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Abstract
Electronic structure calculations have been instrumental in providing many
important insights into a range of physical and chemical properties of vari-
ous molecular and solid-state systems. Their importance to various fields,
including materials science, chemical sciences, computational chemistry, and
device physics, is underscored by the large fraction of available public super-
computing resources devoted to these calculations. As we enter the exascale
era, exciting new opportunities to increase simulation numbers, sizes, and
accuracies present themselves. In order to realize these promises, the com-
munity of electronic structure software developers will however first have to
tackle a number of challenges pertaining to the efficient use of new architec-
tures that will rely heavily on massive parallelism and hardware accelerators.
This roadmap provides a broad overview of the state-of-the-art in electronic
structure calculations and of the various new directions being pursued by the
community. It covers 14 electronic structure codes, presenting their current
status, their development priorities over the next five years, and their plans
towards tackling the challenges and leveraging the opportunities presented by
the advent of exascale computing.

Keywords: electronic structure calculations, modeling and simulation,
materials science
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1. Introduction

Vikram Gavini1 and Danny Perez2

1 Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109,
United States of America
2 Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, NM 87545, United
States of America

Since the deployment of the Frontier supercomputer at Oak Ridge National Laboratory in the
United States in May of 2022, the high-performance computing world has officially entered
the exascale era. Frontier can indeed deliver more than 1018 double-precision floating point
operations per second. This milestone marks the end of the 14 year long peta-scale era that
began with the 2008 deployment of the Roadrunner supercomputer in Los Alamos National
Laboratory in the United States. In Europe, the first pre-exascale machine LUMI in Finland is
also up and running, and the first European exascale computer is currently being built in Jülich,
Germany. This prodigious increase in available computer power has dramatically expanded the
space of possible simulations in terms of the sizes of simulations that can be executed, of the
accessible simulation times, and of the physical fidelity/complexity of the simulations.

This immense potential for scientific discovery is however contingent on learning to effi-
ciently harness the power of exascale computers. While for many years it was possible to reap
the benefits from the constant increase in the transistor frequency and density in conventional
CPU architectures without significant changes in the simulation codes, it will become increas-
ingly difficult to do so in the exascale era where heterogeneous architectures with many-core
CPUs coexisting with accelerators such as graphical processing unit (GPUs) will be ubiquit-
ous. Indeed, as of June 2023, seven of the ten most powerful computer systems are hetero-
geneous systems where the majority of the computing power is provided by accelerators. The
massive parallelism inherent to these systems (Frontier has almost 9 million hardware cores),
as well as the heterogeneous nature of the computing hardware and of the memory hierarchies,
poses significant challenges to application developers wishing to leverage exascale comput-
ing. While the number and geographic distribution of exascale systems may remain limited
for some years, the technology driving these systems will quickly cascade down to smaller
workhorse systems routinely used in academia and industry. Further, more than 500 petaflop
systems are currently deployed worldwide; it can therefore be expected that hundreds of exas-
cale systems are likely to become available in the next decade.

Given the difficulties in adapting computational methods and codes to these extreme-scale
machines, we believe that the exascale milestone is an ideal opportunity to take stock of the
materials modeling community’s plans in developing powerful strategies to ensure that the
exascale revolution fulfills its promises of producing high-value scientific insights that address
pressing scientific questions. Given their central importance in contemporary computational
materials science, electronic structure methods present an ideal case study to better understand
the challenges and opportunities of the exascale. Indeed, electronic structure methods are some
of the largest consumers of computing cycles worldwide. For example, at the National Energy
Research Scientific Computing Center in the United States (which hosts the Top-10 system
Perlmutter at the time of writing), more than 20% of the total available computing cycles are
consumed by electronic structure calculations applied to a broad range of problems of import-
ance to materials science, physics, biology, and chemistry. The methodological sophistication
of electronic structure methods coupled with the complexity of the codes in which they are

5



Modelling Simul. Mater. Sci. Eng. 31 (2023) 063301 Roadmap

implemented (often containing hundreds of thousands of lines of code) also suggest that the
community will be facing significant challenges in adapting to the new reality.

The goal of this roadmap is to survey the current status and plans of a number of electronic
structure development efforts. Each team was asked to contribute their thoughts on three ques-
tions:

1. What is the current status of your code, and what niche does it occupy in the broader eco-
system?

2. What are your development priorities over the next 5 years?
3. How do you plan to address the challenges posed by new architectures and by the constant

increase in parallelism? How will your code make use of exascale computing?

While by no means exhaustive, we believe that this exercise provides an important snap-
shot of the current state of mind of code and method developers upon which thousands of
practitioners in industry and academia rely. We view this Roadmap as an opportunity for users
of these codes to plan for possible extensions of their current research programs in the upcom-
ing years, as well as for funding agencies and stakeholders to identify possible areas of oppor-
tunities that would make a large impact in the field. An important objective of this Roadmap
is also to be broad and inclusive. The surveyed codes therefore currently operate at a range of
computational scales, vary in the numerical methods they use, range from research codes that
seek to showcase new avenues to extremely broadly used workhorse codes, etc. The objective
is to gather a very broad set of possible visions of the future, which aim at different scientific
and computational targets.

Through these contributions, we identified common themes in terms of development prior-
ities and of possible strategies to leverage massively-parallel platforms. Seven broad themes
emerge:

1. Adaptation to heterogeneous architectures such as CPU + GPU nodes. As stated above,
this is possibly the most pressing technological driver faced by code developers, as GPU
architectures are not naturally suited to many of the basic building blocks of electronic
structure codes, but the overwhelming majority of the computing power of large computers
is likely to be provided by them. Adapting to GPUs requires developing new methods that
can expose vast amounts of parallelism on each node, which can in turn demand a dramatic
rethinking of the key algorithms.

2. Development of more efficient and scalable distributed algorithms. The exascale computers
will be composed of a very large number of nodes (likely in the tens of thousands or more)
that will not share a unified global memory. Developing algorithms that can independently
operate on small subsections of memory will be critical to large-scale performance.

3. Development of advanced exchange-correlation functionals and of post-DFT methods.
These methods, such as Rung 4 and 5 functionals, random phase approximation (RPA), or
machine-learned exchange-correlation functionals, are aimed towards improving the pre-
dictive accuracies of strongly-correlated materials systems that are at the center of many
scientific and technologically important problems. Due to their high computational cost and
algorithmic complexity, these methods are prime candidates to efficiently leverage massive
computational resources.

4. Calculation of response functions. These are critical to estimate a number of key quantit-
ies such as spectroscopic properties, susceptibilities, phonons, etc. The high computational
complexity of these methods can expose additional opportunities for parallelization that
would benefit from large computational resources.
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5. Modularization and interoperability. Traditionally, electronic structure codes were mostly
used in isolation. Increasingly, they are being integrated into more complex workflows that
require the execution of vast numbers of small calculations, e.g. for high-throughput materi-
als screening, to parameterize higher-scale models, or to train machine learning algorithms.
Tightly integrating electronic structure codes into such workflows requires designing flex-
ible application programming interfaces (APIs) that facilitate code coupling, or the devel-
opment of modularized capabilities that can be ‘mixed-and-matched’ depending on the
application use case. While no single electronic structure calculation necessarily runs at
large scale, such workflows can expose massive opportunities for parallelization though
large numbers of independent or weakly coupled calculations that can be executed simul-
taneously.

6. O(N) methods. The unfavorable scaling of traditional electronic structure methods strongly
limits the system sizes that can be investigated. Indeed, a thousand-fold increase in comput-
ing power from the petascale to the exascale only results in a ten-fold increase in the number
of electrons for cubically-scaling methods like density functional theory (DFT). Linear (or
reduced) scaling approximations are key to truly allow for spatially-extended systems to be
simulated directly.

7. Fast molecular dynamics (MD): while classical MD has proved to be extremely powerful
at estimating a broad range of thermodynamic and dynamic properties, electronic struc-
ture calculations are typically limited to statics or to very short MD trajectories, which
significantly limits their range of applicability. Developing methods to improve the sim-
ulation rate of ab initio MD would open the door to a number of opportunities to lever-
age large computers, including replica-based thermodynamic sampling algorithms for free
energy calculations, or the investigation of quantum nuclear dynamics using path integral
methods.

The following sections will also show that while common themes emerge, development
teams have different sets of priorities that play on the core strength of their specific applica-
tions. This testifies to the vitality of dynamism of the field and promises exciting new oppor-
tunities for the users of these codes. While the electronic structure codes covered in the article
are by no means exhaustive, we believe they are representative of the diverse ongoing efforts in
the community towards the continuous development of mature codes as well as development
of emerging codes.
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2. Abinit

Xavier Gonze1, Matteo Giantomassi1 and Marc Torrent2,3

1 IMCN Université Catholique de Louvain, Chemin des étoiles 8 bte L7.03.01 - B-1348
Louvain-la-Neuve, Belgium
2 CEA DAM-DIF, F-91297 Arpajon, France
3 Université Paris-Saclay, CEA, LaboratoireMatière en Conditions Extrêmes, 91680Bruyères-
le-Châtel, France

Background and current status

When the ABINIT project started, 25 years ago, it was clear that the development of electronic
structure calculations would have an enormous impact on condensed matter physics, while the
variety of target properties (electronic, dynamical, dielectric, chemical, magnetic, etc) required
dozens of developers embarking for a long journey. ABINIT stemmed from the worldwide col-
laborative work of scientists embracing the free software philosophy. It is probably the first
electronic structure software application released under an open-source license. Nowadays,
as shown in figure 1, ABINIT relies on many different formalisms to address the proper-
ties of periodic solids, molecules and nanosystems: DFT, density-functional perturbation the-
ory (DFPT), many-body perturbation theory (MBPT—GW and BSE), dynamical mean-field
theory (DMFT), temperature-dependent effective potentials (TDEP) for anharmonic effects.
Utilized by thousands of users worldwide, ABINIT takes part regularly in verification/valida-
tion efforts with other large electronic structure packages, and is interfaced with many math-
ematics/physics/IO libraries and data formats.

ABINIT is particularly strong in DFPT, with several unique features (to our knowledge)
such as flexoelectricity, dynamical quadrupole, strain perturbations, phonons under electric
field, non-linear dielectric susceptibility and the electro-optic effect. Other capabilities of
ABINIT might be available only in a few other codes, e.g. electron–phonon interaction (EPH),
renormalization of gap, DMFT with forces, positron lifetime, DFPT for van der Waals solids,
Raman cross-sections. ABINIT has been used for high-throughput computations (HTC) for
several years already, and as a starting point for second-principles calculations (see recent
generic publications [1, 2]).

ABINIT also has a long track-record of parallelism for high-performance calculations
(HPC). Before 2018, the code was essentially parallelized with distributed memory using
message-passing interface (MPI). Thanks to careful treatment of the Hamiltonian application,
and relying on the LOBPCG algorithm [3], ABINIT could efficiently use several thousand
processors. This algorithm has its own limits however. In order to achieve even better scalab-
ility, the ‘Chebyshev filtering’ algorithm has been implemented, allowing use of more than
10 000 processors [4].

Development priorities

Multiple challenges lie ahead in terms of software development and methods, in particular
because more complex levels of theory are needed in order to improve the predictive power of

8



Modelling Simul. Mater. Sci. Eng. 31 (2023) 063301 Roadmap

Figure 1. Components of the ABINIT project represented with respect to each other, or,
on the right, to related projects. Reprinted from [1], Copyright (2020), with permission
from Elsevier.

first-principles methods. The formalisms involved are much more memory and computation-
ally intensive, hence exascale resources are needed to tackle these problems. The following
priorities will be tackled by different groups within the ABINIT developer community.

Theories extending the DFT through the inclusion of the exact electronic exchange have
appeared in the last two decades. One important priority is to go beyond ground-state (GS)
properties by implementing response function calculations within DFPT with such exact elec-
tronic exchange-based functionals.

Another ambition is to apply accurate beyond-DFT methodologies based on Green’s
functions,—specifically the GW approach—to problems and systems currently out of reach
with state-of-the-art computers and software. In a planewave-based code, the challenge is to
reduce the cost of fast Fourier transforms (FFT), either by optimal use of the hardware (accel-
erators) or by employing new algorithms with lower complexity with respect to the system
size.

An advanced ABINIT capability is to allow for predictive calculations of the properties
of correlated electrons materials by coupling the DFT with the DMFT. In this case, the most
expensive part is represented by the quantumMonte–Carlo (QMC) algorithmwhose scalability
is therefore of crucial importance. One of our priorities is to limit its impact on the calculation
while reducing the associated numerical noise.

