



# Supplement of

## How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter

Shane W. Stoner et al.

Correspondence to: Shane W. Stoner (sstoner@bgc-jena.mpg.de)

The copyright of individual parts of the supplement might differ from the article licence.

#### 2 Supplemental Text 1: Method testing and quality assurance

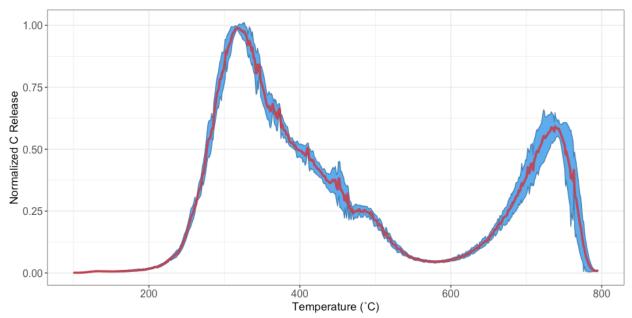
#### 4 ST 1.1 Reproducibility of the thermograms

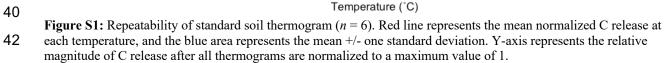
An artificial soil standard containing calcium carbonate was repeatedly analyzed (n = 6) to determine consistency and reproducibility of thermograms on commercially available equipment (Fig. S1). The bulk soil and fractions

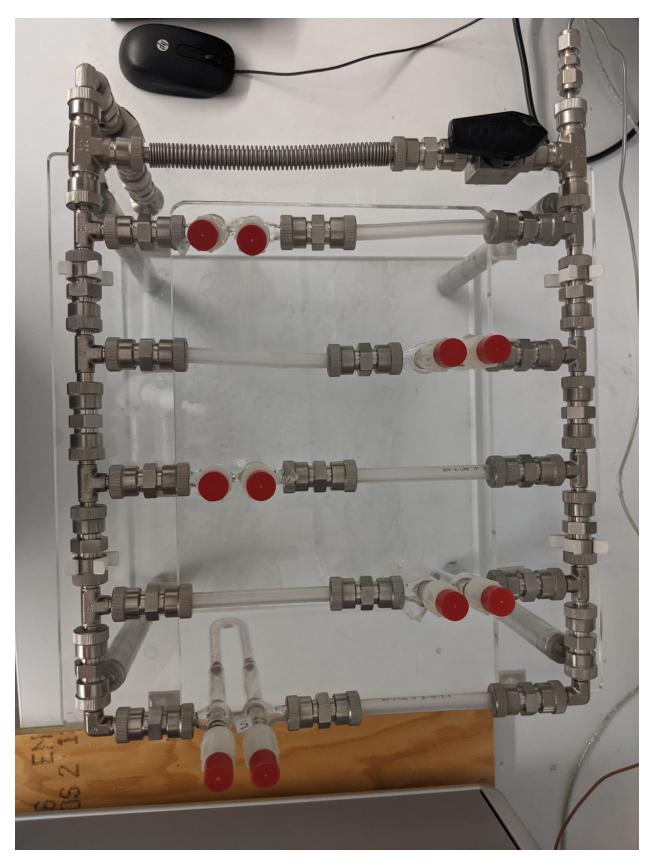
analyzed experimentally here released >99% of C below 600°C. In the critical CO<sub>2</sub> collection range between 100

- 8 and 600°C the average standard deviation of C released at a given temperature was +/- 2.2% of the mean C released within that range. The standard deviation between repeated standard soil samples over the entire temperature range,
- 10 including the calcium carbonate peak between 650 and 800°C, averaged +/- 2.9%.
- 12 We also compared the bulk soil thermograms with the summed thermograms of component density fractions (see Figure 1b). The general agreement of bulk and summed thermograms suggest that there is no significant alteration
- 14 of SOM thermal stability during fractionation and that density fractions may be compared to bulk soil.

