
Inflation with Massive Spin-2 Ghosts

Jisuke Kubo,1, 2, a Jeffrey Kuntz,1, b Jonas Rezacek,1, c and Philipp Saake1, d

1Max-Planck-Institut für Kernphysik (MPIK),

Saupfercheckweg 1, 69117 Heidelberg, Germany

2Department of Physics, University of Toyama,

3190 Gofuku, Toyama 930-8555, Japan

(Dated: August 1, 2022)

We consider a generic model of quadratic gravity coupled to a single scalar and in-

vestigate the effects of gravitational degrees of freedom on inflationary parameters.

We find that quantum corrections arising from the massive spin-2 ghost generate

significant contributions to the effective inflationary potential and allow for a real-

ization of the spontaneous breakdown of global scale invariance without the need for

additional scalar fields. We compute inflationary parameters, compare the resulting

predictions to well-known inflationary models, and find that they fit well within the

Planck collaboration’s constraints on inflation.
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I. INTRODUCTION

Cosmic inflation is the most promising solution to many puzzles surrounding the big bang

and offers a mechanism to generate cosmological perturbations from primordial quantum

fluctuations. The approximate scale invariance of the corresponding inflationary power

spectrum reported by the Planck collaboration [1] may also be hinting towards an underlying

theory that is scale invariant before dynamical symmetry breaking; a possibility that we will

embrace as others have done in the past [2–18].

Many successful models of inflation are constructed around f(R) gravitational sectors

which may generically contain more than one power of the Ricci scalar e.g. the Starobinsky

model [19] where the additional degree of freedom (DOF) due to the R2 term plays the role of

the inflaton. More general higher order terms built from the other independent contractions

of the Riemann tensor are rarely included in the action, however, these terms are necessarily

generated by quantum effects even if they are not included at the classical level from the start

[20]. While it is usually accepted that such terms contribute to inflation only negligibly at

the classical level [21, 22], it is not necessarily true that quantum corrections arising from the

higher order contractions of the Riemann tensor are also negligible. Indeed, we find that the

massive spin-2 ghost that originates from the Weyl tensor squared term (C2) is particularly

important as it can generate an inflationary potential that dynamically induces the Planck

scale via radiative corrections á la Coleman-Weinberg1 [24]. It should be noted that the

scalaron degree of freedom originating from the R2 term alone is not sufficient for triggering

radiative symmetry breaking in the Jordan frame. In this respect, our considerations will

allow for the construction of the most minimal scale invariant model that yields a dynamical

generation of the Planck scale and inflationary potential, as no additional bosonic degrees

of freedom besides the inflaton scalar and the metric degrees of freedom are necessary.

It is well-known that the massive ghost DOFs that appear when one considers the C2

term in the action threaten the unitarity of the resulting quantum theory. This quantum

version of the Ostrogradsky instability, usually referred to as the “ghost problem”, is a subtle

and complicated topic that we will not address in this work. Rather, we refer the curious

reader to a few of the most interesting attempts to solve this problem, namely, the work

of Donoghue and Menezes that centers around the decay of the massive ghost [25, 26], as

1 This fact also implies that modifications to the inflaton potential may be recognized at the level of the

beta functions of the quartic couplings (see e.g. the beta functions in [23]).
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well as the interesting possibility of PT quantization championed by Bender and Mannheim

[27, 28]. Though the details of these works are beyond the scope of the current paper, one

important detail they share is that the massive spin-2 ghost is considered a genuine physical

particle and is not merely some calculational relic as one might consider Faddeev-Popov

ghosts, for example. As such, if one includes the C2 term in the action, the physical effects

of the massive ghost on inflationary predictions should not be neglected as they traditionally

are.

We begin our investigations in the next section by establishing the full non-linear ac-

tion, extracting the gravitational degrees of freedom, and deriving the propagators for said

DOFs. We then calculate the Coleman-Weinberg one-loop effective potential, including

contributions from the scalars and spin-2 ghost, which allows us to identify the dynami-

cally generated Planck scale and establish the inflationary potential after transforming to

the Einstein frame. Finally, we perform a numerical analysis of the predicted inflationary

parameters and end with a discussion of the results.