Additionally, the increase in the system size as well as the reduction in time-to-solution can
also be achieved by coupling ABINIT with more phenomenological approaches. Twomethods
are envisioned: second-principle methods employing effective potentials as implemented in
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the MULTIBINIT project [1], as well as coupling ABINIT with data-driven approaches based
on efficient and transferable machine learning potentials. In both cases, the challenge is to
maintain the accuracy of the underlying DFT method.

Finally, we would like to mention our developments in integrating ABINIT with the HTC
paradigm. In the past years, ABINIT has been used for several HTC studies involving beyond
GS properties such as quasi-particle energies within MBPT [5], optical properties [6], and
also the phonons, dielectric constants and Born effective charges of 1521 semiconductors,
made available on the materials-project website [7]. All these computations are significantly
more expensive than standard GS applications and involve the execution of many complex
workflowsmade ofmultiple interconnected tasks each of which has its ownMPI parallelization
scheme, computational load and memory requirements. For this reason, most of the high-
level logic needed to drive these ABINIT workflows is implemented by a python driver that
generates input files with optimized MPI input variables and orchestrates the submission of
the different tasks while providing automatic error handlers and restart capabilities. A natural
continuation of this effort is to extend the present implementation to automatically compute
electron-phonon related quantities such as superconducting properties, temperature-dependent
band structures, and transport properties including polaronic effects.

These new studies will require a high degree of synergy between the HTC infrastructure
and the HPC part of ABINIT, as elucidated in [8] in which dynamical quadrupoles (third-order
derivatives of the energy, recently implemented in the DFPT module) were found to be crucial
for accurate computations of carrier mobilities in semiconductors.

Meeting the exascale challenges

Since 2018 the ABINIT roadmap to exascale is based on six pillars:

(1) Improve the scalability of the diagonalization algorithm
Any (standard) iterative diagonalization algorithm is based on two elementary building blocks:
application of the Hamiltonian and a Rayleigh-Ritz procedure. Algorithms that exploit the first
of these two operations more heavily should be preferred in the exascale context as they lead to
less communication andmemory access. For this reason, ABINIT now provides the Chebyshev
filtering algorithm [4], and we plan to implement a ‘spectrum slicing’ method [9] which would
completely avoid the Rayleigh-Ritz step thus increasing parallel scalability.

(2) Improved shared memory parallelism
ABINIT was first designed with a fine-grained approach for shared memory parallelism in
which low-level loops were parallelized with OpenMP directives. Now a coarse-grained
model has been adopted in order to increase the work performed by each thread, minimize
data movement, and also better connect physics to data mapping on different nodes. On recent
HPC platforms, it is necessary to use GPU-based accelerators, implying commitment to a spe-
cific technology (proprietary software, directive-based languages, etc).

(3) Externalize the elementary kernels
Most of the operations in a plane-wave code are based on elementary kernels such as
linear algebra, matrix algebra or FFTs. All these operations are available either in math-
ematical libraries implemented by system vendors or in open-source projects that provide
optimized and up-to-date implementations. The ELPA project of the Max Planck comput-
ing and data facility (MPCDF) at the Fritz–Haber-Institute, used by ABINIT, is a noteworthy
example. It is one among numerous libraries developed in the NOMAD Centre of Excellence
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(https://nomad-coe.eu), a European Union Horizon 2020 project towards exascale (more on
this topics in sections 6 and 7). More extensive use of libraries will require refactoring some
sections of code to leverage the different interfaces.

(4) Low-level abstraction layer
A significant portion of new high-level developments in ABINIT is usually done by researchers
with a background in physics or chemistry rather than in computer science. To bridge the gap
between the two worlds, we have introduced an abstraction layer exposing an easy-to-use
API to perform the typical tasks occurring in ab initio calculations while hiding the internal
implementation. In the hidden layer, algorithms can be implemented in different languages
and this allows computer scientists to fully exploit the capabilities of modern hardware, in
particular graphics accelerators.

(5) Ensure numerical stability
Onmodern many-core architectures, codes like ABINIT may show numerical instabilities due
to desynchronization effects. In other words, different cores operating on the same input val-
ues may produce slightly different results and this inconsistency may propagate through the
parallel algorithm without (expensive) explicit synchronization operations. Vectorization spe-
cifically leads to unpredictable processes desynchronization yielding slightly different numer-
ical results between runs. We use the veritracer tool [10] to identify critical sections that are
very sensitive to numerical precision. A refactoring of these sections is planned.

(6) Implement task management on heterogeneous architectures
To run the code on heterogeneous architectures, like for instance large many-core nodes
coupled to GPUs, we need different versions of the kernels for each kind of processing unit.
With optimized task management, it will be possible to distribute the workload on each com-
puting unit that will use its specific version. Achieving a good load balancing is one of the
main technical challenges.

These six pillars should be considered for GS calculations with standard functionals as
well as for more advanced functionals or for the other formalisms previously mentioned, thus
improving all aspects of the parallel scalability of ABINIT. It should be noted, however, that
ab initio studies are also becoming more and more complex and multiple calculations are
usually needed to obtain the physical properties of interest. Fortunately, not all the steps of
a typical ab initio workflow depend on each other and some of these jobs can be executed
concurrently via e.g. a python manager. According to this philosophy, the focus is more on the
embarrassingly parallel aspects by splitting ab initio computations into smaller tasks and then
optimizing each task individually rather than executing the entire computation on the largest
number of cores accessible. In our opinion, this represents a valuable complementary approach
for taking advantage of exascale architectures.

Concluding remarks

Over the years, ABINIT has evolved to include different formalisms enabling far-reaching
applications: DFT, DFPT, MBPT, DMFT, TDEP, … Nowadays, ABINIT can routinely use
more than 10 000 processors in high-performance platforms for common DFT ground state
calculations, and can be coupled with a high-throughput management of the numerous differ-
ent tasks required by scientific workflows.
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There is still room for improvements and expansion, in order to use a larger number of
processors in the high-performance approach, both for common ground state calculations and
for more advanced formalisms.

ABINIT roadmap to exascale is based on six pillars: (1) improve the scalability of the
diagonalization algorithm (2) efficiently use the shared memory (3) externalize the elementary
operations as kernels (4) add a low-level abstraction layer (5) ensure numerical stability (6)
implement task management on heterogeneous architectures.

Reaching the exascale will also need complementary improvements in high-throughput
workflows.

In addition to these axes, ABINIT build system and documentation will be improved, espe-
cially for exascale architectures. Indeed, the production of an optimized ABINIT executable
needs to link advanced libraries (e.g. ELPA, SCALAPACK, libraries for GPU) and use special-
ized compilation options (e.g. OpenMP in conjunction with threaded libraries for BLAS/FFT).
Few users are expert in such technicalities, and a suboptimal version of ABINITmight be built.
The integration with package managers such as EasyBuild and Spack will be improved, so that
system administrators can easily build and deploy different optimized versions (pure-MPI,
MPI + OpenMP, GPU, etc.).
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Background and current status

Starting in 2005, the BigDFT project aimed to test the advantages of Daubechies wavelets as
a basis set for Kohn–Sham DFT (KS-DFT) using pseudopotentials. This led to the creation of
the BigDFT code, which has optimal features of flexibility, performance and precision [11].
Furthermore, the wavelet-based approach has enabled the implementation of an algorithm for
DFT calculations of large systems containing many thousands of atoms, with a computational
effort which scales linearlywith the number of atoms. In this contributionwe show how the loc-
alized description of the KS problem, emerging from the features of the basis set, can provide
a simplified description of large-scale electronic structure calculations. This in turn enables the
extraction of first-principles derived quantities which can characterize the electronic structure
of systems which were impractical to simulate even very recently.

In BigDFT, the KS orbitals may be expressed either directly in wavelets (cubic scaling),
or as a linear combination of intermediate basis functions (linear scaling), also referred to as
support functions (SFs), where the SFs are strictly localized numerical functions represented
in the wavelet basis. This intermediate basis set approach has been developed in a number of
different codes, though BigDFT’s use of wavelets as the underlying basis is unique.

The SF basis of BigDFT facilitates a linear scaling approach, while also offering numerous
benefits for linear algebra based bottlenecks. While the SFs are initialized to atomic orbitals,
their numerical representation allows for in situ optimization, giving the accuracy of a large
basis with only a minimal number of basis functions (see figure 2), and thus having small
matrices even for large systems. The use of strictly localized, quasi-orthogonal basis functions
further ensures that the matrices are sparse and well conditioned; the overlap matrix has a
low spectral width and the ratio of the band gap to the spectral width of the Hamiltonian is
relatively high. These properties lead to huge efficiency gains when using diagonalization-free
methods as implemented in our CheSS [12] and NTPoly libraries [13].

BigDFT is now a mature and reliable code with a wide variety of features. A comprehens-
ive overview of its capabilities is available in our recent review [11]. BigDFT uses dual space
Gaussian type norm-conserving pseudopotentials including those with non-linear core cor-
rections. It is parallelized using a combination of MPI and OpenMP and has support for GPU
acceleration. BigDFT’s flexible Poisson solver can handle a number of different boundary con-
ditions including free, wire, surface, and periodic (orthorhombic only). There is also support
for implicit solvent and external electric fields. In the cubic scaling approach, BigDFT can
compute hybrid functionals and time-dependent (TD) DFT. BigDFT can be routinely applied
to large systems. For example, the calculation of a 12 000 atom protein system requires about
1.2 h of wall-time on 16 nodes of the Irene-ROME supercomputer. This calculation can be fur-
ther accelerated for systems composed of repeated sub-units using a fragment [14] approach
for molecules, or in the case of extended systems, a pseudo-fragment approach [15]. BigDFT
is free and open source software, made available under the GPL license.
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Figure 2. 3D isosurfaces of select s- and p-like optimized support functions for C (grey)
and O (red) atoms in ethyl trifluoroacetate, with H and F atoms depicted in white and
beige respectively. Also shown is a cross sectional representation with circles indicating
the atomic positions, comparing the in-situ optimized support functions (solid lines)
with the linear combination of atomic orbitals (LCAO) basis (dashed lines) which is
used as an input guess. The changes, apparently subtle to-the-eye, nonetheless lead to
a significant reduction in error relative to the full cubic scaling reference energy, where
no localization constraints are imposed on the KS wavefunctions.

Development priorities

Although BigDFT is able to treat systems composed of thousands of atoms, these calculations
remain computationally demanding. It is therefore unrealistic (if not unnecessary) to expect
DFT calculations to replace commonly used force field methods, as a full statistical sampling
of a system’s configuration space remains expensive. It is thus crucial to develop: (1) analysis
techniques which use the results of large scale DFT calculations to gain new kinds of insights
into emergent properties; (2) methodologies for probing excited state properties which are not
accessible with forcefields; and (3) tools for creating complex, multi-scale workflows [16].

Complexity reduction

The need for analysis techniques for large systems has led to the development of our complexity
reduction framework [17] which takes the converged density matrix and Hamiltonian, and uses
them to decompose systems into coarse-grained fragments. This procedure is based on two
metrics:

• the purity indicator which measures the quality of a fragment;
• the fragment bond order which quantifies inter-fragment interactions.

This framework can further be combined with an energy decomposition analysis to quantify
the strength of chemical interactions between different fragments. As a whole, these metrics
can be used to automatically partition a system into fragments, design embedding environ-
ments for QM/MM type approaches, and produce graph-like views of system interactions.
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Figure 3. Interaction graph of a ketamide inhibitor (squares: molecular fragments) with
the main protease of SARS-CoV-2 (circles: amino acids). The complexity reduction
framework is used to measure the interaction strength (kcal mol−1) of each inhibitor
fragment with the amino acids of the protease.

The complexity reduction framework has been exploited for applications in biochemistry,
where a challenging task is to propose reliable and systematic strategies for modulating the sta-
bility of protein/ligand and protein/protein assemblies. Because of the size of these assemblies,
researchers must either construct small model systems, or rely on empirical cost functions or
forcefields to quantify interactions. BigDFT’s ability to treat large systems has been success-
fully applied in the context of drug-design of peptidic inhibitors of the main protease of SARS-
CoV-2 [18]. In this study, MD snapshots were post-processed using BigDFT calculations on
systems made up of over 7000 atoms. We have also proposed a sequential multi-scale molecu-
lar modeling/quantum mechanical, mMM/QM [19], simulation approach, wherein BigDFT
was used to support the accuracy of MD simulations involving over 20 000 atoms, as well as
give new insights. For both these studies, we developed representations of the simulation res-
ults as interaction graphs showing the details and magnitudes of the interactions (at the residue
scale) responsible for the stability of the studied complexes (see figure 3).

