheral ROI for the enhancement
effect (the difference in decoding between conditions), again both for the classifica-
tion (paired t-test, t34 = 2.56,p = 0.015,d = 0.44) and paern correlation analysis
(paired t-test, t34 = 2.92,p = 6.31 × 10−3, d = 0.50).

In sum, these analyses show that sensory leer information in early visual cor-
tex, as estimated by classification and paern correlation analysis, was increased in
words compared to nonwords. is enhancement was present over a range of ROI
definitions, but was reduced for peripheral compared to central ROIs, and could not
be explained by confounding factors such as BOLD amplitude or eye-movements.

Representational enhancement across the visual hierarchy

Having established a perceptual enhancement effect by word context in early visual
cortex, we then asked how this enhancement effect was distributed among specific
visual areas. To this end, we further investigated 5 ROIs, four of which were de-
fined anatomically (V1-V4) and one (VWFA) functionally; in each ROI, voxels were
selected using the procedure described earlier (see Methods for details).

e results show consistent evidence for word enhancement in V1, V2 and V4
(all p’s< 0.025; see Figure S2.10 for details), with both analyses. In contrast, V3
and VWFA showed no consistent evidence for word enhancement (see Figure S2.10).
However, in these regions the overall classification accuracy and paern information
scores were also close to chance, making the absence of differences between condi-
tions difficult to interpret. For regions V1-V4, we also tested for univariate amplitude
differences between word and nonword conditions. Interestingly, in all four regions
the sign of the univariate difference was negative (indicating weaker amplitude of
responses to word stimuli), but note that only in V4 this difference was marginally
significant (paired t-test, t34 = 2.11, p = 0.04,d = −0.36, uncorrected; Figure S2.5
). In sum, we observed word enhancement across multiple regions in the visual hi-
erarchy. Critically, none of the regions showed BOLD amplitude differences, ruling
out the possibility that word enhancement was confounded by low-level aentional
differences between conditions.

Information-activation coupling reveals putative neural sources

Having observed a hallmark of top-down perceptual enhancement by word contexts,
we then asked what the potential neural source of this top-down effect could be. We
reasoned that if a candidate brain region was involved in the observed enhancement,
then activity levels in this region would be expected to covary with the amount of
leer information represented in early visual cortex. Moreover, this relationship
should not be driven by a categorical difference between conditions (e.g. that both
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BOLD amplitude in a candidate region and informational content in visual cortex are
higher for words than nonwords, while the two are not related within conditions).
Taking the two requirements together, we expected regions implicated in the top-
down effect to show increased functional coupling between local BOLD activity and
representational information in early visual cortex, for words compared to nonwords.

To test for this increased information-activation coupling, we used a GLM-based
approach to model regional BOLD amplitude in both conditions as a function of early
visual cortex classification evidence, and tested for an increased slope for words com-
pared to nonwords (see Figure 2.4b). is is analogous to the well-established PPI
analysis (Friston et al., 1997) but uses classifier evidence instead of BOLD activity as
the ‘seed’ time course. Classifier evidence here corresponds to the predicted probabil-
ity of the correct (presented) leer stimulus for each brain volume (TR) (see Methods).

We first tested for increased coupling in a hypothesis-driven, ROI-based fashion.
We tested two candidate regions: the visual wordform area (VWFA) and the le pos-
terior middle temporal gyrus (pMTG), associated with orthographic/visual (Cohen et
al., 2000; Dehaene and Cohen, 2011)) and lexical/semantic processing (Davey et al.,
2016; Turken and Dronkers, 2011) respectively. Activity of all voxels was averaged
to obtain a single BOLD time course per ROI. is BOLD timecourse was then mod-
elled as a function of visual cortex classification strength to obtain separate coupling
parameters for word and nonword conditions. We indeed observed a significantly
increased coupling in both VWFA (Wilcoxon sign rank, T34 = 80, p = 2.00 × 10−4,
r = 0.73) and pMTG (paired t-test t34 = 2.83, p = 8.2 × 10−3, d = 0.48; see Fig-
ure 2.4a**) for words. e increase in coupling appeared stronger in VWFA, but the
difference in effects between regions was not statistically significant (paired t-test,
t34 = 0.62, p = 0.54, d = 0.11). Finally, we carried out an exploratory analysis by
testing for increased functional coupling across the entire brain. In essence, the GLM
procedure was identical to the one above but carried out at the individual voxel level.
is yielded, for each participant, a map of estimated changes in functional coupling
for every voxel. ese functional maps were then registered to a standard space af-
ter which we tested whether there were clusters of voxels that showed an increase
in functional coupling for words compared to nonwords. We found two significant
(FWE-corrected, cluster-forming P < 0.001, cluster-level P < 0.05) le-lateralised
clusters at key nodes of the language network: one in pMTG and one in IFG (Figure
2.4c; Figure S2.11). No significant cluster was found at VWFA, possibly due to individ-
ual neuro-anatomical variability in VWFA size and location (Glezer and Riesenhuber,
2013).

Altogether, these results demonstrate increased functional coupling between vi-
sual cortical classification evidence and neural activity in VWFA, pMTG and IFG.
In all of these regions, we found a significant increase in functional coupling (here,
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Figure 2.4. Information-activation coupling analysis. (a) ROI-base coupling analysis.
For two ROIs, GLMs were fied to estimate coupling between early visual cortex classifica-
tion evidence and regional BOLD amplitude for words and nonwords separately. We then
tested for increased coupling (higher coefficients) in words compared to nonwords. (b) Illus-
tration for example participant. A single (averaged) time course was extracted from each ROI
and regressed against visual cortex classification evidence to test for increased slopes in words
compared to nonwords. For illustration purposes, only the predicted slopes based on the re-
gressor of interest are shown. Note that classification evidence was defined as probability, but
here expressed in arbitrary units due to the whitening operation. (c)Whole brain results. Same
analysis as in (a) and visualised in (b) but performed for each voxel independently. Resulting
contrast images (word-nonword) were tested at the group level for increases in coupling in
words compared to nonwords. is revealed statistically significant clusters (P < 0.05 FWE
corrected), in the le pMTG and in the le IFG. Glass brain plot rendered with nilearn (Abra-
ham et al., 2014). For a non-thresholded slice-by-slice rendering of the whole brain results in
panel (c), see Figure S2.11. Grey dots indicate coefficients of individual participants, and lines
the within-subject differences; white dots, boxes and whiskers are between-subject medians,
quartiles and interquartile ranges, respectively. Significance levels correspond to p < 0.01 (**)
or p < 0.001 (***) in a paired, 2-tailed Student’s t or Wilcoxon sign rank test. pMTG, posterior
Medial Temporal Gyrus; IFG, Inferior Frontal Gyrus.
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meaning that classifier evidence increased when the regions became more active, and
vice versa) for words compared to nonwords, which is consistent with the idea that
these regions might constitute the neural source of the top-down effect.

Discussion

Visual context facilitates perception (Bar, 2004). Leer perception offers a striking
example of such facilitation, as leers are more easily recognised when embedded
in a word. Dominant, ‘interactive’ models of word recognition assume this facili-
tation occurs in the visual system already, proposing that linguistic knowledge can
enhance perception in a top-down fashion (McClelland and Rumelhart, 1981). Here
we tested this perceptual enhancement hypothesis for the first time at the neural
level. We presented streams of words or nonwords with a fixed middle leer while
recording fMRI. Simulations of this novel paradigm confirmed that top-down models
of word recognition uniquely predict that perceptual representations of the middle
leer should be enhanced when embedded in a word. In line with the top-down ac-
count, information about the middle leer, probed using multivariate paern anal-
ysis in early visual cortex, was enhanced when the leer was embedded in words
compared to nonwords. Further, we found increased functional coupling between
the informational paern in early visual cortex, and regional BOLD amplitude in
three key regions of the le-lateralized language network, i.e. VWFA, le pMTG and
IFG. is points to these regions as potential neural sources of the representational
enhancement effect. Together, these results constitute the first neural evidence for
representational enhancement of leers by word contexts, as hypothesized by top-
down accounts of word recognition (McClelland and Rumelhart, 1981; Rumelhart
and McClelland, 1982). e results also fit naturally with theoretical frameworks of
top-down perceptual inference, such as hierarchical predictive coding (Friston, 2005;
Lee and Mumford, 2003; Rao and Ballard, 1999; see de Lange, Heilbron, and Kok, 2018;
Heilbron and Chait, 2018 for review) and with the broader literature on top-down,
predictive effects in language processing (Davis and Johnsrude, 2007; Kuperberg and
Jaeger, 2016).

Our results are in line with a large behavioural literature on context effects in let-
ter perception that support interactive activation (top-down) models. ese works
have demonstrated, for instance, that the word advantage persists when the guessing
advantage afforded by words is constrained experimentally (Reicher, 1969; Wheeler,
1970 see Balota, Yap, and Cortese, 2006 for review); that readers subjectively perceive
leers embedded in real words as sharper(Lupyan, 2017); and that readers are beer
at detecting subtle perceptual changes in real words than in nonwords (Lupyan, 2017).
While the behavioural literature has extensively investigated top-down effects, work
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on the neural basis of visual word recognition has focussed almost exclusively on its
boom-up component, most notably by probing the boom-up selectivity profile of
VWFA (or ventral occipitotemporal cortex more broadly) to various visual and or-
thographic properties (Dehaene et al., 2005; Glezer, Jiang, and Riesenhuber, 2009;
Vinckier et al., 2007). One study tried to disentangle word and leer encoding at a
neural level (esen et al., 2012), but did not probe individual leer representations
and their enhancement by word contexts. A recent study did investigate top-down
processing, but was limited to aention-based response modulations in decision con-
texts (Kay and Yeatman, 2017).

Beyond the domain of language, but converging with the results presented here,
are results from object perception, where it was recently found that the facilitation of
object recognition by familiar contexts was accompanied by enhancement of object
representations in object selective cortex (Brandman and Peelen, 2017). e simi-
larity to the current findings speaks to the idea that representational enhancement
reflects a more general principle of contextual effects in perception. ese contextual
effects have been extensively studied, and range from neurons in macaque early vi-
sual cortex responding differently to identical lines when presented as parts of differ-
ent figures (Zhou, Friedman, and Heydt, 2000; Zipser, Lamme, and Schiller, 1996) to
neurons in mouse V1 encoding contextually expected but omied stimuli (see Khan
and Hofer, 2018, for review). As such, it may be that although here the context is lin-
guistic, the contextual effect in visual cortex reflects a more general mechanism that
is not specific to reading or unique to humans. Interestingly, the idea that contextual
enhancement reflects a more general perceptual mechanism was a key motivation
to develop models of word recognition in the first place (McClelland and Rumelhart,
1981).

When viewed as a more general principle of perception, contextual enhancement
touches on an even broader question: are objects recognised by their parts or as
wholes? On the one hand, word superiority has historically been taken as an ex-
ample of ‘holistic’ perception (Balota, Yap, and Cortese, 2006) and the enhancement
we observed (in which ‘wholes’ enhance representations of ‘parts’) indeed seems
to contradict a strictly leer-based (part-based) account. But on the other hand, it
has been convincingly demonstrated, both for word and face recognition (Martelli,
Majaj, and Pelli, 2005; Pelli, Farell, and Moore, 2003) that the identifiability of parts
poses a boleneck on the identification of wholes, and hence, even for the most com-
mon words, recognition cannot be truly holistic(Pelli et al., 2003). Moreover, effects
of wholes on the identification of parts are not always faciliatory: facial arrange-
ments, for instance, have been both reported to have positive and negative effects on
search performance (Suzuki and Cavanagh, 1995; Wenger and Townsend, 2006). De-
veloping a theoretical framework that naturally accounts for top-down, contextual
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enhancement as reported here (see e.g. Lee and Mumford, 2003) while being prop-
erly constrained so as to incorporate feature-based bolenecks, and the occasional
detrimental effects of context, provides an important challenge for future research.

A limitation of the current study is that we cannot access sensory representations
directly, and instead have to infer them by estimating sensory information from mea-
sured neural activity paerns. By itself, the fact that leer identity could be more
readily decoded from words than nonwords could in principle merely reflect con-
founding differences in the BOLD signal between conditions, or in the our ability
to extract information from that signal (Smith, Kosillo, and Williams, 2011). Impor-
tantly, however, we obtained converging evidence using two complementary tech-
niques of probing representational content. One of these (classification) used an in-
dependent data set for training purposes in which only single leers were presented
without noise, which suggests that our MVPA techniques were picking up relevant
information about the middle leers, rather than irrelevant signals that only covaried
with reading (non)words with the respective middle leer. Moreover, enhancement
was consistently found in multiple visual areas, was retinotopically specific, but not
contingent on exact ROI definitions, and could not be explained by other confounds
such as signal amplitude or eye movements. As such, we believe that the most par-
simonious explanation of the observed effect is as reflecting an enhancement in the
underlying sensory information available to visual cortex itself – in other words, a
representational enhancement.

We interpret this representational enhancement as a neural signature of the per-
ceptual enhancement of leers – a process formalised by top-down models of word
recognition, and widely characterised in behavioural literature (Balota, Yap, and
Cortese, 2006; Lupyan, 2017). However, a limitation of fMRI is that it cannot dif-
ferentiate between earlier and later activity. Hence it is possible that the observed
effects arise late, perhaps even much later than what is typically considered ‘percep-
tual’ (e.g. > 400 ms); instead perhaps reflecting what one might call iconic memory
encoding. Although distinguishing between perceptual and post-perceptual effects
is notoriously difficult, future studies might address this by probing perception more
directly using an objective measure of perceptual sensitivity, or by using a high tem-
poral resolution method (e.g. ECoG or MEG) in combination with a temporal cri-
terion to arbitrate between perceptual and post-perceptual enhancement of sensory
representations.

An apparent disconnect between our study and the existing literature concerns
the level of representation at which enhancement occurs. We probed enhancement
in early visual cortex (representing visual features such as edges and simple line con-
junctions) while in theoretical models (McClelland and Rumelhart, 1981; Spratling,
2016) enhancement is probed at the level of leers, not features. However, percep-
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tual enhancement is a generic mechanism and should not be unique to a specific level
of representation. In fact, the main reason (McClelland and Rumelhart, 1981, p.378)
that in the classic models, enhancement occurs only at the leer level is simplicity:
because features comprise the input to the network and are hence not recognized, the
possibility of enhancement occurring at the feature level is excluded by design.

Apart from model simplicity, one might argue there are more substantive, cog-
nitive reasons that enhancement is primarily described at the leer level and not at
the level of simple features. Specifically, word superiority has been reported with
stimuli consisting of mixed case and font (Adams, 1979), implying that sometimes
the word superiority effect can be independent of the visual features that define
exact leer shape, and may instead act at a more abstract level of leer identity.
However, when the exact leer shape is well known and especially under visually
noisy conditions (like in our experiment), enhancement of simple low-level visual
features appears useful for leer recognition, thereby incentivizing top-down en-
hancement to reach the (functionally well-localised) visual feature level. As such,
we do not claim that our experiment shows that word superiority always acts at the
level of sensory features. Rather, it demonstrates that in principle these enhance-
ment effects can extend even to the earliest sensory cortical regions, contradicting
purely boom-up accounts in which such top-down enhancement is ruled out by
design. What kind of information is driving the observed representational enhance-
ment effect? A possible source of information is lexical knowledge, although sub-
lexical (orthographic/phonological) knowledge may be an equally plausible candi-
date. Indeed, behaviourally leers are also more easily recognised when embedded
in pronounceable nonwords (pseudowords) than in unpronounceable, orthographi-
cally illegal nonwords (Baron and urston, 1973). eoretically, such a pseudoword
superiority effect can be either understood as originating via top-down connections
in a dedicated sublexical route (Coltheart et al., 2001) or as arising as a by-product
from co-activations of lexical items with overlapping leer combinations (McClel-
land and Rumelhart, 1981; Seidenberg and McClelland, 1989). e fact that we found
increased functional coupling in both VWFA (associated with sublexical orthogra-
phy) and pMTG (associated with lexical access) makes our data consistent with both
types of feedback, originating from the sublexical and the lexical route. Future stud-
ies could examine the relative contributions of these forms of feedback, by examining
the neural activity paerns to pronounceable pseudowords.

A final point of discussion concerns the interpretation of the information-activation
coupling analysis. We interpret the results as pointing to putative candidate sources,
because the observed increases in functional coupling match the expected paern
of results if the associated regions were indeed a neural source of the enhancement.
However, we acknowledge that since the functional coupling analysis is correlational
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in nature, the direction of causality implied by this interpretation remains specula-
tive. To get a beer understanding of the sources involved this effect, future studies
could either directly perturb candidate sources, use a more indirect method for in-
ferring directionality such as laminar fMRI (Lawrence et al., 2017) or a directional
connectivity analysis (Friston, Moran, and Seth, 2013).

In conclusion, we have observed that word contexts can enhance sensory leer
representations in early visual cortex. ese results provide the first neural evidence
for top-down enhancement of sensory leer representations by word contexts, and
suggest that readers can beer identify leers in context because they might, quite
literally, see them beer.

Methods

Participants

irty-six participants were recruited from the participant pool at the Donders Cen-
tre for Cognitive Neuroimaging. Sample size was chosen to detect a within-subject
effect of at least medium size (d > 0.5) with 80% power using a two-tailed one-sample
or paired t-test. e study was in accordance with the institutional guidelines of the
local ethical commiee (CMO region Arnhem-Nijmegen, e Netherlands, Protocol
CMO2014/288), all participants gave informed consent and received monetary com-
pensation. Participants were invited for an fMRI session and a prior behavioural
training session, that took place no more than 24 hours before the fMRI session. For
one participant, who moved excessively between runs, decoding accuracy was never
above chance; this participant was excluded from all fMRI analyses. One additional
participant had their eyes closed for an extended duration during more than 20 tri-
als, and was excluded from both the behavioural and fMRI analyses. All remaining
participants (n=34, 12 male, mean age = 23 ± 3.32) were included in all analyses. Due
to technical problems, one participant only completed 4 instead of 6 blocks, all of
which were analysed.

Stimuli

Stimuli were generated using Psychtoolbox-3 (Kleiner et al., 2007), running on MAT-
LAB (MathWorks, MA, USA). Stimuli were rear-projected using a calibrated EIKI
(EIKI, Rancho Santa Margarita, CA) LC XL 100 projector (1024 x 768, 60 Hz). Each
stimulus was a 5 leer word or nonword presented in a custom-made monospaced
typeface. To prevent that the multivariate analyses would pick up on global low-level
features (such as overall luminance or contrast) to discriminate between middle let-
ter identity, the middle characters (U or N) were chosen to be identical in shape and
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size, but flipped vertically with respect to each other. Words were presented in a
large font size, each leer 3.6° wide and with 0.6° spacing between leers. is size
was chosen to make the middle leer as large as possible while retaining readability
of all leers when fixating at the centre. In addition to the words and nonwords, a
fixation dot of 0.8° in diameter was presented at the centre of the screen.

To make reading visually challenging and incentivize top-down enhancement of
low-level visual features, words were embedded in visual noise. e noise consisted
of pixelated squares, each 1.2 deg wide, offset so that the pixels were misaligned with
the leer strokes. Leers were presented on top of the noise with 80% opacity. We
chose this type of noise aer finding it impacted readability strongly even when the
leers were presented at high physical luminance. Brightness values (in the range 0-
255) of the noise ‘pixels’ were randomly sampled from a Gaussian distribution with a
mean of 128 and an SD of 50. To make sure that the local brightness was on average
identical for each trial and across the screen, the noise patches were generated using
a pseudo-random procedure. In each trial, 10 noise patches were presented, 5 of
which were independent and randomly generated, while the other 5 were copies of
the random patches, but polarity-inverted in terms of their relative brightness with
respect to the mean. is way the brightness of each noise pixel was always 128
(grey) on average in each trial. e order of noise patches was pseudo-random, with
the constraint that copied patches were never presented directly before or aer their
original noise patch. is way the re-use of noise patches was not noticeable and all
patches seemed randomly sampled anew.

In the main experiment, we used a blocked design, in which we presented blocks
of four long trials (one of each of the four conditions), followed by a null-trial. Each
trial was 14 s long, during which 10 stimuli were presented. Of those stimuli, 9
or occasionally (in 25% of trials) 8 were (non-)word items and 1 or 2 were (learned)
targets. A single presentation consisted of 900 ms of (non)word item plus noise back-
ground, and 500 ms of blank screen plus fixation dot (Figure 1c). Targets were either
presented in their regular (learned) form or with one of the non-middle leers per-
muted, and participants had to discriminate whether the target was regular or per-
muted. Target correctness and occurrence within the trial were counterbalanced and
randomised, with the constraint that targets were never presented directly aer each
other. e order of word items was shuffled pseudo-randomly, with the constraint
that the same leer never repeated twice at the same position (except for the middle
leer).

In the functional localiser run, only the middle leers (U and N) plus fixation
bulls’ eye were presented. We again used a blocked design, with long trials that had
a duration of 14 s during which one of leers was repeated at 1 Hz (500 ms on, 500
ms off; see Figure 2.1b). During the localiser, each trial was followed by a null-trial

38



2. | Word contexts enhance representations of individual leers in early visual cortex

in which only the fixation dot was presented for 9.8 seconds. is was repeated 18
times for each leer.

Two different sets of words and nonwords were used for the training and exper-
imental session. For the experimental session, we used 100 5-leer words with a U
or N as third character in Dutch (see Table S2.1), plus equally many nonword items.
is particular subset was chosen because they were the 100 most frequent 5 leer
words with a U or N in Dutch, according to the subtlex database (Keuleers et al.,
2010). Each item occurred at least 4 times and maximally 5 times (4.2 on average)
during the entire experimental session; to ensure repetitions were roughly equally
spaced, items were only repeated once all other items were presented equally oen.
Because we wanted to familiarise participants with the task and the custom-font,
but not with the (non)word stimuli themselves (especially because there was consid-
erable variation in the amount of training between participants), we used different
(non)words for the training session. For the training session, we used the remaining
50 less frequent 5 leer Dutch words with a U and N. For the nonwords, leers were
randomly sampled according to the natural frequency of leers in wrien Dutch
(Broecke, 1988), with the constraint that adjacent leers were never identical. e
resulting nonwords were then hand-selected to ensure all created strings we unpro-
nounceable, orthographically illegal nonwords. e four learned target stimuli were
CLUBS and ERNST for the words, and KBUOT and AONKL for the nonwords. ese
were learned during the prior training session.

Procedure

Each participant performed one behavioural training and one experimental fMRI ses-
sion. e goal of the training was for participants to learn the 4 target items and learn
how to perform the task while maintaining fixation at the centre of the screen. e
fMRI session consisted of a brief practice of 5̃ minutes during which the anatomical
scan was acquired. is was followed by 6 experimental runs of 9-10 minutes, which
were followed by a localiser run of 1̃5 minutes. We used a blocked design, in which
we presented blocks of four long trials (one of each of the four conditions), followed
by a null-trial experimental run consisted of 40 trials of 14 s. Trials were presented in
blocks consisting of 5 trials: one of each condition (U-word, U-nonword, N-word,N-
nonword), plus a null trial during which only the fixation dot was present. e order
of trial types within blocks was randomised and equalised: over the entire experi-
ment, each order was presented twice, resulting in a total number of 240 trials (192
excluding nulls). In the functional localiser, single leers were presented blockwise:
one leer was presented for 14 s, followed by a null-trial (9.8 s), followed by a trial of
the other leer. Which leer came first was randomised and counterbalanced across
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participants.

Statistical testing

For each (paired/one-sample) statistical comparison we first verified that the distri-
bution of the data did not violate normality and was outlier free, determined by the
D’Agostino and Pearson’s test implemented in SciPy and the 1.5 IQR criterion, re-
spectively. If both criteria were met, we used a parametric test (e.g. paired t-test);
otherwise we resorted to a non-parametric alternative (e.g. Wilcoxon sign rank). All
statistical tests were two-tailed and used an alpha of 0.05. For effect sizes, we report
Cohen’s d for the parametric and biserial correlations for the non-parametric tests.

fMRI acquisition

Functional and anatomical images were collected with a 3T Skyra MRI system (Siemens),
using a 32-channel headcoil. Functional images were acquired using a whole-brain
T2-weighted multiband-4 sequence (TR/TE = 1400/33.03 ms, voxel size = 2 mm isotropic,
75° flip angle, A/P phase encoding direction). Anatomical images were acquired with
a T1-weighted MP-RAGE (GRAPPA acceleration factor = 2,TR/TE = 2300/3.03 ms,
voxel size 1 mm isotropic, 8° flip angle).

fMRI preprocessing

fMRI data pre-processing was performed using FSL 5.0.11 (FMRIB Soware Library;
Oxford, UK; Smith et al., 2004). e pre-processing pipeline included brain extraction
(BET), motion correction (MCFLIRT), temporal high-pass filtering (128 s). For the uni-
variate and univariate-multivariate coupling analyses, data was spatially smoothed
with a Gaussian kernel (4mm FWHM). For the multivariate analysis, no spatial smooth-
ing was applied. Functional images were registered to the anatomical image us-
ing boundary based registration as implemented in FLIRT and subsequently to the
MNI152 T1 2 mm template brain using linear registration with 12 degrees of freedom.
For each run, the first 4 volumes were discarded to allow for signal stabilization.
Most FSL routines were accessed using the nipype framework (Gorgolewski et al.,
2017). Using simple linear registration to align between participants can result in de-
creased sensitivity compared to more sophisticated methods like cortex-based align-
ment (Weiner et al., 2018). However, note that using a different inter-subject align-
ment method would not affect any of the main analyses, which were all performed
in native EPI space. e only analysis that could be affected is the whole-brain ver-
sion of the information-activation coupling analysis (Figures 2.4,S2.11). However,
this was only an exploratory follow-up on the pre-defined ROI-based coupling anal-
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ysis, intended to identify potential other regions displaying the signature increase in
coupling. For this reason the simple linear method was deemed sufficient.

Univariate data analysis

To test for differences in univariate signal amplitude between conditions, voxelwise
GLMs were fit to each run’s data using FSL FEAT. For the experimental runs, GLMs in-
cluded four regressors of interest, one for each condition (U-word, U-nonword, etc).
For the functional localiser runs, GLMs included two regressors of interest (U, N).
Regressors of interest were modelled as binary factors and convolved with a double-
gamma HRF. In addition, (nuisance) regressors were added for the first-order tem-
poral derivatives of the regressors of interest, and 24 motion regressors (6 motion
parameters plus their Volterra expansion, following Friston et al. (1996). Data were
combined across runs using FSL’s fixed effects analysis. All reported univariate anal-
yses were performed on an ROI basis by averaging all parameter estimates within
a region of interest, and then comparing conditions within participants (see Figures
S2.4-S2.5).

Multivariate data analysis

For the multivariate analyses, spatially non-smoothed, motion-corrected, high-pass
filtered (128s) data was obtained for each ROI (see below for ROI definitions). Data
were temporally filtered using a third-order Savitzky-Golay low-pass filter (window
length 21) and z-scored for each run separately. Resulting time courses were shied
by 3 TRs (i.e. 4.2 seconds) to compensate for HRF lag, averaged over trials, and null-
trials discarded. For each participant, this resulted in 18 samples per class for the
localiser (i.e. training data) and 96 samples per condition (word/nonword) for the
main runs (i.e. testing data).

For the classification analysis we used a logistic regression classifier implemented
in in sklearn 0.2 (Pedregosa et al., 2011) with all default seings. e model was
trained on the time-averaged data from the functional localiser run and tested on
the time-averaged data from the experimental runs. Because we had the same num-
ber of samples for each class, binary classification performance was evaluated using
accuracy (%).

For the paern correlation analysis, only the time-averaged data from the main
experiment was used. Data was randomly grouped into 2 arbitrary splits that both
contained an equal number of trials of all 4 conditions (U-word, U-nonword, N-word,
N-nonword). Within each split, the time-averaged data of each trial was again av-
eraged to obtain a single average response for each condition per split. For both
word/nonword conditions separately, these average responses were then correlated
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across splits. is resulted, for both word and nonword conditions, in two (Pearson)
correlation coefficients: ρwithin and ρbetween, obtained by correlating the average re-
sponse to stimuli with the same or different middle leer, respectively. is process
was repeated 12 times, each time using a different random split of the data, and all cor-
relation coefficients were averaged to obtain a single coefficient per comparison, per
condition, per participant. Finally, paern leer information for each condition was
quantified by subtracting the two average correlation coefficients (ρwithin − ρbetween).

For the searchlight variant of the multivariate analyses, we performed exactly the
same procedure as described in the manuscript. However, instead of using a limited
number of a priori defined ROIs, we used a spherical searchlight ROI that slid across
the brain. A searchlight radius of 6mm was used, yielding an ROI size of about
170 voxels on average, similar to the 200 voxels in our main ROI. For both analyses,
this resulted in a map for each outcome metric for each condition for each subject,
defined in native EPI space. ese maps were then used for subsequent analyses (see
Supplementary Note 1).

Information-activation coupling analysis

For the information-activation coupling analysis, we used a GLM based approach to
predict regional BOLD amplitude as a function of early visual cortex classification evi-
dence, and tested for an increase in coupling (slope) for words compared to nonwords
(see Figure 2.4b). e GLM had one variable of interest, visual cortex classification
evidence (see below for definition) that was defined on a TR-by-TR basis, and split
over two regressors, corresponding to both conditions (word/nonword). In addition,
first-order temporal derivatives of the two regressors of interest and the full set of
motion regressors (from the FSL FEAT GLM) were included to capture variability in
HRF response onset and motion-related nuisance signals, respectively. Because the
classification evidence was undefined for null-trials, these were omied. To compen-
sate for temporal autocorrelation in the data, pre-whitening of the data was applied
using the AR(1) noise model as implemented in nistats (Abraham et al., 2014). e
resulting GLM yielded two regression coefficients (one per condition) for each partic-
ipant which were then compared at the group level to test for an increase in coupling
in word contexts. Conceptually, this way of testing for condition-dependent changes
in functional coupling is analogous to PPI (Friston et al., 1997) but using a multivari-
ate time-course as a ’seed’. is timecourse, classification evidence, was defined as
the probability assigned by the logistic regression model to the correct outcome –
or p̂( A | y = A). is probabilistic definition combines aspects of both prediction
accuracy and confidence into a single quantity. Mathematically it is defined via the
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logistic sigmoidal function:

p̂(A | y = A) =


1

1+e−θTX
if y = 1

1− 1

1+e−θTX
if y = 0

(2.1)

where θ are the model weights, y is the binary stimulus category, X are the voxel
response paerns for all trials, and the leer ‘U’ is coded as 1 and ‘N’ as 0. Note that
while the value of p̂( A | y = A) itself is bounded between 0 and 1, the respective
regressors were not aer applying prewhitening to the design matrix (see Fig 2.4b).

Two variants of the GLM analysis were performed: one on timecourses extracted
from two candidate ROIs and one on each voxel independently. For the ROI-based ap-
proach, timecourses were extracted by taking the average timecourse of all amplitude-
normalised (z-scored) data from two ROIs: le pMTG and VWFA (see ROI definition
for details). For the brain-wide variant, the same GLM was estimated voxelwise for
each voxel independently. is resulted in a map with the difference in coupling pa-
rameters for each voxel, for each participant (βword − βnonword) defined in native MRI
space. ese maps were then transformed to MNI space, aer which a right-tailed
one-sample t-test was preformed to test for voxels showing an increase in coupling
in word conditions. e resulting p-map was converted into a z-map and thresh-
olded using FSL’s Gaussian random-field based cluster thresholding, using the de-
fault cluster-forming threshold of z > 3.1 (i.e., p < 0.001) and a cluster significance
threshold of p < 0.05.

ROI definition

For the ROIs of V1-V4, fusiform cortex and inferior temporal cortex, Freesurfer 6.0
(Dale, Fischl, and Sereno, 1999) was used to extract labels (le and right) per subject
based on their anatomical image, which were transformed to native space and com-
bined into a bilateral mask. Labels for V1-V2 were obtained from the default atlas
(Desikan et al., 2006) whereas V3 and V4 were obtained from Freesurfer’s visuotopic
atlas (Van Essen and Dierker, 2007). Early visual cortex (EVC) was defined as the
union of V1 and V2.

e visual wordform area (VWFA) was functionally defined following a proce-
dure based on earlier work (Kay and Yeatman, 2017). Briefly, first we took the union
of le fusiform cortex and le inferior temporal cortex that were defined via individ-
ual cortical parcellations obtained from freesurfer, and trimmed the anterior parts of
the resulting mask. Within this broad, le-lateralised ROI we then selected the 200
voxels that were most selective to words over nonwords (i.e. words over orthograph-
ically illegal, unpronounceable leer strings) as defined by the highest Z-statistics in
the respective word-nonword contrast in the
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univariate GLM. Similarly to Kay and Yeatman (2017) we found for most partici-
pants this resulted in a single, contiguous mask and in other participants in multiple
word-selective patches. ere are two main reasons we used the simple contrast
word-nonword from the main experiment, rather than running a separate, dedicated
VWFA localiser. First, using the main task strongly increased statistical power per
subject as we could a full hour of data per participant to localise VWFA. Second, the
comparison of words and unpronounceable leer strings (with matched unigram let-
ter frequency) solely targets regions that are selective to lexical and orthographic
information (i.e. the more anterior parts of VWFA, according to the VWFA hierar-
chy reported by (Vinckier et al., 2007). As such, the localiser only targets regions
selective to the type of linguistic (lexical or orthographic) knowledge that could un-
derlie the observed effect. is stands in contrast to other, less restrictive VWFA
definitions (such as words > phase scrambled words, or words > false fonts).

For the multivariate stimulus representation analyses we did not use the entire
anatomical ROIs defined above, but performed a selectivity-selection to ensure we
probed voxels that were selective to the relevant part of the visual field. In this pro-
cedure, we defined the most selective voxels as those with the k highest Z-statistics
when we contrasted any leer (U or N) versus baseline in the functional localiser
GLM. Following (Richter et al., 2018) we took 200 voxels as our predefined value for
k. To verify that our results were not contingent on this specific (but arbitrary) value,
we also made a large range of masks for early visual cortex by varying k between 50
and 1000 with steps of 10. Repeating the classification and paern correlation analy-
ses over all these masks revealed that the same paern of effects was obtained over
almost the full range of mask definitions, and that the best classification performance
was in fact at our predefined value of k = 200 (See Figure S2.3).

For the peripheral visual ROI voxels were selected based on the functional crite-
rion that they showed a strong response to stimuli in the main experiment (which
spanned a large part of the visual field), but a weak or no response to stimuli in the
localiser (which were presented near fixation). Specifically, voxels were selected if
they were both in the top 50% of Z-stats for the contrast visual stimulation > baseline
in the main experiment, and in the boom 50% of Z-scores for visuals stimulation >
baseline in the localiser. is resulted in masks that contained on average 183 voxels,
similar to the 200 voxels in the central ROI. In our initial analysis we focussed on V1
(see Figure S2.9 ) because it has the strongest retinotopy. However, the same was
also applied to early visual cortex with similar results (see Supplementary Note 1).

To define pMTG we performed an automated meta-analysis using Neurosynth
(Yarkoni et al., 2011). Because we were interested in pMTG as a hub for lexical ac-
cess, we searched for the keyword ’semantic’. is resulted in a contrast map based
on 1031 studies which we thresholded at an arbitrarily high Z-value of Z>9. e
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resulting map was mainly restricted to two hubs, in the IFG and pMTG. We selected
le pMTG by overlaying the map with an anatomical mask of medial temporal gyrus
from FSL’s Harvard-Oxford Atlas. e resulting map was brought to native space by
applying the registration matrix for each participant.

Behavioural data analysis

Participants had 1.5 seconds aer target onset to respond. Reaction times under 100
ms were considered spurious and discarded. If two non-spurious responses were
given, only the first response was considered and evaluated. Median reaction times
and mean accuracies were computed for both (word and nonword) conditions and
compared within participants.

Eye tracking

Eye movements were recorded using an SMI iView X eye monitor with a sampling
rate of 50 Hz. Data was pre-processed and submied to two analyses: number of
trials during which eyes were closed for extended periods, and comparison of hori-
zontal (reading-related) eye movements between conditions.

