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We introduce a versatile and practical framework for applying matrix product state techniques
to continuous quantum systems. We divide space into multiple segments and generate continuous
basis functions for the many-body state in each segment. By combining this mapping with existing
numerical Density-Matrix Renormalization Group routines, we show how one can accurately obtain
the ground-state wave function, spatial correlations, and spatial entanglement entropy directly in
the continuum. For a prototypical mesoscopic system of strongly-interacting bosons we demonstrate
faster convergence than standard grid-based discretization. We illustrate the power of our approach
by studying a superfluid-insulator transition in an external potential. We outline how one can
directly apply or generalize this technique to a wide variety of experimentally relevant problems
across condensed matter physics and quantum field theory.

Few computational techniques have improved our un-
derstanding of strongly-correlated quantum systems as
much as the Density-Matrix Renormalization Group
(DMRG) [1]. Introduced for calculating ground states of
spin chains [2], DMRG takes advantage of the entangle-
ment properties of many physical states [3] to efficiently
truncate the Hilbert space, approximating the many-
body wave function as a variational Matrix Product State
(MPS) [4]. It has been successfully generalized for time
evolution [5] and is the method of choice for simulating
discrete one-dimensional (1D) quantum systems [6], with
promising extensions to higher dimensions [7] and other
tensor networks [8]. However, despite wide-ranging po-
tential applications [9–15], attempts to generalize DMRG
to continuous systems have encountered substantial dif-
ficulties. Here, we put forward a new framework that
addresses this long-standing challenge.

The very formalism of DMRG, and other tensor net-
work approaches, is predicated on having a lattice. To
apply the technique to a continuous system, one must
define a network of local Hilbert spaces. The naive ap-
proach involves replacing the continuum with a lattice
[16–22]. Unfortunately, this strategy scales poorly with
the number of grid points and displays convergence issues
in systems with multiple length scales [22, 23], requir-
ing optimization on successively finer grids [23], which
becomes intractable for vanishingly small grid spacing
[24]. Alternatively, by taking this continuum limit one
can derive a field-theoretic description, called continu-
ous MPS (cMPS) [25], which has had considerable suc-
cess for translationally-invariant systems [26–34], but has
severe limitations in the presence of inhomogeneities:
Interpolation-based algorithms [35, 36] suffer from insta-
bilities unless starting from a preconverged initial state,
obtained from (multi)grid optimization [37]. Further-
more, unlike DMRG, these cMPS calculations are intrin-
sically nonlinear [38, 39], limited to low entanglement
[35], and do not usually conserve particle number [25, 40].

In contrast, we partition a continuous system into mul-
tiple segments and choose a flexible set of basis func-
tions in each segment to describe the local physics. This
recipe turns the Hamiltonian into a sum over segments,
with nearest-neighbor terms imposing continuity at the
boundaries. This form can be minimized using standard
DMRG routines [41], used as a local basis for other ten-
sor network algorithms, or even used for neural-network
based approaches [42]. Like a Hubbard Hamiltonian, one
can easily incorporate symmetries [43] such as particle
number, and the method works equally well for homo-
geneous and inhomogeneous systems, regardless of the
initial state. For many segments and few basis functions,
it reduces to discretizing on a grid; however, we show that
for interacting bosons in a box one can optimize the local
basis to gain faster convergence with a small number of
segments. We illustrate the broad applicability of this
technique by exploring the Mott-superfluid transition in
a sinusoidal potential.

For concreteness, we consider a paradigmatic Hamil-
tonian describing bosons with contact interactions [44]
trapped in a box of length L,

Ĥ =

∫ L

0

dx

[
1

2

dψ̂†

dx

dψ̂

dx
+
g

2
ψ̂†ψ̂†ψ̂ψ̂ + V (x)ψ̂†ψ̂

]
, (1)

where ψ̂(x) is the boson field operator, g is the interaction
strength, V (x) is an external potential, and we have set
~ = m = 1, where m is the boson mass. This 1D model is
realized for atoms with tight transverse confinement [45,
46], with optical box traps [13, 14] or atom chips [47–49].
Its physics depends crucially on the ratio of interaction
and kinetic energies, set by the dimensionless parameter
γ := gL/N , N being the particle number. When V (x) =
0, the model has an exact Bethe-Ansatz solution [50–52],
but calculating spatial correlations is challenging except
for γ � 1 [53] and γ → ∞ [54]. Thus, one typically
resorts to low-energy approximations [55].

To use standard DMRG techniques, one can discretize
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Eq. (1) on a grid of spacing ε, mapping ψ̂ to lattice
bosons, ψ̂(x) → b̂i/

√
ε, and replacing derivatives by fi-

nite differences, which gives

Ĥ ≈ − 1

2ε2

∑
〈i,j〉

b̂†i b̂j+

M−1∑
j=1

g

2ε
b̂†j b̂
†
j b̂j b̂j+

(
Vj+

1

ε2

)
b̂†j b̂j , (2)

where 〈i, j〉 denotes nearest neighbors and M − 1 is the
number of grid points in the bulk, L = Mε; see Ref. [37]
for an alternative mapping to hard-core bosons. The con-
tinuum limit is obtained for M →∞.

Instead, we divide the box into M finite segments with

ψ̂(x) =
∑M

j=1
�Xj−1,Xj (x) ψ̂(x) , (3)

where the box function �a,b(x) vanishes unless a < x < b;
�a,b(x) := θ(x− a)− θ(x− b), with θ denoting the unit
step function. Thus, Xj is the boundary between the j-th
and the (j + 1)-th segments, with X0 = 0 and XM = L.
Substituting Eq. (3) into Eq. (1) and keeping track of
delta functions, we find (see Supplement [56])

Ĥ =
∑M

j=1
K̂j + Ûj + P̂j + Λ

∑M

j=0
Υ̂j,j+1 , (4)

where K̂j , Ûj , and P̂j are, respectively, the kinetic, inter-
action, and potential energies in the j-th segment, given
by integrals between Xj−1 and Xj , and

Υ̂j,j+1 :=
[
ψ̂(X−j )− ψ̂(X+

j )
]†[
ψ̂(X−j )− ψ̂(X+

j )
]

(5)

is a positive-semidefinite measure of the discontinuity be-
tween x→ X−j and x→ X+

j . We use hard-wall boundary
conditions at the edge of our system, and in Eq. (5) define

ψ̂(0−) := ψ̂(L+) := 0. The prefactor Λ is a formally infi-
nite energy penalty that projects onto continuous states.
In our numerical calculations, we take Λ to be finite, in-
creasing it in consecutive DMRG cycles. This approach
accelerates convergence because the system takes larger
steps through phase space when Λ is smaller.

Equation (4) has the same form as a Hubbard model,
with “on-site” and nearest-neighbor terms that can be ex-
pressed as a compact Matrix Product Operator (MPO)
[4], acting as the input to a DMRG calculation. We se-
lect n-body basis functions φ

(j)
n,k(~r) in each segment j,

where n = 0, 1, . . . up to some cutoff nmax ≤ N , and
k labels the different states for a given n (again with
some cutoff). The construction of these basis functions
is described below and examples of one- and two-particle
states are shown in Fig. 1. In contrast, for a lattice model
as in Eq. (2), the local bases are simply labeled by the
number of particles on each site, |0〉j , . . . , |nmax〉j . Once
our continuous bases are chosen, one finds the matrix
elements as〈
φ
(j)
n−1,k

∣∣ψ̂(x)
∣∣φ(j)n,k′〉=

√
n

∫ Xj

Xj−1

dn−1r φ
(j)∗
n−1,k(~r)φ

(j)
n,k′(x,~r) ,

FIG. 1. Examples of (a) one-body and (b) two-body basis
functions in a segment between Xj−1 and Xj . The cusp at
x1 = x2 in (b) encodes the physics of contact interactions.

where x ∈ [Xj−1, Xj ] and n ≥ 1. Similar expressions for
the matrix elements of K̂j , Ûj , and P̂j are derived in the
Supplement [56]. Note these operators conserve particle
number and are thus block diagonal. If we choose the
segments to have equal width, then the basis functions
on different segments can be translations of one another,
and the local matrices become independent of j.

