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Abstract

Many experiments in particle physics, in particular in the field of neutrino searches, rely on organic
liquid scintillators as target and detection material. The size of these detectors was continously growing
in the last decades, up to the kiloton scale. In several cases these detectors are located at sites
with enhanced safety requirements as underground laboratories or in the vicinity of nuclear reactors.
Therefore, there is strong demand in liquids which are safe with respect to aspects as fire protection,
human health or environmental pollution. In particular, properties as the flash point, the vapor pressure
or the toxicity need to be significantly improved as compared to classical solvents such as xylene or
pseudocumene. We present and compare the performance and optical properties of scintillators based on
high flash point solvents. In particular polysiloxane based scintillators are characterized by outstanding
properties in terms of safety.

1 Introduction

Organic liquid scintillators (LS) have been used in neutrino detectors early on, starting with the
pioneering neutrino experiment of Reines and Cowan [1] close to a nuclear reactor. Many other neutrino
experiments followed, some of them involving metal loading. The main advantages of such LS detectors
as compared to other technologies are the rather low energy threshold, detector homogeneity, availability
of several purification techniques, flexible handling, scalability to large volumes and cost-effectiveness.
For example, LS experiments such as Borexino [2] or KamLAND [3] reached unprecedented radiopurity
levels for liquid amounts in the kiloton scale. With the help of Gd-loaded LS the reactor neutrino
experiments Double Chooz [4], Daya Bay [5] and RENO [6] were able to determine the neutrino mixing
angle θ13. In the future we also expect new groundbreaking results from projects as JUNO [7] or
SNO+ [8], which even surpass the volumes of the aforementioned experiments.

However, there is also a big challenge whenever LS are involved which is related to the safety aspects.
First, many of the candidate solvents for such liquids are highly flammable. Second, most of these
organic materials are hazardous for the human health or even toxic. Last but not least there is a risk
of liquid spills, in particular during transport, purification or filling of the detectors. Since some of
the involved chemicals are environmental hazards, careful precautions have to be taken to prevent any
liquid loss, in particular into ground water or the natural environment. In recent years the focus shifted
to solvents with high flash points, often named as ”safe scintillators”. Although there is nowadays a
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good set of candidates with significantly reduced fire risk, many of the solvents are still classified as
hazardous to human health or the environment. Another issue is often the characteristic smell and the
non-negligible vapor pressure leading to severe safety concerns. These are enhanced when operations are
performed with open vessels or at specific sites. Examples are nuclear power plants, which are strong
neutrino sources, or underground laboratories, which are often required to reduce background events
from cosmic radiation such as muons.

In this article, we compare and characterize LS based on high flash point solvents. The advantages and
disadvantages are discussed. In chapter 2, we describe the scintillator composition and list appropriate
materials for the LS production along with some basic properties. The experimental setup and the
measurement procedures are explained in chapter 3. The results of the performed measurements on the
light yield, the capabilities of background discrimination using pulse shape information and transparency
are summarized in chapter 4.

2 Scintillator composition and materials

An organic LS typically consists of at least two components. The basis is an aromatic solvent. The
fluorescent solvent molecules are partly excited by ionizing particles passing through the liquids. These
excitations mainly involve the delocalized electrons of the Pi-bonds in the phenyl groups. For an
isolated fluorescent solvent molecule, the deexcitation to the ground state, which is typically a singlet
state, would be accompanied by the emission of a photon on a time scale of about ten nanoseconds.
In a pure aromatic solvent most of these floursecent molecules would be immediately absorbed. Since
the quantum yield for most solvent molecules is less than 50% [9], the pure solvent would not emit a
significant amount of scintillation light.

Therefore, an additional fluorescence molecule has to be added, the primary wavelength shifter
(fluor). Its purpose is to shift the emission spectrum towards longer wavelengths where the liquid is
more transparent. Energy is mostly transfered radiationless from the solvent to the fluor. Depending
on the wavelength region of maximal sensitivity of the photo sensors or in case of large scale detectors
there might be the need for an additional secondary wavelength shifter. Here, the scintillation light is
even further shifted to maximize detection efficiency and minimize self-absorption effects.