Excited states

Another priority area for BigDFT is the development of excited state approaches, with a focus
on methods which can be naturally combined with the fragment-based framework. To this
end, constrained DFT (CDFT) has been implemented in such a way as to associate a charge
constraint with a given fragment [14], enabling for example the calculation of charge trans-
port parameters in a host-guest system typical of organic light emitting diodes (OLEDs) [20].
More recently, a new variant of CDFT has been developed, wherein an off-diagonal trans-
ition based constraint (T-CDFT) is applied, instead of a standard spatial constraint [21]. This
allows the treatment of both local and charge-transfer (CT) like excitations, at a much lower
computational cost than TDDFT, while also avoiding the severe underestimation of CT states
seen with TDDFT and semi-local functionals. This approach is again compatible with the
fragment-based framework, and could therefore be used in future works to take into account
explicit environmental effects in excited state calculations of large and potentially disordered
systems, such as OLED morphologies.
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Workflow management

When performing calculations of large systems, it is often necessary to applymore complicated
workflows than are required at the small scale. Large systems take many steps to define and set
up, multiple levels of theory might need to be coupled, calculations are deployed on remote
supercomputers, and post-processing procedures are potentially costly in terms of processing
power, memory, and disk space. To address these issues, we have developed a python package
called PyBigDFT as a framework for managing DFT workflows. PyBigDFT is able to handle
building complex systems or reading them from a variety of file types, performing calculations
with BigDFT, and analyzing calculation results (including through the complexity reduction
framework). PyBigDFT further offers interoperability with other chemistry codes for multi-
scale modelling. Using PyBigDFT, it is possible to create entire workflows inside a Jupyter
notebook. This leads to not only reproducible calculations, but also computational continuity,
where new research can be built on top of a existing results.

Meeting the exascale challenge

Looking ahead to the exascale era, BigDFT developments have focused on both internal code
aspects (compilation and modularity, parallel performance), as well as external usability, both
of which are necessary for an efficient transition to ever-evolving architectures. The compila-
tion of the code suite relies on the splitting of the code components into modules, which are
compiled by the bundler package. This package is defined from a fork of the Jhbuild program
that has been conceived in the context of the GNOME developers consortium. This pack-
age lays the groundwork for developing a common infrastructure for compiling and linking
together libraries for electronic structure codes, and it is employed as the basis for the ESL
bundle. It can be used to install the BigDFT suite, as well as a variety of optional packages
such as python modules that can be used with PyBigDFT.

Exascale machines will offer both the ability to simulate large systems as well as extraordin-
ary capacity for high-throughput calculations. To facilitate driving thousands of calculations
of large systems on those machines, we have been developing a Remote Runner capability in
our PyBigDFT package. The remote runner automatically serializes data and arbitrary python
closures, which are then executed through a supercomputer’s queuing system. A remote func-
tion might be used to perform a BigDFT calculation, run other chemistry codes, or to perform
resource heavy pre/post-processing steps. Calculations are performed in a lazy way, so that
the first time a workflow is run the computationally demanding calculations are asynchron-
ously submitted remotely, and subsequent runs of the workflow skip the calculation steps.
This makes it easy to build analysis routines on top of the data generated from large scale DFT
calculations.

Currently, BigDFT is being deployed on pre-exascale machines including Archer2
(Edinburgh Parallel Computing Centre), Fugaku (RIKEN Center for Computational Science),
and Irene-ROME (Très Grand Centre de Calcul). We are hopeful that the ongoing develop-
ments of the BigDFT code will provide a roadmap for performing large scale QM calculations
of unprecedented size.

In the future, we plan to extend the scope of BigDFT sparse matrix linear algebra solvers to
techniques bringing them to the exascale. The new approach will make use of lessons learned
from libraries such as NTpoly, DBCSR, and EigenExa. The resulting exascale-ready library
may combine multiple numerical methods, featuring a hierarchy of implementations that can
be automatically adapted to current and future supercomputing platforms, and will further
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enhance the capabilities of the simulation software and will extend the scope of linear-scaling
electronic structure methods and quantum transport to other computer codes and formalisms.
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4. The CONQUEST code: large scale and linear scaling DFT
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Background and current status

CONQUEST [22] is an open source DFT code which was designed from the beginning to
enable extremely large-scale calculations on massively parallel platforms, implementing both
exact and linear scaling solvers for the ground state. It uses local basis sets (both pseudo-atomic
orbitals, PAOs [23], and systematically convergent B-splines [24]) and sparse matrix storage
and operations to ensure locality in all aspects of the calculation.

Using exact diagonalization approaches and a full PAO basis set, systems of up to 1000
atoms can be modelled with relatively modest resources (200–500 cores), while use of multi-
site support functions (MSSFs) [25] enable calculations of up to 10 000 atoms with similar
resources. With linear scaling, the code demonstrates essentially perfect weak scaling (fixed
atoms per process), and has been applied to over 1000 000 atoms, scaling to nearly 200 000
cores [26]; it has been run on both the K computer and Fugaku, among other computers.

CONQUEST calculates the total energy, forces and stresses exactly, and allows structural
optimization of both ions and simulation cell. MD calculations within the NVE, NVT and NPT
ensembles are possible with both exact diagonalization and linear scaling [27]. The code inter-
faces with LibXC to implement local density approximation (LDA) and generalized gradient
approximation (GGA) functionals, with metaGGA and hybrid functionals under development.
Dispersion interactions can be included using semi-empirical methods (DFT-D2/3, TS) and
vdW-DF. The polarization can be calculated using Resta’s approach. It is open source, and is
freely available under the MIT license from https://github.com/OrderN/CONQUEST-release.

We have recently applied CONQUEST to calculations in complex ferroelectric systems
with up to 5000 atoms [28–30], investigating problems that require large simulation cells and
electronic structure methods. In figures 4(a) and (b), the local polarization textures of PbTiO3
thin films on SrTiO3 [28] are shown for two thicknesses of film: nine layers (top) and three
layers (bottom). The formation of polar vortices is clear in the thick film, while the thinner
film cannot support these, instead showing a polar wave with chiral bubbles forming at the
surface; we have extended these studies to investigate the interaction of domain walls with
surface trenches [29]. In figure 4(c), we plot the partial charge density from the conduction
band minimum (CBM) in YGaO3, superimposed on a map of the tilt angle of the GaO5 bipyr-
amids relative to the (001) direction, which shows domain walls. Domain wall meeting points
(dark blue) are topologically protected, and show a concentration of the CBM, reflecting a
reduced band gap [30].

Development priorities

CONQUEST already allows simulation of significantly larger systems than standard DFT
codes, and we want to improve the efficiency and scaling of the code to enable even larger
systems to be modelled. We also want to reduce the total computational time required per MD
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Figure 4. (a), (b) Polarization textures in PbTiO3 films on SrTiO3. Reproduced from
[28]. CC BY 4.0. (c) Charge density from conduction band minimum in YGaO3, above
a map of tilt angle in GaO5 bipyramids. Reprinted (figure) with permission from [30],
Copyright (2020) by the American Physical Society.

step, to enable longer timescales to be addressed. At present, exact diagonalization simula-
tions use the ScaLAPACK solver, but an interface to ELPA has been developed and is being
deployed. Alongside these efficient approaches to exact diagonalization, we are prioritizing
lower scaling solvers which allow the calculation of selected eigenstates.

Perhaps the best known of these in the electronic structure community is PEXSI, which
is available through ELSI, though it would require some work to interface this to the
CONQUEST matrix storage (which was designed specifically for high efficiency, highly par-
allel linear scaling calculations). We already have a post-hoc interface to an implementation
of the Sakurai–Sugiura method, which scales as O(mN1–2) when finding m eigenstates for N
atoms, and shows extremely good parallel scaling, and we will investigate the possibility of
incorporating this approach into CONQUEST as an alternative solver.

For the linear scaling solver, we will improve both the accuracy and the robustness. The
key limitation on accuracy at present is the suitability of basis sets: the blip functions are
accurate, and systematically improvable, but can be slow to converge, while PAOs are limited
to relatively small sizes (typically single zeta plus polarization, or SZP). The improvement of
blip optimization will concentrate on two aspects: first, the search methods used for the blips
themselves; second, the integration with the linear scaling optimization of the density matrix.
For PAO basis sets, we will continue to develop an on-site equivalent of the MSSF approach,
and develop an extension to full MSSF. We will also investigate alternative methods for linear
scaling inversion of the overlap matrix, which is key to efficient linear scaling solution, and is
sensitive to the basis set.

Efficient methods for metallic or small gap systems are also extremely important. The linear
scaling solver in CONQUEST is not suitable for these systems, so we will investigate alternat-
ive approaches, including iterative methods. The question of large-scale, efficient solvers for
these systems is one that is still of paramount importance to the large-scale DFT community
as a whole.
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We are in the process of including metaGGA functionals into CONQUEST, and will con-
tinue this alongside a robust, efficient implementation of exact exchange (for which we already
have preliminary results). We will also enable solutions with spin–orbit coupling and the
full Dirac equation. We have reported the successful linear scaling implementation of real-
time TDDFT, and will extend this to the exact solvers, including the Casida linear-response
approach for the exact solvers. We will also implement density-matrix perturbation theory,
as required by DFPT, for both linear scaling and exact solvers, to enable response function
calculations to be performed.

Meeting the exascale challenges

The key challenge associated with the transition to exascale computing for CONQUEST is to
update and adapt the code to new hardware architectures, in particular, efficient use of CPUs
with many cores, and GPUs and other co-processors, while maintaining excellent parallel scal-
ing. The code will need to become more heterogeneous, with on-node calculations distributed
between CPU cores and GPUs, and a few MPI processes dedicated to inter-node communic-
ation; careful interleaving of different parts of the calculation to different hardware on a node
will be key to maximizing performance.

When working in exact diagonalization mode, CONQUEST currently relies on
ScaLAPACK, with an interface to ELPA in deployment. We will monitor developments
in the area of exascale solvers (including projects such as MAGMA), as well as implementing
other solvers which scale well in parallel, and which can make efficient use of local resources.

CONQUEST has, so far, shown no issues with parallel scaling when used in the weak
scaling mode, even as far as 200 000 processes, as illustrated in figure 5. We are aware of areas
in the code which might start to pose problems at larger process counts; the key area is the
use of FFTs, though these are only used for the Hartree potential, calculation of gradients of
the charge density, and for vdW-DF functionals. There are well-established alternatives for the
first two of these operations which we will implement as necessary. The other area which may
offer issues is the storage of atomic positions, velocities and forces, which are currently held
globally on all processes, but can be made local (to the process responsible) if needed.

The overlap of communication and calculation is an approach that is inherently possible
in much of the CONQUEST code [26], though has not been extensively implemented. This
overlap fits well with multi-threading and heterogeneous hardware, and will be important to
good on-node exascale performance. We will expand the areas of the code that are multith-
readed (using OpenMP) as well as developing GPU implementations for numerically intens-
ive parts of the calculation. At present, we have a preliminary GPU implementation for mat-
rix multiplication, and a full GPU implementation of the O(N) solver would offer significant
advantages. We will also test the off-loading of other parts, including force calculations and
mapping from density matrix to charge density on the grid, along with the exact exchange
(EXX) implementation.

Concluding remarks

The search for new functional materials with complex structures is a key target for exascale
computing, and the efficient use of massively parallel DFT calculations is an important part
of this search. The open source CONQUEST code enables large-scale exact DFT simulations
with relatively modest hardware resources, paving the way for large numbers of calculations
on large simulations cells on exascale hardware. At the same time, with linear scaling, it is
capable of modelling systems with many millions of atoms, hence applying DFT to systems
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Figure 5. (a) Strong scaling for bulk PbTiO3 on the UK ARCHER computer; (b) linear
scaling of computational time for the same system; (c) weak scaling on the K computer
for systems up to 1000 000 atoms of silicon. Reprinted from [22], with the permission
of AIP Publishing.

of experimentally relevant size in many different disciplines. With improvements to solution
time, long timescales and efficient structural relaxation will become widely available for these
very large systems.
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Abstract

The CP2K program package, which can be considered as the Swiss army knife of atomistic
simulations, is presented with a special emphasis on massively parallel implementations of
electronic structure methods for high-performance computing systems. After outlining current
and near-term development efforts with regards to low-scaling post-Hartree–Fock (HF) and
eigenvalue solvers, novel approaches on how we plan to take full advantage of future low-
precision hardware architectures are introduced. Our focus here is on combining our submatrix
method with the approximate computing paradigm to address the immanent exascale era.