We take the basis functions to be piecewise polyno-
mials, i.e., for Xj−1 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ Xj ,
φ
(j)
n,k(~Rj−1 + ~r) =

∑
pA

(j)
n,k,px

p1
1 . . . xpnn , and the other

sectors are determined by symmetry under particle ex-
change. Here, p = {p1, . . . , pn} is a vector of the pow-
ers that appear in each monomial. As a practical strat-
egy, we limit the maximum degree of the monomials:
p1+ · · ·+pn ≤ dmax, and choose the coefficients A

(j)
n,k,p so

that the basis is orthonormal, 〈φ(j)n,k|φ
(j)
n,k′〉 = δk,k′ . Given

these constraints, we wish to construct polynomials that
capture the low-energy physics with a minimum number
of states. For example, the contact interaction in Eq. (1)
gives rise to a kink in the wavefunction wherever two par-
ticles coincide [44], ∂xiΨ(xi → x+i′ ) − ∂xiΨ(xi → x−i′ ) =
gΨ(xi = xi′), and the numerics are more efficient if we in-
clude the same kink in the basis functions φ

(j)
n,k(~r). In the

Supplement [56], we show how to construct generaliza-
tions of Legendre polynomials that possess these cusps.
Calculating the local basis, and the matrix elements of
the local operators, only needs to be done once and makes
a negligible contribution to the computation time, which
is dominated by the DMRG sweeps.

With this construction, the matrix elements of lo-
cal operators become piecewise polynomial functions, of

the form
〈
φ
(j)
n,k

∣∣F̂(x)
∣∣φ(j)m,k′〉=

∑pmax

p=0 F
(j,p)
nk,mk′(x−Xj−1)p.

Consequently, spatial correlations 〈F̂†(x)F̂(x′)〉 can be
expressed as piecewise polynomials, which one can eval-
uate at any point, once the matrices F j,p are stored.

Figure 2 shows a benchmark calculation for 5 strongly-
interacting bosons in a uniform trap [V (x) = 0], di-
vided into M = 8 equal segments with basis functions
that can describe quartic variations, i.e., dmax = 4. We
initialize the particles in a discontinuous product state,
where each segment contains either zero or one particle,
and the single-particle wave function is uniform, hence
Ec :=

∑
j〈K̂j + Ûj〉 = 0. We use the standard DMRG al-
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FIG. 2. Ground-state calculation for N = 5 bosons with
strong interactions (γ = 50) in a uniform box, divided into 8
segments. (a,b) Starting from a localized state, as the penalty
Λ is increased in powers of 10, the discontinuity falls as 1/Λ2

and the energy approaches the asymptotic value E∗, which is
within 5× 10−6 of the exact Bethe-Ansatz result EBA. (The
remaining discrepency is due to the finite basis set used.)

Here, Ec =
∑

j〈K̂j + Ûj〉 and Edisc := (N/L)
∑

j〈Υ̂j,j+1〉 [see
Eqs. (4)-(5)]. The inset shows Ec approaching E∗ as 1/Λ.
(c,d) Density and correlations in the ground state from con-
tinuous DMRG (cDMRG), showing Friedel oscillations similar
to exact results for the Tonks gas (γ → ∞) and far from a
mean-field Gross-Pitaevskii theory. See supplement [56] for a
full description of the basis states and the DMRG parameters.

gorithm to minimize Ĥ in Eq. (4) with a small penalty Λ.
As shown in Figs. 2(a-b), Ec increases with each sweep,
and the discontinuity drops. After convergence, we se-
quentially increase Λ by factors of 10, stopping when the
discontinuity falls below a small threshold. For large Λ,
the energy saturates at Ec ≈ E∗ − η/Λ with constant
η, from which one can robustly extrapolate E∗. Already
with M = 8, E∗ matches the ground-state energy from
Bethe Ansatz [51] to 5 × 10−6. The density in Fig. 2(c)
shows oscillations that are similar to those found in the
Tonks gas, which would model the system for γ →∞ [54].
In that limit, these corrugations can be interpreted as the
Friedel oscillations of a free Fermi gas [52], which are not
reproduced in mean-field theory [53]. The single-particle
correlator in Fig. 2(d) has a peak at small distances, and
distinctive steps. The expected Luttinger-liquid power-
law tail [57] is cut off by finite-size effects. Again, the
result is similar to what one expects for a Tonks gas and
is very different from the mean-field prediction.

Figure 3 explores the performance of our algorithm,
cDMRG, and compares it with the grid-based discretiza-
tion in Eq. (2). We consider N = 10 particles and piece-
wise cubic basis states (dmax = 3). As illustrated by
panel (a), as one refines the grid, the error in ground-
state energy falls off as M−2dmax : The kinetic energy per
segment 〈K̂j〉 can be approximated up to that order. The
standard discretization instead shows an error scaling as
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FIG. 3. (a) Relative error vs number of segments (grid points)
and (b) CPU time vs relative error in finding ground states
for N = 10 using cDMRG (solid lines) and discretization on a
grid (dotted lines). For cDMRG, E is the extrapolated energy
E∗> EBA (see Fig. 2). We retained up to cubic basis functions
in each segment, causing the error to fall off asM−6, instead of
M−2 for discretization. Empirically, tCPU ∼ |1−E/EBA|−0.2

for cDMRG at small errors, whereas for discretization this ex-
ponent is−0.75 for γ = 0.1 and−1 for γ = 10. Note, tCPU was
measured in seconds from the number of clock cycles during
all DMRG sweeps on single quad-core CPUs. The saturation
at large errors in (b) is due to larger bond dimensions [56].

M−2. Increasing dmax allows one to achieve the same ac-
curacy with fewer segments, at the cost of a larger local
basis. The relationship between CPU time and accuracy
is shown in Fig. 3(b). The traditional discretization is
more efficient for low-accuracy calculations, where the
smaller local Hilbert space is beneficial. Our algorithm
uses fewer computational resources for high-accuracy cal-
culations, where precise modeling of the local physics is
crucial. The crossover point depends on the interaction
strength: cDMRG is more efficient for strong repulsive in-
teractions, which suppress the occupation of basis states
containing larger numbers of particles.

Since the ground-state entanglement entropy of this
system grows as lnN [58–60], we find a linear rise in the
DMRG bond dimension [61] with particle number, and
the computation time roughly scales as N3 [4]. Our cal-
culations were done using the ITensor library [41], using
a two-site DMRG algorithm with a singular-value cutoff
of 10−14, resulting in bond dimensions of order 100 (see
Supplement [56] for details).

Next, we consider V (x) = V0 cos2(Nwπx/L), with Nw
potential wells between 0 and L, which makes the sys-
tem nonintegrable. There are two simple limits: (i) For
V0 � Er = N2

wπ
2/(2L2), where Er is the recoil en-

ergy, one can make a tight-binding approximation to re-
duce the problem to a Bose-Hubbard model with Nw
sites and slightly nonuniform parameters [56]. (ii) For
γ → ∞, the system maps onto free fermions [62]. Fig-
ure 4(a) shows how cDMRG reproduces these limits and
smoothly connects the tight-binding and Bethe-Ansatz
regimes for all γ. For Nw = N , we find signatures of
the superfluid-to-Mott-insulator transition [63] for both
deep (V0 � Er) and shallow lattices (V0 ∼ Er): As γ is
increased, the ground-state coherences localize, i.e., the
algebraic variation of the correlation functions [Fig. 4(c)]
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FIG. 4. (a) Ground-state energy and (b) condensate fraction
for 10 bosons in 10 potential wells of depth V0 using cDMRG
with 20 segments and quartic basis functions (solid lines) and
a tight-binding approximation (dash-dotted lines). Here, N0

is the occupation of the single-particle ground state. Dotted
lines in (a,b) and crosses in (a) show exact solutions for the
Tonks gas and from Bethe Ansatz, respectively; the conden-
sate fractions are found using Monte-Carlo integration [56].
The arrow in (b) marks the N0 that we find for γ ≈ 4.22,
when the ground state for V0 → 0 becomes Mott insulating.
In our finite-size system this transition is a crossover. (c,d)
Single-particle correlations, 〈ψ̂†(x)ψ̂(x′)〉L/N , in a superfluid
and a Mott state, corresponding to the circled points in (b).

becomes exponential [Fig. 4(d)], accompanied by a drop
in the condensate fraction [Fig. 4(b)]. Similar to un-
bounded systems [64, 65] and those with periodic bound-
ary conditions [66, 67], the low-energy physics for V0 → 0
is described by a quantum sine-Gordon Hamiltonian [57],
which gives a Mott phase for γ > γc ≈ 3.5 + 7.5/N (see
Supplement [56]). Hence, the superfluid phase is found
only for γ < γc and sufficiently small V0.

