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Evolutionary dynamics on graphs has remarkable features: For example, it has
been shown that amplifiers of selection exist that—compared to an unstructured
population—increase the fixation probability of advantageous mutations, while they
decrease the fixation probability of disadvantageous mutations. So far, the theoretical
literature has focused on the case of a single mutant entering a graph-structured
population, asking how the graph affects the probability that a mutant takes over a
population and the time until this typically happens. For continuously evolving systems,
the more relevant case is that mutants constantly arise in an evolving population.
Typically, such mutations occur with a small probability during reproduction events.
We thus focus on the low mutation rate limit. The probability distribution for the
fitness in this process converges to a steady state at long times. Intuitively, amplifiers
of selection are expected to increase the population’s mean fitness in the steady state.
Similarly, suppressors of selection are expected to decrease the population’s mean fitness
in the steady state. However, we show that another set of graphs, called suppressors of
fixation, can attain the highest population mean fitness. The key reason behind this is
their ability to efficiently reject deleterious mutants. This illustrates the importance of
the deleterious mutant regime for the long-term evolutionary dynamics, something that
seems to have been overlooked in the literature so far.

evolutionary graph theory | mutation-selection balance | low mutation rates | deleterious mutant regime

Understanding how spatial structures can affect evolutionary dynamics has been of interest
to evolutionary biologists for a long time. More than a decade ago, a framework known as
evolutionary graph theory was introduced (1). The primary quantity of interest has been
the fixation probability of a mutant on graphs, which is the probability that a mutant with
given fitness takes over the rest of the wild-type population (2–6).

Fixation probability is a central concept in evolutionary biology, as it determines the rate
of evolution in the low mutation rate regime (7, 8). Spatial structure tweaks the strength of
selection and genetic drift (9, 10). As a consequence, some graphs have higher probability
of fixation than others for a mutant with a given fitness value. Of particular interest are
those graphs that increase the fixation probabilities for advantageous mutants and decrease
the fixation probabilities for disadvantageous mutants—so-called amplifiers of selection.
While initially, amplifiers seemed to be special structures (1), it turned out that under
Birth–death (Bd) updating, most random networks are amplifiers of selection (11).

However, fixation describes evolutionary dynamics only on a relatively short time scale.
In the long run, additional mutants will arise, and the population will eventually reach
a steady state in terms of fitness (12). A model that investigates such long evolutionary
trajectories in graph-structured populations has been missing so far. This problem has been
studied via a process where two types of individuals with fixed fitness values compete with
each other, leading to a mutation–selection balance in the steady state (13), but not for
the case of continuously arising mutations with a potentially infinite number of types. The
neutrality counterpart of this problem has been investigated in ref. 14, where equilibrium
properties are shown to be independent of the population structure.

In evolutionary graph theory, every node of a graph is an individual. If an individual
produces an offspring, the offspring is placed in a neighboring node. We focus on
undirected and unweighted graphs, where all neighboring nodes are chosen with the same
probability. Graphs can be classified based on their fixation probability, as compared to
that of the complete graph. The fixation probability of a mutant with fitness f ′ appearing
in a population with fitness f on a complete network C (corresponding to a well-mixed
population) is given by

φI
C (f ′, f ) = φC (f ′, f ) =

1− f
f ′

1−
(

f
f ′

)N
. [1]

Significance

Spatial structure can substantially
affect evolutionary dynamics.
These dynamics are usually
studied through the fixation
process of a single mutation. This
allows one to classify structures,
e.g., as amplifiers, which enhance
the effect of selection. Here, we
provide a model integrating the
fixation process of single
mutations into the long-term
evolutionary dynamics,
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between mutation and selection.
Certain structures that do not
perform well for single fixation
events can perform very well at
longer time scales due to their
ability to reject deleterious
mutants. This means that a
structure can be improved by only
increasing its ability to reject
deleterious mutants—the
increase of its ability to fix
advantageous mutations is less
central than previously thought.
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In this case, all nodes are equivalent, and it does not matter
where the mutation occurs. In the general case, the fixation
probability depends crucially upon the node where the mutant
first arises (15). In Eq. 1, I denotes this initialization scheme,
according to which a mutant arises on the network. To be specific,
I is the probability distribution represented by a row vector of size
N where element i is the probability with which a mutant arises at
node i in a homogenous background. In the simplest case, this is
a uniform probability—this case is typically referred to as uniform
initialization.

Based on fixation probabilities and the initialization scheme,
graphs typically fall into three categories (11):

• An amplifier of selection is a graph G that increases the fix-
ation probability of an advantageous mutant and decreases
the fixation probability of a disadvantageous mutant compared
to a complete graph, φI

G(f ′, f )> φI
C (f ′, f ) for f ′ > f and

φI
G(f ′, f )< φI

C (f ′, f ) for f ′ < f .
• A suppressor of selection is a graph G that decreases the

fixation probability of an advantageous mutant and increases
the fixation probability of a disadvantageous mutant compared
to a complete graph, φI

G(f ′, f )< φI
C (f ′, f ) for f ′ > f and

φI
G(f ′, f )> φI

C (f ′, f ) for f ′ < f .
• An isothermal graph is a graph G that has the same fixation

probability as the complete graph, φI
G(f ′, f ) = φI

C (f ′, f ) for
all f ′ and f . In particular, any graph where the number of links
for each node is the same is an isothermal graph for uniform
initialization [in the more general case of weighted graphs,
where mutants are placed on neighboring nodes with different
probabilities (16). For a structure to be an isothermal graph,
every node should have equal temperature. The temperature of
a node i is equal to the sum of the incoming link weights wji ,∑N

j=1 wji ].

For later purposes, we introduce a fourth type (11, 17), sup-
pressors of fixation:

• A suppressor of fixation is a graph G that reduces the fixation
probability for both advantageous and disadvantageous mu-
tants, φI

G(f ′, f )< φI
C (f ′, f ) for all f ′ �= f . These graphs are

also called reducers of fixation (18).

The definition for isothermal networks has originally been
defined for a uniform initialization scheme. In general, such
a definition would depend on the details of the update rule
(19). The classifications for amplifiers and suppressors above have
also been developed for uniform mutant initialization. For other
initialization schemes—for example, temperature initialization—
the classifications become less straightforward, especially near
neutrality (20).