2.1 Solvent candidates

The simplest form of a scintillator solvent candidate is benzene. Benzene has some of the common
features which are found in many aromatic solvents used for LS: clear and colorless liquid, characteristic
odour, density slightly below 1 kg/l, refractive index close to 1.5, high vapor pressure, highly flammable
and hazardous. Benzene derivatives with very similar properties and favorable scintillation characteristics
are e.g. toluene, p-xylene, pseudocumene (PC) or anisole. Since all of them are classified as flammable
and due to their rather high vapor pressure, alternative safer solvents are nowadays considered for most
running and upcoming experiments. Some of them are described below and listed along with their main
properties in table 1.

Linear alkyl benzene

In neutrino physics, linear alkyl benzene (LAB) was first proposed in the context of the SNO+
experiment [10]. Among its main advantages are high transparency, good compatibility with typical
materials used for the detector vessels as acrylic, availability on large scales and low cost. In terms of
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Table 1: Density, flash point, vapor pressure p, refractive index n and viscosity are shown for different
solvent candidates.

Molecule formula density [kg/l] flash point p [hPa] n visc. [mm2/s]

Toluene C7H8 0.87 4◦C 29 1.50 0.7 (20◦C)
Xylene C8H10 0.86 27◦C 9 1.50 0.7 (25◦C)
PC C9H12 0.88 48◦C 2.8 1.51 0.8 (20◦C)
Anisole C7H8O 0.99 43◦C 3.5 1.52 1.4 (15◦C)
Methylnaphtalene C11H10 1.02 82◦C 2 1.62 3 (20◦C)
LAB – 0.86 ∼ 140◦C 0.013 1.48 5 (20◦C)
DIN C16H20 0.96 ∼ 140◦C 0.005 1.56 6 (40◦C)
ortho-PXE C16H18 0.99 167◦C 0.0013 1.56 6 (40◦C)
Polysiloxane (TPTMTS) – 1.07 230◦C 5·10−7 1.58 54 (25◦C)

safety, it has a flash point well above 100◦ and it is usually not defined as a hazardous material under
transport regulations. For those reasons LAB was the scintillator basis of many experiments in the
last 15 years. It was used on the multi ton scale in experiments as Double Chooz (veto scintillator) [4],
Daya Bay [5] or RENO [6]. It is also the solvent of choice for the upcoming JUNO experiment [7],
which plans to use 20 ktons of LAB based scintillator. The absorption maximum around 260 nm and
emission maximum slightly below 300 nm are similar to the ones of classical solvents such as xylene or
PC. However, depending on the purity contaminations of bi-phenyls might effect the absorption and
emission spectra above 350 nm.

Diisopropylnaphtalene

A scintillator solvent with similar flash point as LAB is diisopropylnaphtalene (DIN). In liquid form
it is typically available as a mixture of isomers. There are also specific isomers such as 2,6-DIN
which are solid at room temperature. Compared to LAB it has a significantly higher density close
to 1. This can be advantageous for mechanical stability in the case of nested detector vessels with a
water-based neighboring volume, since in this case buoyancy forces are much weaker as compared to
other solvents. Another advantage of DIN is that it offers one of the best performances in terms of
pulse shape discrimination (PSD), similar to xylene based liquids. DIN was applied as admixture in the
scintillator solvent in NEOS [11], Stereo [12] or Nucifer [13] to optimize light yield and PSD capabilities.
Commercial scintillator cocktails as the Ultima Gold series from Perkin Elmer also profit from the
favorable DIN properties.

One of the disadvantages of DIN is the rather low transparency. The best literature value we could find
for the attenuation length at a benchmark wavelength of 430 nm is 4.2 m after column purification [14].
However, depending on the optical purity of the liquid before the final purification steps, the attenuation
length can be in the 1 m range only [15]. Moreover, DIN is classified as environmental hazard, which
complicates transport and handling of the substance. Concerning the emission spectrum it is shifted
towards higher wavelengths as compared to classical solvents with a peak around 340 nm. Therefore the
overlap to the absorption peaks of typical fluors as p-terphenyl or PPO is not ideal.
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Phenyl xylyl ethane