II. THE MODEL

We consider the following general action describing globally scale invariant quadratic

gravity non-minimally coupled to a single additional matter scalar S(x),

ST = SQG + SS , (1)

SQG =

ˆ
d4x
√
−g
(
γR2 − κCµνρσCµνρσ

)
, (2)

SS =

ˆ
d4x
√
−g
(

1

2
∇µS∇µS − β

2
S2R− λ

4
S4

)
, (3)

where γ, κ, β, and λ are arbitrary dimensionless constants. As is standard practice in studies

of quadratic gravity, the gravitational part of this action is parameterized in terms of the sum

of squares of the Ricci scalar and Weyl tensor, which is equivalent to a general combination of

the three independent contractions of the Riemann tensor after neglecting total derivatives

[29]. The complete action (1) is invariant under infinitesimal local diffeomorphisms as well
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as the global scale transformations

gµν → ω2gµν , S → ω−1S , (4)

where ω is a constant. The presence of this global symmetry is of particular interest because,

as laid out in [5], the scalar S may form a condensate 〈S〉 = vS that leads to the spontaneous

breakdown of scale invariance and the subsequent generation of an Einstein-Hilbert term

and identification of the Planck mass MPl ∝ vS.

Since we are interested in the effects of gravitational DOFs on inflation, we separate out

the dynamical part of the metric by linearizing the action around flat space with

gµν → ηµν + hµν , (5)

where ηµν is the Minkowski metric and hµν(x) is a small perturbation. After performing

this linearization up to second order in the graviton hµν , integrating by parts, and dropping

interaction terms, we arrive at the total action

S
(lin)
T =

ˆ
d4x

[
β

8
S2

cl

(
hµν�hµν + 2hµν∂ν∂

ρhµρ − hµµ�hνν − 2hµ
µ∂ν∂ρh

νρ
)
− λ

4
S4

cl

+ γ
(
hµν∂µ∂ν∂ρ∂σh

ρσ + hµ
µ�2hν

ν + 2hµ
µ�∂ν∂ρh

νρ
)

+
κ

6

(
− 3hµν�2hµν − 6hµν�∂ν∂

ρhµρ − 2hµν∂µ∂ν∂ρ∂σh
ρσ

+ hµ
µ�2hν

ν + 2hµ
µ�∂ν∂ρh

νρ
)]

, (6)

where � = −∂µ∂µ. Here we have also set S to its classical (approximately constant)

background value Scl since quantum fluctuations, in the standard Coleman-Weinberg sense,

around Scl make only negligible contributions to the inflationary potential at one-loop order

[5].

We may further separate the gravitational DOFs according to their spin by performing a

York decomposition in terms of transverse-traceless tensor modes h̃µν(x), transverse vector

modes V (x), the scalar trace hµ
µ(x), and an additional scalar mode a(x) as

hµν = h̃µν + ∂µVν + ∂νVµ +

(
∂µ∂ν −

1

4
ηµν�

)
a+

1

4
ηµνhρ

ρ , (7)
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where ∂µh̃µν = h̃µ
µ = 0 and ∂µV

µ = 0 [30]. It is also instructive to redefine the graviton

trace in terms of the gauge-invariant scalar quantity φ(x),

φ = hµ
µ −� a , (8)

which may be identified as the well-known “scalaron” degree of freedom [31]. After applying

these definitions, all of the quadratic terms containing Vµ and a cancel out leaving us with

the simple action below.