Background and current status

The open-source simulation package CP2K is an extensive quantum chemistry and con-
densed matter physics program that comprises a large variety of different theoretical meth-
ods and computational approaches to conduct most diverse atomistic simulations for large-
scale condensed-phase systems, such as liquids, solids, nanomaterials and molecular struc-
tures, to name just a few. All of this is made possible from the outset by the design of
highly efficient algorithms with a focus on excellent parallel scalability and suitability for
novel high-performance computing architectures, as demonstrated by its Quickstep electronic
structure module. The latter is based on the Gaussian and plane wave (GPW) approach and
its all-electron variant, the Gaussian-augmented plane wave method, which allows for a par-
ticularly efficient treatment of large-scale orbital-free and KS-DFT calculations, as well as
wavefunction-based correlation methods, such as HF, second-order Møller–Plesset perturba-
tion theory (MP2), RPA, hybrid and double-hybrid DFT and the GW approximation, all with
arbitrary boundary conditions [31].

However, the great appeal of CP2K lies in the possibility to combine all available total
energy and force methods with a wide selection of sampling techniques, such as Monte Carlo,
Ehrenfest/real-time dynamics and most importantly MD, as well as advanced free-energy and
rare-event sampling schemes, to enable realistic simulations at finite-temperature beside con-
ventional static calculations. On the one hand, this necessitates the general availability of ana-
lytic gradients in particular for periodic boundary conditions, in order to permit the efficient
calculation of nuclear forces. On the other hand, minimum time to solution is essential to allow
for an extensive sampling via the techniques listed above. In that respect, a unique selling
point of CP2K is the implementation of the second-generation Car-Parrinello method, which
allows to routinely conduct nanosecond long DFT-based ab-initio MD (AIMD) simulations
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with thousands of atoms. The superior efficiency of this approach originates from the design
of an improved coupled electron-ion dynamics that keeps the electrons very close to their
instantaneous GS using just one preconditioned gradient calculation per AIMD step, which
can thus be thought of as an electronic force to propagate the electronic degrees of freedom in
dimensionless time [32].

Development priorities

Beside the implementation of sophisticated spectroscopic properties [33, 34], which are either
based on DFPT or TD DFT within the Tamm–Dancoff approximation [31, 35], the current
development priorities are focused mainly on devising novel low-scaling post-HF methods
including the implementation of analytic nuclear gradients for arbitrary boundary conditions.
As already indicated above, particular emphasize is on HF andMP2 methods [36], which are a
prerequisite for simulations based on RPA [37], hybrid and double-hybrid DFT schemes [38],
as well as GW [39]. The four-center two-electron repulsion integrals (ERI), which in Mulliken
notation reads as

(µν|λσ) =
ˆ

dr1

ˆ
dr2ϕ∗

µ(r1)ϕν(r1)
1

|r1 − r2|
ϕ∗

λ(r2)ϕσ(r2) (1)

are of central importance for all wavefunction-based post-HF methods. In addition to well
established integral screening techniques based on the Schwarz inequality

|(µν|λσ)|⩽ |(µν|µν)|1/2 |(λσ|λσ)|1/2 (2)

to reduce the scaling from O(N4) to O(N2), a similar density matrix screening can also be
employed to eventually sustain linear scaling with respect to the system size N. In the latter,
the largest density matrix element Pmax =max{|Pµλ|, |Pµσ|, |Pνλ|, |Pνσ|} is used to screen
elements smaller than ϵSchwarz via

Pmax × |(µν|µν)|1/2 |(λσ|λσ)|1/2 ⩽ ϵSchwarz, (3)

where Pmax is either the density matrix from the previous self-consistent field iteration, or
from a converged semi-local DFT calculation, but ideally the propagated density matrix via
second-generation Car–Parrinello AIMD of the previous timestep [32]. Yet, at the core of all
implemented post-HF approaches are either the auxiliary density matrix method [36], or the
resolution of identity (RI) approach [37]. The key ingredient of the former is the use of an
auxiliary density matrix P̂, which approximates the original density matrix P, but is substan-
tially easier to compute due to being smaller in size, or more rapidly decaying than P. For
the case of computing the HF exchange (HFX), the exact energy EHFX

X [P] is replaced by the
computationally superior expression EHFX

X [P̂], whereas the difference between the two terms
is corrected approximately at the semi-local DFT level. Hence,

EHFX
X [P] = EHFX

X [P̂] +
(
EHFX
X [P]−EHFX

X [P̂]
)

≈ EHFX
X [P̂] +

(
EDFT
X [P]−EDFT

X [P̂]
)
, (4)

where EDFT
X [P] and EDFT

X [P̂] are the DFT exchange energies for the primary and auxiliary dens-
ity matrices, respectively. We tackle the challenge of the computationally demanding four-
center ERIs with two approaches: on the one hand utilize the flexibility of field programmable
gate arrays (FPGAs) to improve the evaluation of ERIs and have recently shown that four-
center integrals computed with FPGAs can dramatically outperform conventional CPUs in
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terms of energy efficiency [40]. On the other hand, we use the RI approximation which sub-
stitutes the four-center ERIs by just two- and three-center integrals by factorizing them via

(ia| jb)RI =
∑
PQ

(ia|P)(P|Q)−1(Q| jb), (5)

where (P|Q)−1 is the inverse of the Coulomb metric over auxiliary Gaussian basis functions,
i.e.

(P|Q) =
ˆ

dr1

ˆ
dr2ϕP(r1)

1
|r1 − r2|

ϕQ(r2). (6)

Since the latter is a positive definite matrix, its inverse can be efficiently obtained by means
of the Cholesky decomposition

(P|Q) =
∑
R

LPRL
T
RQ (7)

followed by an inversion of the triangular matrix L, i.e.

(P|Q)−1 =
∑
R

L−T
PR L

−1
RQ . (8)

In this way, the factorization of the integrals (ia| jb) can be written in compact form as

(ia| jb)RI =
∑
P

BiaPB
jb
P , (9)

where

BiaP =
∑
R

(ia|R)L−1
PR . (10)

Therein, the three-center integrals (ia|R) are computed starting from integrals over atomic
orbitals (µν|R), so that the final expression for the elements BiaP reads as

(ia|P) =
∑
ν

Cνa

∑
µ

Cµi

∑
R

(µν|R)L−1
PR , (11)

where C is the molecular orbital coefficient matrix, i.e. CCT = P.
Another major development direction is the design of novel linear-scaling algorithms

[41, 42]. Within CP2K, the relation

sign

(
0 A
I 0

)
= sign

(
0 A1/2

A−1/2 0

)
(12)

is employed together with various iterative methods to compute the matrix sign function

sign(A) = A
(
A2

)−1/2
(13)

to yield the inverses and (inverse) square roots of large sparse matricesAwith a computational
effort that scales just linearly with system size. Most importantly, however, the sign function
can also be used for the purification of the Kohn–Sham matrix HKS into P by the use of

P=
1
2

(
I− sign

(
S−1HKS −µI

))
S−1. (14)

The superior efficiency and linear-scaling potential of this approach has been demonstrated
at the DFT level using a double-ζ valence polarization basis set, for up to a million of atoms
in a massively parallel implementation, as shown in figure 6.
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Figure 6. Total walltime for a single AIMD step for bulk water at ambient conditions
as a function of system size on a Cray XT5.

Meeting the exascale challenges

Standing at the brink of the exascale era, we can see that fundamental disruption in program-
ming models and processor technology that were predicted a decade ago did not happen. From
the developer’s point of view, three trends originating in the petascale area are continued and
emphasized: (1) the need of massive parallelism in terms of node and thread counts, (2) an even
more widespread use of GPUs, and (3) the availability of mixed-precision matrix or tensor
operation hardware accelerators.

CP2K is fundamentally well-suited to scale to immense levels of parallelism because it
was designed as a massively parallel MPI application right from the outset. With the advent of
multi-core processors, OpenMP directives were added to important loops, while leaving the
underlying data layout unchanged to support multi-threading and hybrid parallelism.With that
many concurrent threads the data has to be partitioned to prevent bottlenecks from reductions
or atomic access collisions. The new library for Distributed Block-sparse Matrices (DBM)
is a first step in this direction. It uses a fixed assignment of matrix block rows to threads,
which eliminates the need for synchronization from most operations. We plan to refactor other
primitives in the same way, in particular the grid data structures that power methods like GPW
have a lot to gain from per-thread partitioning.

The modular structure and use of modern Fortran 2008 allowed the addition of GPU sup-
port at the level of GPU-accelerated libraries (e.g. DBM, COSMA, SpFFT, SPLA, grid, pw
and Sirius), some of which were also spun off from CP2K as stand-alone libraries such as
e.g. DBCSR. The challenge for the exascale era is the evolution and increasing diversity of
GPU architectures. In the early days we mostly struggled with finding the sweet spot within
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Figure 7. Schematic representation of the steps of the submatrix method for the approx-
imate calculation of a matrix function f(A) of a large sparse matrix A. The first step is
the construction of a submatrix Ti(A) for every column of the matrixA. Then the matrix
function is applied to the dense submatrices, i.e. f(Ti(A)), and finally the relevant result
columns are inserted into the sparse result matrix. Reproduced from [41]. CC BY 4.0.

the tight constrains set by small register files and scarce shared memory. In present systems,
the bottleneck has now shifted to the PCI bus, where we are often limited by host-to-device
communication. The way forward is to use GPU-aware MPI, which we are currently adding
to DBM and will later roll our to other parts of the code. The status and results of these efforts
can be tracked on the CP2K GPU dashboard at www.cp2k.org/gpu.

Lastly, we expect that the matrix and tensor processing units (TPUs) will have a profound
and long-lasting effect on method and code development. These computing elements can
achieve one to two order of magnitude more floating point operations per second (FLOPs)
for dense linear algebra operations in reduced or mixed precision, e.g. FP16 operations with
FP32 accumulation. To exploit this potential, it is key to develop methods that heavily rely
on dense linear algebra on medium sized local matrices, whose numerical inaccuracies due to
mixed- and low-precision arithmetic can be rigorously compensated by the design of a modi-
fied Langevin-type equation [32].

In recent work, we have developed the submatrix method that is specifically designed with
these design principles in mind. The core idea, as illustrated in figure 7, is to convert the eval-
uation of a matrix function on a large distributed sparse matrix into a large-scale parallel eval-
uation of the matrix function on many dense, but much smaller matrices. In combination with
the purification scheme of equation (14), we were able to perform record sized linear-scaling
electronic structure computations on systems with more than 80million atoms, thereby achiev-
ing a sustained performance of 1127 PFLOPs with an efficiency of more than 82% [42]. This
experiment was one of the first natural science applications that achieved sustained ExaFLOPs
performance in FP32/FP16 mixed-precision arithmetic on 4400 GPUs proving the scalability
and effectiveness of the method.

Concluding remarks

We conclude by noting that beside exploiting upcoming exascale supercomputers to facilitate
ever more complex and accurate simulations, in the future alternative approaches such as deep
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neural networks (DNNs), as well as quantum computing algorithms will find their application
within CP2K. Possible applications of the former are to mimic the potential energy surface
[43], as well as so-called delta learning approaches [44], where only the correction to an
approximate, but computationally simple electronic structuremethod is represented by aDNN.
De facto exact configuration interaction, or reduced density-matrix functional (RDMF) the-
ory simulations will become feasible by the usage of hybrid quantum–classical algorithms in
which the QM expectation values of the RDMF are evaluated on a quantum computer (QPU),
whereas the parameters of the trial states are optimized by a Car-Parrinello-like constrained
minimization scheme within CP2K on a classical computer [45].
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Background and current status

DFT-FE [46] is a recently developed open-source code (current v1.0 released in 2022) for con-
ducting massively parallel, fast, efficient, and accurate DFT calculations on hybrid CPU-GPU
architectures. DFT-FE is based on a real-space formalism and adaptive higher-order finite-
element (FE) discretization, providing systematic convergence with an ability to accommodate
periodic, non-periodic and semi-periodic boundary conditions [47–49]. While we anticipate
DFT-FE to be primarily used for calculations employing pseudopotentials, the adaptive spa-
tial resolution afforded by the FE basis also allows for systematically convergent all-electron
calculations, and, further, mixed all-electron and pseudopotential calculations [50].

DFT-FE employs a computationally efficient solver, namely the Chebyshev filtered sub-
space iteration approach [51], and a scalable implementation relying on the FE framework
and mixed precision algorithms that increases the arithmetic intensity by reducing data move-
ment costs on many-core and hybrid CPU-GPU architectures [49, 52]. Consequently, DFT-FE
exhibits close to quadratic scaling until 30 000–40 000 electrons, significantly delaying the
onset of cubic computational complexity.