In terms of density and safety characteristics phenyl xylyl ethane (PXE) is comparable to DIN. The
molecule exists in the para-, meta- or ortho-form. Transparent and high purity batches were found in
particular for the ortho-PXE isomer. The molecule is characterized by a high light yield, but has limited
PSD capabilities. The transparency is typically better than DIN, but worse than for LAB. On the multi
ton scale PXE was first proposed as back-up solvent for the Borexino experiment. In the Borexino
counting test facility (CTF) it could be demonstrated that for thorium and uranium purity levels below
10−16 g/g can be achieved after column purification [16]. Moreover, PXE was the scintillator basis in
the Double Chooz experiment. To improve compatibility with the acrylic vessel it was mixed with about
80% n-dodecane [17]. Ortho-PXE was also contained in the scintillators of Stereo [12] and Nucifer [13].
Absorption and emission maxima are similar to those of LAB or classical solvents such as PC.

Methylnaphtalene

One of the first proposals in the direction of a scintillator solvent with high flash point and density
close to 1 was the use of 1-methylnaphtalene (MN) [18]. The vapor pressure is significantly higher than
for the previously described chemicals and the flash point in between classical solvents and modern
safe scintillators. One of the striking features of MN is the rather high light yield. The authors in [18]
reported a scintillation pulse height 10% above the one of a xylene based LS. The challenges of the MN
approach are already pointed out in the same reference as well. Commercially available MN has often
a yellowish color as received and needs to be purified before it is used in a LS. Column purification
with acidic alumina oxide significantly improves the transmission, but careful handling of the sample is
needed to maintain transparency on the scale of months or longer. To keep stability the liquid should
be stored in the dark and air exposure has to be avoided [18]. In principle this is true for other organic
solvents as well, however MN is more sensitive to reactions that cause yellowing than the safe solvents
described above. It is probably for those reasons that MN was hardly used and implemented in large
scale LS detectors. As for other naphtalene based molecules such as DIN, the emission spectrum is
shifted towards longer wavelengths as compared to aromatics with one phenyl ring.

Silicon oils

Recently a new class of safe liquids was proposed for LS detectors with many interesting features,
namely liquid polysiloxanes [19]. In terms of safety they even excel the properties of the aforementioned
organic solvents. The flash point is typically well above 200◦C and the vapor pressure is extremely low.
Therefore, these odorless liquids do not produce harmful vapors at all. Moreover, these compounds
are chemically inert, which supports stability and good material compatibility. Basis for the chemical
and thermal robustness of this material are the strong Si-O bonds in the main chain of the molecules.
Formation of free radicals, which are a known source of yellowing processes in organic materials, is also
reduced as compared to solvents with the weaker C-C bonds. There are no specific risks for health
or environment as well. The viscosity of the polysiloxanes is rather high. This complicates filtering
processes and has to be taken into account in the design of the liquid handling systems. But there
is also the positive aspect that high viscosity liquids are less subjected to spills, another beneficial
argument in terms of safety. There are silicon oils with viscosities of 10000 mm2/s at room temperature.
Polysiloxane based scintillators were also proposed in solid forms [20].

In this work we mainly concentrated on a specific polysiloxane liquid having the most promising
characteristics based on previous studies [19]. The compound tetraphenyl-tetramethyl trisiloxane
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(TPTMTS) has a high molar fraction of phenyl groups and favorable absorption and emission character-
istics providing high light yields. Moreover, it has a rather low viscosity as compared to other liquid
polysiloxanes simplifying the liquid handling. It was difficult to get this material for a reasonable price
at the scale of several liters from the typical companies selling laboratory chemicals. However, we found
that some diffusion pump oils are mainly based on TPTMTS (DOWSILTM 704, Wacker AN140 or
Sindlhauser S-04V) which can be obtained at lower cost and with a shorter delivery time. However, the
chemical purity could not be specified for the samples we received from Sindlhauser Materials. Moreover
two other polysiloxanes were tested, 1,1,3,5,5-pentaphenyl-1,3,5-trimethyltrisiloxane (PPTMTS) and
polymethylphenylsiloxane (PMPS). The PPTMTS was purchased as S-05V, as well from Sindlhauser
Materials, and the PMPS from abcr GmbH.