During pre-processing all data points during which there was no signal (i.e. val-
ues were 0) were omied. Aer omiing periods with no signal, data points with
spurious, extreme values (which sometimes occurred just before or aer signal loss)
were omied. To determine which values were spurious or extreme we computed
the z-score for each points, over the entire run and ignoring the periods where sig-
nal was 0, and considered all values higher than 4 extreme and spurious. Similar to
the periods with no signal, these timepoints were also omied in following analysis.
e resulting ‘cleaned’ timecourses were then visually inspected to evaluate their
quality. For two participants the data was of insufficient quality to include in any
analysis. For 6 participants, there was enough data of sufficient quality to perform
the overall amount of reading-related eye movements between conditions, but signal
quality was insufficient to quantify the number of trials during which the eyes were
shut for an extended period. is is because in these participants there were various
periods of intermient signal loss that were related to signal quality, not to the eyes
being closed. To compare eye movements between conditions, we took the standard
deviance of the gaze position over the reading (horizontal) direction, and averaged
this over each trial. Because the resulting data contained outliers (i.e. trials during
which the participants failed to maintain fixation) we took the median over trials
in each condition (word/nonword), and compared them within participants (Figure
S2.6). For the participants where the data was consistently of sufficient quality, peri-
ods of signal loss longer than 1.2 seconds were considered ‘eyes closed for extended
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period’. As an inclusion criterion we allowed no more than 25 trials during which
eyes were closed for an extended period. is led to the exclusion of 1 participant,
who had 33 trials during which the eyes were closed for an extended period. is
participant was a clear outlier: of all participants with sufficient quality eye tracking
data to be included in this analysis, 14 had no trials during which eyes were closed for
an extended period, and in the remaining 12 with at least one such trial the median
number of trials was 3.5.

Neural network model

Simulations were performed using a predictive coding formulation of the classic in-
teractive activation model (Rumelhart and McClelland, 1982; Spratling, 2016). We
begin by explaining the model at an abstract level, then outline the algorithmic and
mathematical details in generic terms, and then specify the exact seings we used
for our model architecture, and how we used them in our simulations.

e interactive activation model is a hierarchical neural network model which
takes visual features as inputs, integrates these features to recognise leers, and then
integrates leers to recognise words. Critically, activity in word-units is propagated
back to the leer-level, making the leer detectors sensitive not only to the presence
of features (such as the vertical bar in the leer E), but also to neighbouring leers
(such as the orthographic context HOUS_ preceding the leer E). is provides a
top-down explanation for context effects in leer perception, such as (pseudo)word
superiority. e predictive coding formulation of this model was first described
by Spratling(2016) . It uses a particular implementation of predictive coding – the
PC/BC-DIM algorithm – that reformulates predictive coding (PC) to make it compat-
ible with Biased Competition (BC) and uses Divisive Input Modulation (DIM) as the
method for updating error and prediction activations. e goal of the network is to
infer the hidden cause of a given paern of inputs (e.g. the ‘hidden’ leer underly-
ing a paern of visual features) and create an internal reconstruction of the input.
Note that the reconstruction is model-driven and not a copy of the input. Indeed,
when the input is noisy or incomplete the reconstruction will ideally be a denoised
or paern-completed version of the input paern. Inference can be done hierarchi-
cally: at the leer-level, predictions represent latent leers given paerns of features,
whilst at the word-level predictions represent latent words given paerns of leers
(and reconstructions, inversely, represent reconstructed paerns of leers given the
predicted word).

Mathematically the network can be conveniently described as consisting of 3
components: prediction units (y), reconstruction units (r), and error units (e) that
can be captured in only three equations. First, at each level error units combine the
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input paern (x) and the reconstruction of the input (r) to compute the prediction
error (e) :

e = x ⊘ [r]ε2 (2.2)

Here, x is a (m by 1) input vector; r is a (m by 1) vector of reconstructed input
activations, ⊘ denotes pointwise division and the square brackets denote a max op-
erator: [v]ϵ = max(ϵ ,v). is max-operator prevents division-by-zero errors when
all prediction units are silent and there is no reconstruction. Following Spratling
(2016) we set ϵ2 at 1 × 10−3. Division sets the algorithm apart from other versions
of predictive coding that use subtraction to calculate the error (see Spratling (2016)
for review). e prediction is computed from the error via pointwise and matrix
multiplication:

y← [y]ϵ1 ⊗We (2.3)

Here, W is a (n bym) matrix of feedforward weights that map inputs onto latent
causes (e.g. leers), ⊗ denotes pointwise multiplication, square brackets represents
a max operator and ϵ1 is set at 1× 10−6. Each row of W maps the paern of inputs to
a specific prediction unit representing a specific latent cause (such as the leer) and
can hence be thought of as the ‘preferred stimulus’ or basis vector for that prediction
unit. e entire W matrix is then best thought of as comprising the layer’s model
of its environment. Finally, from the distribution of activities of the prediction units
(y), the reconstruction of expected input features (r) is calculated as a simple linear
generative model:

r = Vy (2.4)

Where V is a (m byn) matrix of feedback weights that map predicted latent causes
(e.g. leers) back to their elementary features (e.g. strokes) to create an internal
reconstruction of the predicted input, given the current state estimate. e model
adheres to a form of weight symmetry: V is almost identical to WT, but its values are
values normalised so that each column sums to one. To perform inference, prediction
units can be initialised at zero (or with random values) and the Equations (2,3,4) are
updated iteratively. To perform top-down hierarchical inference, reconstructions
from a higher-order stage (e.g. recognizing words) can be sent back to the lower-
order stage (e.g. recognising leers) as additional input. To accommodate these
recurrent inputs, additional weights have to be defined that are added to W and V
as extra columns and rows respectively. e strength of these weights is scaled to
control the reliance on top-down predictions.
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Architecure specification

e interactive activation architecture we used was a modification of the network
described by (Spratling, 2016) extended to recognise 5-leer words, trained on the
Dutch subtlex vocabulary, and with a slight change in leer composition. Leers
are presented to the network using a simulated font adapted from the one described
by Rumelhart and Siple (1974) that composes any character using 14 strokes (Figure
S2.12). For our 5-leer network, the input layer comprises five 14-dimensional vec-
tors (one per character) that each represent the presence of 14 line segments for one
leer position. Note that conceptually it is easier to partition the input into five 14-
dimensional vectors, in reality these were concatenated into a single 70-dimensional
vector x

At the first level, weight matrix W has 180 rows 250 columns: rows comprise 5
slots of 36 alphanumeric units (5 × 36 = 180); the first columns comprise 5 slots of
14 input features (5 × 14 = 70) and the last 180 columns route the top-down recon-
struction from the word level. To define the weights of 70 (feedforward) columns, we
used encoding function ϕ(c) that takes an alphanumeric character and maps it into a
binary visual feature vector. For each alphanumeric character, the resulting feature
vector was concatenated 5 times and the resulting 70 dimensional vector comprised
the first row. is was repeated for all 36 alphanumeric characters and concatenated
5 times. e resulting numbers were then normalised so that the columns summed to
one. en we added the weights of the second 180 columns (inter-regional feedback
coming from 5x36 leer reconstructions) were simply a 180 by 180 identity matrix
multiplied by a scaling factor to control top-down strength. For our ‘top-down model’
(Fig 2.3b) we set the scaling factor at 0.4; in the ‘boom-up model’ we set it to 10−6 to
effectively cancel the influence of feedback, resulting in a ‘boom-up’ model. At the
second level, weight matrix W had 6778 rows and 180 columns, representing 6776
Dutch 5 leer words from the subtlex corpus, plus the 2 learned nonword targets
(that we included in the vocabulary as participants learned these during training)
and 5 times 36 alphanumeric characters. e orthographic frequency of leers as
specified by the corpus was hard coded into the weights and then normalised to sum
to one.

Although there are substantial implementational differences between this model
and the classic connectionist version of the interactive activation model (McClelland
and Rumelhart, 1981; Rumelhart and McClelland, 1982) the version described here
has been shown to capture all key experimental phenomena of the original model
(see Spratling, 2016 for details). Since our simulations only tried to validate and
demonstrate a qualitative principle, not subtle quantitative effects, the exact numeri-
cal differences related to the differences in implementation should not maer for the
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effect we demonstrate here.

Simulations

Because our paradigm is different from classical paradigms, we performed simula-
tions to confirm that the top-down account indeed predicts the representational en-
hancement we set out to detect. Although the main simulation result (2.3a) is not
novel, our simulation, by mirroring our paradigm, departs from earlier simulations
in some aspects, which we will clarify before going into the implementation details.
First, most word superiority studies present stimuli near-threshold: words are pre-
sented briefly, followed by a mask, and average identification accuracies typically lie
between 60% and 80%. is is mirrored in most classic simulations, where stimuli
are presented to the network for a limited number of iterations and followed by a
mask, leading to similar predicted response accuracies (McClelland and Rumelhart,
1981; Spratling, 2016). In our task, stimuli are presented for almost a second, and at
least the critical middle leer is always clearly visible. is is mirrored in our simu-
lations, where stimuli are presented to the network until convergence and predicted
response accuracies of the network are virtually 100% in all conditions (see Fig S2.2).
As such, an important aspect to verify was that enhancement of a critical leer can
still occur when it is well-above threshold and response accuracy would be virtually
at 100% already. Second, our simulations used the same Dutch word and nonword
materials used in the experiment. is includes the occurrence of *learned* targets in
the nonword condition which we added to the vocabulary of the network and were
hence a source of contamination as 12% of the items in the nonword condition were
in fact in the vocabulary. Finally, unlike classical simulations, stimuli were corrupted
by visual noise.

For 2.3a, we simulated 34 artificial ‘runs’. In each run, 48 words and 48 nonwords
were presented to a network with feedback connections (feedback weight strength
0.4) and without word-to-leer feedback (feedback weight strength 10−6). e same
Dutch, 5 leer (non)words were used as in the main experiment, and like in the
experiment 12% of the (non)word items were replaced by target items. Critically, the
nonword targets were learned and hence were part of the vocabulary of the network.
To present a (non)word to the network each character c has to be first encoded into
a set of visual features and then corrupted by visual noise to produce an input vector
x

x = ϕ (c)+ N
(
µ, σ2

)
(2.5)

For μ we used 0, σ was set to 0.125, and any values of x that became negative
aer adding white noise were zeroed. e network then tried to recognise the word
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by iteratively updating its activations using Equation (2), (3) and (4), for 60 iterations.
To compute the ‘relative evidence’ metric we used in Fig 2.3a to quantify represen-
tational quality q (y) we simply take the fraction of activation for the correct leer
(yi) of the sum of leer activations for all characters at the third slot:

q (y) = yi∑73
j=37 y j

(2.6)

Finally, to compute predicted response probabilities as in Figure S2.2, we followed
McClelland and Rumelhart to use Luce’s decision rule to compute responses proba-
bilistically:

p (R j) =
e βyi∑73

j=37 e
βy j (2.7)

e β parameter (or inverse somax temperature) determines how rapidly the re-
sponse probability grows as yi increases (i.e. the ‘hardness’ of the argmax operation)
and was set at 10, following Rumelhart and McClelland (1982); but results are similar
for any typical beta value that is approximately in the same order of magnitude.

All simulations were performed using custom MATLAB code, which was an adap-
tation and extension of the implementation by (Spratling, 2016).

Data availlability

All raw data required to reproduce all analyses and figures are uploaded onto the
Donders Data Repository and can be found at hp://hdl.handle.net/11633/aacjymw7.
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Supplementary information

Figure S2.1. Behavioural results. To make sure participants kept reading and were equally
aentive of words and nonwords, they performed a challenging orthographic discrimination
task. e task was performed on specific, learned targets that were presented about once per
trial at an unpredictable moment. Targets were learned during a separate training session and
were presented either in their regular (learned) form or with one of the non-middle leers per-
muted. Whenever a target was presented participants had to report whether it was correctly
‘spelled’. Participants were faster (Wilcoxon signed rank, T=40, p = 1.07 × 10−5,r = 0.87)
but not statistically significantly more accurate (two-tailed t-test, t34 = 1.70,p = 0.098,
d = 0.29) for word compared to nonword targets. is is in line with word superiority, al-
though the perceptual nature of this advantage cannot be established from behavioural results
on this task alone as there might also be memory or decisional factors contributing to the ob-
served facilitation. Grey dots with connecting lines are individual participants. Colours are
estimated densities, white dots are group medians, boxes are quartiles and whiskers are 1.5 in-
terquartile range. Significance stars indicate p < 0.001 (***) in a (paired) two-tailed Wilcoxon
sign rank test.
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Figure S2.2. Simulated letter identification accuracies. All simulation parameters were
identical to the simulation of Figure 3a, except that median predicted response accuracy, rather
than representational strength, for the middle leer was computed (see Methods). e fact that
the accuracies are virtually at 100% in all conditions shows that stimuli were, despite the vi-
sual noise, clearly ‘visible’ to the network (note that chance level would be 3.84% or 1/26). is
reflects a key difference between our paradigm – in which stimuli were presented well-above
threshold – and the majority of studies in the literature – where stimuli are presented near-
threshold. ese results confirm that even when the critical leer is clearly visible and pre-
dicted leer identification responses are virtually at 100%, theoretical models still predict that
enhancement of representations can occur. e accuracy values here might appear in conflict
with the accuracies in Figure S2.10. Note however that in the behavioural task, performance
did not purely rely on perception of leers but also on their comparison to a memory template,
and that the task was performed on the outer leers while participants maintained fixation at
the centre of the screen. e middle leer was therefore always well-identifiable, making the
predicted near-perfect accuracies a reasonable approximation of experimental viewing condi-
tions.
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Figure S2.3. Key contrast in main region of interest is stable over a range of ROI
sizes. Same analysis as in Figure 3b, but performed over a wide range of ROI sizes, from 50
to 1000 voxels, with steps of 10. For both classification accuracy (upper panel) and paern
correlation difference (lower panel), the same paern of effects was found practically over
the full range of ROIs. Strikingly, the highest overall classification accuracy (vertical dashed
line, corresponding to the maximum value of the solid grey line) was found at the pre-defined
ROI of 200 voxels – a number that we based on a previous study (Richter and Ekman, 2018).
Although the difference with other, similar ROI sizes is negligible, this result confirms that
the choice for 200 voxels was justified in the sense that choosing a different number could not
have considerably improved the decoding performance.
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Figure S2.4. No difference in amplitude between conditions. (A) Same analysis as in
Figure 3b, but performed over a wide range of ROI sizes, from 50 to 1000 voxels, with steps
of 10. For both classification accuracy (upper panel) and paern correlation difference (lower
panel), the same paern of effects was found practically over the full range of ROIs. Strikingly,
the highest overall classification accuracy (vertical dashed line, corresponding to the maximum
value of the solid grey line) was found at the pre-defined ROI of 200 voxels – a number that
we based on a previous study (Richter and Ekman, 2018). Although the difference with other,
similar ROI sizes is negligible, this result confirms that the choice for 200 voxels was justified in
the sense that choosing a different number could not have considerably improved the decoding
performance.

Figure S2.5. Univariate results for various ROIs. Same as Supplementary Figure 4 but for
4 anatomically defined visual regions (V1-V4) and one functionally defined region (VWFA).
Overall, there were no strong amplitude differences between conditions in most regions of
interest, except for VWFA where BOLD amplitude was by definition higher for words than
nonwords in each subject. Significance levels: * indicates p < 0.05 (uncorrected), and (∗ ∗ ∗)
indicates difference-by-definition (no stats).
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Figure S2.6. Comparison of reading-related eye movements across conditions. Hor-
izontal eye movements were quantified for each trial and then averaged for both conditions
and compared within participants. Grey dots and connecting lines represent single partici-
pants, white dots group medians, boxes and whiskers represent quartiles and 1.5 interquartile
ranges. No statistically significant difference between conditions was found (paired t-test,
t32 = −1.43, P = 0.16). Two participants were not included because there was no eye track-
ing data of sufficient quality.
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Supplementary Note 1

If the leer information extracted from visual cortex, and its enhancement by word
contexts, indeed reflect sensory representations, then the MVPA results should be
retinotopically specific. If, on the other hand, leer identity could be decoded from
voxels throughout much of the brain, or if the enhancement was not retinotopically
specific (e.g. reflecting a more general increase in signal-to-noise ratio) it would
be more difficult to conclude that the MVPA results reflect sensory representations.
We therefore tested for spatial specificity by running a searchlight version of the
classification and paern correlation analyses. Figures S2.7 and S2.8 depict the group
averaged results of both analyses. In both figures, the colour of the overlay represents
the difference in leer decoding between conditions (word minus nonword), while
the opacity represents the extent to which the overall leer decoding is above chance
(irrespective of condition).

is way, the difference between conditions is only visible when the overall de-
coding was above chance. From Figures S2.7 and S2.8, two things become clear. First,
opacity is nonzero almost exclusively in visual regions, implying that only there de-
coding was above chance, and that the leer decoding was could not have relied on
a global paern, but only on information from visual cortex. Second, most of the
overlay is red. is means that in the regions with above-chance decoding, the dif-
ference between conditions is almost always positive. is converges with Figure
S2.3, by confirming that this paern of effects was not contingent on the specific
(but arbitrary) ROI definition we employ.

Figures S2.7 and S2.8 clearly show that leer decoding is specific to visual cortex.
However, from the maps it is difficult to see if, within visual cortex, the leer de-
coding and representational enhancement peak the expected (foveal) location. is
is because the individual maps got smeared out during averaging in standard space.
erefore, we ran a more sensitive ROI analysis in native EPI space. Here, we use the
resulting searchlight maps (containing classification and paern correlation results
for each voxel in a participant’s native EPI space). We compared the classification in
the central ROI (using the functional definition described earlier) to a functionally
defined peripheral ROI. Voxels were deemed peripheral when they showed a strong
response to stimuli in the main experiment (which spanned a large part of the visual
field), but showed a weak or no response to stimuli in the localiser (which were pre-
sented near fixation). For this analysis we focused on V1, because it has the strongest
retinotopy. Indeed, as can be seen in Fig S2.9 overall leer decoding was greatly re-
duced for the peripheral ROI compared to the central ROI, both for the classification
analysis (paired t-test, t34=15.59, p = 8.86×10-17, d = 2.67) and paern correlation
analysis (paired t-test, t34 = 8.06, p = 2.65 × 10-9, d = 1.38).
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Figure S2.7. Spatial specificity of classification analysis. Group averaged result of the
searchlight version of the classification analysis. is figure uses a dual-coding scheme in
which the opacity of the overlay is determined by the average decoding accuracy with respect
to chance (averaged over subjects), and the colour indicates the average decoding difference
(word-nonword) between conditions. See text (Supplementary Note 1) for interpretation.

Critically, a similar reduction in the peripheral ROI was found for the enhance-
ment effect (the difference in decoding between conditions), again both for the clas-
sification analysis (paired t-test, t34=2.56, p = 0.015, d = 0.44) and paern correlation
analysis (paired t-test, t34=2.92, p = 6.31×10-3, d = 0.50). Importantly, although we
initially (Figure S2.9) focussed on V1 – because it has the strongest retinotopy and
because it was requested by the reviewer – a similar reduction was observed for
our main ROI of interest, early visual cortex (i.e. the conjunction of V1 and V2).
Specifically, here too we found greatly reduced overall leer decoding, both for the
classification analysis (paired t-test, t34=18.49, p = 5.52 × 10-19, d = 3.17) and paern

57



2. | Word contexts enhance representations of individual leers in early visual cortex

Figure S2.8. Spatial specificity of pattern correlation analysis. Group averaged result
of the searchlight version of the paern correlation analysis. Results are displayed using a
dual-coding scheme in which the opacity of the overlay is determined by the average leer
decoding performance (quantified as paern correlation difference) with respect to chance,
and the colour indicates the decoding difference between conditions (word-nonword). See
text (Supplementary Note 1) for interpretation.
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Figure S2.9. Reduced letter decoding and representational enhancement in the pe-
riphery. Same analysis as in 2.3b, but now for the peripheral V1 ROI (individually defined for
each participant). Compared to the central V1 ROI, both classification and paern correlation
analyses revealed a reduction, both for overall leer decoding (both p’s< 10−8, paired t-test),
and representational enhancement (both p’s< 0.016, paired t-test). is reduction suggests
both analyses relied on retinotopically specific, early sensory information. e same effect
is found when this analysis is performed on early visual cortex (see text). Grey dots with
connecting lines are individual participants. Colours are estimated densities, white dots are
group medians, boxes are quartiles and whiskers are 1.5 interquartile range. Significance stars
indicate p < 0.05 (*) in a (paired)two-tailed t-test

correlation analysis (paired t-test, t34=8.86, p = 3.02×10-10, d = 1.52). Moreover, we
again found a reduction of the enhancement effect, again both for the classification
analysis (paired t-test, t34=2.44, p = 0.02,d = 0.42) and paern correlation analysis
(paired t-test, t34=3.21, p = 2.90× 10-3, d = 0.55). Together, these analyses show
that MVPA results exhibit spatial and retinotopic sensitivity, which suggests that
the MVPA results indeed reflect early visual representations, as expressed in BOLD
activity.
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Figure S2.10. Enhancement throughout the visual hierarchy. Same analysis as in Fig
2.3b, over the same ROIs as in Fig S2.5. Overall, in all three ROIs where overall leer decoding
was well-above chance, the key enhancement effect was found; in no ROI was the paern
inverted. Specifically, both classification and paern correlation analyses revealed evidence
for word enhancement in V1 (classification analysis t34 = 2.35, p = 0.025, d = 0.40; correlation
difference: Wilcoxon signed rank t34 = 115, p = 1.81 × 10-3, r = 0.61) V2 (classification differ-
ence: t34=3.043; P = 4.57 × 10-3, d = 0.52; correlation difference: Wilcoxon’s t34 = 99.0, p =
6.90 × 10-4, r = 0.68) and V4 (classification difference: t34 = 3.42, p = 1.67 × 10-3, d = 0.59;
correlation difference: Wilcoxon’s t34 = 151.0, p = 0.012, r = 0.49). However, no consistent
differences were found for V3 (classification difference, Wilcoxon’s t34 = 176, p = 0.54, r =
0.13; correlation difference: Wilcoxon’s t34 = 172, p = 0.032, r = 0.42; see figure and note
difference in direction); and VWFA (classification difference: t34 = 1.18, p = 0.25, d = 0.20;
correlation difference: Wilcoxon’s t34 = 151.0, p = 0.012, r = 0.49). Brain images are surface
plots with anatomical ROI overlays created using the pysurfer ploing engine (Ramachandran
and Varoquaux, 2011).
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Figure S2.11. Non-thresholded whole brain result of the information-activation cou-
pling analysis. Same results as in 2.4c, but using a dual coding scheme in which the overlay
is opacity-weighted by statistical values instead of a binarily thresholded at statistical sig-
nificance. Colour indicates the numerical difference in the information activation coupling
parameter between conditions (word-nonword), opacity represents the consistency of this dif-
ference over participants, expressed using the Z-statistic. From the results it becomes evident
that even without thresholding, the lateralisation, and two statistically significant clusters in
le MTG and IFG, clearly stand out.

61



2. | Word contexts enhance representations of individual leers in early visual cortex

Figure S2.12. Illustration of virtual font. Illustration of the virtual font presented to the
network. In this font all 36 alphanumeric characters can be formed from only 14 line segments.
is allows each character to be encoded as a 14-dimensional input vector representing visual
features. Font is adapted from Rumelhart and Siple (1974), slightly modified to increase sim-
ilarity between U and N, and overlap with other leers, to simulate what we used in our
experiment.
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Uword Unonword Nword Nnonword
ABUIS KRUIK REUJZ AEUEI AGNES LYNCH NMNNS DSNEN
ACUTE KRUIP KNUUE IOUST BANDS MANDY DTNAI INNTE
ACUUT KRUIS DGUNE RNUAH BANEN MANEN ILNTN IENNW
AZUUR KRUIT ITUOD DGUWD BANGE MENEN HSNND MTNSA
BEURS LAUDE TGUAE OEUAT BANJO MENGT NKNSE NTNBW
BEURT LEUKE LNUOT ASUEA BANKS MENIG AINKH ETNKD
BLUES LEUKS EDUTB ENUDP BENDE MINST JDNIV VJNTS
BLUFT LEUNT NIUDL TKUEP BENEN MINUS ARNWT ITNEI
BOUWT MEUTE ONUHB OAUPI BENUL MONTE IHNTR MDNJT
BRUID MOUTH NPUAO JNUCE BINDT NANNY LONRH ERNLM
BRUIN NAUWE FDUDE DHUJD BINGO NINJA NKNWV DTNCA
BRULT NEURO EIUSP EDUSJ BONEN OPNAM GNNRT MUNJE
BRUTE PAUZE LNUME MLUHN BONES PANTY RTNBE AONRL
BRUTO PLUIM AGUEK OWUAO BONUS PINDA ENNTL KRNBG
BRUUT PLUIS RZUNI MNUDV CONGO PUNCH DINRD NMNCN
BUURT PLUKT EAUYI ONUIE DANDY RANCH NRNMI ZDNNH
COUPE PRUIK WVUGN TDUER DANKT RENDE WVNVS NDNEA
DEUGD PRUIM HLUOR NTURN DANST RENTE RVNNE MVNAM
DEUGT RAUWE OAUWV ENUAW DENKT RONDE RDNRA RTNXV
DRUGS REUMA ITUNB DZUEO DINER RUNDE EWNDZ DJNET
DRUIF REUZE AIUVS NLURE DONOR SANDS IHNOI LHNNE
DRUKT ROUGE RHUEJ JDUNE DONUT SENOR TPNLK AJNCN
DRUMS ROUTE EHUDB EBUUI DUNNE SINDS ZTNZE TNNSE
DUURT ROUWT IEUOI NMURF EINDE SONAR ZGNRE NLNUI
EEUWS SAUNA NHUEZ WVUNI FONDS SONDE KDNNA DRNLZ
ERUIT SLUIP DEUEO NUUDA GENAS SONGS ENNRH DLNEN
FAUNA SLUIS AEUVR SUUET GENEN TANGO DRNEG NCNEH
FLUIT SLUIT ZKUEN EOUUN GENIE TANKS VNNAE CNNWI
FOUTE SLURF FWUTE TAULR GENOT TANTE IENWR ARNNK
FOUTS SLUWE SBUAI EIUAW GENRE TENEN EINAT RDNMH
FRUIT SNUIF AEUVO NMUEN GINDS TONEN JVNNR JDNNS
GEUIT SNUIT HRUEN TKUES GUNST TONIC OCNEO EDNRG
GOUWE SNURK GHUOW VAUAO HANGT VANAF FZNND NMNTP
HEUSE SPUIT TLULZ UNUEA HINTS VANGT TBNRK EONNI
HOUDT SPUUG EAUAG VTUNL INNEN VENUS PTNVO WTNHE
HOUSE SPUWT EVUNE EIUOA JONGE VINDT KSNGI DTNWT
HUURT SQUAD RHUET ZMUVT KANON WENEN THNLR DLNTE
JEUGD STUFF NPUAL THUIJ KENDE WENST UONTD DRNAE
JEUKT STUIT JHUTZ ETUDL KINDS WINDT TNNRI RDNZJ
JOUWE STUKS TXUEM VHUOR KINKY WINST DRNNM SINNO
KAUWT STUNT HRUMN EAUAR KUNST WONDE MNNGO OTNUE
KEURT STUUR NIUEH AUULS LANDT WONEN GRNEM WLNEH
KEUZE THUIS NTUEL OGUBN LANGE ZENDT DTNJI VWNOE
KLUIF TRUCK TGURV ANUET LANGS ZENUW EANAC TLNEG
KLUIS TRUCS HDUPM NLUAR LENEN ZINGT IENNG EONNA
KLUNS TRUST MNUHC ODUAL LENTE ZINKT ETNIR NDNTN
KLUTS TRUUK DLUEI EHUWJ LINIE ZONDE TZNRO TDNLT
KOUDE VUURT VNUDW PEUEA LINKS ZONEN EMNSC IHNSE
KOUDS ZEURT ZUUAH TNUEV LONEN ZONES IGNEM ODNRB
KRUID ZOUTE HGUTO ENUIZ LUNCH ZONET VNNAR KMNHT

Table S2.1. Word and nonword stimuli used in main experiment. Words were taken
from a corpus scraped from a large number of subtitles and hence also contains names and
highly common English terms that are not Dutch in a strict sense. But critically, all word
items are highly familiar and pronounceable, whereas all nonword items are unfamiliar and
unpronounceable.

63





Chapter 3

Tracking naturalistic linguistic predictions with
deep neural language models

Abstract

Prediction in language has traditionally been studied using simple designs in which
neural responses to expected and unexpected words are compared in a categorical
fashion. However, these designs have been contested as being ‘prediction encourag-
ing’, potentially exaggerating the importance of prediction in language understand-
ing. Recent studies have begun to address these worries by using model-based ap-
proaches to probe the neural effects of linguistic predictability in naturalistic stimuli
(e.g. continuous narrative). However, these studies so far only looked at very local
forms of prediction, using models that take no more than the prior few words into
account when computing a word’s predictability. Here, we extend this approach us-
ing a state-of-the-art neural language model that can take roughly 500 times longer
linguistic contexts into account. Predictability estimates from the neural network
offer a much beer fit to EEG data from subjects listening to naturalistic narrative
than simpler models, and reveal strong surprise responses akin to the P200 and N400.
ese results show that predictability effects in language are not a side-effect of sim-
ple designs, and demonstrate the practical use of recent advances in AI for the cog-
nitive neuroscience of language.

is chapter is based on:
Heilbron, M., Ehinger, B., Hagoort, P., de Lange, FP. (2019). Tracking Naturalistic Linguistic
Predictions with Deep Neural Language Models. Conference on Cognitive Computational
Neuroscience, 424-427.
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Introduction

In a typical conversation, listeners perceive (or produce) about 3 words per second. It
is oen assumed that prediction offers a powerful way to achieve such rapid process-
ing of oen-ambiguous linguistic stimuli. Indeed, the widespread use of language
models – models computing the probability of upcoming words given the previous
words – in speech recognition systems demonstrates the in-principle effectiveness
of prediction in language processing (Jurafsky and Martin, 2014).

Linguistic predictability has been shown to modulate fixation durations and neu-
ral response strengths, suggesting that the brain may also use a predictive strategy.
is dovetails with more general ideas about predictive processing (de Lange, Heil-
bron, and Kok, 2018; Friston, 2005; Heilbron and Chait, 2018) and has lead to pre-
dictive interpretations of classical phenomena like the N400 (Kuperberg and Jaeger,
2016; Rabovsky, Hansen, and McClelland, 2018). However, most neural studies on
prediction in language used hand-craed stimulus sets containing many highly ex-
pected and unexpected sentence endings – oen with tightly controlled (predictable)
stimulus timing to allow for ERP averaging. ese designs have been criticised as
‘prediction encouraging’ (Hueig and Mani, 2016), potentially distorting the impor-
tance of prediction in language.

A few recent studies used techniques from computational linguistics combined
with regression based deconvolution to estimate predictability effects on neural re-
sponses to naturalistic, continuous speech. However, these pioneering studies probed
very local forms of prediction by quantifying word predictability based on only the
first few phonemes (Brodbeck, Hong, and Simon, 2018) or the prior two words (Ar-
meni et al., 2019; Willems et al., 2016). Recently, the field of artificial intelligence
has seen major improvements in neural language models that predict the probability
of an upcoming word based on a variable-length and (potentially) arbitrarily-long
prior context. In particular, self-aentional architectures (Vaswani et al., 2017) like
GPT-2 can keep track of contexts of up to a thousand words long, significantly im-
proving the state of the art in long-distance dependency language modelling tasks
like LAMBADA and enabling the model to generate coherent texts of hundreds of
words (Radford et al., 2019). Critically, these pre-trained models can achieve state-of-
the art results on a wide variety of tasks and corpora without any fine-tuning. is
stands in sharp contrast to earlier (ngram or recurrent) language models which were
trained on specific tasks or linguistic registers (e.g. fiction vs news). As such, deep
self-aentional language models do not just coherently keep track of long-distance
dependencies, but also exhibit an unparalleled degree of flexibility, making them ar-
guably the closest approximation of a ‘universal model of English’ so far.

Here we use a state-of-the art pre-trained neural language model (GPT-2 M) to
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Figure 3.1. a) GPT-2 architecture. For more info on individual operations, see Vaswani et al.
(2017). (Note that this panel is a re-rendered version of the original GPT schematic, with sub-
components re-arranged to match the architecture of GPT-2.) b)Analysis pipeline overview.
c) Obtained series of β coefficients (TRF) of lexical surprise (from GPT-2), averaged over par-
ticipants.

generate word-by-word predictability estimates of a famous work of fiction, and then
regress those predictability estimates against publicly-available EEG data of partici-
pants listening to a recording of that same work.

Methods

Stimuli, data acquisition and preprocessing

We used publicly available EEG data of 19 native English speakers listening to Hem-
ingway’s e Old Man and the Sea. Participants listened to 20 runs of 180s long,
amounting to the first hour of the book (11,289 words, ∼3 words/s). Participants
were instructed to maintain fixation and minimise all motor activities but were oth-
erwise not engaged in any task.

e dataset contains raw 128-channel EEG data downsampled to 128 Hz, plus
on/offset times of every content word. e raw data was visually inspected to iden-
tify bad channels, decomposed using ICA to remove blinks, aer which the rejected
channels were interpolated using MNE-python. For all analyses, we focussed on the
slow dynamics by filtering the z-scored, cleaned data between 0.5 and 8 Hz using a
bidirectional FIR. is was done to keep the analysis close to earlier papers using the
same data to study how EEG tracks acoustic and linguistic content of speech; but
note that changing the filter parameters does not qualitatively change the results.
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For more information on the dataset and prior analyses, see (Broderick et al.,
2018).

Computational models

Word-by-word unpredictability was quantified via lexical surprise – or− log
(
p(word |context)

)
– estimated by GPT-2 and by a trigram language model. We will describe each in turn.

GPT-2

GPT-2 is a decoder-only variant of the Transformer (Vaswani et al., 2017). In the
network, input tokens U = (ui−k , ...,ui−1) are passed through a token embedding
matrix We aer which a position embedding Wp is added to obtain the first hidden
layer: h0 = UWe +Wp . Activities are then passed through a stack of transformer
blocks, consisting of a multi-headed self aention layer, a position-wise feedforward
layer, and layer normalisation (Fig 3.1a). is is repeated n times for each block b,
aer which (log)probabilities are obtained from a (log)somax over the transposed
token embedding of hn :

hb = transformer_block (hb−1)∀i ∈ [1,n] (3.1)
P(ui |U ) = softmax

(
hnW

⊤
e

)
(3.2)

We used the largest public version of GPT-2 (345M parameter, released May 9)1

which has a number of layers (blocks) of n = 24 and a context length of k = 1024.
Note that k refers to the number of Byte-Pair Encoded tokens. A token can be either
a word or (for less frequent words) a word-part, or punctuation. How many words
actually fit into a context window of length k therefore depends on the text. We
ran predictions on a run-by-run basis – each containing about 600 words, implying
that in each run the entire preceding context was taken into account to compute a
token’s probability. For words spanning multiple tokens, word probabilities were
simply the joint probability of the tokens obtained via the chain rule. e model was
implemented in PyTorch with the Huggingface BERT module2.

Trigram

As a comparison, we implemented an n-gram language model. N-grams also com-
pute p(wi |wi−k , ...,wi−1) but are simpler as they are based on counts. Here we used

1For more details on GPT-2, see hps://openai.com/blog/beer-language-models/ or Radford et al. (2019)
2see hps://github.com/huggingface/pytorch-pretrained-BERT
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Figure 3.2. a) Grand averaged TRFs for trigram surprise,GTP-2 surprise and semantic dissim-
ilarity for three channels of interest. At each time point, the GPT-2 TRF was compared to both
the trigram and semantic dissimilarity TRF with a 2-tailed paired t-test; black bars indicating
that both tests were significant at p < 0.01, FDR-corrected. Error bars indicate the between-
subject SEM. b) Topographic maps of grand averaged TRFs for surprise, computed by GPT-2
(top) and the trigram language model (boom).

a trigram (k = 2) – which was perhaps the most widely used language model be-
fore the recent rise of neural alternatives.3 To deal with sparsity we used modified
Knesner-Ney, the best-performing smoothing technique (Jurafsky and Martin, 2014).
e trigram was implemented in NLTK and trained on its Gutenberg corpus, chosen
to closely approximate the test set.

Non-predictive controls

We included two non-predictive and potentially confounding variables: first, fre-
quency which we quantified as unigram surprise (− logp(w)) which was based on a
word’s lemma count in the CommonCrawl corpus, obtained via spaCy. Second, fol-
lowing Broderick et al. (2018), we computed the semantic dissimilarity for each con-
tent word: dissim(wi) = 1 − corr

(
GloVe(wi),

1
n
∑n

i=i GloVe(ci)
)
, where (c1, ...,cn)

are the content words preceding a word in the same or – if wi is the first content
word of the sentence – the previous sentence, and GloVe(w) is the embedding. As
shown by Broderick et al. (2018) this variable covaries with an N400-like component.
However, it only captures how semantically dissimilar a word is from the preced-
ing words (represented as an ‘averaged bag of words’), and not how unexpected a

3While k = 2 might seem needlessly restrictive, training ngrams beyond k = 2 becomes exponentially
difficult due to sparsity issues.
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word is in its context, making it an interesting comparison, especially for predictive
interpretations of the N400.