DFT-FE offers excellent parallel scalability on evolving heterogeneous architectures (cf
figure 8), thereby enabling large-scale DFT calculations employing pseudopotentials on tens
of thousands of electrons atmodest computational costs and lowwall-times. In particular, DFT-
FE has been executed onmassively parallel many-core CPU (up to∼200 000 cores) and hybrid
CPU-GPU architectures (up to 22 800GPUs) with systems sizes reaching up to∼100 000 elec-
trons. Notably, full GS calculations39 involving 5000–15 000 electrons can be completed in
wall-times of∼1–3 min on hybrid CPU-GPU architectures [49]. Further, benchmark GS DFT
calculations involving 60 000–100 000 electrons have been demonstrated with wall-times of
∼30–60 min. The performance of DFT-FE reaching 46 PFLOPs (OLCF Summit supercom-
puter) on a metallic dislocation system comprising of ∼100 000 electrons was nominated as
a finalist for the 2019 ACM Gordon bell prize [52]. Overall, we anticipate that the capabil-
ity of DFT-FE to conduct fast and systematically convergent DFT calculations on large-scale
materials systems can aid computational studies in several fields, including applied physics,
chemical sciences, materials science and metallurgy.

Development priorities

We envision DFT-FE can be useful in tackling important challenges in a number of key
areas, including: (a) Structural Materials: for instance, understanding the behavior of

39 All references to benchmark calculations in this section refers to accuracy levels of ∼0.1 mHa atom–1 in energy,
∼0.1 mHa Bohr–1 in force and ∼5 × 10−06 Ha Bohr–3 in stress.
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Figure 8. Performance profile of DFT-FE on the OLCF summit GPU supercomputer.
(a) Strong parallel scaling of total ground-state run-time (including initialization and
ionic force computation) for benchmarkmetallic systems comprising of 6034 and 14 322
electrons. (b) Breakdown of single SCF wall-time of Chebyshev filtered subspace iter-
ation approach, involving Chebyshev filtering, Rayleigh-Ritz step (projection and sub-
space rotation) and subspace diagonalization, for large metallic benchmark systems.

extended defects in metallic alloys and their connection to mechanical properties, such as
strength and ductility, which requires fast, accurate and large scale DFT calculations reach-
ing ∼10 000 atoms; (b) Energy Materials: such as understanding energetics and kinetics of
solid-liquid and solid–solid interfaces, which require fast and large-scale AIMD and nudged
elastic band (NEB) calculations on system sizes reaching a few thousands of atoms. These cal-
culations would also require advanced exchange-correlation (XC) functionals—such as meta-
GGA, Hubbard corrections—to model systems that exhibit strong correlations; (c) Chemical
Sciences (catalysis) and Biological Sciences (understanding charge transport mechanisms),
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where accurate large-scale DFT calculations with improved XC functionals can provide essen-
tial insights and guidance.

In view of the above scientific applications and others, DFT-FE’s developmental priorities
over the next five years are broadly categorized into the following four areas:

(a) Basis sets: We plan to expand DFT-FE to include the enriched FE basis—a mixed
basis, which comprises of the FE basis along with enrichment functions—that has been
demonstrated to be computationally efficient for systematically convergent all-electron
calculations [53]. We anticipate that the enriched FE basis can also further improve the
performance of calculations employing pseudopotentials.

(b) Pseudopotential/All-electron functionalities: We are implementing projector augmented
wave (PAW) formalism into DFT-FE that is expected to significantly reduce the FE
basis functions by 3–10 fold in comparison to the optimized norm-conserving Vanderbilt
(ONCV) pseudopotentials, presently supported by DFT-FE. We also plan to make the
mixed pseudopotential all-electron capability—where some atom types are treated using
all-electron description, while others are treated using a pseudopotential approximation—
a common feature of the code, which can aid studies on spin defects in solids, among other
applications.

(c) Advanced XC functionals/Physics: We are expanding the present capability of DFT-FE
from semi-local functionals (LDA, GGA) to include the other widely used functionals.
We are currently developing tensor-structured techniques for hybrid XC functionals to
reduce their significant computational cost relative to semi-local functionals. In the near
future, we also plan to implement other XC functionals such as meta GGA, Hubbard cor-
rections, vdW corrections, as well as extend the code to account for spin–orbit coupling
that is central to magnetism and spintronics. Further, for all-electron calculations, we plan
to extend the present non-relativistic treatment to all-electron relativistic approximations,
such as zeroth-order regular approximation (ZORA). As we expand the capabilities of
DFT-FE, the focus will be on accuracy and scalability to enable robust, fast and accurate
calculations.

(d) Capabilities related to structural relaxation and ion dynamics: We are developing exten-
ded Lagrangian techniques for AIMD calculations that avoid the self-consistent field iter-
ation in each MD step. We will further extend these techniques to advanced XC function-
als. We anticipate that this will enable fast AIMD simulations reaching∼100 ps on system
sizes containing a few thousands of atoms that can be crucial to understanding the complex
structural and chemical processes, such as electrode-water interfaces in photoelectrochem-
ical cells, ion diffusivity in solid-state electrolytes, among other applications. We also plan
to integrate DFT-FE code with machine-learning frameworks that can leverage DFT-FE’s
capabilities to build robust ML models for accurate potential energy surface predictions.
These models can help generating good initial guesses to achieve further acceleration in
NEB and structural relaxation simulations using DFT-FE. Furthermore, we plan to deploy
these ML models to accelerate AIMD simulations allowing us to achieve much longer
time-scales, while continually retraining the models with DFT-FE as and when required
during the course of the simulation.

In addition to the above core developmental priorities, other development priorities of
the DFT-FE team include: (a) Capability to conduct efficient and accurate inverse DFT
calculations [54], which will leverage systematically convergent all-electron calculations in
DFT-FE, to compute exact exchange-correlation potentials from many-body GS electron-
densities. The resulting XC potentials can be useful to improve the existing XC functional
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models, as well as aid the development of accurate and transferable machine-learned XC (ML-
XC) models, thus enhancing the model level accuracy of DFT calculations; (b) Capability
to conduct fast and large-scale real-time TDDFT calculations [55]; (c) Implementation of
post-DFT techniques including polarizability calculations and GWmethod to study electronic
and optical properties in materials.

Meeting the exascale challenges

The current implementation strategies employed in DFT-FE are based on the HPC-centric
philosophy of reduced data movement, including communication costs, leading to high
throughput performance (cf figure 9(a)). This has been accomplished by using mixed precision
arithmetic and employing asynchronous compute-communication paradigms in the Chebyshev
filtered subspace iteration approach (ChFSI). These implementation procedures have resul-
ted in excellent parallel scalability of DFT-FE demonstrated on up to 3800 hybrid CPU-GPU
Nodes (22 800 GPUs) on system sizes involving ∼100 000 electrons. Thus, DFT-FE is cur-
rently able to take advantage of existing pre-exascale architectures.

The performance benchmark calculations show that the subspace diagonalization cost in
Chebyshev filtered subspace approach accounts for ∼35%–60% of the total SCF cost for
large systems beyond 60 000 electrons (cf figure 8(b)). Currently, the subspace diagonaliz-
ation is performed using a direct diagonalization approach available in the ELPA library.
However, alternate approaches, such as Fermi-operator expansion, that rely on parallel dense
matrix-matrix multiplications to evaluate the subspace projected density matrix can provide
further scalability of the DFT-FE code making it well suited for extreme-scaling architectures.
Furthermore, there is potential to exploit the tensor structured nature of the FE basis functions
implemented in DFT-FE to develop a matrix-free computational framework that can accom-
plish on-the-fly FE discretized sparse matrix-multivector multiplications. These matrix-free
techniques can further improve computational efficiency by reducing data access costs and
floating-point operations. We anticipate that these strategies will enhance the computational
performance (minimum wall times) of DFT-FE by a factor of 2–4 fold.

The data-centric methodologies and implementation procedures will also be exploited in
the following future methodological developments in DFT-FE:

(a) Enriched FE basis and PAW framework: HPC centric ideas of matrix-free or pseudo
matrix-free techniques associated with FE discretizedmatrix timesmulti-vector operations
reduce both floating-point operations and data movement costs. This can allow the use of
higher-order FE basis polynomial degree in a computationally efficient manner while redu-
cing the peak memory requirements, thus further enhancing the performance of DFT-FE.

(b) Advanced XC functionals: implementation of tensor-structured techniques for hybrid func-
tionals using batch tensor contractions and batch tensor reshape operations can result in
efficient utilization of GPU compute and memory bandwidth. Further, nonlocal XC func-
tionals like vdW-exchange or ML-XC can also benefit from using GPU accelerated tensor-
structured techniques.

Concluding remarks

We remark that DFT-FE is already able to efficiently utilize the many-core CPU as well as
pre-exascale hybrid CPU-GPU supercomputers to enable fast, accurate and massively parallel
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Figure 9. (a) HPC-centric implementation strategies in DFT-FE on heterogeneous com-
puting architectures. (b) Electron-density contour of <c + a> pyramidal I screw dis-
location in Magnesium with a Yttrium solute at the dislocation core. Computational
domain contains ∼6000 atoms.

DFT calculations on generic material systems reaching up to∼100 000 electrons. This is a res-
ult of the systematic convergence and locality of the adaptive higher-order FE basis, efficient
and scalable Chebyshev filtered subspace iteration procedure, and HPC-centric implement-
ation strategies on heterogeneous computing architectures. Using the pre-exascale machines
like OLCF Summit and NERSC Perlmutter, DFT-FE has recently been employed to study vari-
ous large-scale science problems such as dislocations (cf figure 9(b)) and grain-boundaries in
metallic alloys, spin defects that are promising candidates for spin qubits, electronic structure
of large DNA molecules, and phase stability of doped thin-film ferroelectric materials.

Looking forward into the exascale era, we anticipate our proposed developmental priorities
and hardware aware implementation strategies will further improve DFT-FE’s core capabilit-
ies, which can enable routine application of DFT-FE to tackle outstanding scientific problems
that require ab-initio calculations at larger length-scales and time-scales. Further, we emphas-
ize that our proposed implementation of advanced XC functionals, ML-XC functionals, spin–
orbit coupling, relativistic corrections, TDDFT and GW method will expand the range of
materials systems and properties that can be studied using DFT-FE. Additionally, the C++
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codebase of DFT-FE and our continuing emphasis on ensuring performance portability across
a growing range of hardware accelerators and their programming languages (CUDA, HIP) will
be critical for the long-term maintainability and extensibility of DFT-FE. Finally, we remark
that we aspire to build upon the open-source credentials of DFT-FE to make DFT-FE into a
community project with a growing base of developers and users, along with promoting active
engagement between computational method developers and domain science experts.
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Background and current status

exciting [56] is a full-potential all-electron code, implementing density-functional theory
(DFT), its TD variant, TDDFT, and Green-function methodology, focusing on various excit-
ations. The code employs (linearized) augmented plane waves and local orbitals (or loosely
speaking just LAPW’s) for valence and semicore electrons and explicitly treats core electrons
via the radial Dirac equation. Since no shape approximation is required for describing wave-
functions, density or potential, this basis-set type provides a systematic path for reaching the
complete-basis-set (CBS) limit, relying only on well-controlled numerical approximations.

Indeed, LAPW codes and specifically exciting serve as a reference tool for other
approaches, especially those relying on pseudopotentials in GS as well as excited-state calcu-
lations. A remarkable example was the so-called ∆-test [57] that compared a sizable number
of DFT codes regarding their performance for the equation of state on a benchmark set of 71
elemental crystals. Later it was shown [58] that exciting achieves microhartree precision
for total energies in DFT calculations as demonstrated by comparison with multi-resolution
analysis. Also in quasiparticle calculations, using theG0W0 approximation of MBPT, the CBS
limit was attained without any extrapolation [59].

Importantly, with exciting one can study neutral excitations that appear in different
kinds of spectroscopy, e.g. optical absorption, electron-loss, EELS (electron energy loss spec-
troscopy), Raman, or RIXS (resonant inelastic x-ray spectroscopy). It employs the Bethe–
Salpeter equation (BSE) to describe electron–hole excitations and provides means of ana-
lysis and visualization. Figure 10 shows a hybrid CT exciton in pyrene@MoS2 [60] as an
example. Since LAPW calculations treat all electrons—also the low-lying ones—on equal
footing, this method naturally gives access to core excitations and allows for an accurate
description of excitations occurring from very low-lying up to shallow, more delocalized core
states. exciting also enables explicit treatment of core-level spin–orbit coupling [61].