Model

In order to generate any evolutionary dynamics, we must choose
an update mechanism. We focus on the Bd update rule, where,
first, an individual is selected at random, but proportional to
fitness. This individual produces an offspring, which is placed in
one of the neighboring nodes. We assume that the offspring is
mutated with a small probability μ and identical to its parent with
probability 1− μ. The state of a population is represented by a fit-
ness vector f = (f1, f2, · · · , fN−1, fN )T, where fi is the fitness of
an individual at node i . When an offspring is mutated, we choose

A

B

Fig. 1. Moran Birth-death (Bd) with continuous mutation on a graph. (A) The
Moran Bd update mechanism with continuous mutation is shown for a small
graph. An individual is selected to reproduce with probability proportional
to its fitness. The offspring mutates with probability μ, and its fitness f ′ is
sampled from a distribution ρ(f ′, f), where f is the parent’s fitness. A neigh-
boring individual is then chosen for death at random among the neighboring
nodes, and the offspring is placed in the empty node. We work in the low
mutation rate approximation where μ is very small, such that only a single
type is typically present in the population. (B) Evolutionary dynamics in fitness
space. For low mutation rates, the evolutionary dynamics effectively becomes
a biased random walk on the fitness space. The transition rates depend on
the mutation rate μ, the fitness distribution of the mutant offspring ρ(f ′, f)
(shown in gray), and the fixation probabilities φT

G (f ′, f).

its fitness f ′ from a continuous bounded distribution ρ(f ′, f ),
where f is the parent’s fitness and fmin ≤ f ′ ≤ fmax (Fig. 1A).

Instead of looking into the full evolutionary trajectory of the
system, we focus only on the fitness distribution in the steady state.
As this is difficult for arbitrary mutation rates, we concentrate
on the low mutation rate regime here. In this regime, the entire
population effectively moves as a point (most of the time) in the
fitness space. Typically, every individual in a population has the
same fitness. Thus, the state of the population can be labeled by
a single fitness value, f . This is a good approximation if the time
between two successive mutations is sufficiently high that a new
mutant either gets extinct or takes over the entire population be-
fore the next mutation arises. Thus, our model describes sequential
fixation (21) (Fig. 1B). We are mainly interested in the dynamics
of probability density PG(f , t). One important observation is
that mutations do not arise in all nodes with uniform probability,
but mostly in those nodes that have more incoming links. This is
captured by the idea of “temperature initialization” (20), where
the probability that a mutation arises is proportional to the
temperature of a node i ,

∑N
j=1 wji . In the case of unweighted

networks, wji = 1 if a link between j and i exists; otherwise,
wji = 0. With this, we can write down the master equation of
the corresponding jump process (22, 23),

∂PG(f , t)

∂t
=

∫
df ′ φT

G(f , f ′)ρ(f , f ′)μ︸ ︷︷ ︸
Tf←f ′

PG(f ′, t)

−
∫

df ′ φT
G(f ′, f )ρ(f ′, f )μ︸ ︷︷ ︸

Tf ′←f

PG(f , t), [2]

2 of 11 https://doi.org/10.1073/pnas.2205424119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
PD

L
 E

vo
lu

tio
ns

bi
ol

og
ie

 o
n 

Se
pt

em
be

r 
26

, 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
14

1.
5.

9.
63

.

https://doi.org/10.1073/pnas.2205424119


where Tf ′←f is the probability to change the population’s fitness
from f to f ′. Tf ′←f is given by the product of the probabil-
ity of mutation, μ, the probability that a mutant with fitness
f ′ arises, ρ(f ′, f ), and the probability that such a mutation,
arising preferentially in nodes that are replaced often, reaches
fixation, φT

G(f ′, f ) (where T denotes temperature initialization).
The probability Tf←f ′ is given by an equivalent argument.

The reason behind using fixation probability under tempera-
ture initialization is that the probability for a mutant to arise on
a certain node during reproduction in a homogenous population
is proportional to the temperature of that node (20). This follows
from our assumption that during a birth event, it is always the
offspring individual that replaces a neighboring individual. For the
opposite case, where the parent individual replaces a neighboring
individual and the offspring (potentially a mutant) individual
stays at the focal node, the fixation probability for uniform
initialization has to be used in Eq. 2 instead. The corresponding
evolutionary dynamics on the fitness space is a biased random walk
with transition rates Tf ′←f and Tf←f ′ . To derive the steady state,
P∗
G(f ), we start from the assumption of detailed balance (23),∫

df ′ Tf←f ′P∗
G(f ′) =

∫
df ′ Tf ′←fP

∗
G(f ). [3]

This condition is fulfilled if we have Tf←f ′P∗
G(f ′)=

Tf ′←fP
∗
G(f ) for all f , f ′. From this, we obtain the steady state

(23),

P∗
G(f ) =

1∫
df ′

Tf ′←f

Tf←f ′

=
1∫

df ′
φT
G(f ′, f )

φT
G(f , f ′)

· ρ(f
′, f )

ρ(f , f ′)

. [4]

If the mutant’s fitness distribution ρ(f ′, f ) only depends on
the fitness distance between parent and offspring, ρ(f ′, f ) =
ρ(|f ′ − f |), the population’s steady-state statistics depends only
on the fixation probabilities—in this case, the second factor
cancels out. Furthermore, the steady-state probability density for
the population’s fitness is the same for all isothermal graphs,
irrespective of the offspring mutational fitness distribution—the
first factor is the same for all isothermal graphs, including the
complete graph.

As an example, the steady-state distribution for the complete
graph when mutant’s fitness is sampled from the uniform distri-
bution is

P∗
C (f ) =

N

f Nmax − f Nmin
f N−1. [5]

See App. A for details. This steady-state statistics is exactly the
same as derived in ref. 24. However, in ref. 24, the evolutionary
dynamics was studied by using a nearest-neighbor jump process
on a discretized state space. In our derivation of Eq. 5, at a given
point in the dynamics, the population could jump to any arbitrary
point of the fitness space. Yet, interestingly, we obtain the same
steady-state distribution for the complete graph as derived in ref.
24, but for a different scenario.

To study mutation–selection balance on graphs, we choose the
complete graph, the star graph, and the (weighted) star graph with
self-loops, i.e., a star where every individual can also be replaced
by its own offspring. Under temperature initialization, a complete
graph is an isothermal graph. For finite N , the star is a suppressor
of fixation (for N →∞, it becomes a suppressor of selection),
and the star graph with self-loops is a piece-wise amplifier of
selection (20) (only for N →∞, it becomes an amplifier in a
strict sense) (Fig. 2 B and D). Adding self-loops and making edges

weighted can make the star graph an amplifier of selection for
temperature initialization. According to ref. 25, for a structure to
be an amplifier of selection, it should have a sufficient number
of cold nodes (low-temperature nodes), where a mutant is less
likely to get replaced by wild-type individuals and, thus, increasing
the likelihood for a mutant to fix. The star graph (unweighted,
without self-loops) indeed has many cold nodes, making it an
amplifier of selection under uniform initialization (1) (Fig. 2 A
and C ). However, under the temperature initialization process, the
initial mutant appears on the central node with high probability,
as the central node has the highest temperature. Thus, the mutant
is more likely to get extinct during the course of the dynamics,
explaining its suppressing nature. By adding self-loops to the
star graph with a larger weight, one decreases the temperature
of the central node and increases the temperature of the leaves,
thus increasing the likelihood for the leaf nodes to receive an
initial mutant. This transformation facilitated via self-loops and
weighted edges is the reason behind the amplifying nature of the
self-looped star graph.