Time resolved regression

Variables were regressed against EEG data using time-resolved regression. Briefly,
this involves temporally expanding a design matrix such that each predictor column
C becomes a series of columns over a range of lags C tmax

tmin
= (Ctmin , ...,Ctmax ). For

each predictor one thus estimates a series of weights β tmax
tmin

(Fig 3.1c) which, under
some assumptions, corresponds to the isolated ERP that would have been obtained
in an ERP paradigm. In all analyses, word onset was used as time-expanded intercept
and other variables as covariates. All regressors were standardised and coefficients
were estimated with Ridge regression. Regularisation was set at α = 1000 since this
lead to the highest R2 in a leave-one-run-out CV procedure (Fig. 3.3) Analyses were
performed using custom code adapted from MNE’s linear_regression module.

Results

We first inspected our main regressor of interest: the surprise values computed by
GPT-2, estimated with a regression model that included frequency (unigram surprise)
and semantic dissimilarity as nuisance covariates. As can be seen in Figure 3.1C,
the obtained TRF revealed a clear frontal positive response around 200 ms and a
central/posterior negative peak at 400 ms aer word onset. ese peaks indicate
that words that were more surprising to the network tended to evoke stronger posi-
tive responses at frontal channels at 200 ms and stronger negative potentials at cen-
tral/posterior channels 400 ms aer word onset. Note that while Figure 3.1C only
shows the TRF obtained using one regularisation parameter, we found the same qual-
itative paern for any alpha we tested.

We then compared this to an alternative regression model, in which the surprise
regressor was based on the trigram model, but that was otherwise identical. Al-
though the TRFs exhibited the same negativity at 400 ms, it was a lot weaker overall,
as can be seen from Figure 3.2B. One anomalous feature is that the TRF is not at 0 at
word onset. We suspect this is because 1) we only had onset times for content words,
and not for function words typically preceding content words; and 2) for neighbour-
ing words the log-probabilities from the trigram model were correlated (ρ = 0.24)
but those from GPT-2 were not (ρ = −0.002), explaining why only the trigram TRF
displays a baseline effect. Further analyses incorporating onset times for all words
should correct this issue.

e negative surprise response at 400ms revealed by both the trigram and GPT is
similar to the effect of semantic dissimilarity reported by Broderick et al. (2018) using
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Figure 3.3. Predictive performance of three regression models. We compared a baseline
regression model with only unigram surprise and semantic dissimilarity as covariates (doed
line) to two other models that also included surprise values, either obtained from the trigram
model (grey) or from GPT-2 (red).

the same dataset. We therefore also looked at the TRF of semantic dissimilarity, for
simplicity focussing on the three main channels of interest analysed by Broderick et
al. (2018). At each time-point we compared the GPT-2 TRF to both the trigram and
semantic dissimilarity TRF with a 2-tailed paired t-test to find time-points where
both tests where significant at α = 0.01 (FDR-corrected). As visible in Figure 3.2b,
we observed timepoints in all three channels where the GPT-2 TRF was significantly
more positive or negative than both other TRFs, confirming that the surprise values
from the neural network covary more strongly with EEG responses than the other
models.

Finally, to make sure that the difference in coefficients were not related to over-
fiing or some other estimation problem, we compared the predictive performance
of the GPT-2 regression model to the alterntives using a leave-one-run-out cross-
validation procedure. As can be seen in Figure 3.3, this revealed that cross-validated
R2 of the trigram regression model was not significantly higher than that of a baseline
model that included only the two nuisance covariates (paired t-test, t19 = −0.25,p =

0.8); by contrast, R2 of the GPT-2 regression model was significantly higher than
both the trigram regression model (paired t-test, t19 = 5.38,p = 4.1 × 10−4) and the
baseline model (paired t-test, t19 = 3.10,p = 6.2 × 10−3).

Discussion and conclusion

We have shown that word-by-word (un)predictability estimates obtained with a state-
of-the-art self-aentional neural language model systematically covary with evoked
brain responses to a naturalistic, continuous narrative, measured with EEG. When
this relationship was ploed over time, we observed a frontal positive response at
200 ms, and a central negative response at 400 ms, akin to the N400. Unpredictability
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estimates from the neural network were a much beer predictor of EEG responses
than those obtained from a trigram that was specifically trained on works of fiction,
and than a non-predictive model of semantic incongruence, that simply computed
the dissimilarity between a word and its context.

ese results bear strong similarities to earlier work demonstrating a relationship
between the N400 and semantic expectancy. However, we observed the responses in
participants passively listening to naturalistic stimuli, without many highly expected
or unexpected sentence endings typically used in the stimulus sets of traditional ERP
studies. is suggests that linguistic predictability effects are not just a by-product of
simple (prediction encouraging) designs, underscoring the importance of prediction
in language processing.

Future analyses will aim at modelling all words, looking at different frequency
bands, disentangling different forms of linguistic prediction (e.g. syntactic vs seman-
tic), and trying to replicate these results in different, independent datasets.
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Chapter 4

A hierarchy of linguistic predictions during natural
language comprehension

Abstract

Understanding spoken language requires transforming ambiguous acoustic streams
into a hierarchy of representations, from phonemes to meaning. It has been sug-
gested that the brain uses prediction to guide the interpretation of incoming input.
However, the role of prediction in language processing remains disputed, with dis-
agreement about both the ubiquity and representational nature of predictions. Here,
we address both issues by analysing brain recordings of participants listening to au-
diobooks, and using a deep neural network (GPT-2) to precisely quantify contex-
tual predictions. First, we establish that brain responses to words are modulated by
ubiquitous, probabilistic predictions. Next, we disentangle model-based predictions
into distinct dimensions, revealing dissociable signatures of syntactic, phonemic and
semantic predictions. Finally, we show that high-level (word) predictions inform
low-level (phoneme) predictions, supporting hierarchical predictive processing. To-
gether, these results underscore the ubiquity of prediction in language processing,
showing that the brain spontaneously predicts upcoming language at multiple levels
of abstraction.

is chapter is based on:
Heilbron M, Armeni K, Schoffelen JM, Hagoort P, de Lange FP. 2021. A hierarchy of linguistic
predictions during natural language comprehension. bioRxiv
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Introduction

Understanding spoken language requires transforming ambiguous stimulus streams
into a hierarchy of increasingly abstract representations, ranging from speech sounds
to meaning. It is oen argued that during this process, the brain relies on prediction
to guide the interpretation of incoming information (Kuperberg and Jaeger, 2016; Ku-
tas, DeLong, and Smith, 2011). Such a ‘predictive processing’ strategy has not only
proven effective for artificial systems processing language (Graves, Mohamed, and
Hinton, 2013; Jelinek, 1998), but has also been found to occur in neural systems in re-
lated domains such as perception and motor control and might constitute a canonical
neural computation (Friston, 2005; Keller and Mrsic-Flogel, 2018).

ere is a considerable amount of evidence that appears in line with predictive
language processing. For instance, behavioural and brain responses are highly sen-
sitive to violations of linguistic regularities (Hagoort, Brown, and Groothusen, 1993;
Kutas and Hillyard, 1984) and to deviations from linguistic expectations more broadly
(Armeni et al., 2019; Donhauser and Baillet, 2020; Henderson et al., 2016; Smith and
Levy, 2013; Willems et al., 2016). While such effects are well-documented, two impor-
tant questions about the role of prediction in language processing remain unresolved
(Ryskin, Levy, and Fedorenko, 2020).

e first question concerns the ubiquity of prediction. While some models cast
prediction as a routine, integral part of language processing (Fitz and Chang, 2019;
Kuperberg and Jaeger, 2016; Levy, 2008), others view it as relatively rare, pointing
out that apparent widespread prediction effects might instead reflect other processes
like semantic integration difficulty (Brown and Hagoort, 1993; Hueig and Mani,
2016); or that such prediction effects might be exaggerated by the use of artificial,
prediction-encouraging experiments focussing on highly predictable ‘target‘ words
(Hueig and Mani, 2016; Nieuwland, 2019). e second question concerns the rep-
resentational nature of predictions: Does linguistic prediction occur primarily at the
level of syntax (Brennan et al., 2020; Hale, 2001; Hale et al., 2018; Levy, 2008) or
rather at the lexical (Fitz and Chang, 2019; Fleur et al., 2020), semantic (Federmeier,
2007; Rabovsky, Hansen, and McClelland, 2018) or the phonological level (Brodbeck,
Hong, and Simon, 2018; Di Liberto et al., 2019; Donhauser and Baillet, 2020; Gagne-
pain, Henson, and Davis, 2012; Gwilliams et al., 2018)? ERP studies have described
brain responses to violations of, and deviations from, both high and low-level expec-
tations, suggesting prediction might occur at all levels simultaneously (Kuperberg
and Jaeger, 2016; Nieuwland, 2019), although see (Nieuwland et al., 2018). However,
it has been disputed whether these findings would generalise to natural language,
where violations are rare or absent and with few highly predictable words. In these
cases, prediction may be less relevant or might perhaps be limited to the most ab-

76



4. | A hierarchy of linguistic predictions during natural language comprehension

Figure 4.1. Schematic of experimental and analytical framework. a) Top row: in both
experiments participants listened to continuous recordings from audiobooks while brain activ-
ity was recorded. Boom row: the texts participants listened to were analysed by a deep neural
network (GPT-2) to quantify the contextual probability of each word. A regression-based tech-
nique was used to estimate the effects of (different levels o) linguistic unexpectedness on the
evoked responses within the continuous recordings. b) Datasets analysed: one group-level
EEG dataset, and one individual subject source-localised MEG dataset.

stract levels (Hueig and Mani, 2016; Nieuwland, 2019; Nieuwland et al., 2018).
Here, we address both issues, probing the ubiquity and nature of linguistic predic-

tion during natural language understanding. Specifically, we analysed brain record-
ings from two independent experiments of participants listening to audiobooks, and
use a state-of-the-art deep neural network (GPT-2) to quantify linguistic predictions
in a fine-grained, contextual fashion. First, we obtain evidence for predictive pro-
cessing, confirming that brain responses to words are modulated by probabilistic
predictions. Critically, the effects of prediction were found over and above those
of non-predictive factors such as integration difficulty, and were not confined to a
subset of predictable words, but were widespread – supporting the notion of ubiqui-
tous prediction. Next, we investigated at which level prediction occurs. To this end,
we disentangled the model-based predictions into distinct dimensions, revealing dis-
sociable neural signatures of syntactic, phonemic and semantic predictions. Finally,
we found that higher-level (word) predictions constrain lower-level (phoneme) pre-
dictions, supporting hierarchical prediction. Together, these results underscore the
ubiquity of prediction in language processing, and demonstrate that prediction is not
confined to a a single level of abstraction but occurs throughout the language net-
work, forming a hierarchy of predictions across all levels of analysis, from phonemes
to meaning.

Results

We consider data from two independent experiments, in which brain activity was
recorded while participants listened to natural speech from audiobooks. e first ex-
periment is part of a publicly available dataset (Broderick et al., 2018), and contains
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1 hour of electroencephalographic (EEG) recordings in 19 participants. e second
experiment collected 9 hours of magneto-encephalographic (MEG) data in three indi-
viduals, using individualised head casts that allowed us to localise the neural activity
with high precision. While both experiments had a similar setup (see Figure 4.1),
they yield complementary insights, both at the group level and in three individuals.

Neural responses to speech are modulated by probabilistic linguistic predic-
tions

We first tested for evidence for linguistic prediction in general. We reasoned that
if the brain is constantly predicting upcoming language, neural responses to words
should be sensitive to violations of contextual predictions, yielding ‘prediction error‘
signals which are considered a hallmark of predictive processing (Keller and Mrsic-
Flogel, 2018). To this end, we used a regression-based deconvolution approach to
estimate the effects of prediction error on evoked responses within the continuous
recordings. We focus on this event-related, low-frequency evoked response because
it connects most directly to earlier influential neural signatures of prediction in lan-
guage (Frank et al., 2015; Kutas and Hillyard, 1984; Nieuwland et al., 2018; Van Peen
and Luka, 2012).

To quantify linguistic predictions, we analysed the books participants listened to
with a state-of-the-art neural language model: GPT-2 (Radford et al., 2019). GPT-2
is a large transformer-based model that predicts the next word given the previous
words, and is currently among the best publicly-available models of its kind. Note
that we do not use GPT-2 as a model of human language processing, but purely as a
tool to quantify how expected each word is in context.

To test whether neural responses to words are modulated by contextual predic-
tions, we compared three regression models (see S4.5). e baseline model formalises
the hypothesis that natural, passive language comprehension does not invoke predic-
tion. is model did not include regressors related to contextual predictions, but did
include several potentially confounding variables (such as word frequency, semantic
integration, and acoustics). e constrained guessing model formalised the hypothe-
sis that language processing sometimes (in constraining contexts) invokes prediction,
and that such predictions are an all-or-none phenomenon – together representing
how the notion of prediction was classically used in the psycholinguistic literature
(Van Peen and Luka, 2012). is model included all non-predictive variables from
the baseline model, plus, in constraining contexts, a linear estimate of word improb-
ability (since all-or-none predictions result in a linear relationship between word
probability and brain responses; see methods for details). Finally, the probabilistic
prediction model included all confounding regressors from the baseline model, plus
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Figure 4.2. Neural responses are modulated by probabilistic predictions. a) Model
comparison. Cross-validated correlation coefficients for EEG (le) and each MEG participant
(right). EEG: dots with connecting lines represent individual participants (averaged over all
channels). MEG: bars represent median across runs, bars represent bootstrapped absolute de-
viance (averaged over language network sources). b) EEG: coefficients describing the signifi-
cant effect of lexical surprise (see Figure S4.3 for the full topography over time). Highlighted
area indicates extent of the cluster, shaded error bar indicates bootstrapped SE. Inset shows
distribution of absolute t-values and of channels in the cluster. c) Difference in prediction per-
formance across cortex (transparency indicates FWE-corrected p-values). Significance levels
correspond to P<0.001 (***) in a two-tailed one-sample Student’s t or Wilcoxon sign rank test.

for every word a logarithmic estimate of word improbability (i.e. surprise). is for-
malises the hypothesis that the brain constantly generates probabilistic predictions,
as proposed by predictive processing accounts of language (Frank et al., 2015; Kuper-
berg and Jaeger, 2016) and of neural processing more broadly (Friston, 2005; Keller
and Mrsic-Flogel, 2018).

When we compared the ability of these models to predict brain activity using
cross-validation, we found that the probabilistic prediction model performed beer
than both other models (see Figure 4.2a). e effect was highly consistent, found
in virtually all EEG participants (probabilistic vs constrained guessing, t18 = 5.34,
p = 4.46 × 10−5; probabilistic vs baseline, t18 = 6.43, p = 4.70 × 10−6) and within
each MEG participant (probabilistic vs constrained guessing, all p ′s < 1.54 × 10−6;
probabilistic vs baseline, all p ′s < 5.17 × 10−12).

As the constrained guessing model differed from the probabilistic model in two
ways – by assuming that predictions are (i) categorical and (ii) limited to constraining
contexts – we also considered a control model. Like the constrained guessing model,
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this extended guessing model included a linear estimate of word probability, but for
every word rather than only for constraining contexts. Although this model did not
outperform the probabilistic prediction model, it did substantially outperform the
constrained model (Fig S4.5). is demonstrates that the effects of prediction are not
limited to constraining contexts, but apply much more broadly – in line with the idea
that predictions are ubiquitous and automatic.

Having established that word unexpectedness modulates neural responses, we
characterised this effect in space and time. In the MEG dataset, we asked for which
neural sources lexical surprise was most important in explaining neural data, by com-
paring the prediction performance of the baseline model to the predictive model in
a spatially resolved manner. is revealed that overall word unexpectedness modu-
lated neural responses throughout the language network (see Figure 4.2c). To inves-
tigate the temporal dynamics of this effect, we inspected the regression coefficients,
which describe how fluctuations in lexical surprise modulate the neural response
at different time lags – together forming a modulation function also known as the
regression evoked response (Smith and Kutas, 2015) or Temporal Response Function
(TRF) (Brodbeck, Hong, and Simon, 2018; Ding and Simon, 2012). When we com-
pared these across participants in the EEG experiment, cluster-based permutation
tests revealed a significant effect (p = 2 × 10−4) based on a posterio-central cluster
with a negative polarity between 0.2 and 0.9 seconds (see Figure 4.2b and S4.8). is
indicates that surprising words lead to a stronger negative deflection of evoked re-
sponses, an effect peaking at 400 ms post word onset and strongly reminiscent of the
classic N400 (Kutas and Hillyard, 1984; Nieuwland et al., 2018; Rabovsky, Hansen,
and McClelland, 2018). Coefficients for MEG subjects revealed a similar, slow effect
at approximately the same latencies (see Fig S4.4).

Together, these results constitute clear evidence for predictive processing by con-
firming that brain responses to words are modulated by predictions. ese mod-
ulations are not confined to constraining contexts, occur throughout the language
network, evoke an effect reminiscent of the N400, and are best explained by a prob-
abilistic account of prediction. is suggests the brain predicts constantly and prob-
abilistically – even when passively listening to natural language.

Linguistic predictions are feature-specific

e results so far revealed modulations of neural responses by overall word unex-
pectedness. What type of linguistic prediction might be driving these effects? Ear-
lier research suggests a range of possibilities, with some proposing that the effect
of overall word surprise primarily reflects syntax (Hale, 2001; Levy, 2008), while
others propose that prediction unfolds at the semantic (Federmeier, 2007; Rabovsky,
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Figure 4.3. Partitioning model-derived predictions into distinct linguistic dimen-
sions. To disentangle syntactic, semantic and phonemic predictions, the lexical predictions
from GPT-2 were analysed. For the syntactic prediction, part-of-speech was tagging per-
formed over all potential sentences (e.g. ”It made the boy sad to think”). To compute the
phonemic prediction, each predicted word was decomposed into its constituent phonemes,
and the predicted probabilities were used as a contextual prior in a phoneme model (see Fig-
ure 4.6). For the semantic prediction, a weighted average was computed over the GLoVE
embeddings of all predicted words.

Hansen, and McClelland, 2018), or the phonemic level (Brodbeck, Hong, and Simon,
2018; Donhauser and Baillet, 2020; Gagnepain, Henson, and Davis, 2012) – or at all
levels simultaneously (Kuperberg and Jaeger, 2016).

To evaluate these possibilities, we factorised the aggregate, word-level linguis-
tic predictions from the artificial neural network into distinct linguistic dimensions
(Fig 4.3). is allows us to derive model-based estimates of three feature-specific pre-
dictions: the syntactic prediction (defined as the conditional probability distribution
over parts-of-speech, given context), semantic prediction (defined as the predicted se-
mantic embedding) and phonemic prediction (i.e. the conditional probability of the
next phoneme, given the phonemes within the word so far and the prior context).
By comparing these predictions to the presented words, we derived feature-specific
prediction errors which quantified not just the extent to which a word is surprising
overall, but also in what way: semantically, syntactically or phonemically (see Meth-
ods for definitions).

We reasoned that if the brain is generating predictions at a given level (e.g. syn-
tax), then the neural responses should be sensitive to prediction errors specific to
this level. Moreover, because these different features are processed by partly dif-
ferent brain areas over different timescales, the prediction errors should be at least
partially dissociable. To test this, we formulated a new regression model (Figure S4.6).
is included all variables from the lexical prediction model as nuisance regressors,
and added three regressors of interest: syntactic surprise (defined for each word),
semantic prediction error (defined for each content word), and phonemic surprise
(defined for each word-non-initial phoneme).
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Because these regressors were to some degree correlated, we first asked whether,
and in which brain area, each of the feature-specific prediction errors explained any
unique variance, not explained by the other regressors. In this analysis, we turn to
the MEG data because of its spatial specificity. As a control, we first performed the
analysis for a predictor with a known source: the acoustics. is revealed a clear peak
around auditory cortex (Fig S4.7) especially in the right hemisphere. is aligns with
prior work (Abrams et al., 2008) and confirms that this approach can localise which
areas are especially sensitive to a given regressor. We then tested the three prediction
errors, finding that each type of prediction error explained significant unique vari-
ance in each individual (Figure 4.4), except in participant 1 where phonemic surprise
did not survive multiple comparisons correction (but see Figure 4.6c and Discussion).
is shows that the brain responds differently to different types of prediction errors,
implying that linguistic predictions are feature-specific and occur both at high and
low levels of processing simultaneously.

Although we observed considerable variation in lateralisation and exact spatial
locations between individuals, the overall paern of sources aligned well with prior
research on the neural circuits for each level. For instance, only for semantic predic-
tion errors we observed a widely distributed set of neural sources – consistent with
the fact that the semantic (but not the syntactic or phonological) system is widely dis-
tributed (Binder et al., 2009; Huth et al., 2016). Moreover, the temporal areas showing
the strongest effect of syntactic surprise are indeed key areas for syntactic processing
(Matchin and Hickok, 2020) and for the posterior temporal areas predictive syntax
in particular (Brennan et al., 2020; Lopopolo et al., 2017; Matchin et al., 2019; Nelson
et al., 2017) – though a clear syntactic effect in the inferior frontal gyrus (IFG) was
interestingly absent. When we compared the sources of phonemic surprise to those
obtained for lexical surprise, we observed a striking overlap in all individuals (see
Chapter S4.7, S4.4 and S4.13), suggesting that the phonemic predictions as formalised
here mostly relate to predictive (incremental) word recognition at the phoneme level
rather than describing phonological or phonotactic predictions per se.

Dissociable signatures of syntactic, semantic and phonemic predictions

Having established that syntactic, phonemic and semantic prediction errors indepen-
dently modulated neural responses in different brain areas, we further investigated
the nature of these effects. is was done by inspecting the coefficients (or modula-
tion functions), which describe how fluctuations in a given regressor modulate the
response over time. We first turn to the EEG data because there the sample size al-
lows for population-level statistical inference on the coefficients. We fied the same
integrated model (Figure S4.6) and performed cluster-based permutation tests on the
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Figure 4.4. Dissociable patterns of explained variance by syntactic, semantic and
phonemic predictions. Unique variance explained by syntactic, semantic and phonemic
unexpectedness (quantified via surprise or prediction error) across cortical sources in each
MEG participant. In all plots, colour indicates amount of additional variance explained; opac-
ity indicates FWE-corrected statistical significance. Note that p < 0.05 is equivalent to
− log

10
(p) > 1.3.

modulation functions. is revealed significant effects for each type of prediction
error (Figure 4.5).

First, syntactic surprise evoked an early, positive deflection (p = 0.027) based
on a frontal cluster between 200 and 500 ms. is early frontal positivity converges
with two recent studies that investigated specifically syntactic prediction using mod-
els trained explicitly on syntax (Brennan and Hale, 2019; Hale et al., 2018). We also
observed a late negative deflection for syntactic surprise (p = 0.025; Figure S4.9),
but this was neither in line with earlier findings nor replicated in the MEG data. e
semantic prediction error also evoked a positive effect (p = 9.1 × 10−3) but this
was based on a much later, spatially distributed cluster between 600 and 1100 ms.
Although such a late positivity has been prominently associated with syntactic vio-
lations (Hagoort, Brown, and Groothusen, 1993), there is also a considerable body
of work reporting such late positivities for purely semantic anomalies (Herten, Kolk,
and Chwilla, 2005) which is more in line with the semantic prediction error as quan-
tified here (see Discussion). Notably, we did not find a significant N400-like effect
for semantic prediction error – possibly because this negative deflection was already
explained by the overall lexical surprise, which was included as a nuisance regressor
(Figure S4.10). Finally, the phonemic surprise evoked a negative effect (p = 3× 10−4)
based on an early, distributed cluster between 100 and 500 ms. is effect was simi-
lar to the word-level surprise effect (Figure 4.2C and S4.10) but occurred earlier. is
timecourse corresponds to recent studies using similar regression-based techniques
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Figure 4.5. Spatiotemporal signatures of syntactic, semantic and phonemic predic-
tion errors. Coefficients describing the effects of each prediction-error. EEG (le column):
modulation functions averaged across the channels participating for at least one sample in
the three main significant clusters (one per predictor). Highlighted area indicates temporal
extent of the cluster. Shaded area around waveform indicates bootstrapped standard errors.
Stars indicate cluster-level significance; p < 0.05 (*) , p < 0.05 (**), p < 0.001 (***). Insets
represent selected channels and distribution of absolute t-values. Note that these plots only
visualise the effects; for the full topographies of the coefficients and respective statistics, see
Figure S4.8. MEG (right column): polarity aligned responses averaged across the sources with
significant explained variance (Figure 4.4) across participants. Shaded area represents abso-
lute deviation. Insets represent topography of absolute value of coefficients averaged across
the highlighted period. Note that due to polarity alignment, sign information is to be ignored
for the MEG plots. For average coefficients for each source, see Figure S4.10; for coefficients
of each individual, see Figs S4.11 - S4.14.

to study (predictive) phoneme processing in natural listening (Di Liberto et al., 2019;
Donhauser and Baillet, 2020; Gwilliams et al., 2020).

When we performed the same analysis on the MEG data, we observed striking
differences in the exact shape and timing of the modulation functions between in-
dividuals (see Figure S4.11- S4.14). While this might partly reflect variance in the
coefficients due to inherent correlations between the variables, it clearly also reflects
true individual differences, demonstrated by one of the strongest and least correlated
regressors (the acoustics) also showing considerable variability (see Figure S4.14).
Overall however, we could recover a temporal paern of effects similar to the EEG
results: phonemic and syntactic surprise modulating early responses, and seman-
tic prediction error modulating later responses – although not as late in the EEG
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data. is temporal order holds on average (Figures 4.5, S4.10) and is especially clear
within individuals (Figure S4.11 - S4.13).

Overall, our results (Figure 4.4,4.5) demonstrate that syntactic, phonemic and
semantic prediction errors evoke brain responses that are both temporally and spa-
tially dissociable. Specifically, while phonemic and syntactic predictions modulate
relatively early neural responses (100-400 ms) in a set of focal temporal (and frontal)
areas that are key for syntactic and phonetic/phonemic processing, semantic pre-
dictions modulate later responses (>400 ms) across a widely distributed set of areas
across the distributed semantic system. ese results reveal that linguistic predic-
tion is not implemented by a single system but occurs throughout the speech and
language network, forming a hierarchy of linguistic predictions across all levels of
analysis.

Phoneme predictions reveal hierarchical inference

Having established that the brain generates linguistic predictions across multiple lev-
els of analysis, we finally asked whether predictions at different levels might inter-
act. One option is that they are encapsulated: Predictions in separate systems might
use different information, for instance unfolding over different timescales, render-
ing them independent. Alternatively, predictions at different levels might inform
and constrain each other, effectively converging into a single multilevel prediction –
as suggested by theories of hierarchical cortical prediction (Friston, 2005; Keller and
Mrsic-Flogel, 2018; Kiebel, Daunizeau, and Friston, 2008).

One way to adjudicate between these hypotheses is by evaluating different schemes
of deriving phoneme predictions. One possibility is that such predictions are only
based on information unfolding over short timescales. In this scheme, the predicted
probability of the next phoneme is derived from the cohort of words that are com-
patible with the phonemes presented so far, with each candidate word weighted by
its overall frequency of occurrence (see Figure 4.6A). As such, this scheme proposes
a single-level model: phoneme predictions are based only on information at the level
of within-word phoneme sequences unfolding over short timescales, plus a fixed
frequency-based prior (capturing statistical knowledge of word frequencies within a
language).

Alternatively, phoneme predictions might not only be based on sequences of
phonemes within a word, but also on the longer prior linguistic context. In this
case, the probability of the next phoneme would still be derived from the cohort of
words compatible with the phonemes presented so far, but now each candidate word
is not weighted by its overall frequency but by its contextual probability (Figure 4.6A).
Such a model would be hierarchical, in the sense that predictions are based both –
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Figure 4.6. Evidence for hierarchical inference during phoneme prediction. a) Two
models of phoneme prediction during incremental word recognition. Phonemic predictions
were computed by grouping candidate words by their identifying next phoneme, and weight-
ing each candidate word by its prior probability. is weight (or prior) could be either based
on a word’s overall probability of occurrence (i.e. frequency) or on its conditional probability
in that context (from GPT-2). Critically, in the frequency-based model, phoneme predictions
are based on a single level: short sequences of within words phonemes (hundreds of ms long)
plus a fixed prior. By contrast, in the contextual model, predictions are based not just on short
sequences of phonemes, but also on a contextual prior which is itself based on long sequences
of prior words (up to minutes long), rendering the model hierarchical (see Methods). b-c)
Model comparison results in EEG (b) and all MEG participants (c). EEG: dots with connecting
lines represent individual participants (averaged over all channels). MEG: bars represent me-
dian across runs, error bars represent bootstrapped absolute deviance (averaged over language
network sources). Significance levels correspond to P<0.01 (**) or P<0.001 (***) in a two-tailed
paired t or Wilcoxon sign rank test.

at the first level – on short sequences of phonemes (i.e. of hundreds of milliseconds
long), and on a contextual prior which itself is based – at the higher level – on long
sequences of words (i.e. of tens of seconds to minutes long).

Here, the first model is more in line with the classic Cohort model of incremen-
tal (predictive) word recognition, which suggests that context is only integrated aer
the selection and activation of lexical candidates (Marslen-Wilson, 1989). By contrast,
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the second model is more in line with contemporary theories of hierarchical predic-
tive processing which propose that high-level cortical predictions (spanning larger
spatial or temporal scales) inform and shape low-level predictions (spanning finer
spatial or temporal scales) (Kiebel, Daunizeau, and Friston, 2008; Rao and Ballard,
1999). Interestingly, recent studies of phoneme predictions during natural listening
have used both the frequency-based single level model (Brodbeck, Hong, and Simon,
2018; Gwilliams et al., 2018) and a context-based (hierarchical) model (Donhauser
and Baillet, 2020). However, the models have not been explicitly compared to test
which model can best account for prediction-related fluctuations in neural responses
to phonemes.

To compare these possibilities, we constructed 3 phoneme-level regression mod-
els (see Figure S4.15), which all only included regressors at the level of phonemes.
First, the baseline model only included non-predictive control variables: phoneme
onsets, acoustics, word boundaries and uniqueness points. is can be seen as the
phoneme-level equivalent of the baseline model in Figures 4.2,S4.5. e baseline
model was compared with two regression models which additionally included phoneme
surprise. In one of the regression models, this was calculated using a single-level
model (with a fixed, frequency-based prior), in the other regression model it was
derived from a hierarchical model (with a dynamic, contextual prior derived from
GPT-2). To improve our ability to discriminate between the hierarchical and single-
level model, we not only included surprise but also phoneme entropy (calculated
with either model) as a regressor (Donhauser and Baillet, 2020).

When we compared the cross-validated predictive performance, we first found
that in both datasets the predictive model performed significantly beer than the
non-predictive baseline (Figure 4.6b-c hierarchical vs baseline, EEG: t18 = 3.80,
p = 1.31 × 10−3; MEG: all p ′s < 5.69 × 10−12). is replicates the basic evidence
for predictive processing but now at the phoneme rather than word level (Figure 4.2).
Critically, when we compared the two predictive models, we found that the hierarchi-
cal model performed significantly beer, both in EEG (t18 = 3.03, p = 7.28 × 10−3)
and MEG (all p ′s < 9.44 × 10−4). is suggests that neural predictions of phonemes
(based on short sequences of within-word speech sounds) are are informed by lexi-
cal predictions, effectively incorporating long sequences of prior words as contexts.
is is a signature of hierarchical prediction, supporting theories of hierarchical pre-
dictive processing.

Discussion

Across two independent data sets, we combined deep neural language modelling
with regression-based deconvolution of human electrophysiological (EEG and MEG)
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recordings to ask if and how evoked responses to speech are modulated by linguis-
tic expectations that arise naturally while listening to a story. Our results demon-
strated that evoked responses are modulated by probabilistic predictions. We then
introduced a novel technique that allowed us to quantify not just how much a lin-
guistic stimulus is surprising, but also at what level – phonemically, syntactically
and/or semantically. is revealed dissociable effects, in space and time, of differ-
ent types of prediction errors: syntactic and phonemic prediction errors modulated
early responses in a set of focal, mostly temporal areas, while semantic prediction
errors modulated later responses across a widely distributed set of cortical areas.
Finally, we found that phonemic prediction error signals were best modelled by a
hierarchical model incorporating two levels of context: short sequences of within-
word phonemes (up to hundreds of milliseconds long) and long sequences of prior
words (up to minutes long). Together, these results demonstrate that during natural
listening, the brain is engaged in prediction across multiple levels of linguistic rep-
resentation, from speech sounds to meaning. e findings underscore the ubiquity
of prediction during language processing, and fit naturally in predictive processing
accounts of language (Kuperberg and Jaeger, 2016; Kutas, DeLong, and Smith, 2011)
and neural computation more broadly (Friston, 2005; Heilbron and Chait, 2018; Keller
and Mrsic-Flogel, 2018; Rao and Ballard, 1999).

A primary result of this paper is that evoked responses to words are best ex-
plained by a predictive processing model: regression models including unexpected-
ness performed beer than strong non-predictive baseline models, demonstrating
that the effects of prediction on brain responses cannot be reduced to confound-
ing simple features like semantic incongruency. is aligns with recent ERP studies
aimed specifically at distinguishing prediction from semantic integration (Mantegna
et al., 2019; Nieuwland et al., 2020) and extends those findings by analysing not just
specific (highly predictable) ‘target‘ words, but all words in a natural story. Indeed,
when we further compared different accounts of prediction, responses were best ex-
plained by a regression model casting linguistic predictions as ubiquitous and prob-
abilistic. is supports the notion of continuous, graded prediction – as opposed to
the classical view of prediction as the all-or-none pre-activation of specific words in
highly constraining contexts (Van Peen and Luka, 2012).

Because our deconvolution analysis focussed on evoked responses, the results
can be linked to the rich literature on linguistic violations using traditional ERP meth-
ods. is is powerfully illustrated by the modulation function of lexical surprise (Fig-
ure 4.2b) tightly following the N400 modulation effect, one of the first proposed, most
robust and most debated ERP signatures of linguistic prediction (Kutas and Hillyard,
1984; Nieuwland et al., 2018; Rabovsky, Hansen, and McClelland, 2018). Similarly,
the early negativity we found for phonemic surprise and later positivity for semantic
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prediction error (Fig 4.5) align well with N200 and the semantic P600 or PNP effects
of phonological mismatch and semantic anomaly respectively (Brink, Brown, and
Hagoort, 2001; Van Peen and Luka, 2012). Unlike most ERP studies, we observed
these effects in participants listening to natural stimuli – without any anomalies or
violations – not engaged in any task. is critically supports the idea that these re-
sponses reflect deviations from predictions inherent to the comprehension process –
rather than reflecting either detection of linguistic anomalies or expectancy effects
introduced by the experiment (Hueig and Mani, 2016; Nieuwland, 2019).

While we found several striking correspondences between the modulation func-
tions recovered from the data and classic effects from the ERP literature, there were
also some differences. Specifically, for syntactic surprise, we found neither a late pos-
itive effect resembling the syntactic P600 (Hagoort, Brown, and Groothusen, 1993)
nor an early negative effect akin to the ELAN (Friederici, 2002). One potential ex-
planation for this is that our formalisation (part-of-speech surprise) might not fully
capture syntactic violations used in ERP studies. Indeed, a recent paper on syntac-
tic prediction using a similar model-based approach found a P600-like effect not for
syntactic surprise but for the number of syntactic reinterpretation aempts a word
induced (Hale et al., 2018). Conversely, the early positive effect of syntactic surprise
we found – which replicated other model-based findings, despite using a different
formalisation of syntactic surprise (Brennan and Hale, 2019; Hale et al., 2018) – does
not have a clear counterpart in the traditional ERP literature. Beer understanding
such systematic differences between the traditional experimental and model-based
approach provides an interesting challenge for future work.

Beyond the ERP literature, there has also been earlier model-based work on pre-
diction. However, these studies have mostly quantified feature-unspecific lexical
unexpectedness (Armeni et al., 2019; Frank et al., 2015; Heilbron et al., 2019; Weiss-
bart, Kandylaki, and Reichenbach, 2020; Willems et al., 2016) or modelled feature-
specific predictions at a single level such as syntax (Brennan and Hale, 2019; Hale
et al., 2018; Henderson et al., 2016; Shain et al., 2020), phonemes (Brodbeck, Hong,
and Simon, 2018; Di Liberto et al., 2019; Donhauser and Baillet, 2020) or semantics
(Rabovsky, Hansen, and McClelland, 2018). We extend these studies by probing pre-
dictions at all these levels simultaneously. is is important because it allows to con-
trol for correlations between levels – since words that are, for instance, syntactically
surprising are, on average, also semantically surprising. Moreover, prior modelling
of feature-specific predictions used domain-specific models that had to be indepen-
dently trained, and typically incorporated linguistic context in a limited way. By
contrast, our method (Figure 3) allows to derive multiple predictions from a single,
large pre-trained model (like GPT-2) which has a much deeper grasp of linguistic
context. However, a limitation of this method is that the resulting predictions are
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not independent. erefore, you cannot test if levels interact without also creating
a separate, domain-specific model. As such, the disentangling approach we used
is complementary to the domain-specific modelling approach. Future work could
combine the two, for instance to test if the hierarchical prediction we observed for
phonemes applies to all linguistic levels – or whether predictions at some levels (e.g.
syntax) might be independent.