Solvent mixtures

Another approach to improve the safety characteristics and material compatibility of LS is to mix
them with more inert liquids as mineral oil or n-alkanes. In KamLAND [3] and Double Chooz [17] for
example a mixture of about 80% n-dodecane and 20% aromatic fraction were used in the target liquids
to improve the compatibility with the acrylic vessels. Recently there is also increasing interest in water
based LS with an organic fraction of only several percent [21].

A novel technology in the field is the use of opaque scintillators [22]. A promising approach in this
direction is the use of a wax based scintillator which is liquid around 40◦C and solidifies below 30◦ [23].
With this material the risk of liquid spills and associated dangers can be completely avoided, but one
can still profit from the advantages of a liquid at higher temperatures.

2.2 Primary wavelength shifters

The energy transfer between the excited solvent molecules and the fluor molecules as acceptor is ideally
radiationless. For an efficient energy transfer mechanism a good overlap between solvent emission and
fluor absorption spectra is needed. Considering the emission peaks of the safe solvents introduced above
the main fluor absorption should be in the 300 − 350 nm regime. Another important fluor property
to achieve high light yields in the scintillator is the quantum yield which is typically around 90% [24].
In order to reduce the self-absorption of the fluor emission a large Stokes shift, the difference between
absorption and emission peak, can be useful.

We studied the performance of several fluors in combination with the safe solvents. In particular the
main focus was on the following candidates:

• PPO (2,5-Diphenyloxazol): This fluor is used in most of the currently running LS detectors, since
it is highly transparent above 420 nm, radiopure and available at large amounts for reasonable
cost. Moreover, the solubility in most solvents is very high.

• butyl-PBD (2-(4-biphenyl)-5-(4-tert-butyl-phenyl)-1,3,4-oxadiazole): This slightly larger molecule
has a high quantum yield and is therefore expected to provide high light yields as well.

• BPO (2-(4-biphenyl)-5-phenyloxazole): BPO is known to provide high light yields and its absorption
and emission spectra are shifted towards longer wavelengths as compared to PPO or butyl-PBD
by about 20 nm. Therefore, it is expected to perform particularly well in a solvent like DIN due to
the better overlay between spectra. However, a disadvantage of BPO is that it is more hazardous
than the other fluors reported here.
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• PMP (1-Phenyl-3-mesityl-2-pyrazolin): The fluor PMP is known for its high Stokes shift reducing
self-absorption. Therefore it might allow to be used in a binary system of just two components,
solvent and fluor. In most other cases a secondary wavelength shifter is needed in large detectors.

• NPO (2-(1-Naphthyl)-5-phenyloxazole): Another promising candidate is NPO with an absorption
maximum of 334 nm and an emission peak at 398 nm [25].

2.3 Secondary wavelength shifters

The number of typical candidates used as secondary wavelength shifter (WLS) is much smaller than
the one for the primary fluors. The most commonly used molecules here are bis-MSB (1,4-bis(2-
methylstyryl)benzene) and POPOP (1,4-bis(5-phenyloxazol-2-yl)benzene). The properties and per-
formance of the two is rather similar and we could not identify big advantages of one over the other
concerning the optical properties.

The most important features of the secondary WLS, which is typically added at small concentrations
of about 10 ppm are a high quantum yield and favorable absorption and emission spectra. The absorption
peak should overlap with the emission of the primary fluor around 350− 400 nm and the light emission
should match the wavelengths of highest sensitivity for the photomultiplier tube (PMT) used for light
detection. This is commonly in the range of 400− 450 nm.

3 Experimental setup

In the studies on safe LS reported in this article we investigated the transparency, light yield and PSD
capabilities of the mixtures. For the transparency measurements a standard UV-Vis photospectrometer
with 1 cm and 10 cm long cells was used. Light yield (LY) and PSD were measured in the same setup
consisting of a scintillator cell with an attached PMT, which was read out by a dedicated DAQ system.

3.1 Scintillator module

The scintillator cell was developed and first used in the context of an ionization quenching measurement
in germanium (Ge) crystals [26]. In this measurement, eleven LS modules were positioned around a Ge
detector for a coincidence measurement of scattered neutrons inside the crystals. One of these modules
is now used for LS characterization at MPIK and described below.