A key feature of our approach is that one can compute
the spatial bipartite entanglement entropy S directly in
the continuum, for which current understanding is lim-
ited [15, 58–60, 68]. For bipartition at an arbitrary po-
sition X ∈ (Xj−1, Xj), we divide the j-th segment into
left and right zones, with their own basis functions φ±n,k,
and write the original basis as a tensor product, φ

(j)
n,k =∑

n′,k± C
n,k
n′,k+,k−φ

+
n′,k+φ

−
n−n′,k− [56]. Thus, one can ex-

press the local tensor Tj of the MPS in the product basis
[Fig. 5(a)], and calculate S(X) via a Schmidt decom-
position [4]. If one only needs the entanglement at a
segment boundary, the subdivision step can be skipped.
Figure 5(b) shows the entropy variation for bosons in
a shallow lattice: V0 = Er. At weak coupling, where
there are large number fluctuations, the entropy is peaked
about the center, as is characteristic of the critical su-
perfluid phase [68]. In contrast, at strong coupling the
entropy is largely flat, corresponding to the short-range
“area law” entanglement expected in the Mott phase [3].
Additionally, there are small wiggles that are related to

0 0.2 0.4 0.6 0.8 1
0

1

2

FIG. 5. (a) Schematic of how one can decompose a tensor Tj

of the MPS by a basis splitting φ(j)→ φ+ ⊗ φ− to calculate
the entanglement between arbitrary bipartitions [0, X] and
[X,L]. (b) Ground-state entanglement entropy for 10 bosons
in a shallow lattice (V0 = Er) with interactions γ = 0.2 (red),
2 (green), 20 (blue), using cDMRG with the same numerical
parameters as in Fig. 4. We have split each segment at 20 in-
termediate points [56]. Dashed and dotted curves show exact
results for γ = 0 [60] and γ →∞ [58], respectively.

Friedel oscillations [Fig. 2(c)]. This spatial variation can
be measured in current experiments [15] and used as a
tool to characterize continuous phases [68].

Finally, we give examples of how our framework can be
applied more generally. First, for multicomponent bosons
with contact interactions [9, 49], one can partition each
component σ into the same segments, altering Eq. (4) to

Ĥ =
∑

j

[∑
σ
K̂σ
j +P̂σj +ΛΥ̂σ

j,j+1+
∑

σ,σ′
Ûσ,σ

′

j

]
, (6)

which still has only on-site and nearest-neighbor terms
and thus the same MPO bond dimension. However, the
basis functions will carry additional labels to accommo-
date all the components, e.g., φ

(j)

n↑,n↓,k
for σ =↑, ↓. The

pairwise interaction strengths will determine the corre-
sponding kinks in the basis functions.

Second, multicomponent fermions [10] can be treated
on an equal footing as bosons, only using different basis
functions for the segments. In particular, one replaces
the cusp condition with the requirement that a basis
function must vanish whenever two fermions in the same
spin state coincide, xσi = xσi′ . This is the only distinction
from bosons. One can clearly also work with mixtures of
fermions and bosons [10].

Third, long-range interactions will couple pairs of seg-
ments, changing

∑
j Ûj to

∑
j,j′ Ûj,j′ in Eq. (4). The sim-

plest case is that of an exponential decay [30], u(x, x′) =
e−κ|x−x

′|, which yields Ûj,j′ = eκδ(j−j
′)V̂ +

j V̂
−
j′ for seg-

ments of equal width δ and j < j′, where V̂ ±j are weighted
averages of the density in segment j. Such exponential
terms increase the MPO bond dimension of Ĥ only by 1
[4]. However, one often wants to model power-law inter-
actions, u(x, x′) = f(|x−x′|)|x−x′|−ν where f(|x|)→ 1
for large |x|. While this form itself does not lead to a com-
pact MPO, one can accurately approximate the power
law by a sum of relatively few exponentials [69, 70] and
further compress the resulting MPO [71]. Optimal basis
functions can be estimated from the two-body problem as
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well as exact solutions for ν = 2 [72], which can serve as
a benchmark for the nonintegrable cases such as dipolar
interactions [73, 74] and Coulomb repulsion [75].

In summary, we have demonstrated a much needed ver-
satile approach that opens up practical applications of
DMRG to many-body continuous systems. This cDMRG
technique uses spatial partitioning to map the problem to
discrete DMRG, seemlessly integrating with existing rou-
tines. Nonetheless, the wave function, correlations, and
entanglement are obtained directly in the continuum. We
have shown cDMRG gives accurate and efficient results
for interacting bosons with or without an external poten-
tial, and outlined how it would apply to other setups of
current interest with little modification. By using physi-
cally motivated basis functions, we are able to obtain fast
convergence with a limited number of segments, avoiding
the need for multiscale optimization [23] for mesoscopic
systems. Nonetheless, cDMRG can work in conjunction
with such approaches, if necessary, for very dilute gases
or for finite-size scaling; the main ingredient for multi-
scale approaches is a protocol to map the wave function
from a coarser to a finer basis, which we already imple-
mented to calculate the entanglement entropy in Fig. 5
(see Supplement for details [56]). Although we have fo-
cused on ground states, our approach can be combined
with existing techniques for time evolution, such as the
time-dependent variational principle [76]. Since the lat-
ter conserves energy at each time step, a large energy
penalty Λ in Eq. (4) would ensure that one evolves in the
manifold of continuous states. This will enable exciting
applications to unsolved nonequilibrium problems such as
prethermalization of strongly-interacting bosons [12, 13],
domain wall instability in Fermi superfluids [77–79], and
false vacuum decay in cosmology [80]. Thus, we believe
cDMRG will find wide usage across condensed matter,
quantum field theory, and quantum chemistry [6].

An open-source code is available at
https://github.com/Shovan-Physics/cDMRG.

We thank François Damanet and Stuart Flannigan
for useful discussions. This work was supported by
the Engineering and Physical Sciences Research Council
Programme Grant DesOEQ (EP/P009565/1), and the
National Science Foundation Grants PHY-1806357 and
PHY-2110250.
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SI. Derivation of the partitioned Hamiltonian

We consider the Hamiltonian in Eq. (1) of the main text, Ĥ =
∫ L
0

dx
[
K̂(x) + Û(x) + P̂(x)

]
, where

K̂(x) =
1

2

(
d

dx
ψ̂†(x)

) (
d

dx
ψ̂(x)

)
, (S1)

Û(x) =
g

2
ψ̂†(x) ψ̂†(x) ψ̂(x) ψ̂(x) , (S2)

P̂(x) = V (x) ψ̂†(x) ψ̂(x) (S3)

denote the kinetic, interaction, and potential energy densities, respectively. We divide the x axis into M continuous

segments with boundaries at {Xj}. Since the wave function is everywhere finite, the interaction and potential energies

reduce to sums over the individual segments, Û =
∑
j Ûj and P̂ =

∑
j P̂j , where

Ûj =

∫ Xj

Xj−1

dx Û(x) , and P̂j =

∫ Xj

Xj−1

dx P̂(x) . (S4)

However, the kinetic energy K̂ will diverge if ψ̂(x) has a discontinuity across any of the boundaries, which gives rise

to additional terms in the Hamiltonian. To see this, we write ψ̂(x) close to the boundary at Xj as

ψ̂(x) =
[
1− θ(x−Xj)