We use these graphs because exact expressions for the corre-
sponding fixation probabilities are known (App. C ). The fixation
probabilities for these three graphs under uniform and tempera-
ture initialization are plotted as a function of the mutant’s fitness
in Fig. 2.

The microscopic Moran-Bd update is costly to simulate for low
mutation rates, especially for large graphs. Thus, we use a coarse-
grained description, where we focus on the changes arising from
mutations. We use the following Monte Carlo-type algorithm
(26, 27), which measures time steps in terms of mutational
events:

• An initial fitness value f between fmin and fmax is assigned to
each individual in a population on a graph G .

• At every time step, a mutant f ′ is drawn from a distribution
ρ(f ′, f ).

• The fitness of the entire population is then updated to f ′

with probability φT
G(f ′, f ). With probability 1− φT

G(f ′, f ),
it remains the same. Note that this step takes into account
that mutants tend to arise in different places with different
probabilities.

• The last two steps are repeated for a sufficiently long number of
time steps until a mutation–selection balance is attained.

We use this algorithm to infer how mutation–selection balance
is attained in our three spatial structures. In Fig. 3 A and B, the
independent fitness trajectories, as well as the ensemble average
fitness trajectory of the population, are plotted as a function of
the number of mutations occurred.

Results

The star with self-loops, an amplifier of selection, reaches the high-
est steady-state fitness in its mutation–selection balance (Fig. 3B).
This is expected because, compared to the other graphs, the self-
looped star graph is best at fixing beneficial mutants for temper-
ature initialization. What is surprising is that the star graph, a
suppressor of fixation with lower fixation probability for all fitness
values of a mutant, attains not just higher steady-state fitness than
the complete graph (and, thus, all isothermal graphs), but almost
the same balance as the star with loops, an amplifier of selection.
We also observe that, just like isothermal networks, the star graph
with loops takes fewer mutations to reach the balance than the
star graphs, which takes many more mutations to reach the steady
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Complete
Star

Star with self-loops

Complete
Star

Star with self-loops

Complete
Star

Star with self-loops

Complete
Star

Star with self-loops

A B

C D

Fig. 2. Fixation probabilities for uniform and temperature initialization. (A) The fixation probabilities φU
G (f ′, f) as functions of mutant’s fitness f ′ with

background fitness f = 1 for uniform initialization U for three graphs with N = 10: the complete graph, the star, and a weighted star with self-loops. For
this initialization scheme, both the star and the star with loops are amplifiers of selection, and all fixation probabilities intersect at f ′ = f and φU

G (f , f) = N−1.
(B) Fixation probabilities as in A, but for temperature initialization. Now, the star with self-loops is only a piecewise amplifier of selection, as it reduces the fixation
probability for very large f ′. The star is a suppressor of fixation and reduces the fixation probability for all mutant fitness values. Note that even under neutrality,
f ′ = 1, the fixation probabilities are different. (C) Fixation probabilities as in A, but with N = 100. For large N, probabilities to fix deleterious mutants decrease,
while they increase for the beneficial mutants. (D) For temperature initialization, a larger self-looped star graph amplifies selection for the entire fitness domain
considered in the figure. On the other hand, even at N = 100, the star graph continues to be a suppressor of fixation; see D, Inset (Parameters: with n leaves,
the weight of all the leaves’ self-loops is 1 − n−1, and the weight for the center’s self-loop is 1 − n−2. All the links directed from the center to leaves and vice
versa have weights n−3 and n−1, respectively.

state. In the subsequent sections, we will discuss these observations
and give an explanation for them.

Amplifiers Attain Higher Steady-State Fitness in Mutation–
Selection Equilibrium. Amplifiers of selection are better at
fixing beneficial mutants and avoiding the fixation of deleterious
mutants than isothermal graphs. They are expected to attain a
higher steady-state fitness in the mutation–selection balance than
isothermal graphs. We verify this expectation in Fig. 3 C and D,
which shows the average steady-state fitness of the population for
different population sizes. We consider two types of mutational
fitness jump distribution, a uniform and a (truncated) Gaussian,
centered around the parent’s fitness. We observe that, regardless
of the mutational fitness distribution, the star graph with loops
attains a higher steady-state fitness than the complete graph for
all considered population sizes. In App. B, we provide a formal
proof that, for any mutational fitness distributions, amplifiers
of selection have higher steady-state fitness than well-mixed
populations and suppressors of selection. As a reference, by using
Eq. 5, we derive the steady-state average fitness for the complete
graph with uniform mutational fitness distribution,

〈f 〉∗C =
N

N + 1

f N+1
max − f N+1

min

f Nmax − f Nmin
. [6]

Thus, in the limit of large N , 〈f 〉∗C → fmax. The steady-state
fitness approaches the maximal possible value, 〈f 〉∗ → fmax for
N →∞, for both the complete and the self-looped star graph.
This is true for a general mutational fitness distribution, where
there is always a finite probability to fix a beneficial mutation,
and where the probability to fix a deleterious mutant goes to
zero in the limit of N →∞. In fact, fmax becomes an absorbing
state for the evolutionary trajectories on the amplifiers of selection
and the well-mixed population. Therefore, the fluctuations around

the steady state for these graphs also go to zero. This can be
illustrated by studying the large-N limit dynamics of the self-
looped star graph and the complete graph. In the limit ofN →∞,
the fixation probability for the self-looped star under temperature
initialization becomes 1− f 2/f ′2 for any f ′ > f and 0 otherwise
(App. C ), whereas from Eq. 1, it follows that for the complete
graph, the fixation probability becomes, 1− f /f ′ for f ′ > f
and 0 otherwise. Hence, in the limit of N →∞, both of these
graphs can only fix beneficial mutants, and, thus, the long-term
mutation–selection dynamics gets absorbed at fmax. This also leads
to the conclusion that the self-looped star needs fewer mutations
than the complete graph to reach fmax. The large-N analysis for
the star graph (unweighted and without self-loops), however, is
a bit subtle, as in the limit of N →∞, the fixation probability
becomes zero for all possible pairs of mutant and background
fitness values. For very large, but finite, App. D, we show that
the steady-state average fitness for the star graph also converges
to fmax.