In this study, we combined group-level analysis (of the EEG data) and individual-
level analysis (of the MEG data). ese approaches are complementary. While in-
cluding more participants allows one to perform population-level inference, acquir-
ing more data per participant allows one to evaluate effects within individuals. By
combining both forms of analysis, we found that on the one hand, the basic effects of
prediction and the comparison of hypotheses about its computational nature (prob-
abilistic prediction, hierarchical prediction) were identical within and across each
individual (Figure 2, 6, S5). But on the other hand, the exact spatiotemporal charac-
teristics of these effects showed substantial variability (Figure 4, 5, S4, S7-S14). is
suggest that while the prediction effects themselves at the EEG group-level are likely
present in each individual, the precise spatiotemporal signatures (Figure 5) are prob-
ably best understood as a statistical average that is not necessarily representative of
underlying individuals.

Because our analysis focused on evoked responses, we chose to probe predictions
indirectly: via the neural markers of deviations from these predictions. As such, we
cannot rule out that the effects might partly reflect ‘postdiction‘. However, a purely
postdictive explanation appears unlikely as it implies that aer recognition, the brain
computes a prediction of the recognised stimulus based on information available be-
fore recognition. While the data therefore indirectly support pre-activation, the rep-
resentational format of these pre-activations is still an open question. In our analyses
– and many theoretical models (Friston, 2005; Rao and Ballard, 1999)) – predictions
are formalised as explicit probability distributions, but this is almost certainly a sim-
plification. It remains unclear whether the brain represents probabilities implicitly.
Alternatively, it might use a kind of approximation: graded, anticipatory processing
that is perhaps functionally equivalent to probabilistic processing, but avoids hav-
ing to represent (and compute with) probabilities. A potential way to address this
question is to try to decode predictions before word onset (Goldstein et al., 2021).
Interestingly, this approach could be extended to assess whether predicted probabili-
ties are represented before onset at different levels of the linguistic hierarchy, to test
whether and which predicted distributions are reflected in pre-stimulus activity.

Why would the brain constantly predict upcoming language? ree – mutually
non-exclusive – functions have been proposed. First, predictions can be used for
compression: if predictable stimuli are represented succinctly, this yields an efficient
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code (Friston, 2005; Rao and Ballard, 1999) – conversely, optimising efficiency can
make predictive coding emerge in neural networks (Ali et al., 2021). A second, per-
haps more studied function is that predictions can guide inference. Our analysis only
probed prediction errors, and hence does not speak directly to such inferential effects
of prediction – but earlier work suggests that linguistic context can indeed enhance
neural representations in a top-down fashion (Broderick, Anderson, and Lalor, 2019;
Heilbron et al., 2020); but see (Blank and Davis, 2016; Sohoglu and Davis, 2020). Fi-
nally, predictions may guide learning: prediction errors can be used to perform error-
driven learning without supervision. While learning is perhaps the least-studied
function of linguistic prediction in cognitive neuroscience (but see (Fitz and Chang,
2019)), it is its primary application in Artificial Intelligence (Manning et al., 2020;
McClelland et al., 2020). In fact, the language model we used (GPT-2) was created to
study such predictive learning. ese models are trained only to predict words, but
learn about language more broadly, and can then be applied to practically any lin-
guistic task (Manning et al., 2020; Radford et al., 2019). Interestingly, models trained
with this predictive objective also develop representations that are ‘brain-like’, in the
sense that they are currently the best encoders of linguistic stimuli to predict brain
responses (Caucheteux and King, 2020; Jain and Huth, 2018; Schrimpf et al., 2020;
Toneva and Wehbe, 2019). And yet, these predictive models are also brain-unlike
in an interesting way – they predict upcoming language only at a single (typically
lexical) level.

When prediction is used for compression or inference, it seems useful to predict
at multiple levels, since redundancies and ambiguities also occur at multiple levels.
But if predictions drive learning, why would the brain predict at multiple levels, when
effective learning can be achieved using simple, single-level prediction? One fascinat-
ing option is that it might reflect the brain‘s way to perform credit assignment within
biological constraints. In artificial networks, credit assignment is typically done by
first externally computing a single, global error term, and then ‘backpropagating‘
this error through all levels of the network – but both these steps are biologically
implausible (Whiington and Bogacz, 2017). Interestingly, it has been shown that
hierarchical predictive coding networks can approximate or even implement classi-
cal backpropagation while using only Hebbian plasticity and local error computation
(Friston, 2005; Millidge, Tschantz, and Buckley, 2020; Whiington and Bogacz, 2017).
erefore, if the brain uses predictive error-driven learning, one might expect such
prediction to be hierarchical, so error-terms can be locally computed throughout the
hierarchy – which is in line with what we find.

Beyond the domain of language, there have been other reports of hierarchies of
neural prediction, but these have been limited to artificial, predictive tasks or to re-
stricted representational spans, such as successive stages in the visual system (Issa,
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Cadieu, and DiCarlo, 2018; Schwiedrzik and Freiwald, 2017; Wacongne et al., 2011).
Our results demonstrate that even during passive listening of natural stimuli, the
brain is engaged in prediction across disparate levels of abstraction (from speech
sounds to meaning) based on timescales separated by three orders of magnitude
(hundreds of milliseconds to minutes). ese findings provide important evidence
for hierarchical predictive processing in cortex. As such, they highlight how lan-
guage processing in the brain is shaped by a domain-general neurocomputational
principle: the prediction of perceptual inputs across multiple levels of abstraction.

Methods

We analysed EEG and source localised MEG data from two experiments. e EEG
data is part of a public dataset that has been published about before (Brodbeck, Hong,
and Simon, 2018).

Participants

All participants were native English speakers. In the EEG experiment, 19 subjects (13
male) between 19 and 38 years old participated; in the MEG experiment, 3 subjects
participated (2 male) aged 35, 30, and 28. Both experiments were approved by local
ethics commiees (EEG: ethics commiee of the School of Psychology at Trinity
College Dublin; MEG: CMO region Arnhem-Nijmegen).

Stimuli and procedure

In both experiments, participants were presented continuous segments of narrative
speech extracted from audiobooks. e EEG experiment used a recording of Hem-
ingway’s e Old Man and the Sea. e MEG experiment used 10 stories from the e
Adventures of Sherlock Holmes by Arthur Conan Doyle. In total, EEG subjects listened
to 1 hour of speech (containing 11,000 words and 35,000 phonemes); MEG subjects
listened to 9 hours of speech (containing 85,000 words and 290,000 phonemes).

In the EEG experiment, each participants performed only a single session, which
consisted of 20 runs of 180s long, amounting to the first hour of the book. Participants
were instructed to maintain fixation and minimise movements but were otherwise
not engaged in any task.

In the MEG experiment, each participant performed a total of ten sessions, each 1
hour long. Each session was subdivided in 6-7 runs of roughly ten minutes, although
the duration varied as breaks only occurred at meaningful moments (making sure, for
example, that prominent narrative events were not split across runs). Unlike in the
EEG experiment, participants in the MEG dataset participants were asked to listen
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aentively and had to answer questions in between runs: one multiple choice com-
prehension question, a question about story appreciation (scale 1-7) and a question
about informativeness.

MRI acquisition and headcast construction

To produce the headcast, we needed to obtain accurate images of the participants’s
scalp surface, which were obtained using structural MRI scans with a 3T MAGNE-
TOM Skyra MR scanner (Siemens AG). We used a fast low angle shot (FAST) se-
quence with the following image acquisition parameters: slice thickness of 1 mm;
field-of-view of 256 × 256 × 208 mm along the phase, read, and partition directions
respectively; TE/TR = 1.59/4.5 ms.

Data acquisition and pre-processing

e EEG data were originally acquired using a 128-channel (plus two mastoid chan-
nels) using an ActiveTwo system (BioSemi) at a rate of 512 Hz, and downsampled to
128 Hz before being distributed as a public dataset. We visually inspected the raw
data to identify bad channels, and performed independent component analysis (ICA)
to identify and remove blinks; rejected channels were linearly interpolated with near-
est neighbour interpolation using MNE-python.

e MEG data were acquired using a 275 axial gradiometer system at 1200 Hz. For
the MEG data, preprocessing and source modelling was performed in MATLAB 2018b
using fieldtrip (Oostenveld et al., 2011). We applied notch filtering (Buerworh IIR )
at the bandwidth of 49–51, 99–101, and 149–151 Hz to remove line noise. Artifacts
related to muscle contraction and squidjumps were identified and removed using
fieldtrip’s semi-automatic rejection procedure. e data were downsampled to 150
Hz. To identify and remove eye blink artifacts, ICA was performed using the FastICA
algorithm.

For both MEG and EEG analyses, we focus on the slow, evoked response and
hence restricted our analysis to low-frequency components. To this end, we filtered
the data between 0.5 and 8 Hz using a bidirectional FIR bandpass filter. Restricting the
analysis to such a limited range of low frequencies (which are known to best follow
the stimulus) is common when using regression ERP or TRF analysis, especially when
the regressors are sparse impulses (Broderick et al., 2018; Di Liberto et al., 2019; Ding
and Simon, 2012). e particular upper bound of 8 Hz is arbitrary but was based on
earlier papers using the same EEG dataset to study how EEG tracks acoustic and
linguistic content of speech (Broderick et al., 2018; Broderick, Anderson, and Lalor,
2019; Heilbron et al., 2019).
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Head and source models

e MEG sensors were co-registered to the subjects’ anatomical MRIs using position
information of three localization coils aached to the headcasts. To create source
models, FSL’s Brain Extraction Tool was used to strip non-brain tissue. Subject-
specific cortical surfaces were reconstructed using Freesurfer, and post-processing
(downsampling and surface-based alignment) of the reconstructed cortical surfaces
was performed using the Connectome Workbench command-line tools (v 1.1.1). is
resulted in cortically-constrained source models with 7,842 source locations per hemi-
sphere. We created single-shell volume conduction models based on the inner sur-
face of the skull to compute the forward projection matrices (leadfields).

Beamformer and parcellation

To estimate the source time series from the MEG data, we used linearly constrained
minimum variance (LCMV) beamforming, performed separately for each session, us-
ing Fieldtrip’s source analysis routine. To reduce the dimensionality, sources were
parcellated, based on a refined version of the Conte69 atlas, which is based on Brod-
mann’s areas. We computed, for each session, parcel-based time series by taking the
first principal component of the aggregated time series of the dipoles belonging to
the same cortical parcel .

Self-aentional language model

Contextual predictions were quantified using GPT-2 – a large, pre-trained language
model (Radford et al., 2019). Formally, a language model can be cast as a way of
assigning a probability to a sequence of words (or other symbols), (x1,x2, ...,xn).
Because of the sequential nature of language, the joint probability, P(X ) can, via the
chain rule, be factorised as the product of conditional probabilities:

P(X ) = p(x1) × p(x2 | x1) × · · · × p(xn | xn−1, . . . ,x1)

=
x∏

i=1

p (xn | x1, . . . ,xn−1)
(4.1)

Since the advent of neural language models, as opposed to statistical (Markov)
models, methods to compute these conditional probabilities have strongly improved.
Improvements have been especially striking in the past two years with the introduc-
tion of the Transformer (Vaswani et al., 2017) architecture, which allows efficient
training of very large networks on large, diverse data. is resulted in models that
dramatically improved the state-of-the art in language modelling on a range of do-
mains.
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GPT-2 (Radford et al., 2019) is one of these large, transformer-based language
models and is currently among the best publcicly released models of English. e
architecture of GPT-2 is based on the decoder-only version of the transformer. In a
single forward pass, it takes a sequence of tokens U = (u1, . . . ,uk) and computes
a sequence of conditional probabilities, (p(u1),p(u2 |u1), . . . ,p(uk | u1, ...,uk−1)).
Roughly, the full model (see Figure S4.1) consists of three steps: first, an embedding
step encodes the sequence of symbolic tokens as a sequence of vectors which can
be seen as the first hidden state ho . en, a stack of transformer blocks, repeated n

times, each apply a series of operations resulting in a new set of hidden states hl , for
each block l . Finally, a (log-)somax layer is applied to compute (log-)probabilities
over target tokens. Formally, then, the model can be summarised in three equations:

h0 = UWe +Wp (4.2)
hl = transformer_block (hl−1)∀i ∈ [1,n] (4.3)

P(u) = softmax
(
hnW

T
e

)
, (4.4)

whereWe is the token embedding andWp is the position embedding (see below).
e most important component of the transformer-block is the masked multi-

headed self-aention (Fig S4.1). e key operation is self-aention, a seq2seq oper-
ation turning a sequence of input vectors (x1,x2, . . . xk) into a sequence of output
vectors (y1,y2, . . . ,yk). Fundamentally, each output vector yi is a weighted average
of the input vectors: yi =

∑k
j=1wi jxj . Critically, the weight wi, j is not a parameter

but is derived from a function over input vectors xi and xj . e Transformer uses
(scaled) dot product aention, meaning that the function is simply a dot product be-
tween the input vectors xTi xj , passed through a somax make sure that the weights
sum to one, scaled by a constant determined by the dimensionality, 1√

dk
(to avoid

the dot-products growing too large in magnitude): wi j = (expxTi x j/
∑k
j=1 expxTi x j)

1√
dk

.
In self-aention, then, each input xi is used in three ways. First, it is multiplied by

the other vectors to derive the weights for its own output, yi (as the query). Second,
it is multiplied by the other vectors to determine the weight for any other output yj
(as the key). Finally, to compute the actual outputs it is used in the weighted sum
(as the value). Different (learned) linear transformations are applied to the vectors
in each of these use cases, resulting in the ery, Key and Value matrices (Q ,K ,V ).
Puing this all together, we arrive at the following equation:

self_attention(Q ,K ,V ) = softmax
(
QKT

√
dk

)
V , (4.5)

where dk is dimension of the keys/queries. In other words, self_attention simply
computes a weighted sum of the values, where the weight of each value is determined
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by the dot-product similarity of the query with its key. Because the queries, keys and
values are linear transformations of the same vectors, the input aends itself.

To be used as a language model, two elements need to be added. First, the basic
self-aention operation is not sensitive to the order of the vectors: if the order of
the input vectors is permuted, the output vectors will be identical (but permuted).
To make it position-sensitive, a position embedding Wp is simply added during the
embedding step – see Equation 4.2. Second, to enforce that the model only uses
information from one direction (i.e le), a mask is applied to the aention weights
(before the somax) which sets all elements above the diagonal to −∞. is makes
the self-aention masked.

To give the model more flexibility, each transformer block actually contains mul-
tiple instances of the basic self-aention mechanisms from (4.5). Each instance (each
head) applies different linear transformations to turn the same input vectors into a
different set of Q , K and V matrices, returning a different set of output vectors. e
outputs of all heads are concatenated and then reduced to the initial dimensionality
with a linear transformation. is makes the self-aention multi-headed.

In total, GPT-2 (XL) contains n = 48 blocks, with 12 heads each; a dimensionality
of d = 1600 and a context window of k = 1024, yielding a total 1.5 × 109 param-
eters. We used the PyTorch implementation of GPT-2 provided by HuggingFace’s
Transformers package (Wolf et al., 2020).

Lexical predictions

We passed the raw texts through GPT-2 (Equations 4.2-4.4) for each run indepen-
dently (assuming that listeners’ expectations would to some extent ’reset’ during
the break). is resulted in a (log-)probability distribution over tokens P(U ). Since
GPT-2 uses Byte-Pair Encoding, a token can be either punctuation or a word or (for
less frequent words) a word-part. How many words actually fit into a context win-
dow of length k therefore depends on the text. For words spanning multiple tokens,
we computed word probabilities simply as the joint probability of the tokens. ‘For
window-placement, we used the constraint that the windows had an overlap of at
least 700 tokens, and that they could not start mid-sentence (ensuring that the first
sentence of the window was always well-formed).

As such, for each wordwi we computed p(wi |context), where ’context’ consisted
either of all preceding words in the run, or of a sequence of prior words constituting
a well-formed context that was at least 700 tokens long.
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Syntactic and semantic predictions

Feature-specific predictions were computed from the lexical prediction. To this end,
we first truncated the unreliable tail from the distribution using a combination of
top-k and nucleus truncation. e nucleus was defined as the ”top” k tokens with the
highest predicted probablility, where k was set dynamically such that the cumulative
probability was at least 0.9. To have enough information also for very low entropy
cases (where k becomes small), we forced k to be a least 40.

From this truncated distribution, we derived feature-specific predictions by analysing
the predicted words. For the syntactic predictions, we performed part of speech
tagging on every potential sentence (i.e. the context plus the predicted word) with
Spacy to derive the probability distribution over parts-of-speech, from which the syn-
tactic surprise was calculated as the negative log probability of the POS of a word,
− log(P(POSn |context)).

For the semantic prediction, we took a weighted average of the glove embeddings
of the predicted words to compute the expected vector: E[G(wn)] =

∑k
i=1 P(xi)G(xi),

where G(wi) is the GloVe embedding for predicted wordwi . From this prediction, we
computed the semantic prediction error as the cosine distance between the predicted
and observed vector:

PEsemantic = 1 − E [G (wn)]G (wn)

E [G (wn)]

 

G (wn)

 (4.6)

Phonemic predictions

Phonemic predictions were formalised in the context of incremental word recogni-
tion (Brodbeck, Hong, and Simon, 2018; Gwilliams et al., 2018). is process can be
cast as probabilistic prediction by assuming that brain is tracking the cohort of can-
didate words consistent with the phonemes so far, each word weighted by its prior
probability. We compared two such models that differed only in the prior probability
assigned to each word.

e first model was the single-level or frequency-weighted model (Fig 4.6), in
which prior probability of words was fixed and defined by a word’s overall probability
of occurrence (i.e. lexical frequency). e probability of a specific phoneme (A), given
the prior phonemes within a word, was then calculated using the statistical definition:

P(ϕ t = A | ϕ1:t−1) =
f (Cϕ t=A)

f (Cϕ1:t−1)
. (4.7)

Here, f (Cϕ t=A) denotes the cumulative frequency of all words in the remaining co-
hort of candidate words if the next phoneme were A, and f (Cϕ(1:t−1)) denotes the
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cumulative frequency of all words in the prior cohort (equivalent to f (C) of all poten-
tial continuations). If a certain continuation did not exist and the cohort was empty,
f (Cϕ t=A) was assigned a laplacian pseudocount of 1. To efficiently compute (4.7) for
every phoneme, we constructed a statistical phonetic dictionary as a digital tree that
combined frequency information from SUBTLEX database and pronunciation from
the CMU dictionary.

e second model was equivalent to the first model, except that the prior prob-
ability of each word was not defined by its overall probability of occurrence, but by
its conditional probability in that context (based on GPT-2). is was implemented
by constructing a separate phonetic dictionary for every word, in which lexical fre-
quencies were replaced by implied counts derived from the lexical prediction. We
truncated the unreliable tail from the distribution and replaced that by a flat tail that
assigned each word a pseudocount of 1. is greatly simplifies the problem as it only
requires to assign implied counts for the top k predicted words in the dynamic nu-
cleus. Since all counts in the tail are 1, the cumulative implied counts of the nucleus
is complementary to the the length of the tail, which is simply the difference between
the vocabulary size and nucleus size (V − k). As such a lile algebra reveals:

freqsn = Ptr (w
(i) |context) V − k

1 −∑k
j=1 P(w

(i)
j |context)

, (4.8)

where Ptr (w(i) |context) is the trunctated lexical lexical prediction, and P(w(i)
j |context)

is predicted probability that word i in the text is word j in the sorted vocabulary.
Although we computed probabilities using the simple statistical definition of

probability, these two ways of assigning lexical frequencies are equivalent to two
kinds of priors in a Bayesian model. Specifically, in the first model the prior over
words is the fixed unconditional word probability, while in the second model the
prior is the contextual probability, itself based on a higher level (lexical) prediction.
is makes the second computation hierarchical because phoneme predictions are
based on not just (at the first level) on short sequences of within-word phonemes,
but also on a contextual prior which itself (at the second level) is based on long se-
quences of prior words.

Non-predictive control variables

To ensure we were probing effects of predictions, we had to control for various non-
predictive variables: onsets, acoustics, frequency and semantic congruency. We will
briefly outline our definitions of each.

For speech, it is known that the cortical responses are sensitive to fluctuations
in the envelope – which is specifically driven by rapid increases of the envelope am-
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plitude (or ‘acoustic edges’) (Daube, Ince, and Gross, 2019). To capture these fluctua-
tions in a sparse, impulse-based regressor we quantified the amplitude of these edges
as the variance of the envelope over each event (e.g. phoneme) following (Broderick,
Anderson, and Lalor, 2019). A second non-predictive variable is frequency. We ac-
counted for frequency as the overall base rate or unconditional probability of a word,
defining it similarly to lexical surprise as the unigrams surprise − log P(word) based
on its frequency of occurrence in subtlex.

e final non-predictive variable was semantic congruency or integration diffi-
culty. is speaks to the debate wether effects of predictability reflect prediction or
rather post-hoc effects arising when integrating a word into the semantic context.
is can be illustrated by considering a constraining context (’coffee with milk and
…’). When we contrast a highly expected word (’sugar’) and an unexpected word (e.g.
’dog’), the unexpected word is not just less likely, but also semantically incongruous
in the prior context. As such, the increased processing cost reflected by effects like
N400 increases might not (only) be due to a violated prediction but due to difficulty in-
tegrating the target word (’dog’) in the semantic context (’coffee with milk’) (Brown
and Hagoort, 1993; Kutas and Hillyard, 1984; Mantegna et al., 2019; Nieuwland et
al., 2020). As a proxy for semantic integration difficulty we computed the semantic
congruency of a word in its context defined as the cosine dissimilarity (see (4.6)) be-
tween the average semantic vector of the prior context words and the target content
word, following (Broderick et al., 2018). is metric is known to predict N400-like
modulations and can hence capture the extent to which such effects can be explained
by semantic congruency only (Broderick et al., 2018; Nieuwland et al., 2020).

Word-level regression models

e word-level models (see Fig S4.2 for graphical representation) captured neural
responses to words as a function of word-level variables. e baseline model for-
malised the hypothesis that responses to words were not affected by word unexpect-
edness but only by the following non-predictive confounds: word onsets, envelope
variability (acoustic edges), semantic congruency (integration difficulty) and word
frequency.

e probabilistic predictionmodel formalised the hypothesis that predictions were
continuous and probabilistic. is model was identical to the baseline model plus the
lexical surprise (or negative log probability of a word), for every word. is was based
on normative theories of predictive processing which state that the brain response
to a stimulus should be proportional to the negative log probability of that stimulus
(Friston, 2005).

e constrained guessing model formalised the classical psycholinguistic notion
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of prediction as the all-or-none pre-activation of specific words in specific (highly
constraining) contexts (Van Peen and Luka, 2012). We translated the idea of all-or-
none prediction into a regression model using an insight by Smith and Levy which
implied that all-or-none predictions result in a linear relationship between word prob-
ability and brain responses (Smith and Levy, 2013). e argument follows from two
assumptions: (1) all predictions are all-or-none; and (2) incorrect predictions incur
a cost, expressed as a prediction error brain response (fixed in size because of as-
sumption 1). For simplicity, we first consider the unconstrained case (i.e. subjects
make a prediction for every stimulus), and we bracket all other factors affecting brain
responses by absolving them into an average brain response,ybaseline. As such, the re-
sponse to any word is eitherybaseline (if the prediction is correct) orybaseline+yerror (if
it was false). For any individual stimulus, this equation cannot be used (as we don’t
know what a subject predicted). But if we assume that predictions are approximately
correct, then the probability of a given prediction to be incorrect simply becomes
(1 − p). As such, on average, the response becomes yresp = ybaseline + (1 − p)yerror.
In other words, a linear function of word improbability. To extend this to the con-
strained case, we only define the improbability regressor for constraining contexts,
and add a constant to those events to capture (e.g. suppressive) effects of correct pre-
dictions (Figure S4.2). To identify ‘constraining contexts‘, we simply took the 10%
of words with the lowest prior lexical entropy. e choice of 10% was arbitrary –
however, using a slightly more or less stringent definition would not have changed
the results because the naive guessing model (which included linear improbability
for every word) performed so much beer (see Figure S4.5).

Integrated regression model

For all analyses on feature-specific predictions, we formulated an integrated regres-
sion model with both word-level and phoneme-level regressors (Figure S4.6). To
avoid collinearity between word and phoneme level regressors, phoneme-level re-
gressors were only defined for word-non-initial phonemes, and word-level regressors
were define for word-onset. As regressors of interest this model included phonemic
surprise, syntactic surprise and semantic prediction error. In principle, we could
have also included phoneme and syntactic entropy rather than just surprise (e.g.
(Donhauser and Baillet, 2020)) – however, these were highly correlated with the
respective surprise. Since this was already a complex regression model, including
more correlated regressors would have made the coefficients estimates less reliable
and hence more difficult to interpret. As such, we did not include both but focussed
on surprise because it has the most direct relation to stimulus evoked effect.
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Phoneme-level regression models

To compare different accounts of phoneme prediction, we formulated three regres-
sion models with only regressors at the individual phoneme level (Figure S4.15). In all
models, following (Brodbeck, Hong, and Simon, 2018) we used separate regressors for
word-initial and word-non-initial phonemes, to account for juncture phonemes be-
ing processed differently. e baseline model only included non-predictive factors of
word-boundaries, phoneme onsets, envelope variability, and uniqueness points. e
two additional models also included phoneme surprise and phoneme entropy from
either the hierarchical model or non-hierarchical model. To maximise our ability to
dissociate the hierarchical prediction and non-hierarchical prediction, we included
both entropy and surprise. Although these metrics are correlated, adding both should
add more information to the model-comparison, assuming that there is some effect
of entropy (Donhauser and Baillet, 2020). (Note that here, we were only interested in
model comparison, and not in comparing the coefficients, which may become more
difficult when including both.)

Time resolved regression

As we were interested in the evoked responses, variables were regressed against
EEG data using time-resolved regression, within a regression ERP/F (or impulse TRF)
framework (Broderick et al., 2018; Smith and Kutas, 2015). Briefly, this involves us-
ing impulse regressors for both constants and covariates defined at event onsets, and
then temporally expanding the design matrix such that each predictor column C be-
comes a series of columns over a range of temporal lags C tmax

tmin
= (Ctmin , ...,Ctmax ).

For each predictor one thus estimates a series of weights β tmax
tmin

(Fig 4.1) which can
be understood as the modulation function describing how a given regressor modu-
lates the neural response over time, and which corresponds to the effective evoked
response that would have been obtained in a time-locked ERP/ERF design. Here, we
used a range between -0.2 and 1.2 seconds. All data and regressors were standardised
and coefficients were estimated with ℓ2-norm regularised (Ridge) regression:

β̂ = argmin
β
∥y − Xβ ∥22 + λ∥β ∥22 , (4.9)

using the scikit learn sparse matrix implementation. In both datasets, models were
estimated by concatenating the (time-expanded) design matrix across all runs and
sessions. Regularisation was set based on leave-one-run-out R2 comparison; for in-
ference on the weights in the EEG data this was done across subjects to avoid doing
statistics over coefficients with different amounts of shrinkage.
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Model comparison

In both datasets, model comparison was based on comparing cross-validated cor-
relation coefficients. Cross-validation was performed in a leave-one-run-out cross-
validation scheme, amounting to 19-fold cross-validation in the EEG data and be-
tween 63 and 65-fold cross-validation for the MEG data (in some subjects, some runs
were discarded due to technical problems).

For the EEG data, models’ cross-validated prediction performance was performed
across subjects to perform population-level inference. To this end, we reduced the
scores into a single nsubs dimensional vector by taking the median across folds and
the mean across channels. Critically, we did not select any channels but used the
average across the scalp. For the MEG data, models were only statistically compared
on a within within-subject basis. Because the MEG data was source localised we
could discard sources known to be of no interest (e.g. early visual cortex). To this
end, we focussed on the language network, using a rather unconstrained definition
encompassing all Brodmann areas in the temporal lobe, plus the temporo-parietal
junction, and inferior frontal gyrus and dorsolateral prefrontal cortex; all bilaterally
(see Figure S4.16).

Statistical testing

All statistical tests were two-tailed and used an alpha of 0.05. For all simple univariate
tests performed to compare model-performance within and between subjects, we
first verified that the distribution of the data did not violate normality and was outlier
free, determined by the D‘Agostino and Pearson’s test implemented in SciPy and
the 1.5 IQR criterion, respectively. If both criteria were met, we used a parametric
test (e.g. paired t-test); otherwise, we resorted to a non-parametric alternative (e.g.
Wilcoxon sign rank).

In EEG, we performed mass-univariate tests on the coefficients across partici-
pants between 0 and 1.2 seconds. is was firstly done using cluster-based permuta-
tion tests (Gramfort et al., 2014; Maris and Oostenveld, 2007) to identify clustered sig-
nificant effects as in Figure 4.5 (10,000 permutations per test). Because the clustered
effects as in Figure 4.5 only provide a partial view, we also reported more comprehen-
sive picture of the coefficients across all channels (Figure S4.3,S4.8); there, we also
provide multiple-comparison corrected p-values to indicate statistical consistency of
the effects; these were computed using TFCE. In the MEG, multiple comparison cor-
rection for comparison of explained variance across cortical areas was done using
Treshold Free Cluster Enhancement (TFCE). In both datasets, mass-univariate test-
ing was performed based on one-sample t-tests plus the ’hat’ variance adjustment
method with σ = 10−3.
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Polarity-alignment

In the source localised MEG data, the coefficients in individuals (e.g. Figure S4.11-
S4.14) are symmetric in polarity, with the different sources in a single response hav-
ing an arbitrary sign due to ambiguity of the source polarity. To harmonise the
polarities, and avoid cancellation when visualising the average coefficient, we per-
formed a polarity-alignment procedure. is was based on first performing SVD,
A = UΣV⊤, where A is the m × n coefficient matrix, with m being the number of
sources and n the number of regressors; and then multiplying each row of A by the
sign of the first right singular vector. Because the right singular vectors (columns of
U) can be interpreted as the eigen vectors of the source-by-source correlation matrix,
this can be thought of as flipping the sign of each source as a function of its polarity
with respect to the dominant correlation. is procedure was used for visualisation
purposes only (see Fig S4.4 and S4.11-S4.14).

Data and code availability

Data and code to reproduce all results will be made public at the Donders Repository.
e full MEG dataset will be made public in a separate resource publication.
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Supplementary Figures

Figure S4.1. GPT-2 Architecture. Note that this panel is a re-rendered version of the orig-
inal GPT schematic, slightly modifyied and re-arranged to match the architecture of GPT-2.
For more details on the overall architecture and on the critical operation of self-aention, see
Methods. In this graphic, Layer Norm refers to layer normalisation as described by Ba et al.
Not visualised here is the initial tokenisation, mapping a sequence of characters into tokens.
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Figure S4.2. Word-level regression models. Schematic of the main models plus the con-
trol model of the initial model comparison to test for predictive processing at the word level.
Because we use a regression ERP/ERF scheme (Smith and Kutas, 2015), aimed at capturing
(modulations o) the evoked response to discrete events like words or phonemes, all regres-
sors are modelled as impulses (see Methods).

Figure S4.3. Full EEG topographies of the effects of lexical surprise ese topographies
show the average t-statistics of the coefficients (upper row) and respective FWE-corrected sig-
nificance (lower row) of the lexical surprise regressor from the probabilistic prediction model
(Figure S4.2). As such, while Figure 4.2b shows the coefficients averaged over channels par-
ticipating in the cluster (thereby only visualising the effect) these topographies visualise the
results comprehensively across all channels over time.
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Figure S4.4. Coefficients for lexical surprise from the lexical model (Figure S4.2) Le
column: timecourses of the coefficients at each MEG source-localised parcel for lexical sur-
prise for all MEG participants, and the polarity-aligned average across them. Right column:
Absolute value of the coefficients averaged across the highlighted period ploed across the
brain.
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Figure S4.5. Model comparison results across all channels (EEG) and the full
language network (MEG). Same as in Figure 4.2a, but now including the ’naive guessing’
control model. Like the constrained guessing model, this model included a linear estimate
of word probability, but defined for every word rather than only for constraining contexts.
is model was introduced to identify which of the two differences between the probabilistic
prediction and constrained guessing model – i.e. assuming that predictions are (i) categorical
vs. probabilistic and (ii) occasional vs. continuous – made the largest difference in model
performance. As can be seen, the naive guessing model performed considerably beer than
the constrained guessing model, but consistently worse than the probabilistic prediction model.
is clearly shows that the modulatory effect of unexpectedness is not limited to only highly
constraining contexts, but that that it applies much more generally – in line with the notion
of continuous prediction.

Strictly speaking, the naive guessing model formalises the hypothesis that the brain
’naively’ makes all-or-none guesses about every upcoming word. Given that this hypothesis
is a-priori so implausible, it may seem surprising that the model still performs comparably
well. However, we should note that the probabilistic prediction regressor (surprise) and
the categorical prediction regressor (linear (im)probability) are highly correlated ( 0.7)
because one is a monotonic function of the other. erefore, we suggest the results are
beer interpreted the other way around: the fact that – despite being so correlated – the
log-probability is consistently a beer linear predictor of neural responses than the linear
probability clearly supports predictive processing theories, which postulate that the neural
response to a stimulus should be proportional to negative log-probability of that stimulus.
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Figure S4.6. Regressors of the integrated feature-specific model. Same as Figure S4.5,
but for the integrated feature-specific regression model. e three regressors of interest –
syntactic surprise, semantic prediction error and phonemic surprise – are coloured, all con-
trol regressors are in black. Following the regression ERP/ERF scheme (Smith and Kutas,
2015), aimed at capturing (modulations o) the evoked response to discrete events like words
or phonemes, all regressors are modelled as impulses (see Methods). To avoid collinearity be-
tween word an and phoneme regressors, phoneme regressors (both events and covariates) are
restricted to all non-initial phonemes.
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Figure S4.7. Unique explained variance for five regressors across the brain. Same as
Figure 4.4, but including 2 control regressors (lexical surprise and acoustic variance) for com-
parison. Colours indicate amount of additional variance explained by each regressor; opacity
indicates the FWE-corrected statitsical significance (across cross-validation folds). Note that
p < 0.05 is equivalent to − log

10
(p) > 1.3.
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Figure S4.8. Full topographies of the coefficients and significance of feature-specific
prediction errors For each feature-specific prediction error regressor, the topographies show
the t-statistics of the coefficients (upper row) and the respective TFCE-corrected significance
(lower row). So while Figure 4.5 only shows the coefficients averaged over channels participat-
ing in the cluster (thereby only visualising the effect) these topographies visualise the results
comprehensively across all channels, over time.
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Figure S4.9. Significant effects of syntactic surprise in the EEG data. Two significant
effects were observed in the modulation functions for syntactic surprise: an early positive ef-
fect with a frontal topography (upper panel) and a later negative effect based on a distributed
cluster (lower panel). e early effect tightly replicates recent model-based studies on EEG
effects of syntactic surprise, and was also found in the MEG data. By contrast, the late effect
of syntactic surprise is not in line with any earlier study (note that it is negative unlike the
syntactic P600) and importantly was not replicated in the MEG data. erefore we only con-
sider the early effect a ‘main’ effect of syntactic surprise (visualised in the main Figure 4.5)
and we advice to refrain from interpreting the late effect before it is independently replicated.
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Figure S4.10. Coefficients for each prediction error, plus two control variables. EEG
(le column): coefficient modulation function averaged across the channels participating for at
least one sample in the significant clusters. Highlighted area indicates temporal extent of the
cluster. Shaded area around waveform indicates bootstrapped standard errors. Stars indicate
cluster-level significance; p < 0.05 (*) ,p < 0.05 (**),p < 0.001 (***). Insets represent channels
assigned to the cluster (white dots) and the distribution of absolute values of t-statistics. MEG
(right column): polarity aligned responses averaged across participants for all sources (same as
in Figure 4.5 but without averaging over sources, and including two control variables). Insets
represent topography of absolute value of coefficients averaged across the highlighted period.
Note that due to polarity alignment, sign information is to be ignored for the MEG plots.
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Figure S4.11. Coefficients for syntactic surprise from the integrated model (Figure
S4.6) Le column: coefficients for each source for each individual in the MEG experiment,
and the polarity-aligned average across participants. Right column: absolute value of the
coefficients across the brain, averaged across the highlighted time-period.
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Figure S4.12. Coefficients for semantic prediction error from the integrated model
(Figure S4.6) Le column: coefficients for each source for each individual in the MEG exper-
iment, and the polarity-aligned average across participants. Right column: absolute value of
the coefficients across the brain, averaged across the highlighted time-period.
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Figure S4.13. Coefficients for phonemic surprise from the integrated model (Figure
S4.6) Le column: coefficients for each source for each individual in the MEG experiment,
and the polarity-aligned average across participants. Right column: absolute value of the
coefficients across the brain, averaged across the highlighted time-period..
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Figure S4.14. Coefficients for envelope variability from the integrated model (Figure
S4.6) Le column: coefficients for each source for each individual in the MEG experiment,
and the polarity-aligned average across participants. Right column: absolute value of the
coefficients across the brain, averaged across the highlighted time-period.
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Figure S4.15. Regressors of the phoneme model. As indicated by the different colours,
both the constants and covariates were modelled separately for word-initial and word-non-
initial phonemes.