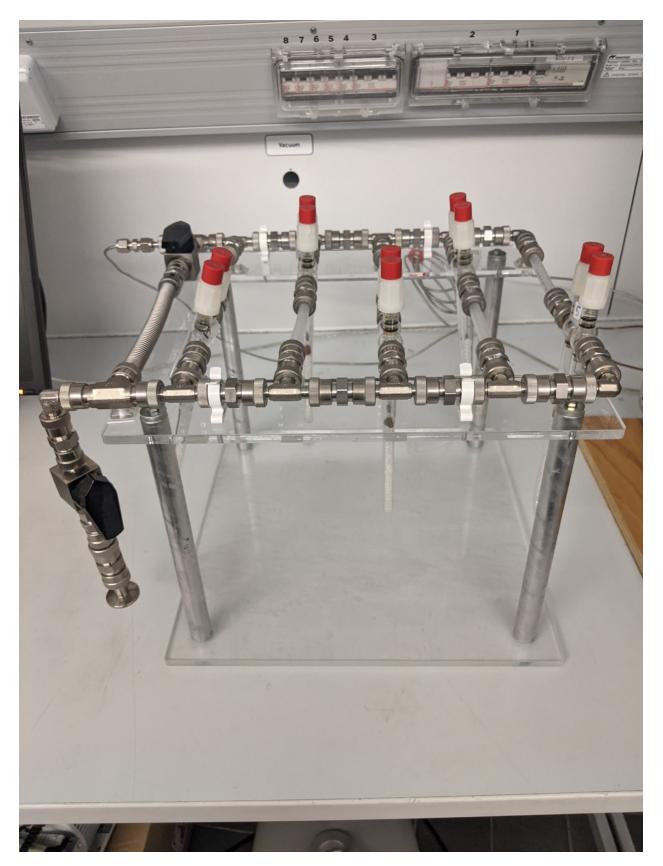
#### 16 ST 1.2 Accuracy of radiocarbon analyses


We analyzed <sup>14</sup>C standards with known isotopic composition to assess the degree to which extraneous C was added


- 18 in our combustion and trapping procedures that could change the isotope signatures of analyzed samples. To assess how much extraneous C with low amounts of <sup>14</sup>C ('dead' C) was added, we analyzed a standard with <sup>14</sup>C values
- 20 containing mostly 'bomb' C (Chinese Sugar Char, diluted with pre-combusted sand to 2% C by mass, UC Irvine Consensus measurement Fm 1.353 +/- 0.003, n = 55) and achieved final values of 1.355 +/- 0.009 (n=3). Not
- 22 included in this average are many analyses made while refining the overall method that tended to be lower (up to Fm 0.034 below accepted values). However, in the configuration used for the soil analyses presented here, values
- 24 were within Fm 0.007 of the known values. To assess whether extraneous modern C was added, we analyzed coal with zero <sup>14</sup>C, diluted with pre-combusted sand. The Fm averaged 0.006 +/- 0.001. The amount of 'extraneous' C
- was also assessed by analyzing only pre-combusted sand that should contain no C, and measuring the amount of CO<sub>2</sub> trapped after the full combustion procedure. Across the whole temperature range, this measured 0.026 mg C
- 28 with average Fm 0.9766 (n=6), representing in most cases 0.5% (for 5 mg total C collected) of the total combusted sample. Such "blank" values were applied for correcting <sup>14</sup>C values reported here, and the blank C and <sup>14</sup>C was
- 30 distributed across all thermal fractions proportionally based on temperature range.


### 32 ST 1.3 Mass balance of thermal fractions

Finally, our confidence that the method produces reliable and repeatable measurements of C content and isotopic 34 composition was evaluated through successful mass and isotope balance. The amount and isotopic signatures of C


- estimated by summing the various fractions compared well with the bulk soil measurements (Figure 1b, Appendix
  tables 1 and 2). For example, summing C-weighted Fm <sup>14</sup>C from the three density fractions (FPOM, OPOM, MOM)
- for the 30-50 cm depth interval yielded 'bulk' Fm of 0.815, slightly below the measured bulk soil value of 0.824.
- 38 Replicate analysis of bulk soil from 30-50 cm yielded Fm values of 0.819 and 0.815, and 0.812 from seven thermal fraction measurements including high temperature tail fractions.