Do Amplifiers Maximize Average Fitness? The star graph with
no self-loops, a suppressor of fixation, not only attains higher
steady-state fitness in the mutation–selection balance than the
complete graph, but almost the same steady-state fitness as the
star with self-loops, an amplifier of selection, as shown in Fig. 3
C and D. In App. D, we show that even for very large N , the
star graph continues to attain higher steady-state average fitness
than the well-mixed population. There are two main factors that
drive the steady-state fitness: 1) fixing beneficial mutants with high
probability and 2) avoiding the fixation of deleterious mutants.
As an amplifier of selection, the star with self-loops is superior
in fixing beneficial mutants. But the star without self-loops is
much better at avoiding the fixation of deleterious mutants (Fig.
2 B, Inset, and D, Inset). In this way, the star without self-loops
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Star with self-loops
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Star

Star with self-loops

A B

C D

Fig. 3. Fitness trajectories and steady-state average fitness for different graphs. (A) The average fitness trajectories (in dark colors) for the complete graph, the
star graph, and the self-looped star graph with a uniform mutational fitness distribution, starting from a population where every individual has fitness f = 1.
For each graph, the average fitness trajectory is computed by performing an ensemble average over an ensemble of 2,000 independent realizations. In the
background of A, five such independent realizations are shown (in light colors) for each graph. After reaching high fitness value, the fitness of the complete
graphed population fluctuates more than the other two graphs. This is because after reaching higher fitness values, deleterious mutations become more likely
to appear. The complete graph is worse at rejecting such deleterious mutants compared to other two graphs (Fig. 2 B, Inset, and D, Inset); it experiences more
fluctuations. (B) Although the star is a suppressor of fixation, it attains the same steady-state fitness in the mutation–selection balance as the self-looped star
graph. This is due to its better response to deleterious mutants (Fig. 2 B, Inset, and D, Inset). In C and D, steady-state fitnesses in the mutation–selection balance
attained for the self-looped star graph (green) and complete graph (blue) as a function of population size are shown in with uniform (C) and truncated (D)
Gaussian mutational fitness distribution. The SD for the Gaussian distribution is chosen to be σ = 1. Solid lines are the numerical solutions of Eq. 4, and circles
represent simulation points obtained using the Monte Carlo algorithm, while triangles correspond to microscopic Moran Bd simulations, which are feasible only
for very small N. Regardless of the mutational fitness distribution, the self-looped star (an amplifier) always attains higher steady-state fitness in the mutation–
selection balance than isothermal graphs for all (finite) N. Red circles correspond to the steady-state fitness attained by the star graph, a suppressor of fixation.
From C and D, we find that even for large N, the star graph reaches almost the same steady-state fitness as that of the self-looped star graph. Parameters
N = 10, fmin = 0.1, and fmax = 10.

compensates for its lower fixation probabilities of beneficial mu-
tants. Therefore, the fixation probability profile for deleterious
mutants can contribute considerably to the long-term mutation–
selection evolutionary dynamics. We expect this to be quite gen-
eral, and not just restricted to the graphs that we have considered.
We argue this in the following way: Let us take two amplifiers,
A1 and A2, and, without any loss of generality, assume that
A1 is a better amplifier than A2. That is, A1 is better in fixing
advantageous mutants and avoiding the fixation of deleterious
mutants than A2. In that case, by the proof given in App. B,
it follows that the average steady-state fitness of A1 is greater
than the average steady-state fitness of A2—i.e., 〈f 〉∗A1

> 〈f 〉∗A2
.

However, if A2 can be modified, along the lines of ref. 28, such
that its fixation probability for deleterious mutants becomes much
lower than A1, the average steady-state fitness 〈f 〉∗A2

can exceed
〈f 〉∗A1

. But this compensation for lower fixation probabilities of
beneficial mutants by decreasing the acceptance rate of deleterious
mutants comes at a cost in terms of the time it takes to reach the
steady state.

Time to Reach the Steady State. So far, we have studied the
steady-state average fitness values for different graphs. Now, we
discuss the time they take to reach their respective steady states.
To estimate these times, we use the concept of mixing times (29).
In a generic stochastic process, the probability distribution PG(f )

defined on a space Ω changes with time before reaching its steady
state. The mixing time can then be defined as the time when the
distance of this evolving distribution to its steady stateP∗

G(f ) goes
to zero. Formally, the mixing time tmix is defined as the minimal
time when the distance d(t) to the steady-state distribution is
smaller than a threshold ε,

tmix(ε) = min{t : d(t)≤ ε}, [7]

where

d(t) =
1

2

∑
f∈Ω

|PG(f , t)− P∗
G(f )|. [8]

In Fig. 4A, we find that the star graph, a suppressor of fixation,
attains the same balance as the self-looped star, but takes many
more mutations to reach the steady state than all other considered
graphs. The mixing times for the complete and the self-looped star
do not vary much with the population size. In fact, it decreases
for the self-looped star with increasing N . This is because the
self-looped star becomes a better amplifier for larger N (Fig.
2 B and D). Adaptation for the complete graph and the self-
looped star graph is mostly governed by the fixation of beneficial
mutants, which improves with large N . On the other hand, the
adaptation for the star graph depends crucially on preventing
the fixation of deleterious mutants, as it becomes less likely to
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A B

Fig. 4. Approach to the steady state. (A) Mixing time for various graphs as a function of population size N measured in number of mutations. Parameters
are same as in Fig. 3C. Mixing times have been obtained by using the Monte Carlo algorithm. The star graph takes the longest to reach a steady state. This is
because the star graph, especially for large N, has very small fixation probabilities, even for beneficial mutants, and, thus, more attempts to increase fitness
are needed to reach the steady state (for the mixing time, we assume ε = 1

4 in Eq. 7). (B) Increase of average fitness on the directed line with self-loops. We
compare Eq. 42 and the corresponding microscopic Moran Bd simulations. Parameters are the same as in Fig. 3, with a mutation probability μ = 10−4. We see
a good agreement between simulations (orange symbols) and the analytical result (gray line). From App. E, we know that the relaxation time for single rooted
graphs goes as N

μTr
. Substituting values for the parameters and the root temperature for the directed line with self-loops, Tr =

1
2 , we get the mixing time to be

approximately 2 × 105. Here, the time is measured in terms of the number of Moran Bd steps. Although the simulation here is performed for the self-looped
directed line, the same result is expected for any other single rooted (self-looped) graph, as long as μ is sufficiently low. For more details, see App. E.

fix beneficial mutants with the increase in N (Fig. 2 B and D).
Therefore, most mutations arising in this graph do not reach
fixation. Another interesting observation is that for large N , the
self-looped star graph has the smallest mixing time. This contrasts
with the typical fixation probability and time relation, where
larger fixation probability tends to correlate with higher fixation
times (30–33). The mixing time is difficult to calculate for the
general case. But for single rooted graphs with φI

G ∼ 1
N , it can

be computed efficiently. In fact, for single rooted graphs, the full
temporal statistics can be computed (App. E). In Fig. 4B, we see a
good agreement between the microscopic Moran Bd simulations
performed for the self-looped directed line and the analytical
expression for the average fitness trajectory (Eq. 42). We also
verify that the self-looped directed line, a suppressor of selection,
attains lower steady-state average fitness in the mutation–selection
balance than the complete graph and the self-looped star graph.
This is in accordance with App. B, where suppressors of selection
are proved to attain lower steady-state fitness than the complete
graph and amplifiers of selection.