Such highly precise implementations should now be used to provide benchmark data to the
community. This not only concerns small systems like the elemental crystals probed in [57] but
should contain a representative set of materials from different classes and varying complexity.
Moreover, various properties should be included, in particular those that may make potential
discrepancies between different methods and approximations apparent. Such a task requires
high-throughput calculations that ask for numerical efficiency and optimal performance on the
exascale machines to come.

Development priorities

High precision in LAPW comes along with high computational expenses. In part, it is due
to the built-in complexity of LAPW compared to other formalisms. In part, it is due to the
unavailability of low-scaling algorithms, be it generally or specifically concerning the LAPW
basis. From a code-design perspective, an important aspect of current and future developments
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Figure 10. Reciprocal and real space representation of a charge-transfer exciton in
pyrene@MoS2. The red and green circles in band structure on the left indicate the con-
tributions of the involved states. Their sizes are proportional to the transition weight.
The real-space representations show the probability density of finding the hole of the
electron–hole wave function given a fixed position of the electron (right panels) and
vice versa (left panels). The electron (hole) probability distribution is depicted in green
(red) with the corresponding hole (electron) position marked by the red (green) dots.

therefore concerns efforts to ensure that the wide variety of physical properties already avail-
able in the code can be computed not only for simple materials but also for complex systems
to address highly topical research questions.

For instance, GS DFT calculations require solving an eigenvalue problem; the optimal
approach for low-dimensional and sparse systems is an iterative algorithm without explicitly
constructing the Hamiltonian and overlap matrices. However, a high condition number is com-
mon in LAPW calculations, and iterative eigensolvers are then difficult to apply. To rem-
edy this situation, we have modified the Davidson algorithm to make it applicable in these
circumstances [58] and managed that way to reduce the computational and memory demand.
With the example of the total energy of the CO molecule, figure 11 compares the perform-
ance of exciting's standard (LAPACK) and iterative (Davidson) algorithms for the diag-
onalization. The size of the eigenproblem increases here with the simulation cell (amount of
vacuum).We find that our implementation of the Davidson algorithm (without constructing the
Hamiltonian explicitly) scales as O(N) and outperforms the LAPACK eigensolver that scales
as O(N3), yielding the same precision (N being the number of basis functions).

For studying excited states, e.g. computing photoemission and optical absorption spectra,
the GW approach and the solution of the BSE, respectively, remain the favorable methods,
balancing accuracy and computational cost. exciting's all-electron G0W0 implementation
formulates the key GW quantities—the dielectric function and the correlation self-energy—
in terms of a product basis of Kohn–Sham wavefunctions. Computing the screening and the
correlation self-energy in this manner scales as O(N4), and accounts for the majority of the
time spent performing a G0W0 calculation. Analogously, the BSE represents the electron–
hole wavefunctions as products of Kohn–Sham wavefunctions, and its conventional imple-
mentation scales as O(N6) as it computes all excitonic eigenstates. In both instances, we are
striving for lower-scaling algorithms to improve performance. Furthermore, in addition to our
mature BSE formulation, we are developing a novel approach, utilizing real-space wavefunc-
tion interpolation [62] in order to treat systems where dense k-sampling is required to obtain
convergence.
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Figure 11. Performance of the iterativeDavidson eigensolver in comparison to the stand-
ard LAPACK diagonalization. The LAPACK timings are given for 1- and 36-thread
calculations. The iterative eigensolvers with and without explicit matrix construction
(labelled with HM and LM, respectively) were tested in single-thread runs.

From the perspective of new scientific approaches, the exciting team is, for instance, act-
ively researching the effect of phonon-mediated processes in excited state properties. Indeed,
a first-principles treatment of EPHs is essential in understanding temperature effects in both
photo-electron and optical spectroscopy. The next release will feature a highly-parallelized
implementation of DFPT in the linear-response regime. This will allow for a quantitative
description of EPH in band-gap renormalization, screening, and absorption processes, and
form an essential ingredient in a higher-level theory of exciton-phonon coupling. All this goes
hand in hand with approaches towards excitation dynamics with recent implementations of
real-time TDDFT [63] and Ehrenfest dynamics [64].

Meeting the exascale challenges

exciting envisions reaching exascale performance via two distinct strategies. The first is
the implementation of novel algorithms that facilitate optimal and massive parallelization;
the second is the automation of workflows to enable highly concurrent job submission and
management.

In GS calculations of close-packed systems, the iterative Davidson eigensolver provides
only little or even no gain over the conventional diagonalization approach. To meet the chal-
lenge of performing large-scale all-electron calculations for materials science applications, we
will rely on SIRIUS (https://github.com/electronic-structure/SIRIUS), a high-performance lib-
rary for the LAPWbasis, with asynchronousMPI andGPU support. The integration of SIRIUS
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in exciting enables the hand-off of the most computationally demanding parts, allowing
one to perform GS calculations on systems up to an order of magnitude larger than currently
possible.

Our aim is to exploit the massive potential for improving the parallel performance, as well
as finding and implementing low-scaling algorithms for excited-state methods. In general, it
is clear that migrating code from the traditional CPU programming model to support het-
erogeneous parallelism is a vital strategy in accelerating all aspects of electronic-structure
calculations, and we stand to benefit greatly from this. To provide an example, within the
NOMAD Centre of Excellence (https://nomad-coe.eu), a HORIZON 2020 project towards
exascale computing, we are about boosting the efficiency of our G0W0 module. To ensure that
we can tackle various system sizes most effectively, we pursue two targets: eliminating bottle-
necks in the current implementation on the one hand, and taking a completely different route
with a highly-parallelized implementation of the space-time method [65] on the other hand.
The latter approach switches between real and momentum space representations for construc-
tion of the dielectric function, reducing the algorithmic complexity to O(N3).

A major effort in the NOMAD CoE goes to the development of libraries that cover major
aspects of the involved algorithms. A part of them will be code-independent and thus can be
shared among the partners that work with codes of different code families, i.e. different basis-
set types. Other parts will be basis-set specific. This overall strategy is particularly important
as exascale machines are not available in the European landscape yet; and those currently
established rely on very different architectures. Such libraries can then be tuned for optimal
performance on various hardware platforms. Most relevant for code developers and users, both
types of libraries may finally be used also by other codes.

The last decade has seen substantial growth in molecular and materials databases, how-
ever in general, existing data on solids lack physical validation. Therefore, the second strategy
of approaching the exascale concerns high-throughput calculations. We are developing auto-
mated end-to-end workflows to leverage exciting's high precision, such to provide bench-
mark data for various properties and material classes. Such data are also urgently needed in
view of data-quality assessment in data collections [66]. This concerns particularly the aspect
of Interoperability—the I in FAIR—when data from different sources are brought together
such to employ them, for instance in machine-learning tasks. On-going work in this direc-
tion comprises various aspects that are key to reach our goals. These involve the automation
of building transferable LAPW basis sets as well as the selection of optimal computational
parameters.

Automation is currently built with workflows on single- and multi-task levels following the
schematic shown in figure 12. The central piece labelled as excitingworkflow is a Python
script put together by a user from existing components. To this extent, it makes use of (i)
excitingtools [67], an IO-based API to exciting, that provides full control over input
parameters, (ii) workflow managers such as Jobflow or ASR, and (iii) a task scheduler such as
Fireworks.

Concluding remarks

exciting is tackling the exascale transition with a focus on theoretical spectroscopy, for both
the valence and core region. A main goal is enabling calculations for complex systems that
are both highly accurate (in terms of methodology) and highly precise (in terms of numerics).
A major focus is thus put on the implementation of algorithms that can be optimally paral-
lelized. The strategy is to collect these algorithms in libraries that can be tweaked on various
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Figure 12. Schematic of automated workflows setting up and managing exciting cal-
culations. Here, fireworks serves an example for a task scheduler as mongo DB does
for data storage. The atomic simulation environment (ASE) can be used for defining
geometries.

(pre)exascale platforms and sharedwith other developers. The second route concerns the devel-
opment of workflows to enable massive parallel job submission with automatized method- and
material-specific setup and error handling. All this is embedded into the work carried out in the
NOMADCoE (see also sections 1 and 7). Our work sets the stage for creating benchmark data
for a wide variety of materials and properties as urgently needed for measuring the impact of
methodology, approximations, and computational parameters on numerical results. But more
than this, it will allow the community to explore exciting physics and tackle research questions
that are not possible to answer with existing codes to date.
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Background and current status

FHI-aims is a quantum mechanics software package based on numeric atom-centered orbitals
(NAOs) with broad capabilities for all-electron electronic-structure calculations and ab initio
MD. It also connects to workflows for multi-scale and artificial intelligence modeling.

Since its foundation in 2004, the FHI-aims code has been designed with a clear set of
goals. It should be numerically precise across the periodic table. It should be ‘all-electron’
(not pseudopotential) and handle periodic systems (i.e. extended models of solids, surfaces,
and nanostructures) as well as non-periodic systems (i.e. molecules and clusters). The code
should support DFT with all relevant exchange-correlation functionals, and it should be amen-
able to correlated methods beyond DFT, i.e. the RPA and MBPT (e.g. GW) based on Green’s
functions and the screened Coulomb interaction, as well as wave-function based correlation
methods from quantum chemistry, e.g. second-orderMøller Plesset (MP2) and coupled-cluster
(CC) theories. Furthermore, the code should scale efficiently from small to very large simula-
tion sizes (thousands of atoms or more) and work seamlessly from limited hardware (laptops)
up to the most powerful supercomputers available now or in the future. From the beginnings
in 2004, the team grew to include several further key contributors by the time it was first
released in 2009 [68]. Today, FHI-aims is a worldwide community project created by well
over 150 individual contributors (https://FHI-aims.org/who-we-are) including support for key
open source developments such as the ELPA library [69, 70] for massively parallel eigen-
value solutions, the ELSI infrastructure for lower-scaling solutions [71], CECAM’s electronic
structure library [72], environments such as i-PI [73], FHI-vibes [74], the atomic simulation
environment ASE [75], the open-source graphical interface for materials science (GIMS) [76],
and many others (see figure 13 and https://fhi-aims.org). The FHI-aims coordinators regu-
larly organize schools and virtual tutorials (available at https://fhi-aims.org). Outreach efforts
include industry, through the non-profit association MS1P (https://ms1p.org), ensuring that
associated income is returned to the community via code advancements.

Development priorities

The numerical foundation on NAO basis sets lies at the core of FHI-aims, allowing to represent
the electronic structure of any problem in chemistry or materials science and engineering,
without shape approximations. Support for and compatibility with Gaussian-type and Slater-
type orbitals is contained in the code and important for excited-state calculations and electron-
electron correlation beyond DFT. Key priorities that drive the ongoing developments include:

39

https://FHI-aims.org/who-we-are
https://fhi-aims.org
https://fhi-aims.org
https://ms1p.org


Modelling Simul. Mater. Sci. Eng. 31 (2023) 063301 Roadmap

Figure 13. An overview of the FHI-aims code, including its core functionalities, external
libraries directly coupled to the code, its integration with external workflow drivers and
its integration with the ‘graphical interface for materials science’ (GIMS) [76].

Figure 14. Start page of the graphical interface GIMS [76] for the FHI-aims code (print
version). GIMS is completely browser based, i.e. immediately usable on any computer.
The interface also supports the exciting code and, being built on the ASE [75], it is
open to accommodate any other electronic structure code.

• Usability. Like many of its peer codes, FHI-aims is usable as a single binary at the com-
mand line of a terminal, through queueing systems at supercomputer facilities, or embedded
in an ecosystem of separately developed and/or customized scripted tools for higher-level
tasks [73–75]. The input to FHI-aims itself is simple, requiring only two input files and a
few minimal keyword additions to get started; several tutorials and a browser based graph-
ical interface, ‘GIMS’ [76], (figure 14) are also available. A key ongoing challenge lies
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in the ever-evolving complexity of high-performance computer systems, especially for the
demanding applications of current and urgent interest. In this context, we note that critical
tools in high-performance computing, such as MPI libraries, compilers and numerical lib-
raries are insufficiently standardized and can present a steep learning curve for newcomers
to the field. Reducing this learning curve through tutorials, testing, dedicated code advances
and infrastructure will remain an overarching priority for future FHI-aims developments, in
particular targeting new accelerator models towards the exascale era (see below).