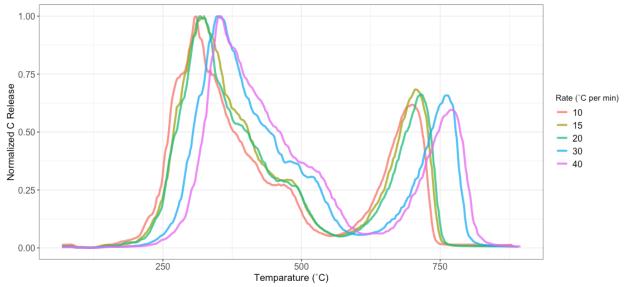




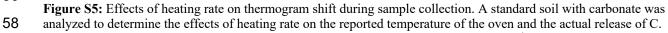


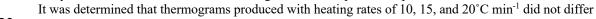
46 Figure S2








- Figure S4: Photos of CO<sub>2</sub> collection manifold. Five glass traps filled with glass beads are attached in parallel.
  Manifold is constructed from Swagelok fittings and tubing. A vacuum pump is attached to the valve pictured in the lower left corner of the center and bottom photos. A bypass valve is included before the traps to evacuate manifold
- and to avoid pressure buildup in instrument when sample gas is not being collected.









60 significantly (p = 0.67). Heating rate of 15°C was used in this analysis.

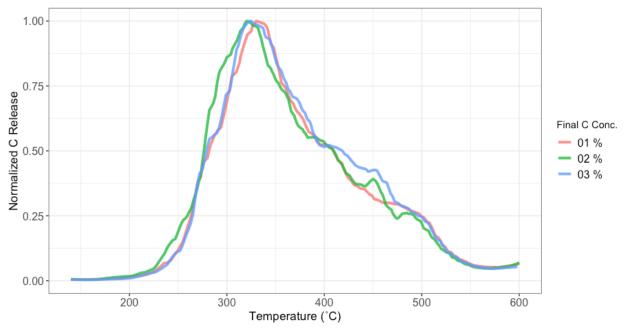



Figure S6: Effect of dilution with pre-combusted (carbon-free) sand on thermograms, heated at 15°C min<sup>-1</sup>. Standard soil analyzed here contained 3.249% C, including calcium carbonate (peak not shown). Dilution was determined to have no effect on thermogram distribution. Sand was added to dilute high-C samples in order to prevent combustion during heating. For this study, dilution to 2% C by mass was used.