Figure S4.16. Language network definition e language network was defined as tem-
poral cortex plus temporo-parietal junction, and IFG and dorsolateral prefrontal cortex; all
bilaterally. In terms of Brodmann areas this corresponded to 20, 21, 22, 38, 39, 40, 41, 42, 44,
45, 46 and 47, amounting to a total of 100 out of 370 cortical parcels.
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Chapter 5

Prior uncertainty modulates beta-band activity
during the perception of natural speech

Abstract

Models of predictive processing posit that the brain constantly relies on top-down
predictions, and that these top-down predictions are signalled via specific frequency
bands – in particular the beta (12-28 Hz) and alpha (8-12 Hz) band. Several studies
have indeed reported such oscillatory signatures of top-down prediction. However,
most of these studies used simple designs with extremely strong regularities, leav-
ing open whether these oscillatory top-down effects are as ubiquitous as predictive
processing theory implies. Here, we address this question by testing for oscillatory
signatures of predictive processing during naturalistic speech perception, quantify-
ing prediction and surprise on a phoneme-by-phoneme basis. Results revealed that
phoneme surprise modulated the theta and delta band amplitude in the temporal
lobe, while prior uncertainty about the incoming word modulated activity in the
beta band in frontotemporal areas. Investigations of the coefficients tentatively sug-
gest that uncertainty about the incoming word increases pre-stimulus beta amplitude.
is is in line with prior literature on language processing, but opposite to what we
expected based on predictive processing accounts of neural oscillations. However,
it is not necessarily inconsistent with predictive processing. Together, these results
show that in naturalistic speech perception, prediction confidence about incoming
stimuli modulates the ongoing beta amplitude. However, they also highlight how
deriving testable hypotheses about the relation between predictive processing and
the modulation of specific frequency bands can be less straightforward than it may
seem. Methodological opportunities to strengthen the conclusions are discussed.

is chapter is based on:
Heilbron M., Westner, B., Hagoort P, de Lange FP. (2021). Prior uncertainty modulates beta-
band activity during the perception of natural speech. (In preparation.)
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Introduction

In everyday situations, the brain is confronted with a dizzyingly complex and am-
biguous stream of sensory information. And yet tasks like object recognition or
speech perception are generally handled with great efficiency, and seemingly with-
out effort.

eories of predictive processing propose that the brain achieves this feat by re-
lying on internal generative models of the world (Clark, 2013; Friston, 2005; Rao
and Ballard, 1999). From these models, the brain generates top-down predictions of
boom-up sensory input which guide the processing of the incoming sensory stream.
ere is a large and growing body of evidence supporting predictive processing, pri-
marily by demonstrating how predictions enhance perception and modulate brain
responses (see de Lange, Heilbron, and Kok, 2018; Keller and Mrsic-Flogel, 2018 for
review).

However, one key tenet of predictive processing remains less studied and is not as
well-supported: the existence of distinct spectral profiles of prediction and prediction
error signals. While not part of original formulations of predictive processing (Fris-
ton, 2005; Mumford, 1992; Rao and Ballard, 1999), this assumption was motivated by
studies demonstrating distinct frequency channels for boom-up signals (associated
with the gamma band) and top-down signals (using beta and alpha bands Buschman
and Miller, 2007; Wang, 2010). Because classic predictive coding theory postulates an
asymmetry between top-downs signals (carrying predictions) and boom-up signals
(carrying prediction errors), these two variables should have a distinct spectral pro-
file: predictions should be associated with lower frequency beta (12-28 Hz) and/or
alpha (8-12 Hz) bands, while prediction errors should be associated with the higher
frequency gamma band (> 30 Hz; Arnal and Giraud, 2012; Bastos et al., 2012).

Beyond the potential of gaining more mechanistic insight (by dissociating top-
down and boom-up signalling), another opportunity of studying the spectral char-
acteristics of predictive processing is that it may facilitate probing of pre-stimulus
predictive activity. Such activity may be roughly time-locked but not phase-locked
to the onset of the next stimulus and hence be measurable through induced but not
evoked response analysis (Siegel, Donner, and Engel, 2012). Indeed, sensory predic-
tions have been linked to pre-stimulus beta and alpha activity (Mayer et al., 2016;
Meyniel, 2020; Spitzer and Haegens, 2017).

An important but oen overlooked consequence of the predictive processing
framework for understanding oscillations, is that beta/alpha band signatures of top-
down processing should be ubiquitous. In other words, they should not be limited to
overt cases of top-down processing requiring active task engagement, like the work-
ing memory and aention tasks in which these signatures have been demonstrated
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most clearly (Bastos et al., 2015; Buschman and Miller, 2007; Engel and Fries, 2010;
Kerkoerle et al., 2014; Michalareas et al., 2016). Aer all, predictive processing claims
that all neural processing strongly relies on top-down predictions. And yet, most
studies reporting spectral signatures of top-down prediction used task-induced pre-
dictions from extremely simple, highly predictable regularities, oen with extended
pre-stimulus null-periods – thereby mostly focussing on the special case of explicit,
conscious prediction (e.g. Bastos et al., 2020; Chao et al., 2018; Ede, Jensen, and
Maris, 2010; Fujioka et al., 2009; Meyniel, 2020; Sedley et al., 2016). is leaves open
whether these effects are as ubiquitous as predictive processing implies.

Here, we test this implication in the context of natural language understanding.
Language provides a powerful testbed because it is governed by complex and yet rel-
atively transparent regularities. is allows one to study predictions without having
to induce artificial (typically extremely simple) regularities and without an extrane-
ous task. Instead, one can simply probe the implicit linguistic expectations that arise
naturally when understanding language. Building on earlier work (Armeni et al.,
2019; Donhauser and Baillet, 2020) we study oscillations during passive audiobook
listening and use computational modelling to quantify linguistic expectations on a
moment-by-moment basis.

We focus on two datasets of human electrophysiological recordings of partici-
pants simply listening to long segments of natural speech, without distinct pre- and
post-stimulus periods and without an online task. As such, the recordings constitute
a strong test for the ubiquity of the oscillatory signatures of top-down prediction.
We were primarily interested in the beta/alpha bands (expecting a positive relation-
ship with prediction confidence, as proposed by predictive processing accounts Arnal
and Giraud, 2012; Bastos et al., 2012; Lewis and Bastiaansen, 2015; Lewis, Wang, and
Bastiaansen, 2015) and also in the gamma band (expecting a positive relation with
unexpectedness).

To foreshadow the results, we found modulations by prior prediction confidence
and unexpectedness in all bands, except the gamma band. As suggested by predictive
processing accounts, prior prediction confidence appeared to specifically modulate
pre-stimulus beta. Unexpectedly, pre-stimulus beta was higher when prior predic-
tions were more uncertain – a result that was opposite to our what we hypothesised,
but that, on reflection is not necessarily inconsistent with predictive processing. To-
gether, these results demonstrate the feasibility of studying the oscillatory signatures
of predictive processing in naturalistic conditions. However, they also show how
using predictive processing to derive testable hypotheses about specific frequency
bands can sometimes be less straightforward than it may seem.
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Figure 5.1. Experimental and analytical framework. Top row: participants listened to
long, continuous segments from audiobooks, extensively annotated to yield onset and offset
times for each word and phoneme (light/thick dashed lines indicate phoneme/word bound-
aries). Brain activity was recorded using either EEG (N=19, 1 hour per participant) or (source-
localised) MEG (N=3, 9 hours per participant). Recordings were decomposed using estimates
of instantaneous amplitude at different frequency bands – for the MEG data, this was part
of the source localisation, in a hilbert-beamformer procedure (see Methods). Boom row: the
speech materials were analysed with GPT-2 to generate word-by-word contextual predictions,
which were used to calibrate phoneme-level predictions about the incoming word. For exam-
ple, in the illustration the incoming word is ‘fisherman’. A prediction is computed from the
‘cohort’ of words consistent with the phonemes so far (f,I) and the contextual probability of
each lexical candidate, derived from GPT-2. In general, uncertainty and surprise tend to be
higher at the first phonemes and decrease gradually over the course of the word – but this
paern depends on constraint, and may be different when a word is highly (un)expected in
context. Uncertainty and surprise were regressed against frequency amplitude using a time-
resolved regression.

Results

We analysed continuous electrophysiological recordings from two independent nat-
uralistic experiments in which participants listened to natural, narrative speech from
audiobooks, both of which have been analysed before (Broderick et al., 2018; Di Lib-
erto, O’Sullivan, and Lalor, 2015; Heilbron et al., 2021a). e first experiment col-
lected electroencaphaloghaphic (EEG) recordings of 19 participants (1 hour per par-
ticipant). e second experiment collected magnetoencephalographic (MEG) data;
this dataset comprises three participants, who each participated in 10 sessions (1
hour each), wearing individualised head casts to minimise motion so as to allow
high-precision localisation of neural activity. We decomposed the recordings into dis-
tinct frequency bands, yielding time-resolved instantaneous amplitude (square root
of power) in each band of interest (Figure 5.1).

To quantify linguistic predictions, we used a deep neural language model (GPT-2)
to estimate, for each word in the stimulus material, a probabilistic prediction about
its identity given the preceding words. Because auditory word recognition is incre-
mental (Marslen-Wilson, 1987; McClelland and Elman, 1986) and we were interested
in the precise moment (before and aer) recognition, we formalised prediction about
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Figure 5.2. Predictions modulate brain activity in the delta trhough beta band. Cross-
validated correlation coefficients for EEG (top row) and MEG (boom-row) of the predictive
processing and baseline model. Top row: bars represent mean across participants, dots with
connected lines represent individual participants. Boom row: bars represent grand mean
across all cross-validation folds (pooled across participants); error-bars represent the within-
fold 95% confidence interval, computed using multi-level non-parametric statistics (hierarchi-
cal bootstrap). Significance levels correspond to p < 0.05(∗),p < 0.01(∗∗), p < 0.001(∗ ∗ ∗),
computed using a bootstrap t-test across participant means (EEG) or a multi-level bootstrap
across participants and folds (MEG).

the incoming words on a phoneme-by-phoneme basis (see also Brodbeck, Hong, and
Simon, 2018; Donhauser and Baillet, 2020; Gwilliams et al., 2018; Heilbron et al.,
2021a). To this end we used the predictions from GPT-2 to calibrate the phonemic
probabilistic computations in order to incorporate long-distance linguistic context
into the phoneme-by-phoneme predictions (see 5.1 and Methods). We extracted two
key metrics of interest: the prior uncertainty about the identity of the incoming word
(quantified by phoneme-by-phoneme lexical entropy), and the unexpectedness of –
or ‘surprise’ about – each phoneme (quantified by phoneme surprisal). Here, we use
uncertainty as metric of (inverse) prior prediction confidence (before recognition) and
surprisal as an index of the unexpectedness or prediction error (aer recognition).

With these metrics, we used a regression-based deconvolution approach to esti-
mate the effects of prediction (un)certainty and surprise on the band-limited ampli-
tude in a time-resolved fashion (Fig. 5.1).

Linguistic predictions modulate responses in the delta through beta band

Before testing for specific oscillatory signatures, we first wanted to verify, for each
band, that it was sensitive to linguistic predictability in general. To this end, we com-
pared two regression models of the induced responses to the speech material. First,
a baseline model which included no prediction-related metrics but only potentially
confounding variables: namely the onset of each phoneme, the acoustic (speech en-
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Figure 5.3. Phoneme surprise is associated with increased theta and delta activity
Coefficients describing the effects of the unexpectedness of the speech material (phonemic
surprisal) on the neural response. Here, the phoneme onset coefficients (black) capture the
average response to a phoneme. e surprisal coefficients (red) represent the average to a
phoneme, plus the average modulation by surprisal – which is equivalent to the response to
a phoneme with a surprisal of 1 SD (note that due to regularisation the coefficients cannot
be numerically interpreted as β weights). In the EEG figures, thick lines indicate the mean
coefficient in the selected channels, shaded areas represent bootstrapped standard error, both
across participants. In the EEG plots, stars indicate significance level using a cluster-based
permutation t-test: p < 0.01(∗∗) across the participants. In the MEG plots, coefficients were
estimated for each session independently (10 sessions per participant); mean and standard
error reflect the average across all sessions. In the MEG data, no population-level inferential
statistics were performed, due to the low number of participants. For the evoked coefficients,
we took the absolute value before averaging across sources and sessions, to avoid sources with
opposite polarity cancelling out.

velope) energy of each phoneme, and the word and sentence boundaries. Second, we
considered a ’predictive processing’ model, which included the same baseline vari-
ables, plus surprise and (un)certainty on a phoneme-by-phoneme basis.

We then evaluated the ability of both models to predict the amplitude in each
band, in a cross-validated fashion. is revealed that the predictive processing model
performed beer than the baseline model for all bands, except for the gamma band.
is was the case in both the EEG data (bootstrap t-test; Delta: p < 10−4 ; theta:
p < 10−4 alpha: p = 4.4 × 10−3; beta: p < 10−4 gamma: p = 0.25) and in the MEG
data (pooling across participants with hierarchical bootstrap t-test; delta: p < 10−4

theta: p = 2.2 × 10−3; alpha: p = 2.7 × 10−3; beta: p = 0.024; gamma: p = 0.052).
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Figure 5.4. Increased pre-stimulus beta is associated with prior prediction uncer-
tainty about the incoming word. Coefficients describing the effects of the prior prediction
uncertainty about the incoming word (phoneme-by-phoneme lexical entropy) on the neural
response. Response functions indicate the mean across the selected channels or sources (the
top 10% most responsive channels for that frequency band, see methods), averaged across par-
ticipants (EEG) or sessions (MEG). Shaded areas represent a bootstrapped standard error, stars
indicate significance level using a cluster-based permutation t-test: p < 0.05(∗) across partic-
ipants. As in Figure 5.3, in the MEG evoked coefficients, we took the absolute value before
averaging across sources and sessions.

e apparent lack of sensitivity to uncertainty and surprise in the gamma band
was unexpected, and might reflects low SNR for gamma-band activity fluctuations (as
has been reported previously, see Dalal et al., 2009) rather than the genuine absence
of an effect (see Discussion). Inspection of the coefficients – which describe how the
frequency band amplitude changes over time as a function of the speech material –
further supported the low SNR hypothesis: there was hardly a temporally consistent
gamma response to the stimuli discernible in the EEG data; in the MEG data, it was
only observed in 1/3 MEG participants (see Fig. S5.5). For the subsequent analyses,
we therefore analysed the other frequency bands.

Phoneme surprise modulates responses in the theta (and delta) band

Aer establishing that surprise and uncertainty modulated the band-limited response
in these frequency bands, we then asked whether these modulations were temporally
specific and consistent across participants. To test this, we analysed the coefficients,
which capture the time-resolved response function of the amplitude in each band.
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Because responses in different bands can have different topographies, we used a
functional ROI approach, selecting for each band the 10% of the channels or sources
that were most sensitive to the stimulus, in terms of variance explained (by the base-
line model, to avoid circularity; see Methods).

is revealed a clear stimulus-induced response in all bands in both datasets
(Figure 5.3-5.4). e alpha and beta band specifically exhibit the characteristic post-
stimulus decreases (typically interpreted as reflecting desynchronisations) which are
also observed in traditional, controlled experiments (Engel and Fries, 2010; Spitzer
and Haegens, 2017). is confirms that the approach worked, in that it captured
characteristic pre- and post-onset induced responses (despite the absence of distinct
pre- and post-stimulus periods).

We then tested for temporally specific modulations by surprise in each frequency
band. We first focussed on the EEG dataset, because the larger number of participants
allows for population-level statistical inference. Here we only found a significant
modulation in amplitude of the theta band, based on a positive cluster between 430
and 560 ms (cluster-based permutation t-test: P = 0.003). For reference, Figure 5.3
also shows the effect of surprise on the evoked response, an effect that has been
reported before (e.g. Donhauser and Baillet, 2020; Heilbron et al., 2021a).

In the MEG data, we observed similar temporal response functions, and again a
clear desynchronisation in the alpha and beta band. We did not see as pronounced
an effect in the theta band, but rather a strong modulation in the delta band. e
structure of the MEG dataset (high with-subject power, low number of subjects) pre-
cludes the statistical quantification of this effect using a similar permutation tests
at the group level (see Methods and Discussion) Nonetheless, the modulation in the
delta band was highly consistent, and clearly visible in all three individuals (Figure
S5.1).

Together, these results show how surprise (a probabilistic metric of prediction
error) modulates the lower frequency band (theta and delta) but not other bands.
ese modulations in the low-frequency bands are broadly consistent with earlier
studies on band-limited effects of linguistic predictability (e.g. Donhauser and Baillet,
2020; Piai et al., 2016; Rommers et al., 2017; see Prystauka and Lewis, 2019 for review),
and of course with the effect of surprise on the evoked response (see Figures 5.3,S5.1
and Discussion).

Prior prediction uncertainty is associated with increased pre-stimulus beta

Next we tested how the responses in different bands were modulated by the prior
prediction uncertainty about the identity of the incoming word.

For reference, we first analysed the evoked response, finding a clear negative

126



5. | Prior uncertainty modulates beta-band activity during natural speech perception

Figure 5.5. Prior predictionuncertaintymodulates frontotemporal beta band activity
Unique variance of beta band amplitude explained by phoneme surprisal, lexical entropy, and
onset across cortical sources in each MEG participant. All plots use a dual coding scheme,
in which the colour indicates the amount of additional variance explained (i.e. variance not
explained by any other regressor or shared by multiple regressors), and opacity indicates FWE-
corrected statistical significance. Note that p < 0.05 is equivalent to − log 10(p) > 1.3.

modulation: in both EEG (cluster-based permutation t-test P < 0.0001, based on
cluster between 85 and 330 ms) and MEG (Fig. 5.4). e effect of prior uncertainty
was more pronouncedFig. earlier in the response in both datasets, which is in line
with the idea that entropy specifically modulates earlier responses (Donhauser and
Baillet, 2020); however, diverging from that proposal, the effect was not confined to
the early response.

en we turned to responses in frequency band amplitudes. In the EEG data, we
found one statistically significant modulation in the beta band (Figure 5.4; cluster-
based permutation t-test; p = 0.026, 2-tailed). e fact that this modulation was
found in the beta band is in line with what we expected, taking entropy as an (in-
verse) proxy of top-down predictions strength. e effect occurred pre-stimulus on-
set, based on a cluster between −130 and −20 ms. Contrary to our expectations,
however, the effect was positive: increased pre-stimulus beta was associated with
more uncertain predictions about the incoming word. In the MEG data, the same
paern was observed: increased pre-stimulus beta for more uncertain predictions
(and again a similar paern of results in the alpha band, Figure 5.4). And again this
effect was present in all 3 MEG participants (S5.2).

Interestingly, while the pre-stimulus increase was opposite to our expectations,
it is in fact in line with prior literarture on language, and may not be necessarily
inconsistent with predictive processing (see Discussion). e MEG coefficients also
suggested a second pre-stimulus effect: an association between prior uncertainty and
pre-stimulus theta amplitude. However, as this paern was not observed in the EEG
data, we refrain from interpreting it.
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Prior uncertainty modulates beta amplitude in inferior frontal and anterior
temporal cortex

Analysing the coefficients (Figs 5.3,5.4) provided a way to temporally characterise the
association between prior uncertainty and beta activity. Next, we sought to spatially
localise it.

For this question, we turn to the MEG data, which was source localised for this
purpose. To obtain a spatial distribution of the association between beta amplitude
and prior uncertainty, we computed for each source the amount of cross-validated
variance in the beta amplitude that was uniquely explained by prior uncertainty;
i.e. not explained by any other regressor. When this analysis is performed for each
source independently, it produces a spatial map of the brain areas specifically sensi-
tive to a given regressor (see e.g. Heer et al., 2017).

An additional advantage of analysing unique cross-validated variance, is that it
is inherently robust to correlations between regressors. Here, the prior lexical un-
certainty and surprisal of the previous phoneme are correlated (ρ ≈ 0.4), meaning
that the estimated coefficients are not guaranteed to correctly disentangle their con-
tributions. is caveat does not apply to unique cross-validated explained variance,
so this analysis also provides an additional test to confirm the specific link between
prior uncertainty and beta amplitude in the MEG data1.

Indeed, we found that prior prediction uncertainty explains significant unique
variance in the beta band (see Figure 5.5). is aligns with the coefficient analysis,
confirming the specific link between prior uncertainty and beta. In Figure 5.5, the ef-
fect of entropy on the beta amplitude appears more pronounced than that of surprisal.
However, in most participants, the contrast between the contribution of surprise and
that of uncertainty was itself not statistically significant when correcting for multi-
ple comparisons. erefore, the results confirm a specific effect of entropy on the
beta band, but do not support a strong dissociation where only uncertainty (and not
surprise) is associated with beta amplitude.

e effect of entropy on the beta band is spatially specific to inferior frontal and
anterior temporal cortex in all participants (notwithstanding some individual vari-
ability in the exact distribution, see Figure 5.5). is spatial distribution seems a
more general property of the beta response, rather than being specific to the beta-
uncertainty association, as can be seen from the variance explained by the average
response (i.e. the onset regressor, see Fig 5.5).

1Note that this primarily applies to the MEG data, because in the EEG data, second-level statistics on the
coefficients already provides a way to control for the uncertainty in the coefficient estimates induced by
the correlations.
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Figure 5.6. Feature importance for all bands and evoked response in a single, exam-
ple participant. Unique beta band variance explained by phoneme surprisal, lexical entropy,
phoneme onset across cortical sources in each MEG participant. In all plots, colour indicates
amount of additional variance explained (i.e. variance not explained by any other regressor or
shared by multiple regressors). Opacity indicates FWE-corrected statistical significance. Note
that p < 0.05 is equivalent to — log 10(p) > 1.3.

e specificity of this spatial distribution to the beta band becomes even clearer
when comparing the distribution of the onset regressor in the beta band and other
bands. As can be seen in Figure 5.6, in the beta (and alpha) bands, variance explained
by the stimulus onset (i.e. by the average response to a phoneme) peaks in these an-
terior temporal and inferior frontal areas. By contrast, in the theta/delta band and
evoked response, the variance explained by the onset peaks on more on temporal
areas, arguably centred around auditory cortex. Since these anterior-temporal and
inferior-frontal areas are considered key higher-order parts of the language network
(see e.g. Hagoort, 2005; Hickok and Poeppel, 2007; Matchin and Hickok, 2020) this
distribution is well in line with the interpretation of this beta activity as reflecting
top-down language processing, but not in accord with an alternative interpretation
of these beta fluctuations as reflecting top-down aentional engagement (see Discus-
sion).
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Discussion

Predictive processing models suggest that the brain continuously relies on top-down
predictions, and that these top-down predictions are signalled via the beta and alpha
bands. Here, we set out to test this hypothesis, by estimating the putative spectral
signatures of prediction in an experiment in which participants simply listened to nat-
ural speech, without any form of top-down task engagement. Participants listened
to audiobooks, the content of which we extensively analysed to estimate contextual
unexpectedness (or surprise) and prior uncertainty in the prediction about the in-
coming word, on a phoneme-by-phoneme basis. e analyses revealed that surprise
modulated the amplitude of the lower frequency bands (theta and delta). Moreover,
and in line with predictive processing accounts, prior prediction uncertainty mod-
ulated the ongoing amplitude in the beta band. Source reconstruction located this
beta modulation in inferior frontal and anterior temporal areas. Analysis of the tem-
poral response function further suggests that this was partly driven by a modulation
of pre-stimulus beta. However, the direction of this effect was the opposite of what
we expected: beta amplitude was increased when prior predictions were more un-
certain. Together, the results confirm that beta is associated with prior prediction
uncertainty, even during naturalistic speech perception. However, they tentatively
suggest that the direction of this beta band modulation is opposite of what one might
expect based on predictive processing accounts of oscillations.

For phoneme surprise, we found that it modulated mainly (though not exclu-
sively, see e.g. Fig. S5.4) the lower frequency bands (delta and theta). However,
phoneme surprise also strongly modulates the evoked response (See Figures 5.3,S5.1;
and Brodbeck, Hong, and Simon, 2018; Donhauser and Baillet, 2020; Heilbron et al.,
2021a). Since the predominant waveforms of the evoked response are relatively slow
and could be spectrally characterised in the delta/theta regime, the low-frequency
modulations may simply reflect this evoked response modulation, rather than re-
flecting an oscillatory effect per se. One might argue that these responses are still
oscillatory, for instance by casting the event related response as a dampened oscilla-
tion, with an early, fast (theta) component, and a later slower (delta) component (see
e.g. Donhauser and Baillet, 2020). However, such an exogenous dampened oscilla-
tion is quite different from the endogenous oscillations as observed in LFPs, such as
theta in the hippocampus (Piai et al., 2016) or in the deep layers of the rodent olfac-
tory system, which both have been linked to top-down processing (Wang, 2010). Our
analysis does not allow arbitrating between these options, and we would be reluctant
to characterise the low-frequency modulations as endogenous oscillations.

For prior prediction confidence or contextual constraint (indexed through its in-
verse, lexical uncertainty) we observed effects primarily in the beta band (Figures 5.4,
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5.5, 5.6 and S5.3-S5.4). Inspection of the coefficients suggested that this effect was
driven by an increase of pre-stimulus beta by lexical uncertainty. is paern was
found both in the EEG dataset and in all MEG participants (see Figures 5.4 and S5.2).
Although it was observed in both datasets, we should note that the effect can only
be formally statistically evaluated in the EEG data (see below for discussion), where
it only had modest statistical support. Given this modest statistical support and the
unexpected direction, we believe that the effect may benefit from a replication in an
additional dataset before drawing definitive conclusions.

Nevertheless, it is worth reflecting for a moment on the direction of this effect
(i.e. on the fact that the modulation was positive). Our prior expectation was that
beta activity should be stronger when prior predictions are stronger (and hence be
negatively associated with prior uncertainty). is was based on the critical assump-
tion that more confident prior predictions are associated with stronger top-down
signalling, an assumption inspired by predictive processing interpretations of neural
oscillations, both generally (Arnal and Giraud, 2012; Bastos et al., 2012) and oscilla-
tions in the context of linguistic prediction specifically (Lewis and Bastiaansen, 2015;
Lewis, Wang, and Bastiaansen, 2015). While this reasoning is appealing, our initial
hypothesis rested on a rather strong parallel between ‘top-down’ in the cognitive
sense of having confident prior predictions, and ‘top-down’ in the functional and
anatomical sense of signalling from ‘higher‘ to ‘lower‘ areas. On reflection, this par-
allel – between the cognitive level and implementational level – may not always
hold. For instance, in our case, when prior confidence is high, there is lile uncer-
tainty about the identity of the incoming word, and only a small number of ‘hy-
potheses‘ (lexical candidates) are activated. It is not obvious that in such a case of
a ‘strong prior prediction’, top-down signalling is also necessarily the strongest. In-
deed, one can make the opposite argument: perhaps top-down signalling is stronger
when there are more potential lexical candidates, resulting in multiple, competing
top-down hypotheses. Following this argument, pre-stimulus beta would be higher
when there is more uncertainty – which is of course the paern that we found.

What this illustrates is that going from cognitive-level ‘prediction strength’ (here
operationalised via lexical entropy) to implementational-level top-down signalling
(here probed via the beta band amplitude) requires additional assumptions about the
processing architecture that do not follow from the predictive processing framework
itself. Future work could address this more rigorously by making these assumptions
explicit in a neural network model and performing simulations to motivate a specific,
quantitative relation between the metric of contextual constraint used (e.g. lexical
entropy) and the strength of top-down signalling, which can then be used to motivate
empirical predictions (or re-interpret existing findings).

Predictive processing theory aside, it is interesting to note that the increase of
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pre-stimulus beta by contextual uncertainty that we found, is in fact in line with
most neurolinguistic studies on the oscillatory correlates of contextual constraint in
language processing (Li et al., 2017; Piai, Roelofs, and Maris, 2014; Piai et al., 2015;
Rommers et al., 2017; Wang, Hagoort, and Jensen, 2018; see Prystauka and Lewis,
2019 for review). In these studies, just prior to the presentation of a critical word
or picture, alpha and beta band activity was increased when contextual constraint
was weaker (i.e. when lexical uncertainty was higher). Moreover, source reconstruc-
tions by Piai et al. (2015) localised this modulation of pre-stimulus beta to anterior
temporal sources that are quite similar to the spatial distribution we observe (Figure
5.5). In that study (see also Piai, Roelofs, and Maris, 2014) participants performed
a naming task, and reduction of pre-stimulus beta for highly constraining contexts
was interpreted as reflecting articulatory preparation. Other studies have similarly
interpreted pre-stimulus alpha/beta band modulations as aentional or task effects
(Rommers et al., 2017). Intriguingly, we observe a similar modulation of pre-stimulus
beta in participants not engaged in any task, simply listening to continuous speech.
is could imply that the beta modulation is not (just) related to task effects, but at
least in part to language processing itself. One interpretation is that, in weakly con-
straining contexts, more lexical candidates are activated and have to compete, which
may recruit more top-down signalling – perhaps to accomplish top-down ‘lexical se-
lection’, in the parlance of Marslen-Wilson (1987). e localisation of beta to anterior
temporal and inferior frontal areas (Figs 5.5,5.6) is in line with the modulation origi-
nating from higher-order areas in the language network, rather than fronto-parietal
areas in the aention network. Of course, we stress that this is a post-hoc interpre-
tation of our findings, and not a conclusion that can be said to be supported by the
results of this study.

Another surprising finding was that we did not find modulations by predictabil-
ity in the gamma band. We believe that this reflects a limitation of our non-invasive
data, rather than a property of the neural activity itself. Specifically, the (public) EEG
dataset we used was downsampled to 128 Hz, forcing us to focus on a subset of the
lowest gamma frequencies. In the MEG dataset, a stimulus-induced gamma response
was observed, but only in one of the three participants (Figure S5.5). is individual
variability and low SNR for MEG gamma is in line with studies employing simulta-
neous iEEG and MEG recordings, finding that while gamma was always present in
the invasive recordings, it was much weaker in the MEG signals, with considerable
variability between participants (Dalal et al., 2009).

A limitation of this study is that while the investigated datasets comprise a large
amount of samples per participant, the number of participants was relatively low.
While the 19 participants in the EEG dataset are enough for population inference,
it only allows for observing effects with a relatively high consistency across par-
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ticipants. An obvious and effective way to address this limitation is to extend the
analysis to a different dataset with more participants. Another option might be to
try to improve the analysis itself – in particular the time-resolved regression. e
model-fit on band limited amplitudes was lower than on the original signal (i.e. the
real component), marking a potential room for improvement. One way to improve
the fit is by changing the forward model – for instance using different basis functions
than the impulses employed here, which have many degrees of freedom. is may
result in effects that are more consistent, allowing more confident inferences across
the 19 participants.

Aside from improving the time-resolved regression, statistical inference provides
another avenue for improvement. In the MEG dataset, for simple univariate compar-
isons we a used multi-level non-parametric procedure (hierarchical bootstrapping)
to aggregate across the recordings of all MEG participants (Saravanan, Berman, and
Sober, 2020). We are unaware of a similar multi-level approach to the spatiotemporal
clustering statistics that we use on brain data. However, extending the method to
mass-univariate spatiotemporal clustering would be highly useful. is would not
allow for population-level inference from the 3 participants, but it would enable sta-
tistical inferences about the 3 individuals combined, by sharing statistical strength
across the 30 MEG recording sessions, while appropriately handling individual vs
within-subject variance. is would allow unified statistical inferences about the co-
efficients – and therefore the pre-stimulus beta modulation, see Figure 5.4 – across
the full MEG dataset.

A final point regards our focus on phonemes. By analysing processing on a
phoneme-by-phoneme basis we do not want to make any theoretical commitments
about the psychological reality or ontological status of phonemes as such. One could
imagine analysing different units that may be theoretically more satisfying or empiri-
cally providing a beer fit to the brain data. While this is an interesting question, it is
orthogonal to the purpose of this study. Here, analysing phonemes simply provided
a convenient and powerful operationalisation of incremental, predictive processing
of speech at the sub-lexical level.

In conclusion, we have investigated oscillatory signatures of predictive process-
ing during naturalistic speech perception. Results revealed that phoneme surprise
modulated the amplitude of the theta and delta band, while prior uncertainty in the
prediction about the incoming word modulated beta band in frontotemporal areas.
Preliminary investigations of the coefficients suggest that prior uncertainty may en-
hance pre-stimulus beta. Together, the study demonstrates the feasibility of study-
ing the oscillatory correlates of linguistic prediction in natural conditions. However,
it also highlights how deriving testable hypotheses about the relation between pre-
diction and specific frequency bands is less straightforward than it may seem, and
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requires assumptions that do not follow from predictive processing itself. Future
work could address this by making these assumptions explicit in computational sim-
ulations.

Methods

We analysed EEG and source localised MEG data from two experiments. e EEG
data is part of a public dataset that has been published about before (Broderick et al.,
2018). e MEG dataset is part of a resource described in detail in Armeni (2021). We
have previously analysed prediction signatures in the evoked responses (Heilbron et
al., 2021a).

Participants

All participants were native English speakers. In the EEG experiment, 19 subjects (13
male) between 19 and 38 years old participated; in the MEG experiment, 3 subjects
participated (2 male) aged 35, 30, and 28. Both experiments were approved by local
ethics commiees (EEG: ethics commiee of the School of Psychology at Trinity
College Dublin; MEG: CMO region Arnhem-Nijmegen).

Stimuli and procedure

In both experiments, participants were presented long segments of narrative speech
extracted from audiobooks. e EEG experiment used the first chapters of Heming-
way’s e Old Man and the Sea. e MEG experiment used 10 stories from Doyle’s
eAdventures of Sherlock Holmes. In total, EEG subjects listened to 1 hour of speech
(containing 11,000 words and 35,000 phonemes); MEG subjects listened to 9 hours
of speech (containing 85,000 words and 290,000 phonemes).

In the EEG experiment, each participants performed only a single session, which
consisted of 20 runs of about 180s long, amounting to the first hour of the book.
Participants were instructed to maintain fixation and minimise movements but were
otherwise not engaged in any task. In the MEG experiment, each participant per-
formed a total of 10 sessions, each 1 hour long. Each session was subdivided in 6-7
runs of about ten minutes long (runs were subdivided such that prominent narrative
events were not split across runs). Unlike in the EEG experiment, participants in
the MEG dataset participants were answer questions in between runs: one multiple
choice comprehension question, a question about story appreciation (scale 1-7) and
a question about informativeness.
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Stimulus annotation

For both datasets, auditory stimuli were analysed using a forced alignment procedure
to derive onset and offset times for each word and phoneme. For the EEG dataset,
this was performed using the Prosodylab forced aligner; for the MEG dataset, the
Penn Forced Aligner Toolkit was used. More details on the procedures is found in
original publications, see (Armeni, 2021; Di Liberto, O’Sullivan, and Lalor, 2015).

Data acquisition and pre-processing

e EEG data were acquired using a 128-channel (plus two mastoid channels) us-
ing an ActiveTwo system (BioSemi) at a rate of 512 Hz, and downsampled to 128
Hz before being distributed as a public dataset. We visually inspected the raw data
to identify bad channels, and performed independent component analysis (ICA) to
identify and remove blinks; rejected channels were linearly interpolated with nearest-
neighbour approach using MNE-python (Gramfort et al., 2014)

e MEG data were acquired using a 275 axial gradiometer system at 1200 Hz.
To minimise head motion, individualised 3D printed headcasts were created for each
participant, which enabled average displacement of less than 0.5 mm across the 10
sessions of recordings (see Armeni, 2021, Chapter 3 for details). For the MEG data,
preprocessing and source modelling was performed in MATLAB 2018b using field-
trip (Oostenveld et al., 2011). We applied notch filtering (Buerworh IIR ) at the
bandwidth of 49–51, 99–101, and 149–151 Hz to remove line noise. To identify and
remove eye blink artifacts, independent component decomposition was performed
using the FastICA algorithm.

Frequency decomposition

Recordings were decomposed into different frequency bands using the Hilbert trans-
form. is involves performing a band-pass filter (parameters of which detailed be-
low) to preserve the activity in a certain frequency range (e.g. alpha), performing a
Hilbert transform on the band-limited signal, and taking the absolute value of the an-
alytic signal to compute the instantaneous amplitude (square root of power) at each
point in time.