The liquid is contained in a cylindrical PTFE container with a glass window. The liquid capacity of
the small vessel is about 110 ml. PTFE was chosen due to its high reflectivity and excellent compatibility
with most organic liquids. This LS cell is viewed by a 2 inch PMT, which is attached to the glass
window of the cell using optical grease. The PMT in the module is an ETL9954B with a maximum
quantum efficiency of about 27% at wavelengths around 400 nm. PMT and LS cell are enclosed in a
light tight aluminium housing (see Figure 1). At one end of this housing are the two connectors for the
positive 1.5 kV high voltage and the signal cable. The signals from the PMT are acquired with a V1725
module from CAEN, allowing to record the signal waveforms at a sampling rate of 250 MHz and to
compute the corresponding charge by integration. The module is controlled via the CoMPASS software.

The scintillator samples were filled into the cells via a little opening at the top of the PTFE body.
Then the sample is flushed with argon or nitrogen gas for about 10 minutes to remove oxygen dissolved
in the LS. No significant difference on the LY was observed for the use of the two gases. For the
characterization of the light signal, radioactive sources are positioned in front of the LS module. For
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Figure 1: The picture shows the scintillator module used to measure the relative light yield and pulse
shape discrimination capabilities of the liquids.

the LY determination a 137Cs source was used which produces mono energetic gammas with an energy
of 662 keV. The activity of the 137Cs source at the time of the measurements was about 130 kBq. To
determine the PSD properties an AmBe source producing neutrons and gammas was utilized. In the
alpha decays of 241Am, gammas with energies up to 1.015 MeV are emitted. The interaction of the
alpha particles with the 9Be isotope produces excited states of 13C, which decay under emission of one
neutron and in some cases a 4.4 MeV gamma. The neutron energies from the AmBe source extend up to
11 MeV, however compared to gamma or electron sources the scintillation signal is quenched by a factor
of 2 to 3. The AmBe source used in the measurements produced about 7 · 104 neutrons per second.

3.2 Light yield determination

To determine the LY of the samples a relative comparison of the scintillator response was performed at
a defined reference point of the Cs energy distribution. Because of the small volume of the cells, the
Compton edge is used. As an example the Compton spectrum for one of our scintillator standards is
shown in Figure 2. We tested two methods for the LY determination. The first one is taking the ratio
of the ADC channels determined around the Compton edge of the spectrum measured with the 137Cs
source. The difficulty here is that due to the finite energy resolution the Compton edge is smeared. This
smearing depends on the LY of the samples. There were several attempts in the literature to identify
the best position in the Compton spectrum for a relative comparison between samples. This position
is typically defined as the ADC unit for which the count rate in the high energy tail of the spectrum
drops to a certain percentage from the maximum of the Compton peak. The suggested values in the
literature for this optimum position ranges from 66− 89% [27], however this optimum depends on the
detector design and the LS characteristics. To estimate the associated systematics we extracted the
relative LY of different scintillator samples as compared to a LS standard (Eljen EJ301) for 3 different
reference points at 70%, 80% and 90% from the maximum. The differences in the extracted relative
light yield between reference points were all below 2%.
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70% reference point

Figure 2: A typical Compton spectrum as measured with the 137Cs source is shown with the ADC channel
number on the x-axis. The reference point at 70% from the peak maximum is indicated in red.

The second way to determine the relative LY is to make use of the Compton backscattering method.
Here, the gamma source is positioned in between the LS sample and a second LS detector. An event is
only recorded in case there is a coincidence signal in the second detector. Therefore, only gammas with
a backscattering angle around 180 degrees corresponding to the maximum recoil energy at the Compton
edge are included. This procedure allows to determine a well defined reference point which can be
obtained by a symmetric gaussian fit. However, the statistics in this method is reduced. If the cells are
positioned too close to each other a rather wide range of scattering angles is allowed, adding additional
systematic uncertainties. On the other hand, if the distance between source and cells is increased the
statistics is highly deteriorated. Due to those limitations we adopted the simpler Compton method for
the measurements reported in this article. For one sample we compared the LY obtained for the two
methods and found very similar values for the case of the 70% reference point in the Compton method.
Therefore we used this 70% as reference point (see Figure 2).