]
ψ̂<(x) + θ(x−Xj) ψ̂>(x) (S5)

where θ is the unit step function and ψ̂<(>)(x) denotes the part of ψ̂ to the left (right) of Xj . Thus, one obtains

d

dx
ψ̂(x) = δ(x−Xj)

[
ψ̂>(x)− ψ̂<(x)

]
+
[
1− θ(x−Xj)

] ( d

dx
ψ̂<(x)

)
+ θ(x−Xj)

(
d

dx
ψ̂>(x)

)
, (S6)
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where δ is the Dirac delta function. Substituting this expression into Eq. (S1) and using the sifting property of the

delta function yield the following contribution to K̂ from the boundary,∫ X+
j

X−j

dx K̂ = Λ
[
ψ̂(X+

j )− ψ̂(X−j )
]†[
ψ̂(X+

j )− ψ̂(X−j )
]

+
1

2

[
ψ̂(X+

j )− ψ̂(X−j )
]† [

(1− θ0)

(
d

dx
ψ̂(X−j )

)
+ θ0

(
d

dx
ψ̂(X+

j )

)]
+ h.c. , (S7)

where ψ̂(X+
j ) ≡ ψ̂>(Xj), ψ̂(X−j ) ≡ ψ̂<(Xj), θ0 := θ(0), and Λ = δ(0)/2 is a formally divergent energy penalty that

ensures the wave function is continuous, i.e., ψ̂(X+
j ) = ψ̂(X−j ). For the numerics, we treat Λ as a phenomenological

parameter. As Λ is increased, the discontinuity in the wave function falls off as 1/Λ, and so does the second line of

Eq. (S7). In fact, these other terms do not impose any constraint on the wave function, and we find they also do not

alter the numerical convergence to the ground state. Thus, one can drop these without affecting physical predictions,

which gives K̂ =
∑
j K̂j + ΛΥ̂j,j+1, where

K̂j =

∫ Xj

Xj−1

dx K̂(x) , and Υ̂j,j+1 :=
[
ψ̂(X+

j )− ψ̂(X−j )
]†[
ψ̂(X+

j )− ψ̂(X−j )
]
. (S8)

Thus, we arrive at the partitioned Hamiltonian Ĥ =
∑
j K̂j + Ûj + P̂j + ΛΥ̂j,j+1.

SII. Basis functions and local operators

As explained in the main text, each segment j is spanned by multiple n-body basis functions φ
(j)
n,k(~r), with ~r ≡

{x1, x2, . . . , xn}, which leads to a matrix representation of the local operators. Here we show how to compute these

matrix elements in terms of monomial integrals. We also show how to include the cusp constraint which arises from

contact interactions.

A. Characterization in terms of monomials

Given an n-particle basis function φ
(j)
n,k(~r), the many-body state may be expressed as

∣∣φ(j)n,k〉 =

∫ Xj

Xj−1

dnr φ
(j)
n,k(~r)

ψ̂†(x1)ψ̂†(x2) . . . ψ̂†(xn)√
n!

|0〉 , (S9)

where |0〉 is the vacuum, and the integration limits denote that all coordinates lie in the interval [Xj−1, Xj ]. As we

are dealing with bosons, the wave function φ
(j)
n,k(~r) is symmetric under exchange of any two coordinates, and the field

operators satisfy the commutation [ψ̂(x), ψ̂†(x′)] = δ(x−x′). The inner product vanishes between states with unequal

numbers of particles, while 〈
φ
(j)
n,k

∣∣φ(j)n,k′〉 =

∫ Xj

Xj−1

dnr φ
(j)∗
n,k (~r)φ

(j)
n,k′(~r) . (S10)

For the basis to be orthogonal, (S10) must vanish for k 6= k′. It is convenient to rescale the coordinates so that the

interval runs from 0 to 1,

φ
(j)
n,k(~r) :=

1

w
n/2
j

χ
(j)
n,k

(
~r − ~Rj−1

wj

)
. (S11)

where wj := Xj −Xj−1 and ~Rj−1 is the coordinate x1 = x2 = · · · = xn = Xj−1. Then Eq. (S10) becomes〈
φ
(j)
n,k

∣∣φ(j)n,k′〉 =

∫ 1

0

dnr χ
(j)∗
n,k (~r)χ

(j)
n,k′(~r) , (S12)
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so the basis will be orthonormal provided χ
(j)
n,k are orthonormal over the interval [0, 1]n.

One can always write χ
(j)
n,k(~r) as a sum over symmetrized monomials p(~r) whose variation in the “canonical” sector

Sn : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1 (S13)

is given by p(~r) = xp11 x
p2
2 . . . xpnn , where pi are nonnegative integers. In this sector,

χ
(j)
n,k(~r) =

∑
p
A

(j)
n,k,p p(~r) , (S14)

with expansion coefficients A
(j)
n,k,p, which characterize the basis. In numerical calculations, one has to restrict to a

finite basis by constraining p := {p1, p2, . . . , pn}. For example, the number of monomials of degree
∑n
i=1 pi = d grows

as
(
d+n−1

d

)
, and we find it convenient to only retain states with d ≤ dmax. The monomials are not orthogonal, but

their inner product 〈p|q〉 = n! I(p + q) has a simple form

I(p) :=

∫ 1

0

dxn

∫ xn

0

dxn−1· · ·
∫ x2

0

dx1 x
p1
1 x

p2
2 . . . xpnn =

n∏
n′=1

1

n′ +
∑n′

i=1 pi
. (S15)

As explained in Sec. SII C, a convenient way to construct our orthonormal basis is to take the states to be eigenvectors

of a Hermitian operator. When expressed in terms of the non-orthogonal monomials, this involves solving a general-

ized eignevalue problem. Physical constraints, such as the cusp condition arising from short-range interactions, are

incorporated by correctly choosing the Hermitian operator.

B. Matrix elements of local operators

1. Field operator

The action of the field operator ψ̂(x) on the basis states in Eq. (S9) can be found by using Bose commutation and

the symmetry of φ
(j)
n,k(~r) under particle exchange, which gives, for Xj−1 ≤ x ≤ Xj ,

ψ̂(x)
∣∣φ(j)n,k〉 =

√
n

∫ Xj

Xj−1

dn−1r φ
(j)
n,k(x,~r)

ψ̂†(x1)ψ̂†(x2) . . . ψ̂†(xn−1)√
(n− 1)!

|0〉 . (S16)

The right-hand side describes a state of n− 1 particles with the (unnormalized) wave function
√
nφ

(j)
n,k(x,~r) – which

is simply the original wave function with one of the positions set to x. Because of the Bose symmetry, it does not

matter which particle is selected.

The nonzero matrix elements of ψ̂(x) are given by [using Eqs. (S10) and (S11)]

〈
φ
(j)
n−1,k

∣∣ ψ̂(x)
∣∣φ(j)n,k′〉 =

√
n

∫ Xj

Xj−1

dn−1r φ
(j)∗
n−1,k(~r)φ

(j)
n,k′(x,~r) =

√
n

wj

∫ 1

0

dn−1r χ
(j)∗
n−1,k(~r)χ

(j)
n,k′(x̃, ~r) , (S17)

where x̃ := (x − Xj−1)/wj . As χ
(j)
n,k are linear combinations of symmetrized monomials [Eq. (S14)], it suffices to

evaluate this integral for any two such monomials, i.e.,

ψp,q(x̃) :=
√
n

∫ 1

0

dn−1r p(~r) q(x̃, ~r) , (S18)

where p = {p1, p2, . . . , pn−1}, q = {q1, q2, . . . , qn}. Using exchange symmetry, one can write ψp,q(x̃) =
√
n(n −

1)!
∫
Sn−1

dn−1r p(~r) q(x̃, ~r) over the canonical sector Sn−1 [Eq. (S13)]. In this sector, p(~r) = xp11 x
p2
2 . . . x

pn−1

n−1 , but the
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expression for q(x̃, ~r) depends on the ordering of x̃ relative to the other coordinates. For x̃ → 0+ (i.e., x → X+
j−1),

q(x̃, ~r) = x̃q1xq21 x
q3
2 . . . xqnn−1, whereas for x̃→ 1− (x→ X−j ), q(x̃, ~r) = xq11 x

q2
2 . . . x

qn−1

n−1 x̃
qn . Thus, using Eq. (S15),

ψp,q(0) = δq1,0
√
n (n− 1)! I

(
{p1 + q2, p2 + q3, . . . , pn−1 + qn}

)
, (S19)

