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EXPERIMENTAL DETAILS

Delivery of Liquid Glycerol into Vacuum

The sample delivery of liquid glycerol into vacuum is briefly explained in the experimental

method section of the main text. A sample reservoir was mounted on a height adjustable

frame. One side of a Teflon tube was connected to the reservoir and other side was connected

to a stainless-steel needle with an inner diameter of 0.45 mm, which was mounted on a

three-axis sample translation stage inside the vacuum chamber. These details were illustrated

for convenience in Figure S1. The liquid glycerol was hanging inside the stainless-steel needle,

which is shown in upper row of Figures 2 and 3 in the main text. The flow of sample into the

chamber was controlled by adjusting the height of the sample reservoir and back pressure to

make sure there is liquid glycerol in the stainless-steel needle while avoiding liquid glycerol

dropping down to the chamber from the needle tip. The PIRL laser shines on the glycerol in

the needle from bottom (with a slight titling angle as can be seen in Figure 1a in the main

text).
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FIG. S1. Schematic drawing of the sample reservoir for delivering liquid glycerol into the vacuum

chamber.
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Device Synchronization

Different kinds of pulsed sources (i.e. Picosecond Infrared Laser pulse, Ti:Saphire fem-

tosecond laser pulse, flshlamp nanosecond optical illumination source) are involved in the

experiments, so synchronizing these different devices is very important. Figure S2 shows the

diagram of how we synchronize these devices. As mentioned in the main text, the PIRL acts

as the master trigger for other devices. Its repetition rate is 1 KHz, which is the same as the

femtosecond laser. The delay generator (Quantum Composer 9520) was triggered by this

master trigger and synchronized other devices to the PIRL with adjustable delay (in a fine

step of 1 ns).
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FIG. S2. Schematic drawing of the device synchronization diagram.

Sample Consumption Estimation

Based on our previous study,1 an estimate for the sample ejection is 27 pL per PIRL shot.

The repetition rate of our PIRL laser is 1 KHz, but to avoid cumulative heating effects we

have an ablation window of 50 ms resulting in 50 shots per second. We need 2750 shots for

producing a diffraction image with good signal to noise ratio, giving a sample consumption
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of 74.25 nL for a diffraction image. Liquid sheets used in MeV liquid UED experiments have

a sample consumption rate of 0.20 ml/min.2 For a repetition rate of 360 Hz (SLAC MeV

UED facility),2 our method will consume (360 s−1×27 pL×60 s) = 583.2 nL per minute.

MOLECULAR DYNAMICS SIMULATIONS
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FIG. S3. Histogram of the atom-pair distance distribution of liquid glycerol (a box size of 3 nm ×4

nm×5 nm using a Gromacs Molecular Dynamics simulation) of respective atom pairs and multiplied

it by the corresponding atomic numbers and divided by the distance along the X-axis.

The molecular mechanics simulation of the structure of liquid glycerol was performed

using the program Gromacs.3 A box size of 3×4×5 nm was chosen and initially filled with

295 molecules with random orientations. After equilibration of the temperature (298K) a

large cavity appeared which was filled with additional molecules. This process was repeated

once more, resulting in a total of 389 molecules. The temperature and pressure where

then equilibrated simultaneously for a total of 250 ps using a step size of 0.8 fs, stopping

occasionally to monitor the density to check for convergence. The density increased from

just under 1000 kg/m3, plateauing at 1160∼1170 kg/m3 after approximately 140 ps, which

is slightly lower than the actual value of 1260 kg/m3. The discrepancy is likely due to the

difficulty that force fields have in describing hydrogen bonding accurately, but was sufficiently

close for our purposes, since we do not have a precise measurement of either the temperature
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or pressure under the experimental conditions. As a comparison, an additional simulation at

400K resulted in a drop in the density to 1060 kg/m3, but the diffraction simulation result

was very similar with just small shift in the ‘liquid’ peak at about 1.6 Å−1.

We calculated the histogram of the atom-pair distance distribution of liquid glycerol

(geometry files from Gromacs Molecular Dynamics simulation result) of respective atom pairs

and multiplied it by the corresponding atomic numbers and divided by the distance along the

X-axis. The result of the weighted atom-pair distribution is shown in Figure S3. The result

is very similar to the Figure 5d in the main article. From this study, the broad distribution

at >3 Å is found to be due to the summed contribution of the intermolecular distances.
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