SY =

ˆ
d4x

[
φ

(
9γ

16
�2 − 3β

64
S2

cl�

)
φ− h̃µν

(
κ

2
�2 − β

8
S2

cl�

)
h̃µν − λ

4
S4

cl

]
(9)

In this York-decomposed form it is straightforward to calculate the propagators and

mass terms for each of the gravitational degrees of freedom. To do so, we perform a Fourier

transform to identify the inverse propagators as the Hessians of (9) with respect to each

field, which may then be inverted to yield the propagators

i 〈0| T φφ |0〉 =
32

3βS2
cl

(
− 1

p2
+

1

p2 −m2
φ

)
, (10)

i 〈0| T h̃µν h̃ρσ |0〉 =
4

βS2
cl

(
1

p2
− 1

p2 −m2
gh

)
δµνρσ , (11)

where p2 = pµp
µ, δµνρσ = 1

2
(ηµρηνσ + ηµσηνρ), and the masses are given by

m2
φ =

β

12γ
S2

cl , m2
gh =

β

4κ
S2

cl . (12)

III. INFLATION

A. The effective potential

After neglecting classical background contributions from the Weyl tensor squared term,

the effective action for inflation may be written as

Seff =

ˆ
d4x
√
−g
(

1

2
S�S − β

2
S2R + γR2 − Ueff(S)

)
, (13)
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where Ueff is the quantum effective one-loop potential. This term receives contributions

from the massive spin-0 and spin-2 sectors, each of which may be calculated using standard

Coleman-Weinberg (CW) methods [24].

The φ contribution to the CW potential is calculated by expanding the action (9) around

the field’s classical background as φ = φcl + δφ and integrating out the fluctuations δφ. The

part of the functional integral that is quadratic in δφ is Gaussian, leading to an effective

potential that is proportional to

ln

[
det

(
∂2SY

∂δφ∂δφ

)]
= Tr

[
ln
(
�−m2

φ

)]
+ · · · , (14)

where the “· · · ” stand for irrelevant constant terms that are independent of S. This trace

may be written as a sum of the momentum space eigenvalues of the operator ln
(
�−m2

φ

)
and evaluated using dimensional regularization to give the scalaron’s one-loop contribution

to the the effective potential.

Uφ(S) =

ˆ
d4p

(2π)4
ln

(
p2 −m2

φ

p2

)
=

1

64π2
m4
φ

[
ln

(
m2
φ

µ2

)
− 3

2

]
(15)

Here, we have employed MS, introducing the renormalization scale µ in the process, and

we have absorbed the divergent terms into the renormalized constant λ. Performing the

same calculation for the S contributions, which has already been performed in [5], yields

the analogous result

US(S) =
λ

4
S4 +

1

64π2
m4
S

[
ln

(
m2
S

µ2

)
− 3

2

]
, m2

S = 3λS2 , (16)

where the tree-level contributions have also been included.

Calculation of the spin-2 part follows in much the same way as the spin-0, with the non-

zero contributions coming from the term h̃µνδµνρσ
(
�−m2

gh

)
h̃ρσ, i.e. only from the massive

part of the inverse propagator. However, when going to momentum space, we must take

advantage of the transverse-traceless nature of h̃µν to write

h̃µνδµνρσh̃
ρσ = h̃µνP (2)

µνρσh̃
ρσ , (17)
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where

P (2)
µνρσ =

1

2

(
θµρθνσ + θµσθνρ

)
− 1

d− 1
θµνθρσ with θµν = ηµν −

pµpν
p2

, (18)

is a spin-2 projection operator [32]. Making this replacement ensures that we count the cor-

rect number of degrees of freedom, which is five for a massive spin-2 field in four dimensions,

after noting that

Tr
(
P (2)
µνρσ

)
= δµνρσP (2)

µνρσ =
1

2
(d+ 1)(d− 2) . (19)

With these considerations, we find that the massive spin-2 contributes

Uh(S) = lim
d→4

[
µ4−d

ˆ
ddp

(2π)d
1

2
(d+ 1)(d− 2) ln

(
p2 −m2

gh

p2

)]
=

5

64π2
m4

gh

[
ln

(
m2

gh

µ2

)
− 1

10

]
(20)

to the effective potential, where we have subtracted the divergent part according to the MS

scheme.