ψp,q(1) =
√
n (n− 1)! I

(
{p1 + q1, p2 + q2, . . . , pn−1 + qn−1}

)
. (S20)

For intermediate values of x̃, the integral can be split into domains where x1 ≤ · · · ≤ xn′−1 ≤ x̃ ≤ xn′+1 ≤ · · · ≤ xn−1
for n′ = 1, 2, . . . , n, which gives

ψp,q(x̃) =
√
n (n− 1)!

n∑
n′=1

x̃qn′Il
(
{p1 + q1, . . . , pn′−1 + qn′−1}, x̃

)
Ir
(
x̃, {pn′ + qn′+1, . . . , pn−1 + qn}

)
, (S21)

where

Il
(
{p1, . . . , pn}, x̃

)
:=

∫ x̃

0

dxn

∫ xn

0

dxn−1· · ·
∫ x2

0

dx1 x
p1
1 x

p2
2 . . . xpnn = x̃n+

∑n
i=1 pi I

(
{p1, . . . , pn}

)
, (S22)

Ir
(
x̃, {p1, . . . , pn}

)
:=

∫ 1

x̃

dxn

∫ xn

x̃

dxn−1· · ·
∫ x2

x̃

dx1 x
p1
1 x

p2
2 . . . xpnn

=

n∑
i=0

(−1)i Il
(
{pi, pi−1 . . . , p1}, x̃

)
I
(
{pi+1, pi+2, . . . , pn}

)
, (S23)

and Il({}, x̃) := 1. Note that Il(p, 1) = Ir(0,p) = I(p). Equation (S21) gives ψp,q(x̃) as a polynomial in x̃ of degree

n− 1 + qn +
∑n−1
i=1 pi + qi. In numerical simulations, we store these polynomial coefficients.

2. Density and potential energy

A similar construction applies for the density ρ̂(x) = ψ̂†(x)ψ̂(x). Using Eq. (S16), one finds the matrix elements

〈
φ
(j)
n,k

∣∣ ρ̂(x)
∣∣φ(j)n,k′〉 = n

∫ Xj

Xj−1

dn−1r φ
(j)∗
n,k (x,~r)φ

(j)
n,k′(x,~r) =

n

wj

∫ 1

0

dn−1r χ
(j)∗
n,k (x̃, ~r)χ

(j)
n,k′(x̃, ~r) (S24)

for Xj−1 ≤ x ≤ Xj . As before, the integral needs to be calculated only for symmetrized monomials,

ρp,q(x̃) := n

∫ 1

0

dn−1r p(x̃, ~r) q(x̃, ~r) , (S25)

where p = {p1, p2, . . . , pn} and q = {q1, q2, . . . , qn}. Using exchange symmetry, ρp,q(x̃) = n!
∫
Sn−1

dn−1r p(x̃, ~r) q(x̃, ~r)

where Sn denotes the canonical ordering [Eq. (S13)]. At the boundaries x̃→ 0+ and x̃→ 1−, both p(x̃, ~r) and q(x̃, ~r)

reduce to single monomials, yielding [as in Eqs. (S19) and (S20)]

ρp,q(0) = δp1+q1,0 n! I
(
{p2 + q2, p3 + q3, . . . , pn + qn}

)
, (S26)

ρp,q(1) = n! I
(
{p1 + q1, p2 + q2, . . . , pn−1 + qn−1}

)
. (S27)

For intermediate x̃, we split the integral into subdomains x1 ≤ · · · ≤ xn′−1 ≤ x̃ ≤ xn′+1 ≤ · · · ≤ xn−1, obtaining

ρp,q(x̃) = n!

n∑
n′=1

x̃pn′+qn′Il
(
{p1 + q1, . . . , pn′−1 + qn′−1}, x̃

)
Ir
(
x̃, {pn′+1 + qn′+1, . . . , pn + qn}

)
, (S28)

where Il and Ir are given by Eqs. (S22) and (S23). Again, ρp,q(x̃) is a polynomial in x̃ of degree n− 1 +
∑n
i=1 pi+ qi,

and we store the coefficients.
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The matrix elements of the potential energy P̂j =
∫Xj

Xj−1
dxV (x) ρ̂(x) can be obtained from those of the density in

Eq. (S24). In particular, for two symmetrized monomials, one calculates

V (j)
p,q :=

∫ 1

0

dx̃ V (Xj−1 + wj x̃) ρp,q(x̃) , (S29)

which reduces to computing moments of V (x), since ρp,q(x̃) is a polynomial in x̃. For a sinusoidal potential V (x) =

V0 cos2 kx, these moments can be found exactly using∫ 1

0

dx̃ x̃p−1eik̃x̃ = (i/k)pγ(p,−ik) (S30)

∀p ≥ 1, where γ(p, z) is the lower incomplete gamma function [S1], distinct from the interaction strength γ.

3. Kinetic energy

The kinetic energy within the j-th segment is given by K̂j = (1/2)
∫Xj

Xj−1
dx [∂xψ̂

†(x)] [∂xψ̂(x)]. To find its matrix

elements, we use Eq. (S16) and the exchange symmetry of the basis functions, obtaining

〈
φ
(j)
n,k

∣∣ K̂j

∣∣φ(j)n,k′〉 =
1

2

∫ Xj

Xj−1

dnr ~∇φ(j)∗n,k (~r).~∇φ(j)n,k′(~r) =
1

2w2
j

∫ 1

0

dnr ~∇χ(j)∗
n,k (~r).~∇χ(j)

n,k′(~r) . (S31)

Replacing χ
(j)
n,k(~r) with a symmetrized monomial [Eq. (S14)], we only need to evaluate

Kp,q :=
1

2

∫ 1

0

dnr ~∇p(~r).~∇q(~r) =
n!

2

∫
Sn

dnr ~∇p(~r).~∇q(~r) , (S32)

where p = {p1, p2, . . . , pn} and q = {q1, q2, . . . , qn}. In sector Sn, ∂xip(~r) = pix
pi−1
i

∏
i′ 6=i x

pi′
i′ . Thus, Eq. (S15) yields

Kp,q =
n!

2

n∑
i=1

piqi I
(
incr(p + q, i,−2)

)
, (S33)

where incr(p, i, s) := {p1, . . . , pi−1, pi + s, pi+1, . . . , pn}, i.e., it increments the i-th element by s. Note that one can

also extract matrix elements of the kinetic energy density K̂(x) in Eq. (S1) using the procedure in Sec. SII B 2.

4. Interaction energy

For the interaction energy Ûj in Eq. (S4), we again use the action of the field operator in Eq. (S16) to obtain

〈
φ
(j)
n,k

∣∣ Ûj ∣∣φ(j)n,k′〉 = g

(
n

2

)∫ Xj

Xj−1

dx

∫ Xj

Xj−1

dn−2r φ
(j)∗
n,k (x, x, ~r) φ

(j)
n,k′(x, x, ~r) (S34)

= g

∫ Xj

Xj−1

dnr
∑
i<i′

δ(xi − xi′) φ(j)∗n,k (~r) φ
(j)
n,k′(~r) =

g

wj

∫ 1

0

dnr
∑
i<i′

δ(xi − xi′) χ(j)∗
n,k (~r) χ

(j)
n,k′(~r) . (S35)

Therefore, constructing the matrix for Ûj boils down to evaluating

Up,q :=

∫ 1

0

dnr
∑
i<i′

δ(xi − xi′) p(~r) q(~r) =
n!

2

∫
Sn

dnr

n−1∑
i=1

δ(xi − xi+1) p(~r) q(~r) (S36)
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for symmetrized monomials p = {p1, p2, . . . , pn} and q = {q1, q2, . . . , qn}. Note, in sector Sn, x1 ≤ x2 ≤ · · · ≤ xn, so

we have the delta function only between neighboring coordinates xi and xi+1. Substituting the monomial expressions

for p(~r) and q(~r), and using Eq. (S15), we find

Up,q =
n!