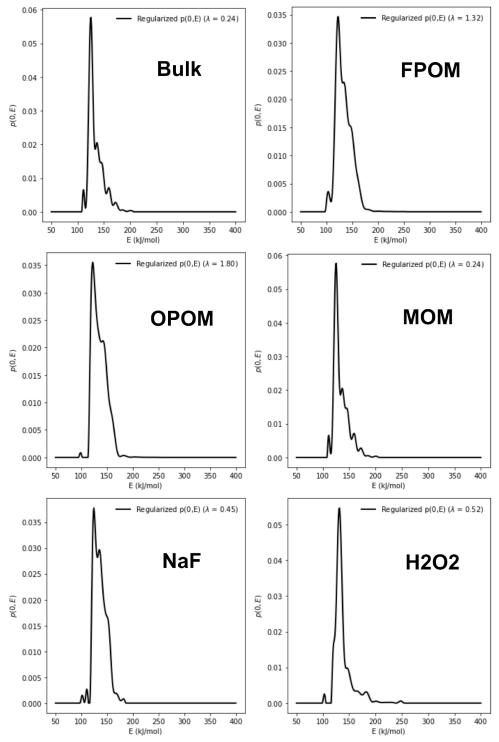
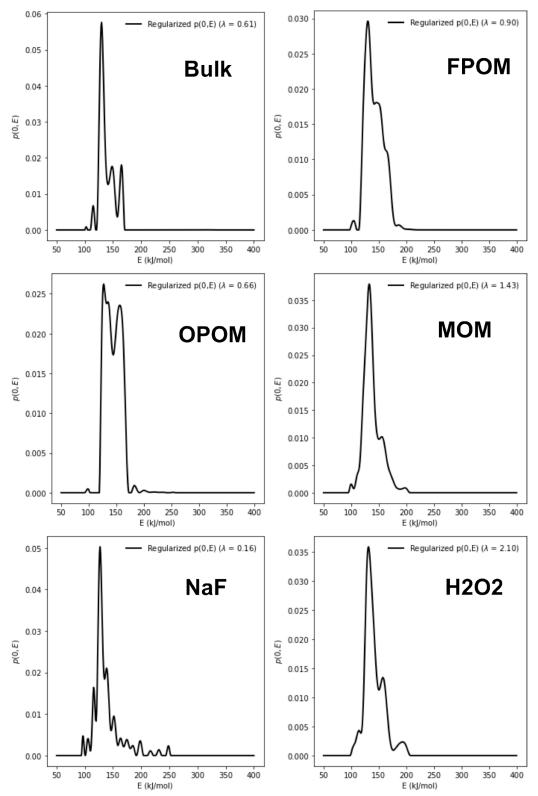




Figure S7: Activation energy density distributions of bulk surface soil and all fractions calculated using package
 'rampedpyrox' (Hemingway et al., 2017). Distributions are regularized and smoothed using an automatically calculated value, reported in each panel.



**Figure S8:** Activation energy density distributions of bulk subsoil and all fractions calculated using package 'rampedpyrox' (Hemingway et al., 2017). Distributions are regularized and smoothed using an automatically calculated value, reported in each panel.

| Table | <b>S1</b> |
|-------|-----------|
|-------|-----------|

| Den 4h | <b>D</b>  | Fraction   | Min. | Max. | 50th | Prop. | $\mu E$                 | $\sigma E$              | <b>F</b> | Fm    | $\delta^{13}C$ | δ <sup>13</sup> C |
|--------|-----------|------------|------|------|------|-------|-------------------------|-------------------------|----------|-------|----------------|-------------------|
| Depth  | Fraction  | <b>(F)</b> | Temp | Temp | Temp | Mass  | (kJ mol <sup>-1</sup> ) | (kJ mol <sup>-1</sup> ) | Fm       | error | (‰)            | Error             |
| 0-10   | Bulk Soil | 1          | 140  | 205  | 188  | 0.041 | 116.49                  | 6.31                    | 1.045    | 0.003 | -28            | 0.02              |
| 0-10   | Bulk Soil | 2          | 205  | 260  | 241  | 0.217 | 121.65                  | 5.42                    | 1.037    | 0.001 | -27.87         | 0.01              |
| 0-10   | Bulk Soil | 3          | 260  | 310  | 286  | 0.389 | 126.56                  | 4.80                    | 1.003    | 0.001 | -27.36         | 0.01              |
| 0-10   | Bulk Soil | 4          | 310  | 350  | 327  | 0.185 | 135.60                  | 6.29                    | 0.987    | 0.001 | -26.44         | 0.01              |
| 0-10   | Bulk Soil | 5          | 350  | 380  | 363  | 0.073 | 144.06                  | 5.62                    | 0.965    | 0.001 | -25.68         | 0.15              |
| 0-10   | Bulk Soil | 6          | 380  | 410  | 393  | 0.042 | 150.23                  | 5.92                    | 0.946    | 0.002 | -25.32         | 0.15              |
| 0-10   | Bulk Soil | 7          | 410  | 450  | 426  | 0.027 | 158.00                  | 6.14                    | 0.907    | 0.002 | -25.66         | 0.15              |
| 0-10   | Bulk Soil | 8          | 450  | 750  | 508  | 0.026 | 172.49                  | 11.05                   | 0.762    | 0.001 | -25.18         | 0.15              |
|        |           |            |      |      |      |       |                         |                         |          |       |                |                   |
| 0-10   | FPOM      | 1          | 140  | 240  | 221  | 0.108 | 115.17                  | 7.40                    | 1.100    | 0.002 | -28.03         | 0.01              |
| 0-10   | FPOM      | 2          | 240  | 315  | 279  | 0.43  | 125.65                  | 6.42                    | 1.094    | 0.002 | -26.46         | 0.01              |
| 0-10   | FPOM      | 3          | 315  | 400  | 355  | 0.334 | 141.76                  | 7.56                    | 1.072    | 0.002 | -26.47         | 0.01              |
| 0-10   | FPOM      | 4          | 400  | 750  | 432  | 0.126 | 160.10                  | 11.12                   | 1.064    | 0.002 | -26.08         | 0.01              |
|        |           |            |      |      |      |       |                         |                         |          |       |                |                   |
| 0-10   | OPOM      | 1          | 140  | 260  | 246  | 0.16  | 120.62                  | 5.38                    | 1.039    | 0.001 | -28.626        | 0.01              |
| 0-10   | OPOM      | 2          | 260  | 320  | 289  | 0.366 | 127.78                  | 6.47                    | 0.996    | 0.001 | -27.9          | 0.15              |
|        |           |            |      |      |      |       |                         |                         |          |       |                |                   |
| 0-10   | OPOM      | 3          | 320  | 400  | 356  | 0.349 | 142.69                  | 6.97                    | 0.985    | 0.002 | -27.55         | 0.01              |
| 0-10   | OPOM      | 4          | 400  | 750  | 430  | 0.126 | 158.92                  | 10.22                   | 0.968    | 0.002 | -26.50         | 0.01              |
|        |           |            |      |      |      |       |                         |                         |          |       |                |                   |