Gaussian Phenotype-Fitness Map. Until now, the dynamics were
considered in fitness space. However, in many cases, mutations
occur on the level of an individual’s phenotype. In that case,
the state of a population is represented by a phenotype vector
p= (p1, p2, · · · , pN−1, pN )T, where pi is the phenotypic trait
value of the individual at node i . The Moran Bd update still
only takes the fitness of individuals into account. Therefore, a
phenotype-fitness map f (p) is used to assign a fitness value to
a phenotype. The fitness profile of the population can then be
denoted by f(p) = (f (p1), f (p2), · · · , f (pN ))T. Similar to the
previous case, when an offspring is mutated, we choose its pheno-
type p′ from a continuous bounded distribution ρ(p′, p), where p
is the parent’s phenotypic value and pmin ≤ p′ ≤ pmax. In this way,
the work presented so far is identical to what would be obtained
by considering a linear phenotype-fitness map, f (p) = p. In this
section, we study the dynamics of a nonmonotonic Gaussian
phenotype-fitness map. In Fig. 5A, we show that the order of
the steady-state fitness in mutation–selection balance for different
graphs remains the same as that of the linear phenotype-fitness

A B C

Complete
Star

Star with self-loops

Complete
Star

Star with self-loops

Complete
Star

Star with self-loops

Fig. 5. Gaussian phenotype-fitness map: Fitness and phenotypic trajectories for different graphs. Here, we consider a Gaussian phenotype-fitness map, f(p) =

fopt exp(− (p−popt)
2

2σ2
p

), where popt is the optimal phenotype, where the fitness is maximal and f(popt) = fopt. (A) As in the case of a linear phenotype-fitness map,

the star and the self-looped star have a higher state fitness than isothermal graphs. (B) All graphs converge to an average phenotype corresponding to the
fitness maximum, but they have different fitness in steady state (A). The reason for this is differences in the fluctuations in steady state. (C) The SD of the
phenotypes shows that the complete graph is more prone to fluctuations than the other two graphs. Parameters fopt = 10, popt = 5.05, and σp = 1, all other
parameters are as in the previous figures, with σ = 0.5 for the Gaussian mutational jump phenotype distribution.
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map. It is interesting to note that the average steady-state pheno-
type for all the graphs is the same (Fig. 5B). Nevertheless, we see
different steady-state average fitness values. Even though all graphs
have the same steady-state phenotypic value, isothermal graphs are
more prone to fluctuations and have a lower steady-state average
fitness value (Fig. 5C ). This happens again because the other two
graphs are better in preventing the fixation of deleterious mutants.
At long times, after reaching higher fitness values, populations are
more likely to receive deleterious mutations than beneficial ones.
Therefore, in the steady state, what determines fitness fluctuations
of a population is its ability to reject deleterious mutants. In a
nutshell, the steady-state fitnesses of graphs need not be same
even when they have same phenotypes because the average of a
function in general is not equal to the function of average, i.e.,
〈f (p)〉 �= f (〈p〉).

Discussion

In evolutionary graph theory, evolutionary dynamics on graph
structures has been studied in great detail. While the field has been
mostly driven from the mathematical and computational commu-
nity (1, 2, 19, 25, 32), partly driven by biological applications (17,
34, 35), now, there is increasing interest in applying these ideas to
experimental systems in microbiology (36, 37).

The prospects of engineering a population structure that can
optimize the chances to evolve certain mutations or to observe
evolved population structures that minimize the evolution of
mutations seem exciting, but these applications call for an exten-
sion of the field of evolutionary graph theory: Most applications
implicitly assume that each node is a small population, and not
all results carry over from graphs of individuals to graphs of
subpopulations (38–41). In addition, the field has focused so far
on fixation probability and fixation time (42–49).

This approach assumes that we can focus on the fate of a single
mutant, but it can break down when mutations continuously
arise, especially in graphs where the time to fixation or extinction
is very high. Moreover, in the case where mutations continuously
arise, one has to take into account where they arise. Thus, one
needs to work with temperature initialization, where the defini-
tions of amplifiers and suppressors of selection are less clear-cut.

We developed a model that takes such a continuous supply
of mutations into account. We worked in the low mutation rate
regime, where the fixation time of a mutant is much smaller than
the average time between the two successive mutants. We found
that the prevention of deleterious mutants from fixing can be more
important than increasing the chances of advantageous mutants
in order to obtain a higher steady-state fitness in the mutation–
selection balance. In our case, the star, a suppressor of fixation
for temperature initialization, beats isothermal graphs and attains
almost the same balance as a self-looped star, an amplifier. The
cause for this is the ability of the star graph to prevent deleterious
mutants much better from fixing than isothermal graphs. The
deleterious mutants regime is usually overlooked in the literature
while studying fixation probabilities by using large-N arguments.
However, here, we have shown that the deleterious mutants regime
is equally important, if not more, even for largeN , as the beneficial
mutants regime when studying long-term evolutionary dynamics.

Typically, amplifiers of selection also have a higher fixation time
(25, 32, 33). Thus, one has to be careful that the assumption
of small mutation rate is still fulfilled. When the fixation time
becomes comparable to the average time between two successive
mutations, one expects deviation from the low mutation rate
approximation. On going beyond the weak mutation approx-
imation, we found that the star continues to maintain higher

steady-state average fitness in the mutation–selection balance than
the complete graph, while the self-looped star attains a lower
steady-state average fitness than the complete graph outside the
low mutation rate (App. F ). Therefore, an amplifier of selection
need not maximize fitness both inside and outside the low muta-
tion rate regime. However, within the weak mutation rate regime,
structures that allow more mutations to reach fixation will have
a smaller mixing time—therefore, amplifiers of selection tend to
have a lower mixing time until their steady-state fitness is reached.