2

n−1∑
i=1

I
(
merge(p + q, i)

)
, (S37)

where merge(p, i) := {p1, . . . , pi−1, pi+pi+1, pi+2, . . . , pn}, i.e., it merges the i- and i+1-th elements. As with K̂(x), the

matrix elements of the interaction energy density Û(x) in Eq. (S2) can be obtained using the method in Sec. SII B 2.

C. Basis construction for contact interactions

The ideal choice of basis functions, χ
(j)
n,k(~r), would have three properties: (i) A small number of these states should

accurately approximate the low-energy eigenstates of the Hamiltonian, (ii) these states should smoothly connect to

the wave functions in neighboring sectors, and (iii) they should be orthogonal to one another. The latter can be

ensured by taking them to be eigenstates of a Hermitian operator – and choosing the basis is equivalent to choosing

the operator.

Insight into the choice of operator comes from the one-particle sector, where selecting the basis functions is related

to deciding on a functional form for splines which will be used to piecewise describe the ground state of the Schrödinger

equation. In that case, one might naively choose the single-particle basis functions on [0, 1] to be solutions to Laplace’s

equation, ∂2x1
χ = λχ. Depending on boundary conditions, χ = cos(πkx1) with k = 0, 1, . . . or χ = sin(πkx1) with

k = 1, 2, . . .. Neither set of states is amenable to continuously connecting across segments – as either the basis function

or its derivative vanishes at the boundaries. The solution is to modify the operator so that x1 = 0 and x1 = 1 are

regular singular points; for example choosing them to be solutions to Legendre’s equation: ∂x1
[x1(1− x1)∂x1

χ] = λχ.

The solutions are Legendre polynomials Pk(2x1−1) [S1], and the resulting wave function expansion amounts to using

polynomial splines. Colloquially, one imagines that the factor x1(1−x1) “absorbs” the boundary conditions, allowing

basis functions to have both nonzero amplitude and slope at the segment boundaries. An equivalent construction of

the Legendre polynomials is to perform a Gram-Schmidt orthogonalization on the monomials {1, x1, x21, . . . , xk1}.

In our problem the many-body wave function has a kink whenever two particles coincide. Thus, the expansion will

perform better if the basis functions also have this kink, motivating the modified Legendre equation,

− 1

2

n∑
i=1

∂

∂xi

[
xi(1− xi)

∂

∂xi
χ
(j)
n,k(~r)

]
+ cj

∑
i<i′

xi(1− xi) δ(xi − xi′) χ(j)
n,k(~r) = E(j)n,k χ

(j)
n,k(~r) , (S38)

where cj gives the slope discontinuity, ∂xi
χ
(j)
n,k(xi → x+i′ )− ∂xi

χ
(j)
n,k(xi → x−i′ ) = cj χ

(j)
n,k(xi = xi′). As the coordinates

of χ are stretched by a factor of wj relative to the physical coordinates [Eq. (S11)], we require cj = wjg. For uniform

segments, wj = constant, thus cj and χ
(j)
n,k do not depend on j.

We expand Eq. (S38) on the (non-orthogonal) symmetrized monomials. Defining

K̂L[χ(~r)] := −1

2

n∑
i=1

∂

∂xi

[
xi(1− xi)

∂

∂xi
χ(~r)

]
(S39)

ÛL[χ(~r)] :=
∑
i<i′

xi(1− xi) δ(xi − xi′) χ(~r) (S40)
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and their sum Ĥ
(j)
L = K̂L + cjÛL, the matrix elements are

〈
p
∣∣K̂L∣∣q〉 =

n!

2

∫
Sn

dnr

n∑
i=1

xi(1− xi) [∂xip(~r)] [∂xiq(~r)] , (S41)

〈
p
∣∣ÛL∣∣q〉 =

n!

2

∫
Sn

dnr

n−1∑
i=1

xi(1− xi) δ(xi − xi+1)p(~r)q(~r) . (S42)

As before, p = {p1, p2, . . . , pn}, q = {q1, q2, . . . , qn}, and Sn stands for the canonical ordering in Eq. (S13). Substi-

tuting p(~r) = xp11 x
p2
2 . . . xpnn and q(~r) = xq11 x

q2
2 . . . xqnn , we find, similar to Secs. SII B 3 and SII B 4,

〈
p
∣∣K̂L∣∣q〉 =

n!

2

n∑
i=1

piqi

[
I
(
incr(p + q, i,−1)

)
− I(p + q)

]
, (S43)

〈
p
∣∣ÛL∣∣q〉 =

n!

2

n−1∑
i=1

[
I
(
incr

(
merge(p + q, i), i, 1

))
− I

(
incr

(
merge(p + q, i), i, 2

))]
, (S44)

where I(p) is given by Eq. (S15). These expressions reduce Eq. (S38) to a generalized eigenvalue problem H
(j)
L A

(j)
n,k =

E(j)n,kOnA
(j)
n,k, where A

(j)
n,k are the expansion coefficients of χ

(j)
n,k in terms of the monomials [Eq. (S14)] and On is the

matrix of inner products between the monomials, given by 〈p|q〉 = n! I(p + q). The energy spectrum E(j)n,k provides

a natural ordering of the basis states, which can be truncated at high energies. Although one is solving a many-body

problem in generating the basis, the complexity is greatly reduced compared to the original problem, as the number

of monomials is limited if the number of particles in a segment, n, is sufficiently small.

SIII. Simulation parameters

As outlined above, we construct the basis by solving an eigenvalue problem, Eq. (S38), in the space of symmetrized

monomials of maximum degree dmax. The number of monomials grows as Nmon =
(
n+dmax

n

)
. Provided the segments

are sufficiently narrow, or the repulsive interactions are sufficiently strong (γ � 1), we retain only a few or no basis

states for larger n. Table S1 enumerates the total number of monomials and the number of basis states we keep in a

typical calculation with strong interactions. Figure S1 shows the average weight, N̄n,k, of each basis function in the

ground state. These are calculated by averaging over the reduced density matrices describing individual segments,

and
∑
n,k N̄n,k = 1. The basis is ordered so that larger k corresponds to larger En,k. The weights fall off strongly

with both n and k, justifying our truncation. The k dependence is well approximated by a power law, and roughly

the same power law is seen for each n.

Once the basis is generated, one can represent the local operators as matrices following Sec. SII B and proceed to

the DMRG sweeps, for which we used version 3.0.0 of the ITensor library in C++ [S2]. As discussed in the main

text, we run multiple DMRG cycles where the energy penalty Λ is successively increased in powers of 10. Here, the

practical objective is to produce a good initial state for the final cycle as quickly as possible. Thus, we start from a

small maximum bond dimension Dmax and gradually increase it with Λ to speed up the initial cycles, as shown in

Table S2. Throughout, we discard singular values below a truncation cutoff εtrunc = 10−14. For the final few cycles,

Dmax is sufficiently large that this threshold is exceeded on all bonds. For each value of Λ, we sweep back and forth

until the relative change in the total energy (including the discontinuity penalty) between consecutive sweeps is less

than a convergence threshold εconv, which we lower with increasing Λ (as in Table S2). We use a Davidson eigensolver

with up to a few tens of maximum iterations νmax, for which our thresholds are typically met after a small number

of sweeps. We terminate the program if, at the end of a cycle, the discontinuity
∑
j〈Υ̂j,j+1〉/L has dropped below

a target Tdisc = 10−12. The CPU- and wall times are measured in seconds for each cycle and for the entire DMRG
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TABLE S1. Number of monomials and basis states

we keep in each segment for the calculation in Fig. 2

of the main text. Here, dmax = 4, N = 5, M = 8,

and γ = 50.

n Nmon Nbasis

0 1 1

1 5 5

2 15 15

3 35 35

4 70 10

5 126 2

Total 252 68
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FIG. S1. Average occupation of the basis states enumerated in

Table S1 in the ground state shown in Fig. 2. The basis states

are indexed by their eigenvalue En,k in Eq. (S38).

program using the clock() and chrono::high resolution clock::now() functions, respectively, in C++ on Linux

desktops. Since we used quad-core CPUs, wall times are about a quarter of the CPU times.