3.3 Pulse shape discrimination

Scintillation events induced by photons (Compton electrons) and neutrons (proton recoils) can be
separated by the different decay times. The different ratios of charge integrals of a short gate window
covering the tail of the pulse (Qtail) and a long gate period over the full signal (Qtot), allow to distinguish
between events with different ionization density. Therefore, we define the PSD parameter r = Qtail/Qtot.

To quantify the separation power between the nuclear and electronic recoil population for a given
energy interval the figure of merit (FoM) can be defined as:
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FoM :=
1

2
√

2ln(2)

|µn − µe|
σn + σe

(1)

where µn and σn are the central value and the standard deviation of the nuclear recoil, µe and σe of
the electronic recoil population accordingly. An example distribution is shown in Figure 3. The value
for the FoM is energy dependent, so the asymptotic maximum (FoMmax) obtained at high energy is
used to compare different scintillators.

  

Proton recoils

Electrons

Figure 3: Distribution of the PSD parameter for a LS standard (LAB, PPO and POPOP) with a FoMmax

of 1.18.

3.4 Systematic uncertainties

A combined set of systematic uncertainties can be estimated by studies of the reproducibility of the
results. By measuring a sample several times on different days, each time starting with a empty
scintillator cell, the variance of the results indicates the contributions of several systematic effects. These
are for example the efficiency of the oxygen removal, filling level in the cell, temperature effects, HV
stability, sample preparation effects etc. Method related systematics such as the reference point in the
Compton spectrum, variations in source position, fluctuations in the light collection due to differences of
the emission spectra are estimated to be small compared to the systematics affecting the reproducibility.
From these studies the relative systematic uncertainty on the LY determination was estimated to be
2.4%. Based on the reproducibility of several different measurements of the same sample, the uncertainty
of the FoM of the PSD was estimated to be only 1%. However, from a comparison with a completely
different setup [15] we estimate an uncertainty from the method on the FoMmax ratio for two samples
which is about 5%.
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4 Results and discussion

4.1 Liquid scintillator standards

Commercially available LS are typically used as standards to perform relative LY and PSD measurements,
since an absolute determination would require a detailed simulation and understanding of the detector
setup. Nevertheless, a comparison of measurements between different setups even under the use of
similar standards can be difficult, since the methods and associated systematic uncertainties or biases
might vary significantly between laboratories. Therefore a comprehensive comparison of different LS
measured in an identical setup is beneficial.

Popular LS standards with widely reported LY and excellent PSD properties are EJ301 (Eljen
Technology), BC501A (Bicron) and NE213 (Nuclear Enterprises). These LS are all chemically very
similar and have basically identical properties. They are based on the classical solvent xylene with an
admixture of naphthalene and therefore not suitable for applications with strong safety requirements.
The LY of these standards as stated by the suppliers is 78% of anthracene, which itself produces about
17400 photons/MeV. Given those numbers the LY of EJ301 and BC501A would be approximately 13500
photons/MeV. To avoid aging effects it is very important to control the storage conditions of the LS
standards. Exposure to oxygen and light have to be avoided as much as possible. On the other hand
extensive nitrogen purging might lead to significant evaporation of the volatile xylene. In this case
the xylene to naphtalene ratio would decrease, which can lead to a change of the optical properties as
well. For the measurements reported in this article, we also did a comparison to the performance of a
p-xylene LS without naphtalene mixed in our laboratory. The LY of this liquid was the same as for the
commercial products such as EJ301, but without the naphtalene the PSD performance is lower.

Another LS used in many laboratories is Ultima Gold F (UG-F) from Perkin Elmer. This is a DIN
based LS and therefore advertised as safe liquid. The LY measured for our UG-F sample was 84± 2%
compared to EJ301. The PSD performance of UG-F was slightly worse than the one for EJ301 as well.