We folllowed (Jensen, Spaak, and Zumer, 2014) for the definition of the delta (0.5-
4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (12-22 Hz) bands. For gamma, we used
different definitions for EEG and MEG. Because the EEG dataset was downsampled,
we only considered low gamma, defined as 30-45 Hz (upper limit here defined by
the line noise). For MEG, we employed a data-driven approach, exploring 4 ‘bins’ of
the gamma range: 55-75, 75-95, 105-125, 125-145 Hz. For each band we then fied
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an onset-only model, to identify in which band we could best identify a stimulus-
induced response. As can be seen in Fig. S S5.5, this revealed that the stimulus in-
duced response was the most pronounced in the 75-95 Hz range, which then became
our definition for the gamma band.

For the filters in the filter-hilbert procedure, we used non-causal, one-pass zero-
phase FIR filters, implemented using the time-domain windowed (firwin) method.
We used the following filter transition bandwidths. For delta (0.5-4 Hz), we used a
lower transition bandwidth of 0.5 Hz (-6 dB cutoff frequency 0.25 Hz) and an upper
bandwidth of 2 Hz (cutoff frequency 5 Hz). For theta (4-8 Hz) we used a 2 Hz tran-
sition bandwidth. For alpha (8-12 Hz) we used transition bandwidths of 2 and 3 Hz.
For beta (12-22 Hz) we used transition bandwidths of 3 and 5.5 Hz. For low-gamma
(EEG; 30-45 Hz) we used transition bandwidths of 7.5 and 11 Hz. For high-gamma
(MEG; 75-95 Hz) we used transition bandwidths of 18.75 and 23.75 Hz.

Importantly, for the MEG data the frequency decomposition was performed as a
part of the source-localization, using a hilbert-beamformer procedure (Westner and
Dalal, 2019); see below for details.

Anatomical MRI acquisition and headcast

Headcasts of the MEG participants were based on MRI scans with a 3T MAGNETOM
Skyra MR scanner (Siemens AG). For this, a fast low angle shot (FAST) sequence
was used with the following image acquisition parameters: slice thickness of 1 mm;
field-of-view of 256 × 256 × 208 mm along the phase, read, and partition directions
respectively; TE/TR = 1.59/4.5 ms.

Head and source models

As part of the MEG dataset, head models and source models are provided. For these
models, MEG sensors were co-registered to the subjects’ anatomical MRIs using po-
sition information of three localization coils aached to the headcasts. To create
source models, FSL’s Brain Extraction Tool was used to strip non-brain tissue (Smith
et al., 2004). Subject-specific cortical surfaces were reconstructed using Freesurfer
(Dale, Fischl, and Sereno, 1999), and post-processing (downsampling and surface-
based alignment) of the reconstructed cortical surfaces was performed using the
Connectome Workbench command-line tools (v 1.1.1). is resulted in cortically-
constrained source models with 7,842 source locations per hemisphere. e lead-
fields were provided with the MEG dataset are computed based on a single-shell
volume conduction models based on the inner surface of the skull.
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Beamformer and parcellation

To estimate the source time series from the MEG data, we used linearly constrained
minimum variance (LCMV) beamforming, using Fieldtrip (Oostenveld et al., 2011).
Beamforming was performed separately for each session, using a unit-noise-gain
weight normalisation, assuming a fixed orientation, and applying a lambda regu-
larisation parameter of 100%. e beamforming procedure was combined with the
Hilbert frequency decomposition, into a unified Hilbert-beamformer procedure de-
scribed earlier by Westner and Dalal (2019)). Specifically, this entails estimating the
covariance matrix for each frequency band separately, resulting in different spatial
filters for each frequency band. e procedure was performed for each session inde-
pendently, spatial filters were then averaged across sessions to create one spatial fil-
ter per frequency band. To obtain source localised estimates of instantaneous power
or amplitude, the Hilbert transform was then performed at the the sensor-level, pro-
jecting the analytic signal to source space, and taking the absolute at the source level
to obtain instantaneous amplitude at each source.

To perform regression, source amplitude could be derived in two ways. Either
beamforming is performed first and regression then performed at the source level
directly, or regression can be performed on the sensor-level amplitudes and then
evaluated on the source level (see below for details on model estimation). To be able
to perform regression at the source level directly, we had to reduce the dimensionality
of the source space. For this we used the same parcellation procedure described
in Armeni (2021) and Heilbron et al. (2021a), which uses a refined version of the
Conte69 atlas, which is based on Brodmann’s areas. To this end, we computed, for
each session, parcel-based time series by taking the first principal component of the
aggregated time series of the dipoles belonging to the same cortical parcel. is
resulted in band-limited amplitudes at 370 parcels.

Neural language model: GPT-2

Estimates of contextual predictions were computed using a language model – a model
computing the probability of each word given the preceding words. Here, we used
GPT-2 (XL) – currently among the best publicly released English language models.
GPT-2 is a transformer-based model, that in a single pass turns a sequence of tokens
(representing either whole words or word-parts) U = (u1, . . . ,uk) into a sequence
of conditional probabilities, (p(u1),p(u2 |u1), . . . ,p(uk | u1, ...,uk−1)).

Roughly, this happens in three steps: first, an embedding step encodes the se-
quence of symbolic tokens as a sequence of vectors, which can be seen as the first
hidden state ho . en, a stack of n transformer blocks each apply a series of opera-
tions resulting in a new set of hidden states hl , for each block l . ese blocks consist
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of a multi-headed self aention layer, a feedforward layer and normalisation step
(see Liu et al., 2018; Radford et al., 2019; Vaswani et al., 2017 for details). Finally, a
(log-)somax layer is applied to compute (log-)probabilities over target tokens.

In other words, the model can be summarised as:

h0 = UWe +Wp (5.1)
hl = transformer_block (hl−1)∀i ∈ [1,n] (5.2)

P(u) = softmax
(
hnW

T
e

)
, (5.3)

where We is the token embedding and Wp is the position embedding. In total,
GPT-2 (XL) containsn = 48 blocks, with 12 heads each; a dimensionality ofd = 1600

and a context window of k = 1024, yielding a total 1.5 × 109 parameters. Note that
k refers to the number of Byte-Pair Encoded tokens. A token can be either a word or
(for less frequent words) a word-part, or punctuation. For words spanning multiple
tokens, we computed the word probability as the joint probability of the constituent
tokens. We used the PyTorch implementation of GPT-2 provided by HuggingFace’s
Transformers package (Wolf et al., 2020).

Phoneme-by-phoneme linguistic predictions

We used the word-by-word contextual predictions derived from GPT-2 to calibrate
phoneme-level predictions about the incoming word. is was done using the same
modelling scheme developed and evaluated in Heilbron et al. (2021a). is scheme in
turn was is inspired by and is an extension of the approach described by Gwilliams
et al. (2018) (see also Einger, Linzen, and Marantz, 2014), to compute phoneme-by-
phoneme statistics in a non-contextual fashion; i.e. without taking the long term
context (here, estimated using GPT-2) into account. In brief, the method involves
selecting, for each phoneme coming in, the the ’cohort’ of words consistent with the
phonemes presented so far. For the first word, this cohort is simply equivalent to
the full set of words (i.e. the distribution over the entire vocabulary). To incorporate
long-term context, each word is assigned a prior probability in that specific discursive
context, which we derive from the contextual word probability estimated by GPT-2.
is results in a probability distribution, expressing the probability of each word w

in the cohort C , over which the Shannon entropy is computed:

−
∑
w∈C

P(w | C) log P(w | C). (5.4)

is quantity, lexical entropy, is then used to express the prior uncertainty about
the incoming word.
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To quantify unexpectedness, phoneme surprisal was computed. To this end, we
compute the probability that that a given phoneme at time ϕ t is of a specific identity
(A), given the prior phonemes within a word:

P(ϕ t = A | ϕ1:t−1) =
P(Cϕ t=A)

P(Cϕ1:t−1)
. (5.5)

Here, P(Cϕ t=A) denotes the cumulative probability of all words in the remaining
cohort of candidate words if the next phoneme were A, and P(Cϕ(1:t−1)) denotes
the cumulative probability of all words in the prior cohort. To efficiently compute
Equations (5.4) and (5.5) for every phoneme, we constructed a statistical phonetic
dictionary as a digital pronunciation tree using the vocabulary from the CMU dic-
tionary and the lexical statistiscs from SUBTLEX (Brysbaert and New, 2009; Weide,
1998). Missing words or alternative pronunciations that occurred in the audiobooks
but not in the in the CMU pronunciation dictionary, were manually added to the
pronunciation tree.

Using the contextual probabilities inside the phoneme model means a new pro-
nunciation tree model has to be constructed for each word in the text. To simplify
this process, we used the procedure from Heilbron et al. (2021a), which involves only
using the ‘nucleus‘ of the top k predicted words with a cumulative probability of 0.9,
and truncated the (less reliable) tail of the distribution. Further, we simply assumed
that the rest of the tail was ‘flat’ and had a uniform probability. We can think of the
probabilities in the flat tail as having a (laplacian) ‘pseudocount’ of 1. If we express
the prior probabilities in the nucleus as implied ‘pseudofrequencies’, the cumulative
implied nucleus frequency is complementary to the tail length, which is simply the
difference between the vocabulary and nucleus size (V −k). is means that for word
i in the text, we can express the nucleus as implied frequencies as:

freqsψ = Ptr (w
(i) |context) V − k

1 −∑k
j=1 P(w

(i)
j |context)

, (5.6)

where Ptr (w(i) |context) is the trunctated lexical prediction, and P(w
(i)
j |context)

is the predicted probability that word i in the text is word j in the sorted vocabulary.
Note that using this flat tail not only simplifies the computation, but also deals with
the fact that the vocabulary of GPT-2 is smaller than that of the pronunciation model.
As such, using the flat tail means we can still use the full vocabulary (e.g. to capture
phonotactic regularities), while using 90% of the contextual probability density from
GPT-2.
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Time resolved regression

To quantify the time-resolved modulations of the band-limited amplitude by incom-
ing stimuli, we used a time-resolved regression technique. Simply put, this involves
using impulse regressors for both constants and covariates defined at phoneme on-
sets, and then temporally expanding the design matrix such that each predictor col-
umnC becomes a series of columns over a range of temporal lagsC tmax

tmin
= (Ctmin , ...,Ctmax ).

For each predictor one thus estimates a series of weights β tmax
tmin

(Fig. 5.2) which can
be understood as the modulation function describing how a given regressor modu-
lates the continuous amplitude response over time. Because we use impulses as a ba-
sis function, the procedure mathematically equivalent to FIR deconvolution method
in FMRI or rERP (or impulse TRF modelling) in EEG analysis (Goue, Nielsen, and
Hansen, 2000; Lalor et al., 2006; Smith and Kutas, 2015).

Here, we use a temporal lags between -0.55 and 1.4 seconds. All data and regres-
sors were standardised and coefficients were estimated with ℓ2-norm regularised
(Ridge) regression, using the scikit learn sparse matrix implementation (Pedregosa
et al., 2011). Regularisaion parameters were set based on leave-one-run-out R2 com-
parison.

For regression estimation, different procedures were followed to estimate the
coefficients and to evaluate the model predictive performance. Specifically, for es-
timation of the coefficients regression was performed at the source level directly.
is has the distinct advantage that since the regression is done on (always positive)
source-level amplitudes, the sign of the regression coefficient can be interpreted as
an increase or decrease in amplitude. However, this requires reducing the dimension-
ality, so for this we used the parcellated source space (307 parcels). For evaluation,
we fit the regression on the sensor-level amplitudes (on the training data)

Model comparison

In both datasets, model comparison was based on comparing cross-validated cor-
relation coefficients. Cross-validation was performed in a leave-one-run-out cross-
validation scheme, amounting to 19-fold cross-validation in the EEG data and be-
tween 63 and 65-fold cross-validation for the MEG data (in some subjects, some runs
were discarded due to technical problems).

ROI definition

To reduce the dimensionality of the coefficient analysis we used an ROI approach,
testing, in each subject, only the EEG channels our sources that that had the strongest
signal, in terms of its sensitivity to the stimulus material. Because responses in dif-
ferent bands and subjects can have different topographies, the ROIs were defined
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functionally, selecting for each band the 10% of the channels or sources that were
most sensitive to the stimulus, in terms of variance explained by the baseline model
(capturing purely the low-level stimulus features).

Regression models

We considered two models. First, a baseline model which functioned as a non-predictive
processing baseline. To capture the fluctuation in the envelope (which is the over-
whelming driver of neural responses to speech acoustics) we computed acoustic en-
ergy (quantified as envelope variance) of every phoneme. is captures the fact that
some speech sounds are louder than others (e.g. strong vowels or stressed syllables).
To capture significant linguistic events, we included the onset of every phoneme
and every word and sentence boundary. e predictive processing model included
these same baseline regressors, plus the lexical entropy and phonemic surprisal. All
covariates were defined and included for every phoneme.

Statistical comparison

All statistical tests were two-tailed and used an alpha of 0.05. For all simple univari-
ate tests performed to compare model-performance within and between subjects, we
used a bootstrap t-test, a robust non-parametric hypothesis test. is involves esti-
mating the observed t-statistic in the data, and comparing this to a null distribution
by resampling the same data with zero mean. e p-value is then simply the pro-
portion of samples from the null-distribution that resulted in a t-statistic at least as
extreme as the observed t-statistic. For the MEG data, we performed the same pro-
cedure, but using a multi-level hierarchical bootstrapping procedure, as described in
(Saravanan, Berman, and Sober, 2020).

To perform statistics on the coefficients (Figures 5.3,5.4), we performed tempo-
ral cluster permutation tests as implemented in MNE (Gramfort et al., 2014; 10,000
permutations per test). In the MEG, multiple comparison correction for comparison
of explained variance across cortical areas was done using reshold Free Cluster
Enhancement (TFCE; Smith and Nichols, 2009). Mass-univariate tests were based on
one-sample t-tests plus the ’hat’ variance adjustment method with σ = 10−3 (Ridg-
way et al., 2012).
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Supplementary information

Figure S5.1. All coefficients for phoneme surprise. Same as in Figure 5.3 but for each
individual MEG participant. Shaded bars indicate bootstrapped standard error across sessions.

Figure S5.2. All coefficients for prior uncertainty (lexical entropy). Same as in Figure
5.4 but for each individual MEG participant. Shaded bars indicate bootstrapped standard error
across sessions.
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Figure S5.3. Feature importance for all bands and evoked response in participant 1.
Feature importance of surprise, uncertainty and stimulus onset in all bands in participant 1. In
all plots, colour indicates amount of additional variance explained (i.e. variance not explained
by any other regressor or shared by multiple regressors). Opacity indicates FWE-corrected
statistical significance. Note that p < 0.05 is equivalent to — log 10(p) > 1.3.
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Figure S5.4. Feature importance for all bands and evoked response in participant
2. Unique beta band variance explained by phoneme surprisal, lexical entropy, phoneme on-
set across cortical sources in each MEG participant. In all plots, colour indicates amount of
additional variance explained (i.e. variance not explained by any other regressor or shared
by multiple regressors). Opacity indicates FWE-corrected statistical significance. Note that
p < 0.05 is equivalent to — log 10(p) > 1.3.
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Figure S5.5. Gamma response coefficients in all bands and participants. A) t-scores
of phoneme-induced gamma response across all 30 sessions (collapsing across participants).
is result clearly shows the response is centered between 75-95 Hz (and hence is more than
a broadband expression of the evoked response). B) Phoneme induced response (and modu-
lation by phoneme surprisal, red) in the 75-95 Hz in all 3 participants. e black lines (which
capture the average response) show that the stimulus induced response is only reliably ob-
served in participant 3.
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Chapter 6

Prediction and preview strongly affect reading
times but not skipping during natural reading

Abstract

In a typical text, readers look much longer at some words than at others and fix-
ate some words multiple times, while skipping others altogether. Historically, re-
searchers explained this variation via low-level visual or oculomotor factors, but
today it is primarily explained via cognitive factors, such as how well words can be
predicted from context or discerned from parafoveal preview. While the existence of
these effects has been well established in experiments, the relative importance of pre-
diction, preview and low-level factors for eye movement variation in natural reading
is unclear. Here, we address this question in three large datasets (n=104, 1.5 million
words), using a deep neural network and Bayesian ideal observer to model linguis-
tic prediction and parafoveal preview from moment to moment in natural reading.
Strikingly, neither prediction nor preview was important for explaining word skip-
ping – the vast majority of skipping was explained by a simple oculomotor model.
For reading times, by contrast, we found clear but independent contributions of both
prediction and preview, and effect sizes matching those from controlled experiments.
Together, these results challenge dominant models of eye movements in reading by
showing that linguistic prediction and parafoveal preview are not important deter-
minants of word skipping.

is chapter is based on:
Heilbron M., van Haren, J. Hagoort P., de Lange F.P. 2021. Prediction and preview strongly
affect reading times but not skipping during natural reading. bioRxiv.
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Introduction

When reading a text, readers move their eyes across the page to bring new informa-
tion to the centre of the visual field, where perceptual sensitivity is highest. While it
may subjectively feel as if the eyes smoothly slide along the text, they in fact traverse
the words with rapid jerky movements called saccades, followed by brief stationary
periods called fixations. Across a text, saccades and fixations are highly variable and
seemingly erratic: Some fixations last less than 100 ms, others more than 400; and
while some words are fixated multiple times, many other words are skipped alto-
gether (Dearborn, 1906; Rayner and Pollatsek, 1987). What explains this striking
variation?

Historically, researchers have pointed to low-level non-linguistic factors like word
length, oculomotor noise, or the relative position where the eyes happen to land
(Bouma and Voogd, 1974; Buswell, 1920; Dearborn, 1906; O’Regan, 1980). Such expla-
nations were motivated by the idea that oculomotor control was largely autonomous.
In this view, readers can adjust saccade lengths and fixation durations to global char-
acteristics like text difficulty or reading strategy, but not to subtle word-by-word dif-
ferences in language processing (Bouma and Voogd, 1974; Buswell, 1920; Dearborn,
1906; Morton, 1964).

As reading was studied in more detail, however, it became clear that the link
between eye movements and cognition was more direct. For instance, it was found
that fixation durations were shorter for words with higher frequency (Inhoff, 1984;
Rayner, 1977). Eye movements were even shown to depend on how well a word’s
identity could be inferred before fixation. Specifically, researchers found that words
are read faster and skipped more oen if they are predictable from linguistic con-
text (Balota, Pollatsek, and Rayner, 1985; Ehrlich and Rayner, 1981) or if they are
identifiable from a parafoveal preview (McConkie and Rayner, 1975; Rayner, 1975;
Schoer, Angele, and Rayner, 2012). ese demonstrations of a direct link between
eye movements and language processing overturned the autonomous view, replac-
ing it by cognitive accounts describing eye movements during reading as largely, if
not entirely, controlled by linguistic processing (Clion et al., 2016; Reichle, Rayner,
and Pollatsek, 2003). Today, many studies still build on classic techniques like gaze-
contingent displays, but now to ask much more detailed questions, like whether word
identification is a distributed or sequential process (Kliegl, Nuthmann, and Engbert,
2006; Kliegl, Risse, and Laubrock, 2007); how many words can be processed in the
parafovea (Rayner, Juhasz, and Brown, 2007), at which level they are analysed (Ho-
henstein and Kliegl, 2014), and how this might differ between writing systems or
orthographies (Tiffin-Richards and Schroeder, 2015; Yan et al., 2010).

Here, we ask a different, perhaps more elemental question: how much of the vari-
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ation in eye movements do linguistic prediction, parafoveal preview preview, and
non-linguistic factors each explain? at is, how important are these factors for de-
termining how the eyes move during reading? Dominant, cognitive models explain
eye movement variation primarily as a function of ongoing processing. Skipping,
for instance, is modelled as the probability that a word is identified before fixation
(Engbert and Kliegl, 2003; Engbert et al., 2005; Reichle, Rayner, and Pollatsek, 2003).
Some, however, have questioned this purely cognitive view, suggesting that low-
level features like word length might be more important (Drieghe et al., 2004; Reilly
and O’Regan, 1998; Vitu et al., 1995). Similarly, one may ask what drives next-word
identification: is identifying the next word mostly driven by linguistic predictions
or by parafoveal perception? Remarkably, while it is well-established that both lin-
guistic and oculomotor, and both predictive and parafoveal processing, all affect eye-
movements (Drieghe et al., 2004; Kliegl et al., 2004; Schoer, Angele, and Rayner,
2012; Staub, 2015), a comprehensive picture of the their relative explanatory power
is currently missing, perhaps because they are seldom studied all at the same time.

To arrive at such a comprehensive picture we focus on natural reading, analysing
three large datasets of participants reading passages, long articles, and even an entire
novel – together encompassing 1.5 million (un)fixated words, across 108 individuals
(Cop et al., 2017; Kennedy, 2003; Luke and Christianson, 2018). Instead of manipu-
lating word predictability or perturbing parafoveal perceptibility, we combine deep
neural language modelling (Radford et al., 2019) and Bayesian ideal observer analy-
sis (Duan and Bicknell, 2020) to quantify how much information is conveyed by both
factors, on moment-by-moment basis. is way, we can probe the effect of both pre-
diction and preview on each word during natural reading. Such a broad-coverage
approach has been applied to the effects of predictability on reading before (Frank
et al., 2013; Goodkind and Bicknell, 2018; Kliegl et al., 2004; Luke and Christianson,
2016; Smith and Levy, 2013), but either without considering preview or only through
coarse heuristics such as using frequency as a proxy for parafoveal identifiability
(Kennedy et al., 2013; Kliegl, Nuthmann, and Engbert, 2006; Pynte and Kennedy,
2006) (cf. Duan and Bicknell, 2020). By contrast, here we explicitly model both, in
addition to low-level explanations like autonomous oculomotor control. To assess
explanatory power, we use set theory to derive the unique and shared variation in
eye movements explained by each model.

To preview the results, this revealed a striking dissociation between skipping
and reading times. For word skipping, the overwhelming majority of variation could
be explained – mostly uniquely explained – by a non-linguistic oculomotor model.
For reading times, by contrast, we found strong effects of both prediction and pre-
view, tightly matching effect sizes from controlled designs. Interestingly, linguistic
prediction and parafoveal preview seem to operate independently: we found strong
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evidence against Bayes-optimal integration of the two. Together, these results chal-
lenge dominant cognitive models of reading, and show that skipping (or the decision
ofwhere to fixate) and reading times (i.e. how long to fixate) are governed by different
principles.

Results

We analysed eye movements from three large datasets of participants reading texts
ranging from isolated paragraphs to an entire novel. Specifically, we considered three
datasets: Dundee Kennedy, 2003 (N=10, 51.502 words per participant), Geco Cop et
al., 2017 (N=14, 54.364 words per participant) and Provo Luke and Christianson, 2018
(N=84, 2.689 words per participant). In each corpus, we analysed both skipping and
reading times (indexed by gaze duration), as they are thought to reflect separate
processes: the decision of where vs how long to fixate, respectively (Drieghe et al.,
2004; Reichle, Rayner, and Pollatsek, 2003).

To estimate the effect of linguistic prediction and parafoveal preview, we quanti-
fied the amount of information conveyed by both factors for each word in the corpus
(for preview, this was tailored to each individual participant, since each word was
previewed at a different eccentricity by each participant). To this end, we formalised
both processes as a probabilistic belief about the identity of the next word, given
either the preceding words (prediction) or a noisy parafoveal percept (preview; see
Figure 6.1a). As such, we could describe these disparate cognitive processes using a
common information-theoretic currency. To compute the probability distributions,
we used GPT-2 for prediction (Radford et al., 2019) and a Bayesian ideal observer for
preview (Duan and Bicknell, 2020) (see Figure 6.1b and Methods).

Prediction and preview increase skipping rates and reduce reading times

We first asked whether our formalisations allowed us to observe the expected effects
of prediction and preview, while statistically controlling for oculomotor and lexical
variables in a multiple regression model. Because the decisions of whether to skip
and how long to fixate a word are made at different moments, we modeled each
separately with a different set of explanatory variables; but for both, we considered
the full model (detailed below).

As expected, we found in all datasets that words were more likely to be skipped
if there was more information available from the linguistic prediction (Bootstrap:
Dundee, p = 0.023; GECO, p = 0.034; Provo p < 10−5) and/or the parafoveal
preview (Bootstrap: Dundee, p = 4 × 10−5; GECO, p < 10−5; Provo p < 10−5).
Similarly, reading times were reduced for words that were more predictable (allp ′s <
3.2 × 10−4) or more identifiable from the parafovea (all p ′s < 4 × 10−5).
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Figure 6.1. antifying two types of context during natural reading. a) Readers can
infer the identity of the next word before fixation either by predicting it from context or by
discerning it from the parafovea. Both can be cast as a probabilistic inference about the next
word, either given the preceding words (prediction, blue) or given a parafoveal percept (pre-
view, orange). b) To model prediction, we use GPT-2, one of the most powerful publicly avail-
able language models (Radford et al., 2019). For preview, we use an ideal observer (Duan and
Bicknell, 2020) based on well-established ‘Bayesian Reader‘ models (Bicknell and Levy, 2010;
Norris, 2006, 2009). Importantly, we do not use either model as a cognitive model per se, but
rather as a tool to quantify how much information is in principle available from prediction or
preview on a moment-by-moment basis.

Together this confirms that our model-based approach can capture the expected
effects of both prediction (Clion et al., 2016) and preview (Schoer, Angele, and
Rayner, 2012) in natural reading, while statistically controlling for other variables.

Skipping can be largely explained by non-linguistic oculomotor factors

Aer confirming that prediction and preview had a statistically significant influence
on word skipping and reading times, we went on to assess their relative explanatory
power. Aer confirming the effects of prediction and preview, we then further exam-
ined their relative explanatory power. at is, we asked the question how important
these factors were, by examining how much variance was explained by each. To this
end, we grouped the variables from the full regression model into different types of
explanations, and assessed how well each type accounted for the data.

For skipping, we considered three explanations. First, a word might be skipped
purely because it could be predicted from context – i.e. purely as a function of
the amount of information conveyed by the prediction. Secondly, a word might be
skipped because its identity could be gleaned from a parafoveal preview – that is,
purely as a function of the informativeness of the preview. Finally, a word might be
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Figure 6.2. Variation in skipping explained by predictive, parafoveal and au-
tonomous oculomotor processing. a) Proportions of cross-validated variation explained
by prediction (blue), preview (orange) oculomotor baseline (grey) and their overlap; aver-
aged across datasets (each dataset weighted equally). b) Variation partitions for each indi-
vidual dataset, including statistical significance of variation uniquely explained by predictive,
parafoveal or oculomotor processing. Stars indicate significance-levels of the cross-validated
unique variation explained (bootstrap t-test against zero): p < 0.05 (*),p < 0.05 (**),p < 0.001
(***) For results of individual participants, and their consistency, see Figure S6.5.

skipped simply because it is so short or so close to the prior fixation location that
a saccade of average length will overshoot it, irrespective of its linguistic properties
– in other words, purely as a function of length and eccentricity. Note that we did
not include oen used lexical aributes like frequency to predict skipping, because
to the extent that these affect identifiability, this is already captured by parafoveal
entropy (see Fig S2; see Methods for more details on the variables used).

For each word, we thus modelled the probability of skipping either as a func-
tion of prediction, preview, or oculomotor information, or by any combination of
the three. en we partitioned the unique and shared cross-validated variation ex-
plained by each account. As can be seen in Figure 6.2, the overwhelming majority
of explained variation (94 %) could be accounted for by the non-linguistic baseline.
Moreover, the majority of the variation was only explained by the baseline, which ex-
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plained 10 times more unique variation than prediction and preview combined. ere
was a large degree of overlap between preview and the oculomotor baseline, which
is unsurprising since a word’s identifiability decreases as a function of its eccentric-
ity and length. Interestingly, there was even more overlap between the prediction
and baseline model: almost all of the effect of contextual constraint could be equally
well explained by the oculomotor baseline factors. Importantly, while the contri-
bution of prediction and preview was small, it was significant both for prediction
(bootstrap: Dundee, p = 0.015; Geco, p = 0.0001; Provo, p < 10−5) and preview (all
p ′s < 5 × 10−5), confirming that both factors do affect skipping. Crucially however,
the vast majority of skipping that could be explained by either prediction or preview
was equally well explained by the more parsimonious oculomotor model – which
also explained much more data overall.

Reading times are strongly modulated by prediction and preview

For reading times (operationalised through gaze durations, so considering foveal
‘reading’ only), we also considered three explanatory factors. First, a word might
be read faster because it was predictable from the preceding context, which we for-
malised via linguistic surprise. Second, a word might be read faster if it could already
be partly identified from the parafoveal preview (before fixation). is informative-
ness of the preview was again formalised via the parafoveal preview entropy. Finally,
a word might be read faster due to aributes of the word itself, such as lexical fre-
quency. is last explanatory factor functioned as an aggregate baseline model that
captured key non-contextual word aributes, both linguistic and non-linguistic (see
Methods).

In all datasets, prediction (allp ′s < 7.7×10−3), preview (allp ′s < 1.2×10−4) and
non-contextual woord aributes (all p ′s < 1.8× 10−4) again all explained significant
unique variation. e non-contextual baseline explained the most variance, which
shows – perhaps unsurprisingly – that properties of the word itself are more impor-
tant than contextual factors in determining how long a word is fixated. Critically
however, compared to skipping the unique contribution of prediction and preview
was more than three times higher (see Fig 6.3). Specifically, while prediction and
preview could only uniquely account for 6% of explained word skipping variation,
they uniquely accounted for more than 18 % of explained variation in reading times.
Importantly, the non-contextual baseline used to predict reading times included both
linguistic (e.g. lexical frequency) and non-linguistic information (viewing position)
of the current word. When we analysed these separately, we found that the unique
contribution of non-linguistic factors was small (see S6.7). is shows that contrary
to skipping, variation in reading time is heavily influenced by online linguistic pro-
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Figure 6.3. Variation in reading times explained by predictive, parafoveal and non-
contextual information. a) Grand average of partitions of cross-validated variance in
reading times (indexed by gaze durations) across datasets (each dataset weighted equally)
explained by non-contextual factors (grey), parafoveal preview (orange), and linguistic pre-
diction (blue). b) Variance partitions for each individual dataset, including statistical sig-
nificance of the cross-validated variance explained uniquely by the predictive, parafoveal or
non-contextual explanatory variables. Stars indicate significance-levels of the cross-validated
unique variance explained (bootstrap t-test against zero): p < 0.05 (**), p < 0.001 (***). Note
that the non-contextual model here included both lexical aributes (e.g. frequency) and ocu-
lomotor factors (relative viewing or landing position); assessing these separately reveals that
reading time variation uniquely explained by oculomotor factors was small (see Fig S6.7). For
results of individual participants, see Figure S6.6.

cessing.

Naturalistic prediction and preview benefit effectmatch experimental effect
sizes

e previous result confirms that reading times (indexed via gaze durations) are
highly sensitive to linguistic and parafoveal context, in line with decades of research
on eye movements in reading (Rayner, 2009). But how well do our results compare
exactly to established findings from the experimental literature?

To directly address this question, we simulated, for each participant the effect size
of two well-established effects that would be expected to be obtained if we would
conduct a well-controlled factorial experiment. Specifically, because we estimated
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Figure 6.4. Simulated preview and predictability benefits match those reported in
experimental literature. Preview (le) and predictability benefits (right) inferred from our
analysis of each dataset, and observed in a sample of studies (see Table S6.1). In this analysis,
preview benefit was simulated as the expected difference in gaze duration aer a preview of
average informativeness versus aer no preview at all. Predictability benefit was defined as
the difference in gaze duration for high versus low probability words; ‘high’ and ‘low’ were
defined by subdividing the cloze probabilities from provo into equal thirds of ‘low’, ‘medium’
and ‘high’ probability (see Methods). In each plot, small dots with dark edges represent either
individual subjects within one dataset or individual studies in the sample of the literature;
larger dots with error bars represent the mean effect across individuals or studies, plus the
bootstrapped 99% confidence interval.

how much additional information from either prediction or preview (in bits) reduced
reading times (in milliseconds) we could predict reading times for words that are
expected vs unexpected (predictability benefit (Rayner and Well, 1996; Staub, 2015))
or have valid vs invalid preview (i.e. preview benefit (Schoer, Angele, and Rayner,
2012)).

e simulated effects tightly corresponded to those from experimental studies
(see Fig 6.4). is shows that our analysis does not strongly underfit or otherwise
underestimate the effect of either prediction or preview. Moreover, it shows that the
effect sizes, which are well-established in controlled designs, generalise to natural
reading. is is especially interesting for the preview benefit, because it implies that
this effect can be largely explained through parafoveal lexical identification, rather
than visual preprocessing or interference effects (see Discussion).

No integration of prediction and preview

So far, we have treated prediction and preview as being independent. However, it
might be that these processes, while using different information, are integrated –
such that a word is parafoveally more identifiable when it is also more predictable
in context. Bayesian probability theory proposes an elegant and mathematically op-
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Figure 6.5. Evidence against bayesian integration of linguistic prediction and
parafoveal preview. Cross-validated prediction performance of the full reading times (top)
and skipping (boom) model (including all variables), equipped with parafoveal preview infor-
mation either from the contextual observer or from the non-contextual observer. Dots with
connecting lines indicate participants; stars indicate significance: p < 0.001 (***).

timal way to integrate these sources of information: the prediction of the next word
could be incorporated as a prior in perceptual inference. Such a contextual prior fits
into hierarchical Bayesian models of vision (Lee and Mumford, 2003), and has been
observed in speech perception, where a contextual prior guides the recognition of
words from a partial sequence of phonemes (Heilbron et al., 2021a). Does such a
prior also guide word recognition in reading, based on a partial parafoveal percept?

To test this, we recomputed the parafoveal identifiability of each word for each
participant, but now with an ideal observer using the prediction from GPT-2 as a
prior. As expected, bayesian integration enhanced perceptual inference: on average,
the observer using linguistic prediction as a prior extracted more information from
the preview (± 6.25 bits) than the observer not taking the prediction into account
(± 4.30 bits; T1 .39×106 = 1.35 × 1011,p ≈ 0). Interestingly however, it provided a
worse fit to the human reading data. is was established by comparing two versions
of the full regression model: one with parafoveal entropy from the (theoretically
superior) contextual ideal observer and one from the non-contextual ideal observer.
In all datasets both skipping and reading times were beer explained by a model
including parafoveal identifiability from the non-contextual observer (skipping: all
p ′s < 10−5; reading times: p ′s < 10−5; see Figure 6.5).

Together, this suggests linguistic prediction and parafoveal preview are not inte-
grated, but instead operate independently – thereby highlighting a remarkable sub-
optimality in reading, and potentially an intriguing difference between visual and
auditory word recognition.
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Discussion

Eye movements during reading are highly variable. Across three large datasets, we
have assessed the relative importance of two major cognitive explanations for this
variability – linguistic prediction and parafoveal preview – compared to alternative
non-linguistic and non-contextual explanations. is revealed a stark dissociation
between skipping and reading times. For word skipping, neither prediction nor pre-
view were especially important, as the overwhelming majority of variation could be
explained – mostly uniquely explained – by an oculomotor baseline model using just
word length and eccentricity. For reading times, by contrast, we observed clear con-
tributions of both prediction and preview, and effect sizes matching those obtained
in tightly controlled experiments. Interestingly, preview effects were best captured
by a non-contextual observer, suggesting that while readers use both linguistic pre-
diction and preview, these do not appear to be integrated on-line. Together, the
results underscore the dissociation between skipping and reading times, and show
that for word skipping, the link between eye movements and cognition is less direct
than commonly thought.

Our results on skipping align well with earlier findings by Drieghe and colleagues
(Drieghe et al., 2004). ey analysed effect sizes from studies on skipping and found a
disproportionately large effect of length, compared to proxies of processing-difficulty
like frequency and predictability. We significantly extend their findings by modelling
skipping itself (rather than effect sizes from studies) and making a direct link to pro-
cessing mechanisms. For instance, based on their analysis it was unclear how much
of the length effect could be aributed to the decreasing visibility of longer words –
i.e. how much of the length effect may be an identifiability effect (Drieghe et al., 2004,
p. 19). We show that length and eccentricity alone explained three times as much
variation as parafoveal identifiability – and that most of the variation explained by
identifiability was equally well explained by length and eccentricity. is demon-
strates that length and eccentricity themselves – not just to the extent they reduce
parafoveal identifiability – are key drivers of skipping.

is conclusion challenges dominant, cognitive models of eye movements, which
describe lexical identification as the primary driver behind skipping (Engbert and
Kliegl, 2003; Engbert et al., 2005; Reichle, Rayner, and Pollatsek, 2003). However, it
does not challenge the notion of predictive or parafoveal word identification itself.
In fact, we believe this happens routinely – aer all, most skips are not followed
by regressions. Rather, our results challenge the notion that moment-to-moment
decisions of whether to skip individual words are primarily determined by the iden-
tification of those words. Instead, they support a much simpler strategy, which is
primarily sensitive to a word’s length and eccentricity.
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One such simpler strategy would be a ‘blind‘ random walk: making saccades
of some average length, plus oculomotor noise. However, we do not think this is
likely, since landing positions are distributed with preferred positions with respect
to word boundaries (Drieghe et al., 2004; O’Regan, 1992). Instead, we suggest an
alternatie view, in which the decision of where to look next is based on an analysis
of the parafovea – but at a very low level, aimed to discern mostly the next word’s
length and eccentricity (see also Drieghe et al., 2004; Reilly and O’Regan, 1998). is
is not the whole story, since preview and prediction explain some unique skipping
variation that cannot be reduced to low-level variables (or other variables (Duan
and Bicknell, 2020)). Our results may thus support a hybrid account, in which most
skipping decisions are made by a low-level ‘autopilot’, whereas in some limited cases
skipping is influenced by high-level contextual information. How the brain arbitrates
between these strategies is an interesting question for future research.