| 0-10 | ) MOM     | 1 | 140 | 250 | 229 | 0.182 | 121.15 | 6.38  | 1.037 | 0.002 | -27.72 | 0.15 |
|------|-----------|---|-----|-----|-----|-------|--------|-------|-------|-------|--------|------|
| 0-10 | MOM       | 2 | 250 | 330 | 287 | 0.569 | 127.18 | 5.03  | 0.991 | 0.002 | -26.95 | 0.15 |
|      |           | _ |     |     |     |       |        |       |       |       |        |      |
| 0-10 | ) MOM     | 3 | 335 | 370 | 347 | 0.135 | 140.06 | 6.53  | 0.963 | 0.002 | -25.50 | 0.15 |
| 0-10 | MOM       | 4 | 370 | 400 | 384 | 0.050 | 148.48 | 5.87  | 0.944 | 0.002 | -25.11 | 0.15 |
| 0-10 | MOM       | 5 | 400 | 450 | 418 | 0.039 | 155.80 | 5.25  | 0.901 | 0.002 | -25.73 | 0.15 |
| 0-10 | ) MOM     | 6 | 450 | 750 | 523 | 0.026 | 179.30 | 20.10 | 0.74  | 0.003 | -25.05 | 0.15 |
|      |           |   |     |     |     |       |        |       |       |       |        |      |
| 0-10 | NaF Res.  | 1 | 140 | 285 | 265 | 0.227 | 124.83 | 6.80  | 0.96  | 0.002 | -29.94 | 0.15 |
| 0-10 | NaF Res.  | 2 | 285 | 355 | 316 | 0.512 | 132.72 | 5.24  | 0.93  | 0.001 | -27.96 | 0.15 |
| 0-10 | NaF Res.  | 3 | 355 | 440 | 382 | 0.156 | 147.94 | 8.42  | 0.91  | 0.002 | -25.23 | 0.15 |
| 0-10 | NaF Res.  | 4 | 440 | 750 | 512 | 0.095 | 179.09 | 16.24 | 0.77  | 0.001 | -24.89 | 0.15 |
|      |           |   |     |     |     |       |        |       |       |       |        |      |
| 0-10 | H2O2 Res. | 1 | 140 | 275 | 256 | 0.176 | 122.98 | 6.73  | 0.87  | 0.001 | -30.67 | 0.15 |
| 0-10 | H2O2 Res. | 2 | 275 | 330 | 302 | 0.366 | 130.50 | 6.09  | 0.89  | 0.001 | -30.32 | 0.15 |
| 0-10 | H2O2 Res. | 3 | 330 | 380 | 352 | 0.234 | 141.19 | 6.18  | 0.88  | 0.001 | -27.44 | 0.15 |
| 0-10 | H2O2 Res. | 4 | 380 | 750 | 417 | 0.225 | 154.57 | 8.48  | 0.79  | 0.001 | -25.89 | 0.15 |