4.2 Safe scintillators

Nowadays, the most commonly used safe LS in large neutrino detectors is a mixture of LAB as solvent,
PPO as fluor and a secondary WLS (typically bis-MSB or POPOP). The optical and PSD properties of
LAB based LS were reported in many publications [28, 29, 30, 31, 32]. As for other solvents the LY
starts to saturate at PPO concentrations of a few g/l [33, 34]. Typical concentrations of the secondary
WLS are from 5− 20 mg/l. Therefore we chose 4 g/l PPO and 10 mg/l POPOP as our standard fluor
concentrations for our LAB samples. Compared to EJ301 we determined a LY for this LAB scintillator
of 77± 1.9% corresponding to 60% of anthracene. This is more than the ∼50% reported for LAB LS
in [29], but 10 − 15% less than the number estimated in [32]. One of the drawbacks of LAB is the
limited PSD performance. A comparison of LY and PSD for xylene based scintillators to several selected
safe LS is shown in Table 2.

Higher LY and better PSD properties can be achieved with DIN (see Table 2). However, even after
purification we did not succeed to obtain attenuation lengths of more than 2 m at a reference wavelength
of 430 nm, although better values of 3.5− 4.2 m were reported in [14]. Also the DIN based UG-F sample
from Perkin Elmer had an attenuation length below 1 m. The stronger absorbance as compared to LAB
is obviously a highly relevant limitation for large scale detectors in which the scintillation light has to
propagate several meters in the liquid before it hits a light sensor. To profit from the high LY and strong
PSD performance of DIN and still keeping reasonable transmission it is sometimes used as admixture in
LAB based LS [15]. We found that the LY dependence on the DIN/LAB mass ratio is consistent with a
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Table 2: The light yields relative to anthracene are listed based on relative measurement comparing to
EJ301. The value for the commercially available standards in the first line is taken from the data sheets.
To calculate the number of photons/MeV in column 3 a value of 17400 photons/MeV is assumed for
anthracene. The last column is the ratio of FoMmax compared to the LAB standard. The estimated
uncertainty of this ratio is 5%. All samples except the standard in the first line were mixed in our
laboratory. If not stated otherwise we added 4 g/l PPO and POPOP as secondary WLS.

Scintillator LY (% anthracene) LY (photons/MeV) PSD

EJ301/BC501A/NE213 78 13570 2.00
p-Xylene 77.2± 1.9 13430 1.45
LAB 60.2± 1.4 10470 1.00
DIN 70.0± 1.7 12190 1.70
ortho-PXE 64.8± 1.6 11270 1.03
1-MN (no PPO, 0.5 g/l POPOP) 73.4± 1.8 12770 1.31
TPTMTS (1.2% butyl-PBD, POPOP) 58.4± 1.4 10170 0.92

linear dependence. Even with small admixtures of DIN to LAB of 5-10 wt.% significant improvements
on the PSD behavior could be achieved consistent with the results reported in [35]

For the o-PXE sample we measured a LY higher than LAB, but lower than DIN and found a FoM
for the PSD which is similar to the one of LAB. In terms of transparency after purification PXE is
in between DIN and LAB. To our knowledge the highest reported attenuation length at 430 nm was
12 m [16]. For the samples we received in the last years typical attenuation lengths were about 2-3 m
before and 6-8 m after Al2O3 column purification.

For the solvent MN the primary fluor is less important, since the emission spectrum is shifted
towards longer wavelengths. We found good performance in a binary system of just MN as solvent and
POPOP as the sole WLS. Such a two component system can have some advantages. First, it simplifies
production and second it could help the radiopurity, since the concentration of radioactive impurities is
typical higher in the fluors than in the solvents. The attenuation length of 1-MN as received was just
0.2 m and could be improved to 1.1 m after Al2O3 column purification. With the prurified MN and a
POPOP concentration of 0.5 g/l a LY of 95% compared to the xylene LS could be achieved which is
the highest value we found among all the safe solvents. Even at only 0.2 g/l POPOP the LY was still
88% compared to the xylene LS. The addition of PPO to the MN/POPOP system did not improve the
LY. The PSD properties for MN are better than for LAB or PXE, but worse than for DIN as shown in
Table 2.