Finally, the entire effective potential is then given by

Ueff(S) = Uφ(S) + US(S) + Uh(S) + U0 , (21)

where U0 is an arbitrary constant background that may be tuned in order to ensure that the

classical zero-point energy vanishes, provided that scale invariance is broken spontaneously,

which, as we will see in the next section, is indeed the case here.

B. The inflationary action

To calculate predictions for inflationary parameters, we need the proper inflationary

potential in the Einstein frame. We must therefore calculate the symmetry breaking behavior

of the Jordan frame potential given in (13) and (21), ensuring a vanishing zero-point energy

both in Jordan and Einstein frame in the process. The effective one-loop potential may be
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written as

Ueff(S, 0) = U0 +

[
C1 + C2 ln

(
S2

µ2

)]
S4 , (22)

where

C1 =
λ

4
+

9λ2

128π2

(
2 ln

(
3λ
)
− 3
)

− β2

2048π2

[
1

9γ2

(
2 ln

(
12γ

β

)
+ 3

)
+

1

κ2

(
10 ln

(
4κ

β

)
+ 1

)]
, (23)

C2 =
9λ2

64π2
+

β2

1024π2

(
1

9γ2
+

5

κ2

)
, (24)

are dimensionless constants that depend only on the coupling constants.

We may now solve for the vacuum expectation value (VEV) of S, vS, which is defined as

the minimum of this potential

∂Ueff(S)

∂S

∣∣∣∣
S=vS

= 0 , vS = µ exp

(
− 1

4
− C1

2C2

)
. (25)

The non-zero value of this minimum indicates a spontaneous breakdown of global scale

symmetry, as advertised. We may also easily calculate the explicit value of U0 by requiring

that the effective potential vanishes in the broken phase which yields

Ueff(vS) = 0 , U0 =
µ4

2
C2 exp

(
− 1− 2C1

C2

)
. (26)

Finally, we obtain the explicit value of the Planck mass that is generated by the breaking

of scale invariance by identifying the canonical Einstein term in (13) as

− 1

2
βS2R

∣∣∣∣
S=vS

= −1

2
M2

PlR , M2
Pl = βv2

S . (27)

In analogy to [5], this relates MPl to the renormalization scale µ via (25). In contrast to

the aforementioned work ([5]), we do not need two external scalars to achieve successful

Coleman-Weinberg symmetry breaking of scale invariance in the Jordan frame. This is due

to the additional contributions from the scalar and tensor degrees of freedom to the effective

scalar potential which is a novel consideration.
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To calculate predictions of the inflationary parameters that result from spontaneous sym-

metry breaking, we follow the procedure outlined in [5]. Since we have shown that scale

invariance is spontaneously broken, we may introduce an auxiliary field to remove the R2

term, then transform to the Einstein frame with a Weyl rescaling. There we find two dynam-

ical scalar fields, S and the scalaron. The corresponding potential exhibits a valley structure

[5], a flat direction with steep perpendicular potential lines, and the fields will thus always

fall into a trajectory along that flat direction. After solving the minimum equations for the

scalaron2, the final inflationary potential can be rewritten to depend only on the original

external scalar S and the coupling constants λ, β, γ, and κ. This effective inflationary action

in the Einstein frame has the form

SE
inf =

ˆ
d4x
√
−g
(
− 1

2
M2

PlR +
1

2
F (S)2S�S − Uinf(S)

)
, (28)

where F (S) denotes the modification to the kinetic term for S and is given by

F (S) =
1(

1 + 4A
)
B

[(
1 + 4A

)
B +

3

2
M2

Pl

((
1 + 4A

)
B′ + 4A′B

)2
]1/2

, (29)

where A and B are functions of the scalar field S given by

A(S) =
4γ Uinf(S)

B(S)2M2
Pl

, B(S) =
βS2

M2
Pl

, (30)

and primes denote derivatives with respect to S. With these definitions, the full inflationary

potential Uinf(S) is thus determined to be

Uinf(S) =
Ueff(S)

B(S)2 + 16γ Ueff(S)/M4
Pl

. (31)

One may also obtain the canonically normalized field Ŝ via a simple integration.