• Community. FHI-aims is a code based in a large academic community, especially when it
comes to a plethora of new developments that a single, small team could not shoulder. Key
examples are, e.g. refined density functionals that capture dispersion interactions accurately,
real-time time dependent DFT, incorporation of nuclear quantum effects both in the code and
by external tools, thermal and electrical transport calculations, GW approaches, and many
more. Therefore, it is a matter of course to keep the FHI-aims code open, accessible and
welcoming to a large community of existing and new users and developers.

• Science. In order to keep pace with the increasing needs of our field, continuous work on
new features is essential. Examples of our ongoing work include efficient hybrid DFT for
10 000 atoms and more, relativistic formalisms capturing the full Dirac equation, import-
ant to capture spin-related phenomena, e.g. in ‘quantum materials’, CC theory for high
accuracy of stability, reactions in and reactions between extended solids, and a plethora of
approaches geared at accurately simulating excitations of the electronic and nuclear systems
of molecules and solids. These methods can connect simulations to powerful experimental
spectroscopic techniques as well as to device applications (e.g. optoelectronic or spintronic)
by our experimental colleagues. Connecting the electronic structure foundation to artifi-
cial intelligence approaches in order to accelerate computational steps that do not need to
repeated and/or can be predicted based on already existing information is a critical practical
step for all these objectives [77].

Meeting the exascale challenges

Many of our ongoing developments aim at enabling investigations of systems of higher com-
plexity, systematic consideration of metastable states and temperature, and all this at signific-
antly (urgently needed) higher accuracy than what is possible today. Importantly, the goal of
utilizing ever-faster computing architectures goes beyond ‘speeding up’ state-of-the-art HTCs
that still employ the theory of the 1990s (through widely used, successful, but also fundament-
ally limited semilocal density functionals). Figure 15 shows the schematic reach of different
levels of electronic structure theory (EST); in FHI-aims, high-accuracy approaches to EST are
expected to benefit most directly from the exascale hardware.

Exascale architectures will be heterogeneous, featuring both CPUs as well as accelerators
such as GPUs—the latter coming in various flavors (at the time of writing, at least NVidia,
AMD, and Intel) and with different coding paradigms. Our strategy in FHI-aims has been
to build the code around an ‘MPI first’ paradigm, meaning that every computational method
is foremost parallelized without any a priori restriction of execution across compute nodes
in even the largest supercomputers (∼200 000 cores were demonstrated already in 2011).
Shared-memory parallelism within each node can be implemented through the MPI-3 stand-
ard for multicore processing systemswhere needed, but importantly controllable where needed
from within the code. Through work for NVidia GPUs, we already have a working strategy to
treat particular computational hotspots by GPU offloading [69, 70, 78]. Figure 16 shows the
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Figure 15. Schematic scaling of various electronic-structure methods and system size
(# of atoms) currently possible. For DFT, we indicate cubic scaling since lower scaling
is typically not yet reached for∼1000 atoms in dense systems, in our experience. Direct
electronic-structure calculations for mid- to large-scale systems at the highest levels will
benefit most dramatically from successful exascale implementation. Our efforts in FHI-
aims will focus especially on these highest levels, e.g. in work done in the NOMAD
Center of Excellence (www.nomad-coe.eu).

impressive power that can be leveraged for large problems on even a few nodes of the pre-
exascale computer Summit (42 Power9 cores and six NVidia V100 GPUs per node) at Oak
Ridge National Laboratory, compared to many tens of nodes of the Cori Intel Haswell system
(32 cores per node) at National Energy Research Center only a few years earlier. Ongoing
work focuses on extending this paradigm throughout the code as well as to the newer AMD
and Intel architectures.

FHI-aims already includes advanced exchange-correlation methodologies such as the RPA,
MP2, and CC theory. These are presently being extended for the exascale hardware. For
instance, the scalability and performance of large-scale DFT calculations is determined by the
eigensolver. For hybrid DFT calculations, a second bottleneck is the evaluation of the non-local
exact-exchange part of the Fock matrix, and for GW, RPA, and CC calculations it is determ-
ined by algebraic tensor operations. We are tackling these challenges together with wider com-
munity efforts, e.g. ELPA [69, 70], ELSI [71], and the NOMAD Center of Excellence (https://
nomad-coe.eu) (see also sections 1 and 6).

For large systems, the time spent for diagonalization in DFT is always a potential bottle-
neck. O(N3) (N: system size) scaling dense linear algebra approaches remain competitive with
alternatives up to thousands of atoms in our benchmarks. We are therefore helping to enhance
the eigensolver ELPA in terms of functionality, performance and energy efficiency, in order
to deliver an exascale version. Through the ELSI infrastructure project [71], we are also con-
nected to other highly efficient solvers that scale lower than O(N3), such as NTPoly, O(N),
or the PEXSI solver, O(N2). Google’s TPUs were recently employed to accelerate FHI-aims’
conventional DFT (no sparsity assumptions) to almost 250 000 orbitals [79].
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Figure 16. Visualization of computational time as a function of number of compute
nodes used, for one self-consistent field (s.c.f) iteration of semilocal DFT for two large
systems on the Cori supercomputer (CPU only, 40 and 80 nodes, right side) and on the
Summit supercomputer (CPU + GPU, 2 and 4 nodes, left side), showing previously
published data from table 1 of [70]. FHI-aims’ ‘light’ settings were used. ‘CBTS’ (blue
curves) is a 3000-atom periodic supercell model of a Cu2BaSnS4 semiconductor. ‘SiC-
G’ is a 3376-atom slab model of a graphene layer on a SiC(111) substrate. Data is shown
for the total time per s.c.f. iteration (circles) and for the portion consumed by the eigen-
value solver ELPA. On summit, a portion of the s.c.f. cycle not related to the eigensolver
(the electrostatic potential) is not yet accelerated on GPUs. Further details are provided
in [70].

When non-local operators are needed (e.g. for hybrid functionals), the bottleneck is created
by the formally (without accounting for sparsity) quartic scaling of the method. For hybrid
DFT, O(N) scaling has long been realized for FHI-aims, but overhead remains especially
for intermediate-sized systems. For the even more challenging beyond-DFT methods, we are
working on providing low-scaling, efficiently load-balanced implementations for RPA, MP2,
and GW, using the real-space and imaginary time treatment or variations thereof. This will
include, most critically, sparse matrix-matrix operations, batched matrix-matrix multiplica-
tions, and data rearrangement.

Concluding remarks

FHI-aims is used and advanced by a great community. The code has been used for a wide
range of calculations and, via workflows, many multi-scale modeling and artificial intelligence
analyses (see e.g. [77]). Pre-exascale architectures are already well supported. In addition to
‘heroic’ largest-scale calculations, FHI-aims is also capable of launching an essentially unlim-
ited number of separate, ensemble-parallel calculations at once via split MPI communicators,
a mode of operation that is well suited for the exascale regime. Exascale computing may have a
significant energy footprint. Here the FHI-aims community works on systematic optimization,
e.g. by active learning strategies and workflows that start from the knowledge of the NOMAD
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data base (https://nomad-lab.eu/services/repo-arch) and make educated decisions for special
DFT calculations in order to create a reliable and informative data pool for a faithful artificial
intelligence description. Statistical mechanics and multi-scale modeling require long time and
length scales and here, for example, the hand-shake linkage to machine-learned potentials is
being developed.
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Background and current status

EST attempts to accurately approximate solutions to the electronic Schrodinger equation
in order to accurately predict chemical properties and reactions. Within the field of EST,
NWChem [80] is arguably the de facto choice for high-performance molecular EST studies.
Unfortunately, NWChem was initiated over 20 years ago and computer hardware and soft-
ware architecture has far surpassed the original design. With the advent of the exascale era,
the decision was made to focus efforts on NWX [81], a complete rewrite and redesign of
NWChem from the ground up.

Figure 17 shows the key design points and features of NWX. The upper-left, red box lists the
features anticipated to be in the version 1.0 release (tentatively slated for late 2023). Like the
original NWChem, NWX’s primary niche is still high-performance EST. Unlike the original
Fortran-based NWChem, the core of NWX is written using C++17 with nearly all functional-
ity accessible via Python bindings and targeted for heterogeneous computers. The Python bind-
ings (and additional Python functions) allow all users to access and manipulate the software
in order to run EST simulations. NWX also has the fairly unique (at least from the perspect-
ive of EST) feature of being entirely plugin based. At the heart of NWX is PluginPlay [82],
a generic C++ framework for runtime manipulations of a program’s call graph. PluginPlay
views the call graph as a series of interconnected modules where each module tends to have
the granularity of a function in a conventional EST package. To remain domain agnostic,
PluginPlay modules necessarily have generic application programming interfaces (APIs), the
SimDE layer provides additional domain-specific module APIs using familiar chemistry con-
cepts (e.g. molecules, basis sets, wavefunctions). The remainder of NWX is written as encap-
sulated modules, each of which relies on the APIs and infrastructure in SimDE. Ultimately,
the reliance on modules aids in: performance-tuning, reuse of NWX modules by other EST
packages, incorporation of third-party contributions into NWX, and rapid prototyping of new
theories by allowing developers to dynamically, at runtime, non-invasively modify the call
graph. The layered approach helps NWX obtain performance portability by providing separ-
ation of concerns through high level APIs and algorithms that have specific implementations
for CUDA, HIP and SYCL (for example) underneath. OpenMP could be supported in this
approach, although it is currently not as performant.

Development priorities

The NWX team has taken the need to rewrite the original NWChem package as an opportunity
to create our ideal next-generation EST ecosystem. In particular, not only must NWX perform
well, it must also adhere to modern computer science practices, be highly customizable and
extensible, easily integrate into existing scientific workflows, be developer-friendly, and be as
user-friendly as possible. Historically the EST community has viewed these design points as
being at odds, making this arguably a tall order. Consequently, one of the largest and most
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Figure 17. Left inner red box: layers, key design components, and anticipated function-
ality of NWX for version 1.0. Right gray box: how we anticipate the NWX ecosystem
to grow in the future. See text for details.

time consuming challenges associated with the development of NWX, was the literal design
of NWX.

Aside from the design of NWX, our other top development priorities have been implement-
ing: the computational infrastructure underlyingNWX (i.e. PluginPlay and SimDE), electronic
embedding, DFT, and domain local, pair-natural orbital (DLPNO) based implementations
of second-order Moller-Plesset perturbation theory (MP2) and coupled cluster with single,
double, and perturbative triple excitations [CCSD(T)]. Multiconfiguration self-consistent field
(MCSCF) will also be available to facilitate modeling systems with strong-correlation. While
not a development priority, we have also implemented both conventional and density-fit (DF)
versions of SCF,MP2, and CCSD(T). NWXversion 1.0 will be able to compute energies for all
of the aforementioned methods and gradients for SCF and DFT, at a computational cost which
is reasonably competitive with existing EST packages. In addition, third-party software, such
as LAMMPS [83] and geomeTRIC [84], will enable MD and optimizations.

Admittedly the road to NWX version 1.0 has been a long one fraught with challenges.
Chief among these challenges has been the learning curve associated with transitioning to
modern C++17 object-oriented programming, the quickly changing hardware/software land-
scape, and the difficulty in attracting new talent to the project. Nonetheless, given the preval-
ence of object-oriented programming in the greater programming community and with much
of the HPC community transitioning to C++, we feel that our effort will be justified and will
pay-off in the long run. It is our opinion that NWX version 1.0 is an excellent research and
development platform that will provide for future functionality and flexibility for developers
and users alike.

Over the next five years there will be a bifurcation of our development efforts into first- and
third-party priorities. The first-party priorities are associated with adding features to improve
the accuracy and functionality of NWX. Initial implementations of plane-wave based DFT
and classical MD will be incorporated. Effective core potentials, relativistic effects, spectral
properties, solvent methods, and excited state methods will be added since these are com-
monly required by NWChem users. Explicitly-correlated (-F12) implementations of DLPNO-
MP2 and DLPNO-CCSD(T) [85] will be added to increase the fidelity of the linear-scaling
methodologies.
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NWX is really envisioned as part of a larger software ecosystem. In the ideal ecosystem
the broader EST community would develop functionality which adheres to community-wide
standardized APIs. This would enable third-party software developed outside the NWX organ-
ization to be interoperable with NWX, via the module system. While SimDE proposes a set
of standard APIs, modules can be made by translating between different APIs. The last NWX
development priority is to leverage the SimDE APIs to grow NWX’s functionality. Our ini-
tial efforts will focus on GhostFragment, a package for fragment-based methods, and EXESS
[86] (an Exascale Computing Project offshoot of the GAMESS [87] package). We also anti-
cipate the incorporation of NWX into scientific workflows important for large campaigns and
machine learning to solve new scientific challenges.