A distinctive feature of our approach is that we we focus on a limited number of
computationally explicit functional explanations, rather than using lexical aributes
as proxies for functional explanations (e.g. a word’s frequency as a proxy for its
identifiability). For instance, we model parafoveal identifiability using a single vari-
able that should in principle capture all important effects such as that of frequency
and orthography (see Figure S6.3 and Methods). A limitation of this approach is that
an imperfection in the model can cause an underestimation of preview importance.
However, a key advantage of using explicit modelling rather than proxies is that
it can avoid confound-related misinterpretations. For instance, word frequency is
strongly correlated with length, so when using frequency as a proxy for identifia-
bility (e.g. to predict skipping), one may find apparent identifiability effects which
are in fact length effects, and strongly overestimate the importance of preview (Brys-
baert and Drieghe, 2003). erefore, we have only used explanatory variables that
explicitly relate to the dependent variable (Methods). Aer all, our goal was not to
measure as many effects as possible, but to gain a clear picture of the importance
of two cognitive explanations for eye movement variation. Based on the effect sizes
for gaze duration (Fig 6.4) we do not believe that we strongly underestimate either
prediction or preview, and we are optimistic the results provide the comprehensive,
interpretable picture we aimed for.

When comparing Figures 6.2, 6.3 and 6.5, the numerical R2 values of the reading
times regression may seem rather small, potentially indicating a poor fit. However,
our (cross-validated)R2’s for gaze durations are not lower thanR2’s reported by other
regression analyses of gaze durations in natural reading (e.g. Kliegl, Nuthmann, and
Engbert, 2006); moreover we find effect sizes in line with the experimental literature
(Fig 6.4). erefore, we do not believe we either overfit or underfit the gaze dura-
tions. Instead, what the relatively low R2 values indicate, we suggest, is that gaze
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durations are inherently noisy, and that only a limited amount of the word-by-word
variation is systematic variation, due to e.g. preview or frequency effects. While this
is interesting in itself, it is not of primary interest in this study, which focusses on
the relative importance of different explanations, and hence only on systematic vari-
ation. erefore, what maers is not as much the absolute R2 values, but rather the
relative importance of different explanations – in other words, the relative size of
the circles in Figures 6.2, 6.3 and S6.7, their overlap, and the explanations each circle
represents. It is on this level of analysis that we find the stark dissociation – that
for skipping (but not for reading times) a simple low-level heuristic can account for
almost all of the explained variation – and not on the level of numerical values for
variation explained.

A remarkable result is that we found preview benefits comparable to effect sizes
from controlled designs, despite major methodological differences. Specifically, in
controlled designs preview benefits are the difference in reading time for words with
preview, versus words where the preview was masked or invalid (i.e. where a differ-
ent word was previewed). As such, it seemed plausible that a significant portion of
this difference may reflect interference or mismatch between preview and fixation,
rather than purely the lack of parafoveal identification of the next word. Our anal-
ysis modelled the effect purely in terms of lexical identification, and yielded only
slightly smaller effect sizes (Fig. 6.4). is suggests that preview benefits are largely
the result of lexical identification, and that interference or visual ‘preprocessing’ may
only play a minor role (cf Reichle, Rayner, and Pollatsek, 2003; Schoer, Angele, and
Rayner, 2012).

Another notable finding is that preview was best explained by a non-contextual
observer – a model which only takes word frequency (and not contextual predictabil-
ity) into account. is replicates and extends the only study that explicitly compared
contextual and non-contextual accounts of parafoveal preview (Duan and Bicknell,
2020). at study only analysed skipping (in the Dundee corpus); the fact that we find
the same for reading times (where preview and prediction effects are much stronger)
and replicate the result in other corpora, considerably strengthens the conclusion
that parafoveal word recognition is not informed by linguistic context. is conclu-
sion seems to contradict experiments finding an interaction between linguistic con-
text and preview, which was interpreted as context constraining preview (Balota,
Pollatsek, and Rayner, 1985; McClelland and O’Regan, 1981; Schoer et al., 2015;
Veldre and Andrews, 2018). One explanation for this discrepancy stems from how
the effect is measured. Experimental studies did not explicitly model contextual and
non-contextual recognition, but looked at the effect of context on the difference in
reading time aer valid versus invalid preview (Schoer et al., 2015; Veldre and An-
drews, 2018). is may reveal a context effect not on recognition, but at a later
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stage (e.g. priming between the context, preview and fixated word). Arguably, these
scenarios yield different predictions: if context affects recognition it may allow iden-
tification of otherwise unidentifiable words. However, if the interaction occurs later
it might only amplify processing of recognisable words. Constructing a model that
formally reconciles this discrepancy – and predicts the context-preview interaction
using a non-contextual prior – is an interesting challenge for future work.

e lack of influence of contextual constraint on parafoveal preview might be
understood through time-constraints imposed by the rapid rate of eye movements.
Given that readers on average only look some 250 ms at a word in which they
have to both recognise the foveal word and process the parafoveal percept, this per-
haps leaves too lile time to fully integrate the foveal word and the context inform
parafoveal perception. Time-constraints are of course not unique to reading: word
recognition based on partial information also happens in speech perception, where
it also occurs under significant time-constraints. And yet in auditory word recogni-
tion, contextual effects are found (McClelland and Elman, 1986; Zwitserlood, 1989),
and a formally highly similar analysis of word recognition based on partial phone-
mic information recently showed clear support for a contextual prior; i.e. the exact
opposite of what we find here (Heilbron et al., 2021a). An alternative, more specula-
tive explanation for the lack of context effect in reading but not speech perception is
that this may reflect a difference between visual and auditory word recognition. is
could be related to the fact that contrary to auditory word recognition, visual word
recognition is an acquired skill and occurs throughout areas in the visual system re-
purposed for reading (Dehaene, 2009; Yeatman and White, 2021), where perhaps the
dynamic sentence context cannot exert as much of an influence as rapidly, allowing
for facilitation by lexical or orthographic context (Heilbron et al., 2020; Lupyan, 2017;
Reicher, 1969; Wheeler, 1970), but not as much of sentence context.

Given that readers use both prediction and preview, why would they strongly
affect reading times but hardly word skipping? To understand this dissociation, it
is important to consider that they reflect different decisions, namely where versus
how long to fixate, which are made at different moments. Specifically, the decision
of where to fixate – and hence whether to skip the next word – is made early in
saccade programming, which can take 100-150 ms (Deubel, O’Regan, and Radach,
2000; Drieghe et al., 2004; Rayner, 2009). Although the exact sequence of operations
leading to a saccade remains debated, given that readers on average only look some
250 ms at a word, it is clear that skipping decisions are made under strong time con-
straints, especially given the lower processing rate of parafoveal information. Our
results suggest that the brain meets this constraint by resorting to a computationally
frugal policy, largely based on low-level characteristics such as length and eccentric-
ity. How long to fixate, by contrast, mostly depends on foveal information, which is
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processed more rapidly and may thus directly influence the decision to either keep
dwelling and accumulate more information or initiate a saccade (and/or an aention
shi).

In conclusion, we have found that two important contextual sources of informa-
tion in reading, linguistic prediction and parafoveal preview, strongly drive variation
in reading times, but hardly affect word skipping, which is largely based on low-level
factors. Our results show that as readers, we do not always use all information avail-
able to us; and that we are, in a sense, of two minds: consulting complex inferences
to decide how long to look at a word, while employing semi-mindless scanning rou-
tines to decide where to look next. It is striking that these disparate strategies oper-
ate mostly in harmony. Only occasionally they go out of step – then we notice that
our eyes have moved too far and we have to look back, back to where our eyes le
cognition behind.

Methods

We analysed eye-tracking data from three, big, naturalistic reading corpora, in which
native English speakers read texts while eye-movement data was recorded (Cop et
al., 2017; Kennedy, 2003; Luke and Christianson, 2016).

Eye-tracking data and stimulus materials

We considered the English-native portions of the Dundee, Geco and Provo corpora.
e Dundee corpus comprises eye-movements from 10 native speakers from the UK
(Kennedy, 2003), who read a total of 56.212 words across 20 long articles from e
Independent newspaper. Secondly, the English portion of the Ghent Eye-tracking
Corpus (Geco) (Cop et al., 2017) is a collection of eye movement data from 14 UK
English speakers who each read Agathe Cristie’s e Mysterious Affair at Styles in
full (54.364 words per participant). Lastly, the Provo corpus (Luke and Christianson,
2018) is a collection of eye movement data from 84 US English speakers, who each
read a total of 55 paragraphs (extracted from diverse sources) for a total of 2.689
words.

Language model

Contextual predictions were formalised using a language model – a model comput-
ing the probability of each word given the preceding words. Here, we used GPT-2
(XL) – currently among the best publicly released English language models. GPT-2
is a transformer-based model, that in a single pass turns a sequence of tokens (rep-
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resenting either whole words or word-parts) U = (u1, . . . ,uk) into a sequence of
conditional probabilities, (p(u1),p(u2 |u1), . . . ,p(uk | u1, ...,uk−1)).

Roughly, this happens in three steps: first, an embedding step encodes the se-
quence of symbolic tokens as a sequence of vectors, which can be seen as the first
hidden state ho . en, a stack of n transformer blocks each apply a series of oper-
ations resulting in a new set of hidden states hl , for each block l . Finally, a (log-
)somax layer is applied to compute (log-)probabilities over target tokens. In other
words, the model can be summarised as follows:

h0 = UWe +Wp (6.1)
hl = transformer_block (hl−1)∀i ∈ [1,n] (6.2)

P(u) = softmax
(
hnW

T
e

)
, (6.3)

whereWe is the token embedding andWp is the position embedding.
e key component of the transformer-block ismaskedmulti-headed self-aention

(Fig S6.1). is transforms a sequence of input vectors (x1,x2, . . . xk) into a sequence
of output vectors (y1,y2, . . . ,yk). Fundamentally, each output vector yi is simply a
weighted average of the input vectors: yi =

∑k
j=1wi jxj . Critically, the weight w i, j

is not a parameter, but is derived from a dot product between the input vectors xTi xj ,
passed through a somax and scaled by a constant determined by the dimensional-
ity dk : wi j = (expxTi x j/

∑k
j=1 expxTi x j)

1√
dk

. Because this is done for each position, each
input vector xi is used in three ways: first, to derive the weights for its own output,
yi (as the query); second, to derive the weight for any other output yj (as the key);
finally, in it used in the weighted sum (as the value). Different linear transformations
are applied to the vectors in each cases, resulting in ery, Key and Value matrices
(Q ,K ,V ). Puing this all together, we obtain:

self_attention(Q ,K ,V ) = softmax
(
QKT

√
dk

)
V . (6.4)

To be used as a language model, two elements are added. First, to make the opera-
tion position-sensitive, a position embeddingWp is added during the embedding step
– see Equation (6.1). Second, to enforce that the model only uses information from
the past, aention from future vectors is masked out. To give the model more flexibil-
ity, each transformer block contains multiple instances (‘heads’) of the self-aention
mechanisms from Equation (6.4).

In total, GPT-2 (XL) contains n = 48 blocks, with 12 heads each; a dimensionality
of d = 1600 and a context window of k = 1024, yielding a total 1.5 × 109 param-
eters. We used the PyTorch implementation of GPT-2 provided by HuggingFace’s
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Transformers package (Wolf et al., 2020). For words spanning multiple tokens, we
computed their joint probability.

Ideal observer

To compute parafoveal identifiability, we implemented an ideal observer based on
the formalism by Duan & Bicknell (Duan and Bicknell, 2020). is model formalises
parafoveal word identification using Bayesian inference and builds on previous well-
established ’Bayesian Reader’ models (Bicknell and Levy, 2010; Norris, 2006, 2009). It
computes the probability of the next word given a noisy percept by combining a prior
over possible words with a likelihood of the noisy percept, given a word identity:

p(w | I) ∝ p(w)p(I|w), (6.5)

where I represents the noisy visual input, andw represents a word identity. We
considered two priors (see Fig 6.5): a non-contextual prior (the the overall probability
of words in English based on their frequency in Subtlex (Brysbaert and New, 2009),
and a contextual prior based on GPT2 (see below). Below we describe how visual
information is represented and perceptual inference is performed. For a graphical
schematic of the model, see Fig S6.2; for some distinctive simulations showing how
the model captures key effects of linguistic and visual characteristics on word recog-
nition, see Fig S6.3.

Sampling visual information

Like in other Bayesian Readers (Bicknell and Levy, 2010; Norris, 2006, 2009), noisy
visual input is accumulated by sampling from a multivariate Gaussian which is cen-
tered on a one-hot ’true’ leer vector – here represented in an uncased 26-dimensional
encoding – with a diagional covariance matrix Σ(ε) = λ(ϵ)−1/2I . e shape of Σ is
thus scaled by the sensory quality λ(ε) for a leer at eccentricity ε . Sensory quality
is computed as a function of the perceptual span: this uses using a Gaussian inte-
gral based follows the perceptual span or processing rate function from the SWIFT
model (Engbert et al., 2005). Specifically, for a leer at eccentricity ε , λ is given by
the integral within the bounding box of the leer:

λ(ε) =

∫ ε+.5

ε− .5

1
√
2πσ2

exp
(
− x2

2σ2

)
dx , (6.6)

which, following (Bicknell and Levy, 2010; Duan and Bicknell, 2020), is scaled by a
scaling factor Λ. Unlike SWIFT, the Gaussian in Equation 6.6 is symmetric, since we
only perform inference on information about the next word. By using one-hot encod-
ing and a diagonal covariance matrix, the ideal observer ignores similarity structure
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between leers. is is clearly a simplification, but one with significant computa-
tional benefits; moreover, it is a simplification shared by all Bayesian Reader-like
models (Bicknell and Levy, 2010; Duan and Bicknell, 2020; Norris, 2006), which can
nonetheless capture many important aspects of visual word recognition and reading.
To determine parameters Λ and σ , we performed a grid search on a subset of Dundee
and Geco (see Fig S6.4), resulting in Λ = 1 and σ = 3. Note that this σ value is close
to the average σ value of SWIFT and (3.075) and corresponds well to prior literature
on the size of the perceptual span (±15 characters; Bicknell and Levy, 2010; Engbert
et al., 2005; Schoer, Angele, and Rayner, 2012).

Perceptual inference

Inference is performed over the full vocabulary. is is represented as a matrix which
can be seen as a stack of word vectors, y1, y2, …, yv, obtained by concatenating the
leer vectors. e vocabulary is thus a V × d matrix, with V the number of words
in the vocabulary and d the dimensionality of the word vectors (determined by the
length of the longest word: d = 26 × lmax ).

To perform inference, we use the belief-updating scheme from (Duan and Bick-
nell, 2020), in which the posterior at sample t is expressed as a (V − 1) dimensional
log-odds vector x(t), in which each entry x(t)i represents the log-odds of yi relative
to the final word yv. In this formulation, the initial value of x is thus simply the
prior log odds, x(0)i = logp(wi)− logp(wv), and updating is done by summing prior
log-odds and the log-odds likelihood. is procedure is repeated forT samples, each
time taking the posterior of the previous timestep as the prior in the current timestep.
Note that using log odds in this way avoids renormalization:

x(t)i = log
p

(
wi | I(0, . . .,t)

)
p

(
wv | I(0, . . .,t)

)
= log

p
(
wi | I(0, . . .,t−1)

)
p

(
I(t) | w i

)
p

(
wv | I(0, . . .,t−1)

)
p

(
I(t) | wv

)
= log

p
(
wi | I(0, . . .,t−1)

)
p

(
wv | I(0, . . .,t−1)

) + log
p

(
I(t) | wi

)
p

(
I(t) | wv

)
= x(t−1)i +∆x(t)i .

(6.7)

In other words, as visual sample I(t) comes in, beliefs are updated by summing
the prior log odds x(t−1) and the log-odds likelihood of the new information x(t).

For a given wordwi , the log-odds likelihood of each new sample is the difference
of two multivariate Gaussian log likelihoods, one centred on yi and one on the last
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vector yv . is can be formulated as a linear transformation of I:

∆xi = logp (I | wi) − logp (I | wv)

= logp (I | N (yi ,Σ)) − logp (I | N (yv ,Σ))

=
[
−1
2
(I − yi)T Σ−1 (I − yi)

]
−

[
−1
2
(I − yv)T Σ−1 (I − yv)

]
=

yTvΣ−1yv − yTi Σ
−1yi

2
+ (yi − yv)T Σ−1I,

(6.8)

which implies that updating can be implemented by sampling from a multivari-
ate normal. To perform inference on a given word, we performed this sampling
scheme until convergence (using T = 50), and then transformed the posterior log-
odds into the log posterior, from which we computed the Shannon entropy as a met-
ric of parafoveal identifiability.

To compute the parafoveal entropy for each word in the corpus, we make the
simplifying assumption that parafoveal preview only occurs during the last fixation
prior to a saccade, thus computing the entropy as a function of the word itself and its
distance to the last fixation location within the previously fixated word (which is not
always the previous word). Because this distance is different for each participant, it
was computed separately for each word, for each participant. Moreover, because the
inference scheme is based on sampling, we repeated it 3 times, and averaged these
to compute the posterior entropy of the word. e amount of information obtained
from the preview is then simply the difference between prior and posterior entropy.

e ideal observer was implemented in custom Python code, which can be found
in the data sharing collection (see below).

Contextual vs non-contextual prior

We considered two observers: one with a non-contextual prior capturing the over-
all probability of a word in a language, and with a contextual prior, capturing the
contextual probability of a word in a specific context. For the non-contextual prior,
we simply used lexical frequencies from which we computed the (log)-odds prior
used in equation (6.7). For the contextual prior, we derived the contextual prior from
log-probabilities from GPT-2. is effectively involves constructing a new Bayesian
model for each word, for each participant, in each dataset. To simplify this process,
we did not take the full predicted distribution of GPT-2, but only the ‘nucleus‘ of
the top k predicted words with a cumulative probability of 0.95, and truncated the
(less reliable) tail of the distribution. Further, we simply assumed that the rest of
the tail was ‘flat’ and had a uniform probability. Since the prior odds can be derived
from relative frequencies, we can think of the probabilities in the flat tail as having
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a ‘pseudocount’ of 1. If we similarly express the prior probabilities in the nucleus as
implied ‘pseudofrequencies’, the cumulative implied nucleus frequency is then com-
plementary to the the length of the tail, which is simply the difference between the
vocabulary size and nucleus size (V − k). As such, for word i in the text, we can
express nucleus as implied frequencies as follows:

freqsψ = Ptr (w
(i) |context) V − k

1 −∑k
j=1 P(w

(i)
j |context)

, (6.9)

where Ptr (w(i) |context) is the trunctated lexical prediction, and P(w
(i)
j |context)

is predicted probability that word i in the text is word j in the sorted vocabulary.
Note that using this flat tail not only simplifies the computation, but also deals with
the fact that the vocabulary of GPT-2 is smaller than of the ideal observer – using
this tail we can still use the full vocabulary (e.g. to capture orthographic uniqueness
effects), while using 95% of the density from GPT-2.

Data selection

In all our analyses, we focus strictly on first-pass reading, analysing only those fix-
ations or skips when none of the subsequent words have been fixated before. We
extensively preprocessed the corpora so that we could include as many words as
possible. However, we had to impose some additional restrictions. Specifically we
did not include words if they a) contained non-alphabetic characters; b) if they were
adjacent to blinks; c) if the distance to the prior fixation location was more than 24
characters (±8°); moreover, for the gaze duration we excluded d) words with implau-
sibly short (< 70ms) or long (> 900ms) gaze durations. Criterion c) was chosen
because some participants occasionally skipped long sequences of words, up to en-
tire lines or more. Such ‘skipping’ – indicated by saccades much larger than the the
perceptual span – is clearly different from the skipping of words during normal read-
ing, and was therefore excluded. Note that these criteria are comparatively mild (cf.
Duan and Bicknell, 2020; Smith and Levy, 2013), and leave approximately 1.1 million
observations for the skipping analysis, and 593.000 reading times observations.

Regression models: skipping

Skipping was modelled via logistic regression in scikit-learn (Pedregosa et al., 2011),
with three sets of explanatory variables (or ’models’) each formalising a different
explanation for why a word might be skipped.

First, a word might be skipped because it could be confidently predicted from con-
text. We formalise this via linguistic entropy, quantifying the information conveyed
by the prediction from GPT-2. We used entropy, not (log) probability, because using
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the next word’s probability directly would presuppose that the word is identified,
undermining the dissociation of prediction and preview. By contrast, prior entropy
specifically probes the information available from prediction only.

Secondly, a word might be skipped because it could be identified from a parafoveal
preview. is was formalised via parafoveal entropy, which quantifies the parafoveal
preview uncertainty (or, inversely, the amount of information conveyed by the pre-
view). is is a complex function integrating low-level visual (e.g. decreasing visi-
bility as a function of eccentricity) and higher-level information (e.g. frequency or
orthographic effects) and their interaction (see Fig S6.3). Here, too we did not use
lexical features (e.g. frequency) of the next word to model skipping directly, as this
presupposes that the word is identified; and to the extent that these factors are ex-
pected to influence identifiability, this is already captured by the parafoveal entropy
(Fig S6.3).

Finally, a word might be skipped simply because it is too short and/or too close to
the prior fixation location, such that a fixation of average length would overshoot the
word. is autonomous oculomotor account was formalised by modelling skipping
probability purely as a function of a word’s length and its distance to the previous
fixation location.

Note that these explanations are not mutually exclusive, so we also evaluated
their combinations (see below).

Regression models: reading time

As an index of reading time, we analysed first-pass gaze duration, the sum of a word’s
first-pass fixation durations. We analyse gaze durations as they arguably most com-
prehensively reflect how long a word is looked at, and are the focus of similar model-
based analyses of contextual effects in reading (Goodkind and Bicknell, 2018; Smith
and Levy, 2013). For reading times, we used linear regression, and again considered
three sets of explanatory variables, each formalising a different kind of explanation.

First, a word may be read more slowly because it is unexpected in context. We
formalised this using surprisal − log(p), a metric of a word’s unexpectedness – or
how much information is conveyed by a word’s identity in light of a prior expectation
about the identity. To capture spillover (R; regpaper; smith) we included not just the
surprisal of the current word, but also that of the previous two words.

Secondly, a word might be read more slowly because it was difficult to discern
from the parafoveal preview. is was formalised using the parafoveal entropy (see
above).

Finally, a word might be read more slowly because of non-contextual factors of
the word itself. is is an aggregate baseline explanation, aimed to capture all rele-
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vant non-contextual word aributes, which we contrast to the two major contextual
sources of information about a word identity that might affect reading times (predic-
tion and preview). We included word class, length, log-frequency, and the relative
landing position (quantified as the distance to word centre in characters. For log-
frequency we used the UK or US version of SUBTLEX depending on the corpus and
included the log-frequency of the past two words to capture spillover effects.

Note that, while for skipping, we used a non-linguistic baseline, for reading times
we use a non-contextual baseline. is is because for skipping the most interesting
contrast is between the role of non-linguistic oculomotor control vs next-word iden-
tification (either through prediction or preview). For reading times, by contrast, the
most interesting comparison is between properties of the word itself versus contex-
tual cues, as a purely non-linguistic account for gaze duration variation seemed less
plausible (indeed, see Fig S6.7).

Model evaluation

We compared the ability of each model to account for the variation in the data by
probing prediction performance in a 10-fold cross-validation scheme, in which we
quantified how much of the observed variation in skipping rates and gaze durations
could be explained.

For reading times, we did this using the coefficient of determination, defined
via the ratio of residual and total sum of squares: R2 = 1 − SSres

SStot
. e ratio SSres

SStot
relates the error of the model (SSres ) to the error of a ’null’ model predicting just the
mean (SStot ), and gives the variance explained. For skipping, we use a tightly related
metric, the McFadden R2. Like the R2 it is computed by comparing the error of the
model to the error of a null model with only an intercept: R2

McF = 1 − LM
Lnull

, where
L indicates the loss.

While R2 and R2
McF are not identical, they are formally tightly related – criti-

cally, both are zero when the prediction is constant (no variation explained) and go
towards one proportionally as the error decreases to zero (i.e. towards all variation
explained). Note that in a cross-validated seing, both metrics can become negative
when prediction of the model is worse than the prediction of a constant null-model.

Variation partitioning

To assess relative explanatory power, we used variation partitioning to estimate how
much of the explained variation could be aributed to each set of explanatory vari-
ables. is is also known as variance partitioning, as it is originally based on parti-
tioning sums of squares in regression analysis; here we use the more general term
’variation’ following (Legendre, 2008).
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Variation partitioning builds on the insight that when two (groups o) explana-
tory variables (A and B) both explain some variation in the data y, and A and B are
independent, then variation explained by combining A and B will be approximately
additive. By contrast, when A and B are fully redundant – e.g. when B only has an
apparent effect on y through its correlation with A – then a model combining A and
B will not explain more than the two alone.

Following (Heer et al., 2017), we generalise this logic to three (groups o) explana-
tory variables, by testing each individually and all combinations, and use set theory
notation and graphical representation for its simplicity and clarity. For three groups
of explanatory variables (A, B and C), we first evaluate each separately and all com-
binations, resulting in 7 models:

A,B,C,A ∪ B,A ∪C,B ∪C,A ∪ B ∪C .

From these 7 models we obtain 7 ‘empirical‘ scores (expressing variation ex-
plained), from which we derive the 7 ‘theoretical‘ variation partitions: 4 overlap par-
titions and 3 unique partitions. e first overlap partition is the variation explained
by all models, which we can derive as:

A ∩ B ∩C = A ∪ B ∪C +A+ B +C − A ∪ B − A ∪C − B ∪C . (6.10)

e next three overlap partitions contain all pairwise intersections of models that
did not include the other model:

(A ∩ B) \C = A+ B − A ∪ B − A ∩ B ∩C
(A ∩C) \ B = A+C − A ∪C − A ∩ B ∩C
(B ∩C) \A = B +C − B ∪C − A ∩ B ∩C .

(6.11)

e last three partitions are those explained exclusively by each model. is is
the relative complement: the partition unique to A is the relative complement of BC:
BCRC . For simplicity we also use a star notation, indicating the unique partition of
A as A∗. ese are derived as follows:

A∗ = BCRC = A ∪ B ∪C − B ∪C
B∗ = ACRC = A ∪ B ∪C − A ∪C
C∗ = ABRC = A ∪ B ∪C − A ∪ B.

(6.12)

Note that, in the cross-validated seing, the results can become paradoxical and
depart from what is possible in classical statistical theory, such as partitioning sums
of squares. For instance, due to over-fiing, a model that combines multiple EVs
could explain less variance than all of the EVs alone, in which case some partitions
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would become negative. However, following (Heer et al., 2017), we believe that the
advantages of using cross-validation outweigh the risk of potentially paradoxical
results in some subjects. Partitioning was carried out for each subject, allowing to
statistically assess whether the additional variation explained by a given model was
significant. On average, none of the partitions were paradoxical.

Simulating effect sizes

Preview benefits were simulated as the expected difference in gaze duration aer a
preview of average informativeness versus aer no preview at all. is this best cor-
responds to an experiment in which the preceding preview was masked (e.g. XXXX)
rather than invalid (see Discussion). To compute this we compared the took the dif-
ference in parafoveal entropy between an average preview and the prior entropy.
Because we standardised our explanatory variables, this was transformed to subject-
specific z-scores and then multiplied by the regression weights to obtain an expected
effect size.

For the predictability benefit, we computed the expected difference in gaze du-
ration between ‘high‘ and ‘low‘ probability words. ‘High‘ and ‘low‘ was empirically
defined based on the human-normed cloze probabilities in provo, which we divided
into thirds using percentiles. e resulting cutoff points (low < 0.02; high >0.25) were
log-transformed, applied to the surprisal values from GPT-2, and multiplied by the
weights to predict effect sizes. Note that these definitions of ‘low‘ and ‘high‘ may ap-
pear low compared to those in literature – however, most studies collect cloze only
for specific ‘target‘ words in relatively predictable contexts, which biases the defini-
tion of ‘low‘ vs ‘high’ probability. By contrast, we analysed cloze probabilities for all
words, yielding these values.

Statistical testing

Statistical testing was performed across participants within each dataset. Because
two of the three corpora had a low number of participants (10 and 14 respectively)
we used non-parametric bootstrap t-tests, by creating resampling a null-distribution
with zero mean counting how likely a t-value at least as extreme as the true t-value
was to occur. Each test used at least 104 bootstraps; p-values were computed without
assuming symmetry (equal-tail bootstrap).

Data and code availability

Data and code to reproduce all results will be made public at the Donders Data Reposi-
tory. Unfortunately we cannot share the original texts of the Dundee Corpus because
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of copyright restrictions on the newspaper articles. Instead we provide a ”scrubbed”
version of Dundee without the copyrighted material.
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Supplementary materials

Figure S6.1. GPT-2 Architecture. Note that this panel is based on the original GPT
schematic, with some operations modified and re-arranged to reflect the slightly different
architecture of GPT-2. e most important and distinctive step of each transformer block is
masked multi-headed self-aention (see Methods). Not visualised here is the initial tokenisa-
tion, mapping a sequence of characters into a sequence of tokens.

Table S6.1. Literature sample for effect size ranges

Effect type Publication
Effect
size

preview benefit

Inhoff, A. W. (1989). Lexical access during eye fixations in read-
ing: Are word access codes used to integrate lexical information
across interword fixations?. Journal of Memory and Language,
28(4), 444-461.

51

Continued on next page
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Table S6.1 – Continued from previous page

Effect type Publication
Effect
size

preview benefit

Veldre, A., & Andrews, S. (2018). Parafoveal preview effects de-
pend on both preview plausibility and target predictability. Lex-
ical access during eye fixations in reading: arterly Journal of
Experimental Psychology, 71(1), 64-74.

49

preview benefit
Inhoff, A. W., & Rayner, K. (1986). Parafoveal word processing
during eye fixations in reading: Effects of word frequency. Per-
ception & psychophysics, 40(6), 431-439.

40

preview benefit
McDonald, S. A. (2006). Parafoveal preview benefit in reading
is only obtained from the saccade goal. Vision Research, 46(26),
4416-4424.

35

preview benefit

Williams, C. C., Perea, M., Pollatsek, A., & Rayner, K. (2006).
Previewing the neighborhood: e role of orthographic neigh-
bors as parafoveal previews in reading. Journal of Experimental
Psychology: Human Perception and Performance, 32(4), 1072.

26.7

preview benefit

Kennison, S. M., & Clion, C. (1995). Determinants of
parafoveal preview benefit in high and low working memory
capacity readers: Implications for eye movement control. Jour-
nal of Experimental Psychology: Learning, Memory, and Cog-
nition, 21(1), 68.

25.25

preview benefit
Blanchard, Harry E., Alexander Pollatsek, and Keith Rayner.
”e acquisition of parafoveal word information in reading.” Per-
ception & Psychophysics 46.1 (1989): 85-94.

22.6

preview benefit

Schroyens, W., Vitu, F., Brysbaert, M., & d’Ydewalle, G.
(1999). Eye movement control during reading: Foveal load and
parafoveal processing. e arterly Journal of Experimental
Psychology Section A, 52(4), 1021-1046.

14.6

prediction benefit
Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word
perception and eye movements during reading. Journal of ver-
bal learning and verbal behavior, 20(6), 641-655.

33

prediction benefit
Rayner, K., & Well, A. D. (1996). Effects of contextual constraint
on eye movements in reading: A further examination. Psycho-
nomic Bulletin & Review, 3(4), 504-509.

20

Continued on next page
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Table S6.1 – Continued from previous page

Effect type Publication
Effect
size

prediction benefit

RJ. Altarriba, J. Kroll, A. Sholl, K. Rayner. (1996) e influence of
lexical and conceptual constraints on reading mixed-language
sentences: Evidence from eye fixations and naming times Mem-
ory & Cognition, 24 (1996), pp. 477-492.

21

prediction benefit

Ashby, J., Rayner, K., & Clion Jr, C. (2005). Eye movements
of highly skilled and average readers: Differential effects of fre-
quency and predictability. e arterly Journal of Experimen-
tal Psychology Section A, 58(6), 1065-1086.

23.5

prediction benefit

Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004). e
effects of frequency and predictability on eye fixations in read-
ing: implications for the EZ Reader model. Journal of Experi-
mental Psychology: Human Perception and Performance, 30(4),
72

19

prediction benefit

Rayner, K., Binder, K. S., Ashby, J., & Pollatsek, A. (2001). Eye
movement control in reading: Word predictability has lile in-
fluence on initial landing positions in words. Vision Research,
41(7), 943-954.

15

prediction benefit
Rayner, K., Slaery, T. J., Drieghe, D., & Liversedge, S. P. (2011).
Eye movements and word skipping during reading: effects of
word length and predictability. Vision Research, 41(7), 943-954.

18

prediction benefit

Hand, C. J., Miellet, S., O’Donnell, P. J., & Sereno, S. C. (2010).
e frequency-predictability interaction in reading: It depends
where you’re coming from. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 36(5), 1294–1313.

12
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Figure S6.2. Encoding and inference scheme of the ideal observer analysis. A word at
a given eccentricity is converted into a noisy visual percept, aer which a posterior probability
of the identity of the word given the noisy percept was computed using Bayesian inference.
e uncertainty of this posterior (expressed in terms of Shannon entropy) was then used to
quantify the expected uncertainty in the parafoveal percept – or, inversely, a word’s parafoveal
identifiability.
In this scheme, words are represented as a concatenation of one-hot encoded leer vectors.
Visual information (I) is sampled from a multivariate Gaussian centred on the word vector
yw with a diagonal covariance matrix Σ, the values of which (σ2) are inversely related to the
integral under the visual acuity function around each leer. e posterior is then computed
by comining the likelihood of the visual information I given a particular word, with a prior
probability of that word p(w) (e.g. derived from lexical frequency). is computation was
performed using a log-odds formulation that exploits the proportionality in Bayes’ rule to
perform belief-updating without renormalisation (see Methods).
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Figure S6.3. Modulation of parafoveal identifiability by visual and linguistic features,
and their interaction. e parafoveal entropy for a given word (Fig S6.2) is a complex func-
tion that integrates linguistic and visual characteristics, and which can account for various
known effects, such as the effect of lexical frequency and orthographic neighbourhood on
visual word recognition. To illustrate this, we simulated some characteristic effects of eccen-
tricity, frequency (a,b) and orthographic distinctiveness (c,d).
For frequency (a), we randomly sampled 20 ‘rare’ and ‘frequent’ 5-leer words (based on a
quartile split), and computed the parafoveal identifiability (quantified via posterior entropy)
at increasing eccentricities. As can be seen, the percept becomes uncertain at increasing
eccentricities more quickly for low-frequency words, showing that lexical frequency boosts
parafoveal identifiability.
For orthography (c), we similarly sampled 20 7-leer words that were classified as orthograph-
ically common or uncommon based on the first three leers. Here, commonality was again
defined using a quartile split but now on the number of alternative words starting with the
same three leers. For instance, the leers ‘awk‘ in the word ‘awkward‘ are highly uncommon
and allow to identify the entire word with high confidence based on just those three leers. As
can be seen, the model predicts that orthographic uniqueness boosts parafoveal identifiability
– as observed in experiments (see Schoer, Angele, and Rayner, 2012).
Notably, when we consider the difference between the two classes of words (b,d), an inverted
U shape is apparent: the effects are strongest at intermediate visibility. is demonstrates
the well-established fact that the effects of prior (linguistic) knowledge is strongest at inter-
mediate levels of perceptual uncertainty (see Norris, 2006 for discussion). (Note that, while
both the orthography and frequency effects are effects of ”prior linguistic knowledge”, only
the frequency effect is technically an effect of the prior, since the orthography effect is driven
by the generative model.) In all plots, thick lines represent the mean entropy across words;
shaded regions indicate bootstrapped 95% confidence intervals.
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Figure S6.4. Grid search to establish ideal observer parameters. Grid search result
grand average (top) and individual results for different corpora and analyses (boom). To
decide on the values for σ and Λ, a grid search was performed on a random subset of 25% of the
Dundee and Geco corpus; we did not apply it to PROVO because there was not enough data per
participant. In both skipping and reading times, we performed a 10-fold cross-validation with
the full model, using parafoveal entropy as computed with different visual acuity parameters
σ and Λ (Equation 6.6). To avoid biasing the contextual vs non-contextual model comparison
(Figure 6.5), we used both the contextual and non-contextual prior and averaged the results
to obtain the results for each analysis in each corpus. To ensure that different analyses and
corpora are weighted equally in the grand average, the prediction scores (R2 or R2McF ) were
normalised by dividing the prediction score of each parameter combination by the highest
score (i.e. score of the best parameter combination) for each subject, for each analysis. is
resulted in σ = 3 and Λ = 1, which we have used in all analyses. Note that σ determines the
perceptual span (see Figure S6.2) and that σ = 3 corresponds well to what is known about the
size of the perceptual span and is close to default parameters in other models (see Methods).
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Figure S6.5. Skipping variation partitioning for all participants. Explained cross-
validated variation partition for skipping (see Fig 6.2) of each partition, for each participant,
for the skipping analysis. Models for the baseline, parafoveal preview and linguistic prediction
are indicated by ‘base’, ‘para’, and ‘ling’, respectively. Unions are indicated by ∪, intersections
by ∩; for the relative complement we use the asterisk-notation: e.g. ‘para*’ indicates variation
explained uniquely by parafoveal preview. Note that due to cross-validation, the amount of
variation explained can become negative in some partitions for individual participants (see
Methods).
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Figure S6.6. Reading times variance partitioning. Explained cross-validated variation
partition for skipping (see Fig 6.3) of each partition, for each participant, for the skipping
analysis. Models for the baseline, parafoveal preview and linguistic prediction are indicated
by ‘base’, ‘para’, and ‘ling’, respectively. Unions are indicated by ∪, intersections by ∩; for the
relative complement we use the asterisk-notation: e.g. ‘para*’ indicates variation explained
uniquely by parafoveal preview (see Methods). Note that due to cross-validation, the amount
of variation explained can become negative in individual participants (see Methods).