Ŝ(S) =

ˆ S

vS

dxF (x) (32)

2 Depending on the parameter configuration, solving for S rather than the scalaron may result in a better

description of the flat direction. However, in our case the choice of contour has only a minor influence on

the inflationary parameter predictions as both contours are valid for all calculated points. For an extended

discussion we refer the reader to section 4.2 and Appendix A of [5].
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C. Numerical analysis of slow-roll inflation

Inflationary CMB observables, namely, the scalar spectral index nS and the tensor-to-

scalar ratio r, may be expressed in terms of the slow-roll parameters ε and η as

nS = 1 + 2η∗ − 6ε∗ , r = 16ε∗ , (33)

where the asterisks indicate quantities evaluated at S = S∗, the value of S at time of photon

decoupling (CMB horizon exit). Since our inflationary potential depends only on the scalar

field S, we can apply the well known formulas for ε, η, and Ne of one-field slow-roll inflation,

modified to depend on the non-normalized field S using the relation (32).

ε(S) =
M2

Pl

2F 2(S)

(
U ′inf(S)

Uinf(S)

)2

(34)

η(S) =
M2

Pl

F 2(S)

(
U ′′inf(S)

Uinf(S)
− F ′(S)

F (S)

U ′inf(S)

Uinf(S)

)
(35)

Ne =

ˆ Send

S∗

F 2(S)

M2
Pl

Uinf(S)

U ′inf(S)
(36)

Here, Send denotes the value of S at the end of inflation which is defined by max {ε(S = Send),

|η(S = Send)|} = 1. With this we may calculate expressions of nS and r that depend only

on the dimensionless couplings λ, β, γ and κ, as µ is fixed after demanding the correct

value for MPl as in (27). To constrain this model we use the latest data from the Planck

satellite mission [1] and assume an inflation duration of Ne ≈ 50− 60 e-folds. To ensure our

predictions are consistent with the Planck data, we constrain the parameter space of the

dimensionless couplings so that it ultimately fulfills the scalar power spectrum amplitude

As constraints below.

ln
(
1010As

)
= 3.044± 0.014 As =

Uinf ∗

24π2ε∗MPl

(37)

Predictions corresponding to the resulting coupling values below are displayed in (Fig. 1).

λ = 0.005 β ∈ [103, 104] γ ∈ [107, 109] κ ∈ [102, 103.25] (38)
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FIG. 1: Predictions for the scalar spectral index ns and the tensor-to-scalar ratio r with

varying numbers of e-folds Ne are displayed. For the points shown, λ is fixed, while β, γ,

and κ are taken randomly from (38) while satisfying (37). We include the Planck

TT,TE,EE+lowE+lensing+BK15+BAO 68% and 95% CL regions from [1], as well as

predictions of the Starobinsky model (green) and linear inflation (red).
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The ranges for the dimensionless couplings in (38) result from incorporating the Planck

constraint on As (37). More parameter space was explored but did not yield promising pre-

dictions while being compatible with this constraint. We see that for the full range of possible

e-folds, there are points that are compatible with even the tightest Planck constraints. We

also see that the upper limit of our predictions for r approaches the upper limits of linear

inflation (mφ3), while the lower limits match those of Starobinsky inflation. The circles for

linear and Starobinsky inflation in (Fig. 1) represent the predictions for Ne = 50 (left) and

Ne = 60 (right) e-folds respectively. The point labelled “B1” in (Fig. 1) corresponds to the

following benchmark values.