TABLE S2. DMRG parameters for successive cycles with increasing penalty Λ for the system in Table S1 and Fig. 2: νmax

is the maximum eigensolver iteration, εtrunc is the singular-value cutoff, Dmax is the maximum bond dimension, εconv is the

convergence threshold, and D, Nsw, ∆tCPU, ∆twall are the resulting bond dimension, number of sweeps, CPU- and wall times.

ΛL νmax εtrunc Dmax εconv D Nsw ∆tCPU(s) ∆twall(s)

101 30 10−14 20 10−3 20 3 45 12

102 40 10−14 30 10−4 30 3 109 28

103 40 10−14 40 10−5 40 4 203 51

104 40 10−14 50 10−6 50 4 257 64

105 30 10−14 100 10−7 58 5 255 64

106 20 10−14 200 10−8 48 5 112 28

Table S3 shows what basis states were used for benchmarking against discretization in Fig. 3 of the main text. The

corresponding DMRG parameters are listed in Tables S4 and S5. For the discretized model in Eq. (2), we employed a

standard DMRG cycle with εtrunc = 10−14 and εconv = 10−8, same as in the final cycle of cDMRG; we used νmax = 3

which produced good convergence, and although Dmax was set to 1000, the actual bond dimensions were comparable

to those found using cDMRG, as shown in Fig. S2(a). We varied the number of segments and grid points to control

the error ε in the ground-state energy. Figure S2(b) shows that the total number of sweeps is relatively independent

of ε for cDMRG, but scales roughly as ε−1/2 for discretization. The wall time for the entire DMRG algorithm, plotted

in Fig. S2(c), exhibits a similar scaling as the corresponding CPU time in Fig. 3(b) of the main text.

The ground states in the presence of a sinusoidal potential were obtained using basis C in Table S3 and the sweep

parameters in Table S5. The resulting bond dimensions, sweep numbers, and CPU times are shown in Fig. S3. For

weak interactions, the first two exhibit peaks where the ground state changes from a Mott insulator to a superfluid.

As expected, the CPU time is maximum at weak interactions and weak potentials where the ground state is the most

delocalized, requiring a large number of sweeps to populate all basis states.
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TABLE S3. Number of retained basis states, Nbasis, for N = 10 in three cases: A and B were used in benchmarking for γ = 10

and γ = 0.1, respectively, in Fig. 3. C was used in Figs. 4 and 5 to explore ground states in a sinusoidal potential with M = 20.

Label dmax n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 Total

A 3 4 10 20 35 50 30 15 5 2 0 172

B 3 4 10 20 35 56 70 60 50 35 20 361

C 4 5 15 35 70 90 50 25 10 5 0 306

TABLE S4. DMRG parameters used in benchmarking for

N = 10 and γ = 10 in Fig. 3. See Table S2 for notation.

ΛL νmax εtrunc Dmax εconv

101 20 10−14 20 10−4

102 30 10−14 30 10−5

103 30 10−14 40 10−6

104 30 10−14 50 10−7

105 20 10−14 70 10−8

106 10 10−14 120 10−8

TABLE S5. DMRG parameters used forN = 10 and γ = 0.1

in Fig. 3 and in the presence of a potential in Figs. 4 and 5.

ΛL νmax εtrunc Dmax εconv

101 30 10−14 10 10−4

102 40 10−14 20 10−5

103 40 10−14 30 10−6

104 40 10−14 40 10−7

105 30 10−14 60 10−7

106 20 10−14 100 10−8
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ground-state energy for N = 10 using cDMRG (solid lines) and the discretized model (dashed lines), corresponding to Fig. 3.

The basis and DMRG parameters are given in Tables S3–S5. Dashed lines in (b) approximately follow N total
sw ∼ |1−E/EBA|−1/2.
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SIV. Splitting a basis into finer segments

As discussed in the main text, one needs to split a basis into finer segments for multiscale DMRG approaches [S3]

and for obtaining the spatial entanglement at any point other than the segment boundaries. It suffices to consider a

single segment with rescaled basis functions χn,k(~r) defined over [0, 1]n [see Eq. (S11)]. For notational simplicity, we

drop the segment label j in this section. To split χn,k at at intermediate point x̃, we first construct basis functions

χ±n,k(~r) over the left and right zones, [0, x̃]n and [x̃, 1]n, in terms of symmetrized monomials, as described below. Then

the task is to decompose χn,k(~r) in the tensor product basis χ+ ⊗ χ−, i.e.,

χn,k(~r) =

n∑
n′=0

∑
k+,k−

Cn,kn′,k+,k− S
[
χ+
n′,k+(x1, x2, . . . , xn′) χ

−
n−n′,k−(xn′+1, xn′+2, . . . , xn)

]
, (S45)

where S symmetrizes all n coordinates and the transformation coefficients Cn,kn′,k+,k− characterize the splitting. Using

orthonormality and exchange symmetry of the basis functions, one finds

Cn,kn′,k+,k− =

∫ 1

0

dnr χn,k(~r) S
[
χ+∗
n′,k+(x1, x2, . . . , xn′) χ

−∗
n−n′,k−(xn′+1, xn′+2, . . . , xn)

]
(S46)

=

(
n

n′

)1/2∫ x̃

0

dx1 . . .

∫ x̃

0

dxn′

∫ 1

x̃

dxn′+1 . . .

∫ 1

x̃

dxn χn,k(~r) χ+∗
n′,k+(x1, . . . , xn′) χ

−∗
n−n′,k−(xn′+1, . . . , xn) . (S47)

As the basis functions are given in terms of symmetrized monomials [see Eq. (S14)], it is sufficient to compute this

integral for χn,k(~r) = p(~r), χ+
n′,k+(x1, . . . , xn′) = q+(x1, . . . , xn′), and χ−n−n′,k−(xn′+1, . . . , xn) = q−(xn′+1, . . . , xn),

with the monomial exponents p = {p1, . . . , pn}, q+ = {q+1 , . . . , q
+
n′}, and q− = {q−n′+1, . . . , q

−
n }, which yields

Cpq+,q− =
√
n!n′! (n− n′)! Il

(
{p1 + q+1 , . . . , pn′ + q+n′}, x̃

)
Ir
(
x̃, {pn′+1 + q−n′+1, . . . , pn + q−n }

)
, (S48)

where Il and Ir have closed-form expressions given in Eqs. (S22) and (S23).

One can construct χ±n,k in terms of monomials using the same procedure as in Sec. SII C. For contact interactions,

they can be generated from the eigenvalue equations
(
K̂±L + c Û±L

)
|χ±n,k〉 = E±n,k|χ

±
n,k〉 where, in the position basis,

K̂+
L = −1

2

∑
i

∂

∂xi

[
xi(x̃− xi)

∂

∂xi

]
, Û+

L =
∑
i<i′

xi(x̃− xi) δ(xi − xi′) , (S49)

K̂−L = −1

2

∑
i

∂

∂xi

[
(xi − x̃)(1− xi)

∂

∂xi

]
, Û−L =

∑
i<i′

(xi − x̃)(1− xi) δ(xi − xi′) . (S50)

Note we have adapted the factors xi(1− xi) in Eq. (S38) for the intervals [0, x̃] and [x̃, 1]. Following the derivation in

Eqs. (S41)–(S44), we find the matrix elements, for p = {p1, . . . , pn} and q = {q1, . . . , qn},

〈
p
∣∣K̂+
L
∣∣q〉 =

n!

2

n∑
i=1

piqi

[
x̃Il
(
incr(p + q, i,−1), x̃

)
− Il(p + q, x̃)

]
, (S51)

〈
p
∣∣Û+
L
∣∣q〉 =

n!

2

n−1∑
i=1

[
x̃Il
(
incr

(
merge(p + q, i), i, 1

)
, x̃
)
− Il

(
incr

(
merge(p + q, i), i, 2

)
, x̃
)]

, (S52)

〈
p
∣∣K̂−L ∣∣q〉 =

n!