The measurements on the polysiloxanes concentrated on TPTMTS (Sindlhauser S-04V). It has a
lower viscosity and higher LY than most other polysiloxanes [19]. The high LY can be explained by the
favorable emission spectrum and a high fraction of phenyl groups in the liquid. The fluor concentrations
needed for polysiloxanes are higher than for the other solvents discussed in this article. This could be
related to the higher viscosities which reduce energy transfer from processes in which diffusion plays
a role. With 1.2% butyl-PBD and POPOP as WLS a LY comparable to our LAB standard could be
achieved. The authors in [19] even reported a LY for a TPTMTS scintillator which is close to the xylene
based EJ309 (Eljen Technology) corresponding to 80% anthracene. The lower LY measured in our case
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might be related to the lower purity of the S-04V. Nevertheless, the attenuation length measured for an
unpurified S-04V sample was more than 5 m. The PSD properties of the S-04V scintillator was similar
to the one of LAB. With NPO or BPO instead of butyl-PBD as fluor 95% of the LY could be achieved
at half of the fluor concentration (0.6 wt.%) at similar PSD performance.

We also tested higher viscosity polysiloxanes, namely PPTMTS (S-05V) and PMPS. The high
viscosity, 175 mm2/s for PPTMTS and 500 mm2/s for PMPS complicates liquid handling or filtering.
However, such high viscosity media have the advantage that they are much less sensitive to spills
in case of small detector leaks. Moreover, high metal-loading might be achieved in such materials
using inorganic micro- or nanocrystals suspended in the gel phase. The LY of PPTMTS (PMPS) was
measured to be 9% (27%) lower as compared to TPTMTS consisted with the results in [19].

5 Discussion

In many experiments using liquid scintillators, safety aspects related to the organic solvent are highly
relevant. In particular for ton scale volumes and at sites with special safety requirements there is a need
for high flash point and non-toxic solvents such as LAB, DIN, PXE or polysiloxanes. In this article
optical and PSD properties of different safe liquid scintillators were compared in the same setup. Some
of the dominant systematic uncertainties related to the methods cancel in these relative measurements.
A summary of the obtained results is shown in Figure 4. This plot might be used as a guideline in the
design phase of particle detectors to identify the most appropriate scintillator composition.

Figure 4: The light yield of several safe scintillators is plotted versus the attenuation length and compared
to a xylene based standard. The size of the dots indicates the PSD performance, the larger the diameter
the better the PSD capabilities.

The preferred solvent choice in many running and upcoming neutrino experiments is LAB. As seen
in Figure 4 it is characterized by its favorable transparency. The light yield is good, but not outstanding,
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and the PSD capabilities are limited. It is available on large scales at moderate cost. Therefore LAB is
suitable for very large detectors in which scintillation light has to propagate several meters and PSD
performance is not among the most critical requirements. In smaller detectors asking for high light
yield and strong PSD, DIN is probably the better solvent candidate. To find a compromise between
transparency and PSD there is also the option to use mixtures of LAB and DIN. Another advantage of
DIN is the higher density close to 1 similar as PXE. Therefore DIN or PXE could be used in vessels
surrounded by water without creating strong buoyancy forces. PXE is in between LAB and DIN for
light yield and transmission properties. The highest light yield and good PSD properties were found for
the solvent methylnaphtalene. This solvent can be used in a binary system with just some POPOP as
fluor. The drawback of methylnaphtalene is its short attenuation length and the poor stability.

Finally the properties of liquid polysiloxanes were studied which offer a class of solvent candidates,
so far not under the radar of most particle physics experiments. Those high viscosity liquids offer
outstanding safety characteristics, since they are non-hazardous, have very low vapor pressures and flash
points above 200◦C. Transmission of the most promising polysiloxane candidates before any purification
step is better than for comparable DIN or PXE samples. Light yield and PSD are almost on the level
of LAB. The density is the highest among all the investigated solvents. Therefore it is also a good
candidate for an active veto system surrounding the detector, since it provides more shielding against
external radioactivity. The higher average Z in the silicon oil reduces the mean free path length of
low energy gammas due to the increased probability for the photoelectric effect. Polysiloxane based
scintillators might be used in an environment with highest safety standards or in cases in which there is
demand for gel-like scintillator materials.
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