B1 : λ = 0.005 β = 5.62× 102 γ = 1.22× 108 κ = 837 (39)

In order to get an order of magnitude estimate, we calculate the field masses mφ, mgh via

the relation (12) evaluated at the non-zero VEV of S,

mB1
φ (S = vS) ' 6.35× 1013 GeV , mB1

gh (S = vS) ' 4.21× 1016 GeV . (40)

These masses are representative for the most points, while the field masses of all points

displayed in (1) are roughly contained in the ranges mφ ∈ [1013 GeV, 1016 GeV] and mgh ∈

[1016 GeV, 1017 GeV]. Here, high mφ goes hand in hand with small γ and therefore rela-

tively large tensor-to-scalar ratios (see Fig. 1). Additionally, we take into account classical

corrections to the inflation parameters due to the presence of the C2-term. Two different

contributions are introduced in [21] (2.24) and [22] (7.4) respectively. To calculate the latter

correction we need to use the slow-roll approximation during inflation3, H2 ≈ V/(3M2
Pl).

Here we find that the correction is largest for large κ with a maximum of ≈ 22%, increasing

the predicted tensor-to-scalar ratio. For smaller κ and large γ, we get a correction towards

smaller r with a maximum of ≈ 11%. This leaves us with even the corrected predictions

being fully compatible with the currently strongest cosmological constraints from Planck18.

3 To ensure a field value that is representative for inflation we choose S = S∗ to calculate V (S) and mgh(S).
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IV. CONCLUSION

We have investigated a classical scale invariant framework that dynamically generates

the Planck mass via spontaneous symmetry breaking in the Jordan frame in the most min-

imal way i.e. with only one external scalar in addition to the quantum contributions of the

graviton degrees of freedom. Given that higher powers of curvature tensors are necessarily

generated via quantum corrections even if these terms are not considered at tree-level, we

include the Weyl tensor squared term from the start and find that the resulting quantum

contributions allow for spontaneous symmetry breaking via the Coleman Weinberg mecha-

nism in the Jordan frame with only the one external scalar. Specifically, it is the massive

spin-2 ghost DOF originating from the Weyl squared term that allows for spontaneous sym-

metry breaking, a role that is usually filled by additional external scalars in other scale

invariant models.

Starting with a scale invariant Lagrangian, we are able to explicitly cancel the cosmolog-

ical constant in both frames if scale invariance is spontaneously broken in the Jordan frame

which is the one of the foremost advantages of our model when compared to other one-scalar

models with symmetry breaking in the Einstein frame [4, 33]. Furthermore, the potential

resulting from symmetry breaking in our framework leads to an inflationary potential that

is in perfect agreement with the current strongest constraints from the Planck collaboration,

as seen in (Fig. 1).

We also include the classical corrections to the predicted inflationary parameters due to

the presence of the C2-term, which are calculated in [21, 22]. These come out to be of order

10% − 20% and reduce the available parameter space of predictions in agreement with the

current limits, though at the same time, they improve the predictions of the parameters

close to the limit of Starobinsky inflation. Therefore, though the impact of the C2-term’s

classical corrections is minor, its quantum contributions turn out to be important due to

the fact that they lead to a one-loop scalar potential that enables symmetry breaking in the

Jordan frame with only one external scalar.

To conclude, we note that though the primordial non-Gaussianities in cosmological fluc-

tuations are suppressed in single-field systems of inflation [34], they can be generated in a

multi-field system and appear in the CMB anisotropy as well as in measurements of the

large scale structure of the Universe (see for instance [35] and [36]). Future experimental
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projects such as LiteBird [37], Euclid [38], LSST [39], etc. will be able to measure the mag-

nitude of these non-Gassianities and constrain their existence. Though our model contains

only one scalar field at the beginning, the scalaron which originates from the R2 term in

the action (2) makes the system behave as an effectively two-field system. In [40] it is out-

lined how one may compute the non-Gaussianities in such models. Furthermore, as we have

mentioned with reference to [22] in section III.C, the massive spin-2 mode can contribute

to the metric perturbations during inflation, thus altering the inflationary parameters. This

correction has turned out to be very small in our model, but the size of its contribution

to the non-Gaussianities is not known as of yet. We thus plan to put the focus of our fu-

ture investigations on the primordial non-Gaussianities in inflationary models based on scale

invariance.
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