Due to their ability to reach a high steady-state fitness, pop-
ulation structures that suppress selection could be much more
interesting in applications than previously thought—suppressing
selection may be as relevant as amplifying it. We have shown that
in a situation where a dynamic, graph-structured population con-
tinuously evolves, the amplification of selection via the promotion
of advantageous mutations does not necessarily imply a higher
steady-state fitness. Instead, in such a process, one has to carefully
consider also the fate of deleterious mutations, an issue that has so
far not been in the focus of evolutionary graph theory.

Appendix

A. Steady State for the Complete Graph. Here, we derive the
mutation-selection balance steady-state statistics for the complete
graph. To do so, we assume that the mutant’s fitness is drawn
from a uniform distribution defined over the domain [fmin, fmax].
Therefore, the general form of the steady-state fitness distribution,
Eq. 4, reduces to

P∗
G(f ) =

1∫
df ′

φT
G(f ′, f )

φT
G(f , f ′)

· 1
. [9]

By inserting the fixation probabilities for the complete graph
in the above equation using Eq. 1, we obtain

P∗
C (f ) =

1∫
df ′

(
f ′

f

)N−1
=

f N−1∫
df ′ f ′N−1

=
Nf N−1

f Nmax − f Nmin
.

[10]

Using the above distribution, the steady-state average fitness in
the mutation–selection balance for the complete graph takes the
form,

〈f 〉∗C =

∫
df fP∗

C (f ) =
N

N + 1

f N+1
max − f N+1

min

f Nmax − f Nmin
. [11]

B. Amplifiers of Selection Attain Higher Steady-State Fitness in
Mutation–Selection Balance than Suppressors of Selection.
Here, we prove that amplifiers of selection attain higher steady-
state fitness in their mutation–selection balance than suppressors
of selection. We denote an arbitrary amplifier by A and an
arbitrary suppressor by S . From the definitions of amplifiers
and suppressors mentioned in the introduction, we have for every
f ′ < f (and arbitrary initialization scheme I)

φI
A(f , f

′)> φI
S (f , f

′), [12]

as well as

φI
A(f

′, f )< φI
S (f

′, f ), [13]

Combining these two inequalities, we get,

φI
A(f

′, f )

φI
A(f , f

′)
<

φI
S (f

′, f )

φI
S (f , f

′)
. [14]
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Multiplying the above equation with ρ(f ′, f )/ρ(f , f ′), fol-
lowed by integrating over f ′ from fmin to f , we obtain,

f∫
fmin

df ′
φI
A(f

′, f )

φI
A(f , f

′)
· ρ(f

′, f )

ρ(f , f ′)
<

f∫
fmin

df ′
φI
S (f

′, f )

φI
S (f , f

′)
· ρ(f

′, f )

ρ(f , f ′)
.

[15]

Similarly, we find,
fmax∫
f

df ′
φI
A(f

′, f )

φI
A(f , f

′)
· ρ(f

′, f )

ρ(f , f ′)
>

fmax∫
f

df ′
φI
S (f

′, f )

φI
S (f , f

′)
· ρ(f

′, f )

ρ(f , f ′)
.

[16]

By making use of the steady-state solution Eqs. 4 and 15,
we find an inequality for probability density functions at the
boundary fmax of the fitness domain,

P∗
A(fmax)> P∗

S (fmax). [17]

While Eq. 4 contains temperature-initialized fixation proba-
bilities, the same expression follows for the steady-state statistics
for any arbitrary initialization. As an example, instead of the
mutations taking place during reproduction, they could appear
spontaneously at any of the nodes. Eq. 4 would then contain
uniform initialized fixation probabilities.

Similarly, at the fitness boundary fmin, using Eqs. 4 and 16, we
have,

P∗
A(fmin)< P∗

S (fmin). [18]

The very same inequalities, [17] and [18], hold if A (amplifier)
or S (suppressor) is replaced by C (complete).

Let us now first prove that amplifiers of selection attain higher
steady-state fitness in mutation–selection balance than the com-
plete graph. We take the case of an amplifier and the complete
graph of the same size. The inequalities [17] and [18] imply that
there exists a fitness, f̂ , such that,

P∗
A(f̂ ) = P∗

C (f̂ ). [19]

For simplicity, here, we assumed that there is only one intersec-
tion point for the curves P∗

A(f ) and P∗
C (f ). The proof, however,

is not restricted to this assumption and can be extended to the
general case where more than one intersection points are there.
The main idea behind the proof is sketched in Fig. 6.

Let us define the P∗
A(f ) as:

P∗
A(f ) =

{
P∗
C (f ) + ε<A(f ), if f ≤ f̂

P∗
C (f ) + ε>A(f ), otherwise.

[20]

From the normalization condition of P∗
A(f ) and P∗

C (f ), it
follows that ∣∣∣∣∣∣∣

f̂∫
fmin

df ε<A(f )

∣∣∣∣∣∣∣=
fmax∫
f̂

df ε>A(f ). [21]

We are interested in the difference of mean fitness in the steady
state,

〈f 〉∗A − 〈f 〉∗C =

f̂∫
fmin

df f ε<A(f )

︸ ︷︷ ︸
Γ1

+

fmax∫
f̂

df f ε>A(f )

︸ ︷︷ ︸
Γ2

. [22]

fmin f̂ fmax

P ∗
A(fmin)

P ∗
C(fmin)

P ∗
A/C(f̂)

P ∗
C(fmax)

P ∗
A(fmax)

︸ ︷︷ ︸
︷ ︸︸ ︷

ε<A(f)

ε>A(f)

f

P
∗ A
/
C
(f
)

Fig. 6. Sketch for the proof. Here, we sketch the main idea behind the
proof that the average fitness of an amplifier of selection exceeds that of a
suppressor of selection or the complete graph in the steady state. Without
any loss of generality, we take the case of an amplifier A and the complete
graph C. The proof starts by first computing the order of P∗

A/C(f) at the
fitness boundaries fmin and fmax. It turns out that P∗

A (fmin) < P∗
C (fmin) and

P∗
A (fmax) > P∗

C (fmax). This implies that there exists a fitness point f̂ , where
these probability densities intersect. P∗

A is then decomposed as the sum of
P∗

C and the functions ε
</>
A (Eq. 20). By using the normalization conditions for

P∗
C and the properties of functions ε

</>
A (Eq. 21), we prove that amplifiers

of selection attain higher steady-state fitness than the well-mixed population
and, by extension, the suppressors of selection.