2

n∑
i=1

piqi

[
(1 + x̃)Ir

(
x̃, incr(p + q, i,−1)

)
− Ir(x̃,p + q)− x̃Ir

(
x̃, incr(p + q, i,−2)

)]
, (S53)

〈
p
∣∣Û−L ∣∣q〉 =

n!

2

n−1∑
i=1

[
(1 + x̃)Ir

(
x̃, incr

(
merge(p + q, i), i, 1

))
− Ir

(
x̃, incr

(
merge(p + q, i), i, 2

))
− x̃Ir

(
x̃, merge(p + q, i)

)]
. (S54)
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The inner product of the symmetrized monomials over [0, x̃]n and [x̃, 1]n are simply given by 〈p|q〉+ = n!Il(p + q, x̃)

and 〈p|q〉−= n!Ir(x̃,p+q). Using these results, the construction of χ±n,k reduces to a generalized eigenvalue problem.

In Fig. 5 of the main text, we truncate χ±n,k the same way as χn,k (as detailed in Sec. SIII).

SV. Tight-binding approximation with hard walls

In the presence of a sufficiently deep external potential V (x) = V0 cos2(Nwπx/L), one can approximate the con-

tinuum problem by Nw localized Wannier orbitals at the potential minima. To derive this tight-binding model, we

consider the single-particle Hamiltonian Ĥsp = K̂ + P̂ , where K̂ = −∂2x/2 and P̂ = V (x) in the position basis. Since

we have hard-wall boundaries at x = 0 and x = L, the Hilbert space is spanned by the particle-in-a-box wave functions

αm(x) =
√

2/L sin(mπx/L), m = 1, 2, 3, . . . , such that 〈αm|K̂|αm′〉 = δm,m′(m/Nw)2Er, where Er = N2
wπ

2/(2L2) is

the recoil energy. The potential V (x) couples these states with the amplitudes

〈αm|P̂ |αm′〉 = (V0/2) δm,m′ + (V0/4)
(
δm,m′+2Nw

+ δm,m′−2Nw
− δm,−m′+2Nw

)
, (S55)

which vanish for m 6= m′ unless m and m′ are separated by or add up to 2Nw. This selection rule partitions the wave

functions into Nw groups characterized by q = 1, 2, . . . , Nw, where mod(m ± q, 2Nw) = 0. Here, q plays the role of

quasimomentum and the lowest-energy eigenstates of Ĥsp for each q constitute the lowest band, Ĥsp|ψq〉 = Eq|ψq〉.
We find the Wannier functions as eigenstates of X̂proj = Π̂X̂Π̂, where Π̂ is the projector onto the lowest band and X̂

is the position operator with matrix elements

〈αm|X̂|αm′〉 = [(−1)m+m′− 1]
4Lmm′

π2(m2 −m′2)2
. (S56)

Figure S4(a) shows the Wannier functions Wj(x) for Nw = 10 and V0/Er = 2, centered at different potential minima

j, which become more localized with increasing V0/Er. In this Wannier basis, one can calculate the nearest-neighbor

tunneling Jj,j+1 = −〈Wj |Ĥsp|Wj+1〉 and local energy shifts εj = 〈Wj |Ĥsp|Wj〉. Contact interactions give rise to the

“on-site” interaction energies Uj = g
∫ L
0

dx |Wj(x)|4. As shown in Figs. S4(b-c), these effective Hubbard parameters

are slightly larger close to the edges. In Fig. 4 of the main text, we simulate such nonuniform Hubbard models

using a standard DMRG routine in Mathematica version 12.3.0 with singular-value cutoff εtrunc = 10−12, convergence

threshold εconv = 10−8, and maximum bond dimension Dmax = 500 (cf. Sec. SIII).
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FIG. S4. (a) Wannier functions at the 1st, 5th, and 9th potential minima for V0/Er = 2 and Nw = 10. (b) Tunneling between

nearest-neighbor minima and (c) local energy shifts εi and interaction energies Ui for the system in (a).

SVI. Condensate fraction in the Tonks gas

In the limit of infinitely strong repulsive interactions, γ →∞, the 1D Tonks gas of impenetrable bosons maps onto

free fermions, such that their ground-state wave function Ψ(~r) is given by the absolute value of that of the fermions,
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Ψ(~r) = |ΨF (~r)| [S4]. For a sinusoidal potential V (x) = V0 cos2(Nwπx/L) with unit filling, Nw = N , ΨF (~r) is obtained

by populating each of the single-particle eigenstates ψq(x) in the lowest band (see Sec. SV) with a fermion and taking

the Slater determinant. Therefore,

Ψ(~r) =
1√
N !

∣∣∣det
[
ψq(xi)

]
q,i=1,2,...,N

∣∣∣ . (S57)

The boson occupation of the single-particle modes are contained in one-body density operator ρ̂1, where

ρ1(x, x′) = N

∫ L

0

dN−1r Ψ(x,~r) Ψ(x′, ~r) . (S58)

In particular, the condensate fraction is given by f0 := N0/N , where N0 is the occupation of the single-particle ground

state (corresponding to q = 1), N0 = 〈ψ1|ρ̂1|ψ1〉. Thus,

f0 =
1

N

∫ L

0

dx

∫ L

0

dx′ ψ1(x)ρ1(x, x′)ψ1(x′) . (S59)

For V0 = 0, ψq(x) =
√

2/L sin(qπx/L) and one can simplify ρ1(x, x′) to a determinant [S5], reducing the calculation

of f0 to a 2D numerical integral. Figure S5(a) shows that, in this case, f0 ∼ N−0.45. The condensate fraction f0

vanishes in the thermodynamic limit, but is finite for fixed N . For V0 > 0, we find the single-particle states |ψq〉 by

exact diagonalization and then compute f0 by an (N + 1)-dimensional Monte Carlo integration with up to 108 points

in Mathematica version 12.3.0. The results for N = 10 are shown in Fig. 4(b) of the main text.

SVII. Luttinger parameter and pinning instability
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FIG. S5. Ground-state parameters for V0 → 0: (a) Condensate fraction vs particle number for γ →∞; solid line shows the fit

0.97N−0.45. (b) Luttinger parameter vs interaction strength; arrows show the onset of pinning instability below K = 2. (c)

Critical interaction strength γc, corresponding to K = 2, vs particle number; solid line shows the fit 3.5 + 7.5/N .

The low-energy excitations of our model for the interacting 1D Bose gas are described by a Luttinger liquid [S6],

characterized by the parameter K = vs/vN , where vs and vN are the speed of sound and density stiffness, respectively.

These can be obtained from the ground-state energy E as

vs =

√
L2

N

∂2E

∂L2
and vN =

L

π

∂2E

∂N2
, (S60)

with ~ = m = 1. In the absence of any external potential V (x), E can be calculated exactly using Bethe Ansatz [S7],

thus one can find K as a function of the interaction strength γ for a given particle number N , as shown in Fig. S5(b).

Crucially, perturbative calculations have shown [S8] that for K < 2, a Luttinger liquid has an instability whereby it is

pinned to an insulating state by an arbtrarily weak commensurate potential, V (x) = V0 cos2(Nwπx/L) with N/Nw =
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integer. Thus, K = 2 marks the transition from a superfluid to a Mott insulator for V0 → 0. In Fig. S5(c), we plot

the corresponding interaction strength γc, which is well fitted by γc ≈ 3.5 + 7.5/N .

[S1] S. Zhang and J. Jin, Computation of Special Functions (Wiley, New York, 1996).

[S2] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor software library for tensor network calculations (2020),

arXiv:2007.14822.

[S3] M. Dolfi, B. Bauer, M. Troyer, and Z. Ristivojevic, Multigrid algorithms for tensor network states, Phys. Rev. Lett. 109,

020604 (2012).

[S4] M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Math. Phys. 1,

516 (1960).

[S5] P. J. Forrester, N. E. Frankel, T. M. Garoni, and N. S. Witte, Painlevé transcendent evaluations of finite system density
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