**Table S1:** Data collected and calculated for surface soils (0-10 cm). All temperatures in °C. "50th Temp" indicates the temperature at which 50% of the C had been released within a given thermal fraction. "Prop. Mass" represents the proportion of the total Fraction represented by a given thermal fraction (sum of 1 per Fraction).

Table S2

| Depth | Fraction  | Fraction<br>(F) | Min.<br>Temp | Max.<br>Temp | 50th<br>Temp | Prop.<br>Mass | μE<br>(kJ mol <sup>-1</sup> ) | σE<br>(kJ mol <sup>-1</sup> ) | Fm   | Fm error | δ <sup>13</sup> C<br>(‰) | δ <sup>13</sup> C<br>Error |
|-------|-----------|-----------------|--------------|--------------|--------------|---------------|-------------------------------|-------------------------------|------|----------|--------------------------|----------------------------|
| 30-50 | Bulk Soil | 1               | 140          | 280          | 260          | 0.16          | 125.44                        | 6.86                          | 0.83 | 0.00     | -28.40                   | 0.15                       |
| 30-50 | Bulk Soil | 2               | 280          | 335          | 307          | 0.36          | 131.77                        | 5.01                          | 0.84 | 0.00     | -26.30                   | 0.15                       |
| 30-50 | Bulk Soil | 3               | 335          | 375          | 353          | 0.15          | 141.87                        | 6.87                          | 0.85 | 0.00     | -24.90                   | 0.15                       |
| 30-50 | Bulk Soil | 4               | 375          | 415          | 394          | 0.11          | 151.28                        | 6.43                          | 0.85 | 0.00     | -25.40                   | 0.15                       |
| 30-50 | Bulk Soil | 5               | 415          | 455          | 425          | 0.09          | 160.67                        | 5.68                          | 0.83 | 0.00     | -25.20                   | 0.15                       |
| 30-50 | Bulk Soil | 6               | 455          | 505          | 475          | 0.07          | 165.39                        | 2.56                          | 0.79 | 0.00     | -24.70                   | 0.15                       |
| 30-50 | Bulk Soil | 7               | 505          | 750          | 552          | 0.05          | 167.78                        | 1.63                          | 0.34 | 0.00     | -23.60                   | 0.15                       |
| 30-50 | FPOM      | 1               | 140          | 290          | 267          | 0.21          | 125.57                        | 6.84                          | 1.06 | 0.00     | -27.10                   | 0.15                       |
| 30-50 | FPOM      | 2               | 290          | 350          | 320          | 0.33          | 136.05                        | 6.91                          | 1.09 | 0.00     | -27.00                   | 0.15                       |
| 30-50 | FPOM      | 3               | 350          | 400          | 374          | 0.20          | 149.06                        | 6.74                          | 1.08 | 0.00     | -26.30                   | 0.15                       |
| 30-50 | FPOM      | 4               | 400          | 750          | 443          | 0.26          | 163.69                        | 9.09                          | 1.06 | 0.00     | -24.78                   | 0.15                       |
| 30-50 | OPOM      | 1               | 140          | 285          | 269          | 0.13          | 126.50                        | 6.03                          | 0.85 | 0.00     | -30.40                   | 0.15                       |
| 30-50 | OPOM      | 2               | 285          | 370          | 326          | 0.43          | 136.58                        | 8.15                          | 0.87 | 0.00     | -28.90                   | 0.15                       |
| 30-50 | OPOM      | 3               | 370          | 435          | 402          | 0.29          | 153.47                        | 6.34                          | 0.82 | 0.00     | -27.40                   | 0.15                       |
| 30-50 | OPOM      | 4               | 435          | 750          | 459          | 0.15          | 164.81                        | 11.08                         | 0.84 | 0.00     | -26.40                   | 0.15                       |