The first term in the above equation is negative, Γ1 < 0, while
the second term is positive,Γ2 > 0. In the following, we show that
the magnitude of the term Γ1 is less than the term Γ2. Taking Γ1,
we find that

|Γ1|< f̂

∣∣∣∣∣∣∣
f̂∫

fmin

df ε<A(f )

∣∣∣∣∣∣∣. [23]

Similarly,

f̂

fmax∫
f̂

df ε>A(f )< Γ2. [24]

Now, because

f̂

∣∣∣∣∣∣∣
f̂∫

fmin

df ε<A(f )

∣∣∣∣∣∣∣= f̂

fmax∫
f̂

df ε>A(f ), [25]

using inequalities [23] and [24], we find |Γ1|< Γ2. Therefore, at
last, we have

〈f 〉∗A > 〈f 〉∗C . [26]

Following the same procedure, one can show that 〈f 〉∗C >
〈f 〉∗S . This implies that 〈f 〉∗A > 〈f 〉∗S for all amplifiers of selection
A and suppressors of selection S .

C. Fixation Probability for the Weighted Self-Looped Star Graph
under Temperature Initialization. In this section, we introduce
the weighted self-looped star graph that has been used throughout
the main text. It is defined by the weighted adjacency matrix

w =

⎛
⎜⎜⎜⎜⎝
1− δ δ

n
δ
n · · · δ

n
λ 1− λ 0 · · · 0
...

...
. . . . . .

...
λ 0 · · · 1− λ 0
λ 0 · · · 0 1− λ

⎞
⎟⎟⎟⎟⎠, [27]
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with 0< λ≤ 1 and 0< δ ≤ 1. Here, wij is the weight of the link
directed from the node i to node j , with the center being the
node 0. The fixation probability under temperature initialization
for this graph has been derived by using the techniques of martin-
gales (3, 20) and is given by

φT
Gn+1(λ,δ)

(f ′, f ) =
1−

(
f ′

f

)2

nλ f ′

f + δ

1

n + 1

×
n3(1−λ)λ2+n2λδ

(
f ′

f +λ
)
+nλδ

(
f ′

f +δ
)
+(1−δ)δ2(

nλ f ′

f + δ
)(

δ f ′
f +nλ

δ f ′
f +nλ

(
f ′
f

)2

)n

− f ′

f

(
δ f ′

f + nλ
) ,

[28]

where Gn+1(λ, δ) denotes the weighted self-looped star graph
with n leaves. In the limit of n →∞, when λ and δ are inde-
pendent of n , Eq. 28 becomes,

lim
n→∞

φT
Gn+1(λ,δ)

(f ′, f ) =

⎧⎨
⎩
(
1−

(
f
f ′

)2
)
(1− λ), if f ′ > f ,

0 otherwise.
[29]

We use two versions of this weighted graph by first setting
λ= δ = 1 in the above equation that results in the unweighted
star graph, which, however, is a suppressor in the limit
n →∞ under temperature initialization. This is reflected by
limn→∞ φT

Gn+1(λ=1,δ=1)(f
′, f ) = 0 for all f ′ and f . Setting

instead λ= 1
n and δ = 1

n2 followed by taking the infinite
population size limit of Eq. 28 yields a structure that is an
amplifier for n →∞. That is,

lim
n→∞

φT
Gn+1(λ,δ)

(f ′, f ) =

{
1−

(
f
f ′

)2

, if f ′ > f ,

0 otherwise.
[30]

D. Large-N Steady-State Fitness Statistics of the Simple Star
Graph. Here, we derive the steady-state statistics for the star
graph (without self-loops, unweighted) for large, but finite, n
(= N − 1) under temperature initialization. To do so, we work
with the uniform mutational offspring fitness distribution. In that
case, from Eq. 4, we know that the steady-state fitness distribution
of a graph depends only on the fixation probabilities. Therefore,
to derive the steady-state distribution for the star graph in the
limit of large n , we first approximate the temperature-initialized
fixation probability, φT

Gn+1(λ=1,δ=1)(f
′, f ). Unless specified, we

use the shorthand Gn+1 to denote a star graph (without self-
loops, unweighted) with n leaves. To approximate the fixation
probability, we first set λ= 1 and δ = 1 and then perform a Taylor
expansion of Eq. 28 around 1/n = 0, leading to

φT
Gn+1

(f ′, f ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
f ′
f −1

)(
1+ f ′

f

)2

n
(

f ′
f

)2 +O
(

1
n2

)
, if f ′ > f ,

(
1− f ′

f

)(
1+ f ′

f

)2

n
(

f ′
f

)2

(
f ′

f

(
n f ′

f +1
)

(
f ′
f +n

)
)n

+O
(

1
n2

)
, f ′ ≤ f .

[31]

Thus, for large N , φT
Gn+1

(f ′, f )∼ 1/n , which makes the star
graph a suppressor of selection under temperature initialization

for infinite n . This is in accordance with the infinite n limit of
φT
Gn+1(λ=1,δ=1)(f

′, f ) that we saw in the previous section.
To make use of the approximated fixation probability shown

in Eq. 31, we write the denominator appearing in the steady-state
distribution (Eq. 4) as

fmax∫
fmin

df ′
φT
Gn+1

(f ′, f )

φT
Gn+1

(f , f ′)
=

f∫
fmin

df ′
φT
Gn+1

(f ′, f )

φT
Gn+1

(f , f ′)︸ ︷︷ ︸
Γ3

+

fmax∫
f

df ′
φT
Gn+1

(f ′, f )

φT
Gn+1

(f , f ′)︸ ︷︷ ︸
Γ4

. [32]

Notice that the 1/n scaling of the fixation probabilities re-
sponsible for the suppression of selection for a large-sized star
graph drops out in both the integrands. Putting it differently, the
steady-state fitness decreasing contribution coming from the poor
beneficial mutant fixation profile has been compensated by the
deleterious mutant fixation profile. As a side remark, the steady-
state statistics for a general graph G is invariant under the scaling
of the fixation profile φI

G by any n-dependent bounded function
g(n), i.e., P∗

G [gφI
G ] = P∗

G [φI
G ].

Now, for the integrand Γ3, f ′ ≤ f , whereas for Γ4, f ′ > f . The
integrand Γ3 can be simplified as,

Γ3 =

(
1− f ′

f

)(
1+ f ′

f

)2

n
(

f ′
f

)2

(
f ′

f

(
n f ′

f +1
)

(
f ′
f +n

)
)n

(
1− f ′

f

)(
1+ f ′

f

)2

n f ′
f

=

(
f ′

f

)n−1
(
n f ′

f + 1
f ′

f + n

)n

=

(
f ′

f

)2n−1
(
1 + f

nf ′

1 + f ′

nf

)n

≈
(
f ′

f

)2n−1

exp
(
f

f ′
− f ′

f

)
,

[33]

where in the last line, we have used the limit definition of the
exponential function by assuming large n , exp(x )≈ (1 + x

n )
n

for large n . Furthermore, if we assume f , f ′ 
 n , the dominant
contribution to the integrand Γ3 then comes from the n depen-
dent term, and, thus, Γ3 simplifies to

Γ3 ≈
(
f ′

f

)2n−1

. [34]

Similarly, Γ4 takes the form,

Γ4 ≈
(
f ′

f

)2n−1

. [35]

Since the integrands Γ3 and Γ4 are identical, Eq. 32 reduces to

fmax∫
fmin

df ′
φT
Gn+1

(f ′, f )

φT
Gn+1

(f , f ′)
=

fmax∫
fmin

df ′
(
f ′

f

)2n−1

=
f 2nmax − f 2nmin

2n

1

f 2n−1
.