Figure S6.7. Reading times variance partitioningwith andwithout non-linguistic fac-
tors Same as in Fig 6.3, but comparing the baseline with (a)) or without (b)) the primary non-
linguistic explanatory factor for reading time variation – viewing position (O’Regan, 1992).
Including the viewing position adds 0.7% additional variance explained. is demonstrates
while that viewing position affect reading times, the amount of variance uniquely explained
by non-linguistic factors is much lower for reading times than for skipping.
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7. | Discussion

e aim of this thesis was to evaluate the predictive processing framework using
language as a testbed – and to use predictive processing to understand the role of
prediction in language. is was done in five studies on a variety of topics that
collectively addressed two key questions about the role of prediction in language
processing. When does language processing invoke predictions (i.e. under which
conditions), and what is being predicted (i.e. at which processing level is prediction
taking place)?

e predictive processing framework proposes two rather bold answers to these
questions. In response to the when question, it suggests that language always in-
volves prediction: that prediction is an inherent part of language processing and thus
not restricted to specific conditions. In response to thewhat question, the framework
suggests that prediction occurs at all levels of analysis, from the abstract meaning of
words in the context of a story, all the way down to the exact shapes and sounds of
leers and phonemes within individual words. Importantly, predictions at different
levels constrain each other, such that even our abstract expectations about upcom-
ing words in a story would be able to inform the processing of the sounds making
up individual words.

Combining computational modelling with fMRI, EEG, MEG and eye tracking, I
found broad support for the proposed answers to both questions. As to thewhen ques-
tion, I found prediction in a wide range of conditions, from participants aentively
viewing single words (Chapter 2) to simply listening to audiobooks (Chapters 3-5)
or reading an entire novel (Chapter 6). is apparent ubiquity of prediction was
more explicitly tested in Chapter 4. ere I found that during story listening, pre-
dictability modulations of the brain response (like that of the well known N400 com-
ponent) are not limited to specific content words in constraining contexts (in which
they have been historically studied), but seem to occur for all words, exhibiting a sen-
sitivity to very subtle differences in predictability between words that may appear
to be equally unpredictable. Together, the results confirm that the brain automati-
cally and inescapably predicts upcoming language, even when passively listening to
something as complex and seemingly unpredictable as an audiobook.

As to the what question, I found predictions at all levels of processing, from the
abstract meaning of words to the exact shapes of individual leers. In Chapter 2
I found that lexical and orthographic knowledge can enhance the processing of the
shapes of expected leers at the earliest visual areas of cortex. In Chapter 4, I found
that during natural comprehension, the brain is engaged in prediction across many
levels of abstraction, revealed by dissociable signatures of syntactic, phonemic and se-
mantic predictions. In that same chapter, I also found that the brain integrates predic-
tions at different levels, such that lower-order predictions about short sequences of
within-word phonemes (up to hundreds of milliseconds long) are informed by higher-
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order predictions about long sequences of words (up to minutes long). Interestingly,
in Chapter 6 I did not find a similar integration in reading. In a model-based anal-
ysis of three large eye movement datasets, I observed clear effects of both linguistic
predictability and parafoveal preview, but strong evidence against predictions con-
straining preview. is suggests that in speech perception, word recognition based
on partial information is informed by contextual predictions, while in reading it is
not. In Chapter 6 I also found that word skipping (widely believed to be affected
by prediction) was hardly influenced by either contextual prediction or parafoveal
preview, and instead largely explained by low-level oculomotor factors. is chapter
thus shows that the principles of predictive processing cannot be applied indefinitely,
and that the brain in some cases resorts to other (simpler) strategies.

Overall though, the results are remarkably well in line with the bold claims made
by predictive processing, and roundly support it as a powerful framework for under-
standing the brain. Compared to other support, the work in this thesis specifically
shows that its computational principles that are oen studied in tightly controlled
and simple experiments, also apply in much more complex, naturalistic conditions
such as listening to a story. In other words, that predictive processing can be found
not just in the lab but also “in the wild”, in line with the idea that it provides universal
principles that apply to neural processing at large.

In what follows I will address some of the larger questions that the work in this
thesis raises. I will also discuss what I consider to be the key outstanding questions
in the field, and the most promising ways forward to address them.

Multi-level prediction – or multi-level integration?

In Chapters 3-5, I present a range of findings from which I conclude that the brain is
engaged in prediction at multiple levels of analysis. However, most of these findings
demonstrate prediction indirectly, via post-stimulus neural signatures of deviations
from predictions. is raises the notorious prediction vs integration question. Simply
put, do unexpected linguistic stimuli evoke different brain responses because they ac-
tually violate a prediction, or because they are more difficult to ‘integrate’ because of
a different reason? Essentially, this is a question about confounds: are we measuring
what we think we are measuring, or are we capturing something different?

In psycholinguistic research, authors generally agree on what is meant by predic-
tion: the anticipatory pre-activation of a linguistic representation1 (but see Box 1).
By contrast, ‘integration’ in this context can be more of a moving target; it is some-
times used as a catch-all for any processing mechanism that does not involve ‘pre-

1Of course, ‘a linguistic representation’ is deliberately vague here: there will be much less agreement
among psycholinguists once we have to specify the exact nature of this representation.
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diction’ but nonetheless implies that unpredictable words (or other units) are more
difficult to process (Pickering and Gambi, 2018). However, thus construed the con-
cept encompasses an infinite set of hypothetical mechanisms, making it untestable.
To transform this epistemological angst into a scientific question, we must be explicit
about the mechanism we are considering, i.e. about why an unexpected linguistic
stimulus would be more difficult to integrate.

Probably the best known ‘integration explanation’ is that of facilitated semantic
integration via intra-lexical priming (see Brown and Hagoort, 1993; Kutas and Hill-
yard, 1984; Van Berkum et al., 2005). is is based on the fact that content words
that are highly unexpected are oen also semantically incongruous. For instance,
in the famous sentence ‘I take my coffee with cream and dog’ (Kutas and Hillyard,
1980), the expected word (‘sugar’) is semantically closer to the preceding words than
the unexpected word ‘dog’. erefore, it could be easier to process simply due to
boom-up semantic priming. While such priming may involve pre-activation, it
is fundamentally different from linguistic prediction. For one, priming also occurs
for word lists or sentences with permuted word order. Moreover, while in natural
language primed words may oen covary with predictions, they are fundamentally
distinct, as one can easily imagine a sentence where the most likely word is not the
most semantically associated word2. I therefore control for such priming in Chapter
3 and 4 by including the degree of semantic association between each content word
and the preceding context in the baseline model. e results clearly demonstrate
that the effect of word unexpectedness is not reducible to facilitated integration via
intra-lexical priming (see also Nieuwland et al., 2020).

Surprisal theory (Hale, 2001; Levy, 2008) offers another mechanism that is some-
times cast as an integration explanation. e theory proposes that surprisal is a
causal boleneck: a word’s unexpectedness determines the size of the syntactic up-
date it elicits – thereby determining the word’s processing difficulty (i.e. the bole-
neck). Because this lexical expectancy effect emerges from parsing without requiring
explicit lexical expectations, it is sometimes considered an effect of integration rather
than prediction (e.g. Kutas, DeLong, and Smith, 2011). However, the theory also
assumes an expectation-based syntactic comprehension scheme in which the brain
probabilistically activates all potential whole-sentence analyses consistent with the
input so far, and where the ‘syntactic update’ is the Bayesian surprise incurred by
updating this expectation (Levy, 2008). Under my definition (Box 1) this would be
a syntactic prediction effect. Moreover, the theory focusses on a single boleneck
at the level of lexical surprisal, which cannot explain the additional effects of syn-

2For instance, in “Aer a long day of catching fish, the fisherman went …”, the word ‘home’ is more likely
than ‘fishing’, although ‘fishing’ is obviously semantically closer. (Moreover, a function word like ‘to’
might be even more likely – about ten times as likely, per GPT-2 – despite lacking semantic content.)
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tactic, semantic, and phonemic unexpectedness (Chapter 4). One could imagine
multiple levels of ‘causal bolenecks’: perhaps the unexpectedness at each level de-
termines the size of the update at that level – and hence the processing difficulty –
without requiring explicit predictions about e.g. phoneme or part-of-speech proba-
bilities. However, this would still require expectation-based processing at each level,
bringing us back to multi-level predictive processing. erefore, I do not believe
that surprisal theory can explain away the effects from Chapters 3-5 as integration
difficulty rather than prediction3.

Pre-stimulus evidence for prediction: a promising way forward?

Some believe that the ‘prediction vs. integration’ question poses such a vexing conun-
drum that future work should avoid it entirely by focussing on pre-stimulus evidence
of prediction itself – evidence for pre-activation. However, while this may sound like
a promising way forward, it becomes a lot less promising when we consider what
that would empirically entail and theoretically imply.

An oen-used method to establish pre-stimulus prediction is the visual world
paradigm, where participants move their eyes toward the object that the unfolding
sentence could be referring to (Allopenna, Magnuson, and Tanenhaus, 1998; Altmann
and Kamide, 1999). is paradigm has been vital to demonstrate that comprehenders
(at least sometimes) spontaneously anticipate not just an upcoming word, but also
its linguistic features (Altmann and Mirkovic, 2009; Tanenhaus, 2007). However, the
paradigm can only probe predictions of specific, highly predictable words with a
concrete referent or associated target that is visually present. It cannot probe the
continuous, probabilistic prediction that predictive processing postulates, and hence
only provides limited insight into what and especially when the brain predicts.

A more modern test for pre-activation is trying to decode words pre-onset, as
explored by Goldstein et al. (2021). ey report significant decoding (and encoding)
of upcoming words up to hundreds of milliseconds pre-onset. While their results
are fascinating and impressive, there are limitations to decoding-based tests for pre-
activation. Suppose for instance that we can decode whether the next word will
be a noun or a verb, well before onset. is could mean the decoder is picking up a
pre-activation. However, it could also mean that it is picking up a property of the pre-
vious words that allow the decoder to predict if the next word is a noun – e.g. nouns
may oen follow article-like activity paerns, while verbs oen follow noun-like
activity paerns. is issue is not restricted to nouns/verbs4 but illustrates a fun-

3Indeed, surprisal theory to me shows why the dichotomy implied by ‘prediction vs integration’ is a false
one.
4Arguably it is worse for decoding semantic vectors, which are by definition similar for neighbouring
words.
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damental problem: the same regularities that may allow the brain to predict words
from context, can allow a decoder to predict upcoming words from brain responses
to preceding words.5

One might try to eliminate the issue by spacing words in time to avoid picking
up responses to preceding words. It is unclear how much this would help, since
stimulus information is known to fade surprisingly slowly (persisting even aer sub-
sequent stimuli, see e.g. King and Wyart, 2021; Nikolić et al., 2009) but in any case
this would require unnaturally slow presentation rates, limiting generalisability. Ar-
guably, truly demonstrating pre-activation in natural language requires a fully ‘white
box’ approach: first identifying ‘the neural representation’ of a linguistic unit (what-
ever that may be) and then establishing pre-activation of that representation. is is
a tall order and in my view not a promising way forward.

Personally, I believe that aaching much theoretical significance to pre-activation
is misguided and possibly a cultural artefact of the historical definition of prediction
as all-or-none pre-activation of specific words. Once we conceive of prediction as
inherently probabilistic and multi-faceted, it becomes clear that most if not all mech-
anisms that can plausibly explain the predictability effects observed in Chapters
3-5 and elsewhere (see e.g. Hale et al., 2021 for review) will involve pre-activation of
some kind. Moreover, pre-activation alone does not make a mechanism predictive in
any interesting sense. Indeed, even intra-lexical priming can involve pre-activation,
via spreading activation. So instead of asking whether there is pre-activation, I be-
lieve the real way forward is developing a computationally explicit understanding of
how the brain generates predictions and how predictability effects arise.

How (explicitly) are predictions implemented?

In this thesis I have addressed when linguistic prediction occurs and what is being
predicted. But so far I have sidestepped how predictions might be implemented in
the brain. is is a rather large question so I will split it up in two parts – the first
being: how explicitly are predictions implemented or represented?

When presenting my work, I may have occasionally le the impression to be
claiming that the brain actually computes the variables that I use in my analyses.
at, for instance, the syntactic prediction from Chapter 4 would be actually com-
puted in a kind of syntactic somax layer in the temporal lobe. A critic could counter
this by proposing a more implicit scheme that might perform adaptive and prepara-

5One might propose the following criterion: decoding only counts as evidence for pre-activation if the
same decoder can predict upcoming words beer from the preceding brain activity than from the preceding
words themselves. But while this is a solid criterion in principle, it can range from a very low to extremely
high bar, depending on how the preceding words are represented to the decoder (e.g. one hot encoding
vs contextual embedding).
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tory or anticipatory processing which may be functionally equivalent (or approx-
imant) to ‘real prediction’ but without those complicated probabilistic calculations.
To be sure, such an implicit scheme is exactly how I would imagine predictive process-
ing to be implemented in the brain. ere is a rich literature on how the brain might
actually perform probabilistic inference (Ma et al., 2006; Orbán et al., 2016; Pouget et
al., 2013) and within predictive processing some have proposed direct mappings be-
tween variables or functions in variational algorithms and biological substrates like
specific cell-types in specific cortical layers (Bastos et al., 2012; Friston, 2005; Shipp,
2016). But I myself view the framework at a more abstract level, providing princi-
ples that the brain might more-or-less-faithfully implement. How faithfully exactly
is an interesting question, but lies outside of the scope of this thesis, as it concerns
implementation-level computational neuroscience.

A related question that is closer to my work concerns not the low-level imple-
mentation, but the computational approximations that the brain might use. is
is especially relevant for involved computations, such as hierarchical inference. In
Chapters 4-6 I model context effects in word recognition probabilistically, using
a prediction of the upcoming word given the (high-level) global discourse context
as a prior for inferring word identity based on (low-level) local features, such as
phonemes (Chapters 4,5) or partially perceived leers (Chapter 6). Formulating
this as hierarchical inference – where the posterior or prediction at a higher level is
used as a prior at a lower level – provides a powerful tool, not just to model context ef-
fects, but also to think about bi-directional information processing in the brain (Fris-
ton, 2008; Lee and Mumford, 2003; McClelland, 2013). However, actually performing
hierarchical inference can be involved, and hierarchical Bayesian models can some-
times be effectively approximated using surprisingly simple algorithms (e.g. Yu and
Cohen, 2008). It would be interesting to explore such approximations to the hierarchi-
cal prediction of phonemes from Chapter 4. One obvious option is to replace GPT-2
with a more local prediction model, such as an ngram. More interesting would be
to try something much simpler, like a unigram prior plus an exponentially decaying
frequency count (a leaky integrator) to capture local frequency effects in addition to
global word frequency in English. Ideally such a solution could reasonably approx-
imate the ‘optimal’ solution (at least in natural language), while being substantially
simpler to implement (and providing a beer fit to the data in Chapter 4). I would
consider such a hypothetical model an approximation of, and not an alternative to,
the explicit approach used in Chapters 4-6. Aer all, such a model would still be
hierarchical in the abstract sense of integrating information over multiple scales; it
would perhaps only be no longer hierarchical in the technical sense as defined in
Bayesian probability theory.

Moving beyond implementation and approximation, the second part of the how
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question is more algorithmic in nature, and concerns whether the brain uses a prediction-
comparison operation. In other words, does the brain compute prediction errors?

Does the language system compute prediction errors?

In Chapters 3-5 I report a range of predictability effects on the evoked response.
Many of these modulations are similar to findings from the traditional ERP litera-
ture, like N400 modulations (Kutas and Hillyard, 1980), or the PNP (Van Peen and
Luka, 2012). However, they also reflect the more general phenomenon of expectation
suppression: the fact that expected stimuli evoke weaker responses – something also
ubiquitously found in other domains, like perception (Keller and Mrsic-Flogel, 2018;
Summerfield and de Lange, 2014). A popular explanation of such suppression effects
is that the brain compares internal predictions to the incoming signal to compute
prediction errors. Expected stimuli result in smaller prediction errors, the idea goes,
and hence evoke weaker responses.

But there are other potential explanations. For instance, predictive feedback may
amplify expected features and suppresses noise, resulting in an enhanced representa-
tion but a reduced aggregate response (de Lange, Heilbron, and Kok, 2018; Kok, Jehee,
and de Lange, 2012; Lee and Mumford, 2003; see also Aitchison and Lengyel, 2017).
In the context of speech perception, this point was nicely illustrated by Luthra et al.
(2021). ey build on work by Gagnepain, Henson, and Davis (2012) who reported
reduced responses to expected phonemes (similar to Chapters 4 & 5), and inter-
preted this as reflecting reduced prediction errors for expected phonemes. Luthra et
al. (2021) simulated the same experiment with TRACE (McClelland and Elman, 1986)
and found similar reductions in the network, via increased lateral inhibition. TRACE
is a predictive processing model and the suppression still reflects predictive feedback.
However, TRACE does not compute prediction errors so the results should remind
us that the suppression effects in Chapters 3-5 do not necessarily reflect prediction
errors.

A more refined method to empirically test for prediction errors was proposed by
Blank and Davis (2016). Using simulations, they show that prediction error signals
specifically result in an interaction between top-down context and boom-up sig-
nal quality, in the multivariate response. Strikingly, they found this interaction in
an fMRI study and a later MEG study (Sohoglu and Davis, 2020), both on the effect
of prior knowledge on the perception of noise vocoded speech. Slightly complicat-
ing the picture, however, is that their hallmark is based on predictive coding models,
which would exhibit the hallmark in just one of the two neuronal subpopulations the
models postulate (see alsoChapter 2). Nevertheless, their use of computational mod-
elling to develop novel empirical hallmarks is an inspiring and promising direction
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for future research. For linguistic ERPs, it seems promising to follow this direction
and study computational models that have been proposed, for instance for the N400.
Some of these explicitly compute prediction errors (Fitz and Chang, 2019; Frank et
al., 2015), other compute more implicit prediction errors (Rabovsky, Hansen, and Mc-
Clelland, 2018; Rabovsky and McRae, 2014) and yet others are engaged in prediction
but do not compute errors (Brouwer et al., 2017). Simulating their distinguishing
predictions could reveal novel empirical hallmarks that could be used to dissociate
error-based and error-free accounts.

Empirically, whether the language system – and the brain at large – computes
prediction errors is still an open question. eoretically, however, I see three argu-
ments for why it would. First, if the brain compares top-down predictions to the
input, the error can serve as a ‘teaching signal’ for self-supervised learning. In a
model like TRACE, there is no comparison – but, tellingly, TRACE does not learn:
all the connections are hard-coded. Second, prediction errors can improve inference
through error-correction. is can avoid a notorious problem of interactive models
like TRACE, where top-down feedback simply activates expected features, reinforc-
ing the model’s own predictions – a feedback loop which can easily lead to halluci-
nations (McClelland, 2013; Norris, Mceen, and Cutler, 2000). Having an explicit
comparison operation can potentially break this vicious cycle. Finally, we know
that the brain uses prediction errors for dopaminergic value-based learning (Schultz,
Dayan, and Montague, 1997) and for online error-correction in sensorimotor integra-
tion (Keller, Bonhoeffer, and Hübener, 2012; Kitazawa, Kimura, and Yin, 1998; Marr,
1969). Since we know that the brain can compute prediction errors, and given the
theoretical reasons for why it should, it seems likely that errors are indeed computed
throughout the brain. erefore, the correlates of errors I find in Chapters 3-5 may
well reflect actual prediction errors – or error-driven updates.

However, this is still largely based on arguments, not facts. And while error-like
signals have been observed throughout the brain (Den Ouden, Kok, and De Lange,
2012; Schultz and Dickinson, 2000) especially in the past few years (Fiser et al., 2016;
Garre et al., 2020; Gillon et al., 2021; Hamm and Yuste, 2016; Homann et al., 2017;
Jordan and Keller, 2020) the neural basis of a generic prediction error remains elu-
sive. I therefore view the question of prediction errors as one of the most important
problems in the field, both for the domain of language, and for predictive process-
ing at large. With increasingly detailed measurements of neural signals, and more
ingenious empirical hallmarks like the one explored by Blank and Davis (2016), it is
a question on which we can hopefully see some real progress in the years to come.
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When are predictions propagated to lower levels?

In my doctoral work I observed signatures of prediction across a range of process-
ing levels, from semantics to early vision, and found that high-level predictions can
constrain low-level ones. is suggests that prediction can occur across many levels.
But does this always happen? And are predictions always passed ‘all the way down’?

e enhancement of sensory information in early visual cortex by word knowl-
edge (Chapter 2) is a strong indicator of a top-down effect. It is also in line with a
large behavioural literature – dating back to the Reicher-Wheeler paradigm (Reicher,
1969; Wheeler, 1970) – suggesting that the effect of word context on leer perception
cannot be fully explained by post-perceptual guessing (see Balota, Yap, and Cortese,
2006, for review). It aligns especially well with recent behavioural work showing
that readers both subjectively perceive leers in real words as sharper, and are objec-
tively beer in detecting subtle perceptual changes in real words than in nonwords
(Lupyan, 2017). It is also in line with neurobiological studies, for instance reporting
that during phoneme restoration (Warren, 1970) a ‘filling-in’ of acoustic-phonetic
features was found in auditory cortex already (Leonard et al., 2016); and with the
broader literature showing top-down recruitment of higher-order areas, both during
reading (e.g. Twomey et al., 2011; Woolnough et al., 2021) and speech perception (e.g.
Obleser and Kotz, 2011; Park et al., 2015; Sohoglu et al., 2012). Taken together, this
suggests the top-down effect from Chapter 2 reflects a general property of word
recognition.

InChapter 4, I report a different kind of top-down effect, finding that predictions
based on long timescales (sequences of words in discourse) constrain expectations
about short timescales (sequences of phonemes within a word). However, we do not
know the processing level at which such integration occurs. In the modulation of
the brain response (see Figures 4.5 & S4.13) the effect of surprise seems to start early
but extends until hundreds of ms post-phoneme-onset, so presumably this sensitivity
reflects at least in part a higher-level surprise-based update and not only the acoustic-
phonetic processing of phonemes.

Moreover, Chapter 6 shows that the logic of hierarchical inference – or ‘mutual
constraint satisfaction’ in connectionist terms (McClelland, Rumelhart, and Group,
1986) – may not always apply. ere, we found that readers are clearly sensitive to a
word’s contextual predictability and its parafoveal recognisability, but that a word’s
predictability did not influence its parafoveal recognisability. is suggests that lin-
guistic prediction in this case may not be passed ‘down’ to the level of parafoveal
preview (at least not to the extent that it influences eye movements). e lack of
this top-down effect may appear at odds with the fMRI evidence for top-down pro-
cessing in leer perception in Chapter 2. But note that the fMRI study only tested
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the influence of lexical context – not sentence context – so it could be in line with
Chapter 6. However, directly connecting the studies seems fraught because of the
myriad differences between them, such as that Chapter 2 focusses on foveal word
recognition at fixation, and Chapter 6 on parafoveal preview in natural reading.

What may explain the insensitivity to linguistic context we find in Chapter 6?
One possibility is that it reflects a particularity of parafoveal preview, for instance
related to time-constraints. On average, readers only look at a word for 250 ms, in
which they have to recognise the foveal word and process the parafoveal percept, so
perhaps there is too lile time to fully integrate the foveal word and let this context
inform parafoveal preview6. On the other hand, auditory word recognition also un-
folds under time-constraints, and in Chapter 4 we do find an effect of global context
in speech perception (line with behavioural work, e.g. Zwitserlood, 1989). Another,
more speculative possibility is that the difference between Chapter 4 and Chapter
6 may reflect a difference between auditory and visual word recognition. Speech is
the natural medium of language, and auditory word recognition occurs in temporal
areas tightly connected to the language network more broadly (Hickok and Poeppel,
2007; Yi, Leonard, and Chang, 2019). Reading by contrast is a skill, laboriously ac-
quired by a repurposing of the visual system (Dehaene, 2009; Yeatman and White,
2021), where the high-level linguistic context itself is not processed and perhaps can-
not exert as much of an influence as rapidly. is hypothesis could be empirically
tested, for instance by systematically comparing the influence of high-level context
in auditory vs. visual word recognition.

Reflecting on predictions and lower levels, I will end with the cautionary tale
told by Chapter 5. In that chapter, I hypothesised that contextual constraint would
be positively associated with pre-stimulus beta, reasoning that ‘stronger predictions’
would imply stronger top-down signalling – an idea inspired by predictive processing
interpretations of oscillations (Arnal and Giraud, 2012; Bastos et al., 2012; Lewis and
Bastiaansen, 2015). In the end, I observed the opposite paern and realised that my
initial hypothesis did not follow from predictive processing as directly as I thought.
For instance, one could also use predictive processing to make the opposite argu-
ment: stronger competition between multiple predictions about the incoming word
(i.e. more uncertainty) might result in stronger top-down signalling (and thereby en-
hanced beta). Which one of these hypotheses is ‘actually’ in line with predictive pro-
cessing depends on additional assumptions about the processing architecture that do
not follow from predictive processing itself. is illustrates that, while the abstract

6 is issue touches on a larger conundrum: does prediction help us process language rapidly, compen-
sating for the rapidity of language (Christiansen and Chater, 2016) – or does the rapid rate of language
impose a limit on the use of prediction? In other words, does the rapid rate of natural language necessitate
prediction or hinder prediction?

191



7. | Discussion

principles from predictive processing can provide theoretical guidance, effectively
applying them to a given domain always requires additional domain-specific knowl-
edge and models.

What are the sources of linguistic predictions?

roughout this thesis, I have interpreted the what-question mostly in terms of the
content of predictions. For instance, in Chapter 4 the syntactic prediction is a pre-
diction about (morpho)syntax. A different – arguably more common (e.g. Hueig,
2015) – interpretation of the what-question is to consider not the content but the
source of the prediction. Viewed this way, a syntactic prediction is a prediction based
on syntax.

is approach is notably taken by a series of recent papers on syntactic predic-
tion (Brennan et al., 2020; Brennan and Hale, 2019; Hale et al., 2018; Shain et al., 2020;
see also Henderson et al., 2016; Nelson et al., 2017; see Hale et al., 2021 for review).
ese studies mostly take the brain’s sensitivity to surprisal as a given (as an index
for expectation-based processing difficulty), and then compute surprisal using mul-
tiple (linguistically-informed) models and compare which one best fits the ‘neural
surprisal’ observed in brain signals. is has for instance revealed that the brain is
specifically sensitive to surprisal computed from probabilistic context free grammars
(PCFGs) – suggesting it uses hierarchical syntax to guide its predictions (Brennan and
Hale, 2019; Shain et al., 2020, c.f. Frank et al., 2015). Hale et al. (2018) take this ap-
proach further by combining a generative model of phrase structure grammar with
an explicit (cognitively interpretable) parsing strategy. ey show that the surprisal
from the explicit syntactic model not only fits the EEG data beer than that from
an LSTM, but also that different aspects of the parsing operation can be linked to
different syntax-related components in the EEG response (see also Brennan et al.,
2020).

Asking what predictions are based on is interesting because it can reveal what
information the brain is using. Indeed, I use the same approach in Chapter 4 & 6
when I ask whether the brain uses global context to make local predictions. What I
find inspiring about these specific studies, is that they demonstrate that this approach
– ‘using prediction as a window into language’ – can be used to ask questions not
just about predictive processing but also about (psycho)linguistic theory proper. As
such, it shows how the unifying framework of predictive processing does not replace
existing domain-specific theories, but integrates them into a broader picture of the
brain as a prediction machine – a perspective that can then be used to answer other,
domain-specific questions (such as questions about syntax or parsing).

is line of work embodies an exciting research programme, with many potential
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directions le to be explored. To name just one, it can be interesting to take the same
approach to the phoneme level, and compare the theory-agnostic lexical-statistical
approach I take to compute phoneme surprisal in Chapter 4-5 (see also Brodbeck,
Hong, and Simon, 2018; Einger, Linzen, and Marantz, 2014; Gwilliams et al., 2018)
with models that draw more on linguistic theory, such those of probabilistic phono-
tactics (Di Liberto et al., 2019). is way, by studying what the language system
expects (or more precisely, what it did not expect), we may eventually uncover the
underlying principles by which it operates.

Concluding remarks

In this thesis, I have tried to evaluate predictive processing as a framework for under-
standing the brain, using language as a testbed. e results overall broadly support
the framework: they underscore that language processing is inherently predictive,
and show how predictions can be used as a window into how the brain processes
information. Inevitably, the work in this thesis raises or leaves unaddressed more
questions than it answers. Does the success of predictive language models in AI tell
us anything about prediction in human language processing? What is the role of
prediction in language acquisition? Does linguistic prediction make use of the pro-
duction system – or do they merely rely on the same linguistic generative models?
And are some functions of linguistic prediction more important than others?

Taking a step back, the work also shows the potential of using something as com-
plex as language for the study of predictive processing. While it may seem appealing
to focus on something ‘simple’ like early visual processing, language actually has
distinct advantages such as allowing to study predictive processing in naturalistic
conditions. is is true now more than ever, since we have powerful computational
techniques and generative models to approximate – for any arbitrary stimulus – the
linguistic statistics that a truly predictive brain should be sensitive to. Similar gener-
ative models for other domains like vision are rapidly improving, and I am optimistic
that technological advances like these will eventually lead to conceptual advances –
not just on how language works, but also on how the brain works, and, ultimately,
on what it means to be human.
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Nederlandse samenvaing

Het omzeen van talige signalen – trillingen in de lucht, vormpjes op papier – naar
woorden en gedachten is een van de meest verbluffende prestaties van het menselijk
brein. Een recente theorie beschrij het brein als een voorspellingsmachine, die zin-
tuigelijke informatie voortdurend vergelijkt met interne voorspellingen. In dit proef-
schri toets ik deze theorie en gebruik ik taalverwerking als mijn proeuin. Twee
vragen staan centraal: wanneer doet het brein talige voorspellingen? En, als het
voorspellingen doet, wat voorspelt het dan precies?

In hoofdstuk 1 introduceer ik de theorie en plaats ik deze in een historische
context.

In hoofdstuk 2 richt ik me op het waarnemen van leers. Leers kun je makkeli-
jker herkennen in een context (zoals op een verkeersbord) dan zonder context (zoals
op een kenteken). In een fMRI-experiment vond ik dat talige context al vroeg in het
visuele systeem de informatie over de waargenomen leers versterkt. Dit betekent
dat ons brein onze woordenkennis gebruikt om te voorspellen welke vormen we zien.
En het impliceert dat we leers in een context niet alleen beter kunnen raden – maar
ook leerlijk beter kunnen zien.

In hoofdstuk 3 tot en met 5 analyseer ik hersensignalen van mensen die luis-
teren naar luisterboeken. Daarnaast analyseer ik de tekst van de luisterboeken zelf,
om de voorspelbaarheid van ieder woord en elke klank in het boek te schaen. Het
brein blijkt hier zeer gevoelig voor: het reageert sterker op woorden als ze onvoor-
spelbaarder zijn. Dit geldt niet alleen voor sommige woorden, maar voor schijnbaar
alle woorden in het verhaal. Bovendien reageert het brein verschillend wanneer de
betekenis, de klank of de grammatica onverwacht is. Al met al suggereren de resul-
taten uit deze hoofdstukken dat ons brein voortdurend voorspellingen doet – en op
uiteenlopende niveaus (klank, betekenis, grammatica).

In hoofdstuk 6 analyseer ik oogbewegingen van mensen die lange teksten –
en zelfs een volledige roman – lezen. Hieruit blijkt dat voorspellingen een sterk ef-
fect hebben op hoe lang proefpersonen naar een woord keken, maar niet naar welke
woorden proefpersonen keken. Daarnaast blijkt dat woordherkenning tijdens lezen
meer lokale (dat wil zeggen, minder contextuele) voorspellingen raadpleegt dan wo-
ordherkenning tijdens spraakperceptie (vergelijk hoofdstuk 4).



Nederlandse samenvaing

Alles overziend (hoofdstuk 7) ondersteunen de studies de theorie en schetsen
een beeld van ons taalsysteem als inherent voorspellend. Een systeem dat taal kan
‘volgen’ door het voortdurend een stap voor te zijn en te voorspellen – een beetje
zoals autocomplete op je telefoon. Maar, anders dan autocomplete, voorspelt ons
brein op uiteenlopende niveaus: van de leers die we zien tot de betekenis van het
volgende woord.
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psychiatry and neurology. Specialists in a psychological environment, e.g. as spe-
cialist in neuropsychology, psychological diagnostics or therapy. Positions in higher
education as coordinators or lecturers. A smaller percentage enters business as re-
search consultants, analysts or head of research and development. Fewer graduates
stay in a research environment as lab coordinators, technical support or policy ad-
visors. Upcoming possibilities are positions in the IT sector and management posi-
tion in pharmaceutical industry. In general, the PhDs graduates almost invariably
continue with high-quality positions that play an important role in our knowledge
economy.

For more information on the DGCN as well as past and upcoming defenses please
visit: hp://www.ru.nl/donders/graduate-school/phd/
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Ethics

is thesis is based on the results of human studies, which were conducted in accor-
dance with the principles of the Declaration of Helsinki. All studies followed insti-
tutional guidelines of the local ethics commiee (CMO region Arnhem-Nĳmegen,
e Netherlands; Ethics board Trinity College Dublin, Ireland; Ghent University,
Belgium; Southampton University, United Kingdom; University of Dundee, United
Kingdom; Brigham Young University, United States), including informed consent of
all participants.

Data availability

e data that was required originally for this thesis (Chapter 2) has already been pub-
lished on the Donders Data Repository and is accessible through the DOI listed below.
It is available under a data use agreement for identifiable human data (Version RU-
DI-HD-1.0) and will remain accessible online for at least 10 years aer termination.
For the chapters that are not yet published as a journal article, I provide DSC (Data
Sharing Collection) identifiers that will become active once the final journal article
is published, plus DAC (Data Acquisition Collection) identifiers those studies using
data internally acquired at the Donders that is not yet publicly available. For the
chapters using publicly available data, the DSC does not re-publish the already pub-
lished data, but links to the repositories (e.g Datadryad, OSF) where the original data
is available, under its original licence. In addition the DSC collections contain code
and computational results (e.g. of numerical simulations) required for reproducing
the results. Chapter 3 has appeared as a conference paper and will not be published
as a journal article; its analyses are a sub-set of Chapter 4, and the associated code
and computational results will be part of the publication of that collection.

Chapter 2

Data and code available at: hps://doi.org/10.34973/t894-sz74



Research data management

Chapter 3

is chapter only makes use of public data
Data sharing collection identifier: DSC_3018000.00_752
DOI (active upon publication): hps://doi.org/10.34973/kwsh-cb29

Chapter 4

Data sharing collection identifier: DSC_3018000.00_752
DOI (active upon publication): hps://doi.org/10.34973/dm-h813
Data acquisition collection identifier (DAC): di.dccn.DAC_3011085.05_985

Chapter 5

Data sharing collection identifier: DSC_3018000.00_000
DOI (active upon publication): hps://doi.org/10.34973/kwsh-cb29
Data acquisition collection identifier (DAC): di.dccn.DAC_3011085.05_985

Chapter 6

is chapter only makes use of public data
Data sharing collection identifier: DSC_3018000.00_215.
DOI (active upon publication): hps://doi.org/10.34973/wnc3-0m87
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