| 30-50 | MOM      | 1 | 140 | 285 | 261 | 0.24 | 122.36  | 8.04  | 0.77   | 0.00   | -26.05 | 0.15 |
|-------|----------|---|-----|-----|-----|------|---------|-------|--------|--------|--------|------|
| 30-50 | MOM      | 2 | 285 | 345 | 314 | 0.37 | 132.91  | 5.69  | 0.79   | 0.00   | -26.28 | 0.15 |
| 30-50 | MOM      | 3 | 345 | 415 | 367 | 0.23 | 145.32  | 7.69  | 0.78   | 0.00   | N.D.   | N.D. |
| 30-50 | MOM      | 4 | 415 | 455 | 432 | 0.07 | 158.94  | 5.94  | 0.76 a | 0.01 a | N.D.   | N.D. |
| 30-50 | MOM      | 5 | 455 | 505 | 475 | 0.05 | 167.80  | 6.57  | 0.71 a | 0.02 a | N.D.   | N.D. |
| 30-50 | MOM      | 6 | 505 | 750 | 566 | 0.04 | 185.89  | 10.25 | 0.23 a | 0.02 a | N.D.   | N.D. |
|       |          |   |     |     |     |      |         |       |        |        |        |      |
| 30-50 | NaF Res. | 1 | 140 | 270 | 244 | 0.24 | 118.10  | 8.86  | 0.80   | 0.00   | N.D.   | N.D. |
| 30-50 | NaF Res. | 2 | 270 | 310 | 291 | 0.27 | 128.08  | 4.79  | 0.79   | 0.00   | N.D.   | N.D. |
| 30-50 | NaF Res. | 3 | 310 | 360 | 331 | 0.22 | 135.94  | 6.00  | 0.76   | 0.00   | N.D.   | N.D. |
| 30-50 | NaF Res. | 4 | 360 | 750 | 440 | 0.27 | 16z5.95 | 23.46 | 0.57   | 0.00   | N.D.   | N.D. |
|       |          |   |     |     |     |      |         |       |        |        |        |      |
|       | H2O2     |   |     |     |     |      |         |       |        |        |        |      |
| 30-50 | Res.     | 1 | 140 | 302 | 274 | 0.28 | 125.90  | 8.24  | 0.69   | 0.00   | N.D.   | N.D. |
|       | H2O2     |   |     |     |     |      |         |       |        |        |        |      |
| 30-50 | Res.     | 2 | 302 | 354 | 327 | 0.30 | 135.86  | 5.85  | 0.75   | 0.00   | N.D.   | N.D. |
|       | H2O2     |   |     |     |     |      |         |       |        |        |        |      |
| 30-50 | Res.     | 3 | 354 | 402 | 375 | 0.18 | 146.86  | 7.05  | 0.73   | 0.00   | N.D.   | N.D. |
|       | H2O2     |   |     |     |     |      |         |       |        |        |        |      |
| 30-50 | Res.     | 4 | 402 | 800 | 460 | 0.25 | 167.05  | 14.45 | 0.43   | 0.00   | N.D.   | N.D. |

**Table S2:** Data collected and calculated for surface soils (0-10 cm). All temperatures in °C. "50th Temp" indicates the temperature at which 50% of the C had been released within a given thermal fraction. "Prop. Mass" represents the proportion of the total Fraction represented by a given thermal fraction (sum of 1 per Fraction).

a: Values estimated via mass balance.