[36]
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This gives us the steady-state fitness distribution for the star
graph in the large-n limit,

P∗
Gn+1

(f ) =
2n

f 2nmax − f 2nmin
f 2n−1. [37]

With this, we can now compute the average steady-state fitness
for the star graph in the large-n limit,

〈f 〉∗Gn+1
=

∫
df fP∗

Gn+1
(f )

=
2n

f 2nmax − f 2nmin

fmax∫
fmin

df f · f 2n−1

=
2n

2n + 1

f 2n+1
max − f 2n+1

min
f 2nmax − f 2nmin

≈ fmax,

[38]

where in the last line, we have again made use of the large-n
approximation. Therefore, the steady-state average fitness for the
star graph asymptotes to fmax for large population size. In Fig. 3C,
we have seen that for small n , the star graph attains higher steady-
state average fitness in the mutation–selection balance than the
complete graph. To see if this holds for large n as well, we study
the quantity 〈f 〉∗Gn+1

− 〈f 〉∗C .

〈f 〉∗Gn+1
− 〈f 〉∗C =

2n

2n + 1

f 2n+1
max − f 2n+1

min

f 2nmax − f 2nmin

− n + 1

n + 2

f n+2
max − f n+2

min

f n+1
max − f n+1

min

=
fmax

2n
+O

(
1

n2

)
.

[39]

Because fmax
2n > 0, in the large-n limit, the star graph—a sup-

pressor of fixation—attains higher steady-state average fitness in
the mutation–selection balance than the complete graph.

E. Mixing Time for Single Rooted Graphs. For any one-rooted
network with self-loops, we can use Eq. 2 to find an exact expres-
sion for the full temporal statistics, PG(f , t), when mutational
fitness jump distribution is uniform. To do so, we first note that
the fixation probabilities become independent of fitness values,
φT
G(f , f ′) = φT

G(f ′, f ) = Tr

N , where Tr is the temperature of the
root node. Substituting the fixation probabilities in Eq. 2, and
using the normalization condition forPG(f ′, t), we obtain a first-
order ordinary differential equation for PG(f , t) in time,

∂PG(f , t)

∂t
=

μTr
N

(
1

fmax − fmin
− PG(f , t)

)
. [40]

Solving this equation, we obtain

PG(f , t) =
1

fmax − fmin
−
(

1

fmax − fmin
− PG(f , 0)

)
e−

μTr t
N .

[41]

From this expression, we find that in the limit t →∞,
the dynamics for a single rooted graph becomes completely
random. That is, at long times, a population spends equal
time in all the fitness states. On comparing with Eq. 7, we
find that the mixing time—i.e., the number of mutations
required to reach the steady-state—for these graphs scales as N

Trμ
.

Complete
Star

Star with self-loops

Fig. 7. Deviation from the low mutation rate approximation. Using the
Moran Bd simulations, the average steady-state fitness attained in the
mutation–selection balance is plotted as a function of mutation rate, which is
identical to the mutation probability with a single Moran Bd update step as the
unit of time. Parameters are the same as those of Fig. 3. We observe that the
self-looped star is much more restrictive to low mutation approximation than
the other two graphs. The reason for this is its much higher fixation time. On
the other hand, for the star graph, the low mutation approximation is valid in a
similar regime as for the complete graph. Again, this is due to its fixation time
being the same order as the complete graph under temperature initialization.
Outside the weak mutation regime, the star continues to maintain higher
steady-state average fitness, while the steady-state fitness for the self-looped
star graph, an amplifier of selection, falls rapidly.

As a result, the mixing time for a single rooted graph can be mod-
ulated by changing the temperature of the root node. Moreover,
the average fitness for the case of a single-rooted graph (root with
self-loops) with temperature Tr can be found using Eq. 41,

〈f (t)〉G =
fmax + fmin

2
−
(
fmax + fmin

2
− 〈f (0)〉G

)
e−

μTr t
N .

[42]

In the limit t →∞, the average fitness converges to the average
of the fitness domain. We also note that the steady state for single
rooted graphs (with self-loops) is independent of the choice of
phenotype-fitness map—simply because the fixation probability
for these graphs does not depend on fitness.

F. Deviation from the Low Mutation Rate Approximation. The
weak mutation approximation works well if the time between two
successive mutation events is much longer than the average time it
takes for the fixation or extinction of a mutant. Thus, there exists
an upper bound for the mutation rate, above which the dynamics
starts showing deviation from the weak mutation approximation.
For the case of an evolutionary game in a well-mixed population,
this upper bound for the mutation rate is derived in ref. 50. The
validity of the low mutation rate approximation depends not only
on the mutation rates, but also the fixation time. Previous studies
have indicated that, compared to the complete graph, the graphs
with higher fixation times call for lower mutation rates for this
approximation to hold (25, 31, 33). Here, we verify these predic-
tions. In Fig. 7, we find that, compared to the complete graph,
the self-looped star graph is very restrictive to the low-mutation-
rate approximation. On the other hand, in the star graph, a
suppressor of fixation, the threshold mutation rate value for the
deviation from the low mutation rate approximation is similar
to the complete graph. This may be unexpected, as for uniform
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initialization, the fixation time for the star graph is an order of
magnitude higher than for the complete graph. However, here,
we are dealing with temperature-initialized sequential dynamics,
where the fixation time for the star graph becomes almost the same
as that of the complete graph, at least for small population sizes,
while the fixation times for self-looped star remains much higher.
Also, the star not only attains a higher steady-state average fitness
than the complete graph under the weak mutation approximation,
but also outside the weak mutation regime. In contrast, the self-
looped star graph, an amplifier of selection, performs poorly out-
side the weak mutation rate regime by attaining lower steady-state

average fitness than the complete graph. Therefore, in general, an
amplifier of selection does not maximize fitness.

Data, Materials, and Software Availability. Code to reproduce figures and
underlying data (Mathematica files/Jupyter notebooks) has been deposited
in GitLab (https://gitlab.gwdg.de/mpievolbio-scicomp/DynamicsOnGraphs Low
MutationRate.git) (51).
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