Meeting the exascale challenges

The modular nature of NWX is one of the keys to achieving high-performance on today’s
machines, and to continuing to achieve high-performance on future machines. More specific-
ally, since every major part of NWX is implemented as a module, and since the modules are
only coupled at runtime, modules which are found to be bottlenecks can be rewritten without
breaking the surrounding code. In practice modules are relatively fine-grained, so this allows
us to, for example, focus on porting the evaluation of the exchange-correlation potential to
GPUs without having to rewrite the remainder of the DFT algorithm. Of course, achieving
high-performance requires porting more than just the exchange-correlation potential to GPU;
however, with the separation of concerns imparted by the module system this can be done
piecewise. This approach also allows flexibility for sandboxing new computational approaches
and theoretical methods. If tighter coupling is required for performance, a ‘higher-level’ mod-
ule could also be developed; in this scenario the higher-level module fuses two lower-level
modules together. An additional advantage of the runtime coupling is that it makes reason-
ing about the code’s logic much easier by reducing branching points, which in turn facilitates
additional parallelism opportunities.

The other key to NWX’s performance is the use of object-oriented programming. The
vast majority of objects in NWX rely on the ‘Pointer to implementation’ (PIMPL) idiom.
The PIMPL idiom, combined with clever design, allows the API of an object to be largely
decoupled from how the operations are actually implemented. For example, the parallel
environment is an abstraction that provides the same API, despite having multiple parallel
paradigms underlying it, such as MPI and/or threads on CPUs and GPUs. Another useful class
provides general mechanisms for caching results for data reuse and restart—again with one
API, but potentially with multiple backends depending on the needs of the user or developer.

Our tensor class is a textbook example of the advantages of object-oriented programming
and is summarized in figure 18. The SimDEAPI defines only one tensor class: TensorWrapper.
Under the hood TensorWrapper relies on the Allocator and Shape abstractions to implement
details such as whether the tensor lives in memory, if the tensor is built on the fly, if the
tensor is GPU-based, if the tensor is sparse, etc. These details are then currently mapped to the
TiledArray [88] back-end. As an alternative tensor model we have also developed the tensor
algebra for many-body methods (TAMM) [89] software. The beauty of using TensorWrapper
for the SimDE API is that it makes interfacing software developed directly with TiledArray or
TAMM possible.

The backend for the tensor is set during construction, after which point module developers
have little need to worry about the backend again. The vast majority of modules take as inputs
already created tensors, and create new tensors by performing fundamental tensors operations
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Figure 18. Brief overview of how the tensor classes are structured in NWX.
TensorWrapper is a layer built on top of the high-performance tensor library TiledArray.
See text for details.

(e.g. adding, contracting, slicing, or permuting) on the input tensors. The consequence of this
API is that nearly all of the complexity of the data movement is encapsulated by the tensor class
(and an expression template layer). Admittedly, this design makes the backend of the tensor
class extremely complicated; however, this complexity is now localized ‘under the hood’, and
when a tensor scenario is optimized, those optimizations are immediately used throughout the
code. Furthermore, the resulting physics is extremely easy to implement (e.g. our in memory
and direct SCF/MP2 implementations use the same code which looks like tensor equations),
making rapid prototyping viable, and dramatically lowering the barrier for new contributions.

Concluding remarks

A version 1.0 release of NWX is planned for late this year (2023). The release is bittersweet
in that it is not as feature complete as we would like it to be, but at the same time we are very
excited to show off what we think is the beginning of a new generation of EST packages. In our
opinion, basing NWX on PluginPlay results in an EST package that is a substantial departure
from most traditional EST packages. In particular, the PluginPlay framework allows user-
s/developers to customize (at runtime) just about every aspect of the code via the module sys-
tem. Besides ensuring a modular package, PluginPlay also automates (to the extent possible)
saving/loading EST calculations, generating documentation, and data archival. The modular
approach along with separation of concerns also facilitates the use of high level APIs with high
performance implementations to ensure portable performance capabilities. The initial release
of NWX will include a series of modules implementing several common EST methods (HF,
MP2, CCSD(T), andMCSCF), as well as emerging linear-scaling variants ofMP2, CCSD, and
CCSD(T). The performance of these modules is currently competitive with implementations
found in other EST packages, although only some of thesemodules will be fully exascale ready
upon release. Future development priorities are focused on improving performance of exist-
ing features, implementing additional first-party modules (e.g. F12 methods and additional
nuclear derivatives), and filling out NWX’s feature set through third-party module support.
While the PluginPlay-based framework underlying NWX is a powerful development tool, it
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can also be overwhelming for the user who just wants to run the software. To this end, we
note that PluginPlay and SimDE target ‘power users’; NWXwill also include more traditional
user interfaces for common scenarios, e.g. computing the energy of a particular chemical sys-
tem at a specific level of theory. These simplified user interfaces encapsulate the details of
manipulating PluginPlay and provide a streamlined user experience.
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Background and current status

PARSEC is a package for computing the electronic structure of materials. The code is based
on real-space pseudopotentials constructed using KS-DFT. Grid points represent the physical
variables (figure 19). A solution to the electronic structure problem provides us insight into
the fundamental phenomena that occur in the microscopic world and can be used to predict
materials properties.

The combination of real-space DFT and pseudopotential theory constitutes a powerful
aid for scientists and engineers to search for high-performance materials. Created in 1994,
PARSEC was the first practical code to solve Kohn–Sham problems on a real-space grid with
the derivatives of physical quantities expanded using high-order finite differences [90]. Real-
space methods possess numerous advantages for large-scale simulations [91, 92], with the
avoidance of global communication from fast Fourier transformation being a primary enabler
for superior scalability.

PARSEC was specifically designed for the electronic structure of nanostructures. For
example, PARSEC often assumes a finite domain beyond which the wave function vanishes.
As a result, PARSEC can handle defects or charged systems naturally and efficiently. PARSEC
also supports periodic boundary conditions (1D, 2D, and 3D), as well as spin polarization, spin-
orbit interactions, and Born–OppenheimerMD simulations [93]. PARSEC has so far been used
to study quantum dots, nanowires, photoemission spectra of molecules, polarizability of 1-D
chains and more, some of which are reviewed in [93]. The output wave functions can be used
as the input for further excited-state calculations (currently PARSEC provides interfaces to
BerkeleyGW and NanoGW). PARSEC supports Troullier–Martins norm-conserving pseudo-
potentials and LDA/GGA functionals.

The eigensolver of PARSEC has changed over the years along with the development of
high-performance computing. Eigensolvers are essential for enhancing the performance of
electronic structure codes. In 2006, we proposed a Chebyshev-filtered subspace iteration
method (CheFSI)–an efficient algorithm tailored for real-space methods [51]. Based on the
observation that during a self-consistent-field process the charge density and the wave func-
tions are improving simultaneously, the inner (an eigenvalue problem) and outer (convergence
of the potential) loops are fused. Upon convergence of the potential, the wave functions are
a ground state solution as well. CheFSI not only allows a fast solution for large systems but
creates a pathway to new research directions for leveraging the power of contemporary high-
performance computing architectures.

50



Modelling Simul. Mater. Sci. Eng. 31 (2023) 063301 Roadmap

Figure 19. A cubic simulation domain with a regular real-space grid. The wave func-
tions are defined on the grid points. Reproduced from [94] with permission from the
Royal Society of Chemistry.

Development priorities

We follow three priorities in developmental activities: accuracy, ease of use and implementa-
tion, and performance.

High-level exchange-correlation functionals

The exchange-correlation functionals used in DFT are key to the inclusion of many-body
effects. Proposed higher-level functionals, such as meta-, hybrid-GGA, and beyond, target a
better capture of many-body interactions. However, higher-level functionals tend to result in a
higher computational load. We plan to implement efficient hybrid functionals that are tailored
for real-space methods in order to capture the physics of complex systems in an efficient and
economical way.

Support for more pseudopotential types

Currently PARSEC supports Troullier–Martins norm-conserving pseudopotentials in vari-
ous formats. Although our pseudopotentials database is comprehensive and suitable for
most chemical environments, it is important to enable users to generate pseudopotentials by
themselves to better meet their needs or use pseudopotentials from other databases. As a result,
we may wish to support other pseudopotential formats.
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Efficient high-order forces

The computation of accurate inter-atomic forces is crucial in geometry optimization and
AIMD. In a real-space calculation, one can achieve more accurate forces by adopting a
finer real-space grid. However, the computational cost notably increases as the grid spacing
decreases. An ongoing activity seeks to improve the quality of forces by finite-difference
methods without the use of unnecessarily fine grids. In 2015, we proposed an efficient way
to compute accurate forces by high-order integration techniques [94]. We plan to continue
this development. We also plan to implement variable-cell geometry optimization and the
isothermal-isobaric ensemble for MD. Combined with high-quality forces, these will be useful
tools for materials science practitioners.

Space-filling curves (SFCs) based grid partitioning for non-orthogonal lattices

SFCs can generate efficient real-space grid partitions and grid-point ordering [95]. However,
our current implementation is for orthogonal lattices. While in many cases one can use an
orthogonal cell instead of non-orthogonal ones, PARSEC should support an arbitrary cell shape
and will extend the capability of SFCs-based grid partitioning algorithm to non-orthogonal
cells. We note that different sizes or shapes of systems may require different SFCs for better
performance. A study on optimal SFCs is important for exploiting the computing power of
modern and future high-performance computing with massive vectorization processing units.

Support for GPUs

We will support the use of GPUs for various parts of the CheFSI algorithm to speed up cal-
culations. The use of GPUs benefits efficient sparse matrix–vector multiplication (SpMV) as
well as dense matrix operations (e.g. large matrix–matrix multiplication and dense eigenvalue
decomposition). Furthermore, Das et al have demonstrated that GPUs can bring significant
speedup for real-space FE methods [52], which confirms the potential of applying GPUs to
the finite-difference methods.

More efficient mixers

Mixers are important in self-consistent DFT calculations. Halving the number of self-
consistent-field iterations might be easier than making the eigensolvers run twice as fast
(assuming the run time per iteration is comparable). Mixing algorithms that incorporate
machine-learning techniques is a possible tack. As machine-learning methods become more
efficient, one might capture information from wave functions, electron charge density, and
potentials to better approximate the potential with few iterations.

Meeting the exascale challenges

A fast and scalable eigensolver with multilevel parallelization is central in addressing the exas-
cale challenges. In electronic structure calculations, solving the eigenvalue problems is often
the main bottleneck. To be flexible on the new accelerators, we plan to develop faster and bet-
ter scalable eigensolvers by expanding and optimizing the current multilevel parallelization
scheme in PARSEC. The topmost level is at the spectrum of the Hamiltonian, followed by
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Kohn–Sham states, real-space domain, grid blocks, and grid points in one grid block. The last
three levels together are for SpMV, where GPUs could play an important role in accelerating
calculations.

Spectrum slicing

Spectrum slicing provides a high-level decomposition of the problem [9, 96]. As the first par-
allelization level, the spectrum of interest is sliced and the eigenvalue problem is divided into
sub-problems. The sub-problems can be solved simultaneously. Along with the problem, avail-
able processes are divided into groups–one for each slice. The processes of the same group
focus on solving for the eigenpairs assigned to their slice and are completely independent of
other slices. Communication between slices happens only when updating the electron charge
density and potentials. We note that if there are k-points, multiple spins, and/or representa-
tions due to symmetry, there could be other layers of parallelization on top of that of spectrum
slicing.

Kohn–Sham states

Each slice group solves a smaller eigenvalue problem using the CheFSI algorithm [51], in
which the filtering step can be parallelized over the Kohn–Sham states. Processes of the same
slice group are divided into column groups and each column group performs filtering without
communicating with other column groups.

Domain partitions, grid blocks, and grid points

The real-space grid is partitioned into sub-domains. Hilbert SFCs can be used in the partition-
ing to achieve efficient SpMV [95]. SpMV constitutes the filtering step, which renders itself
the key to an efficient CheFSI algorithm. SpMV is performed by the processes of the same
column group. In a column group, each process is in charge of a sub-domain, where the grid
points are further grouped into grid blocks. A process traverses through its grid blocks using
threads and in a grid block each thread executes SIMD instructions to update multiple grid
points at the same time.

We have been developing efficient methods to speed up SpMV such as SFCs based grid
partitioning and the use of OpenMP task-based parallelism. With the current capability of
PARSEC, we have solved the electronic structure of systems of silicon nanocrystals with up to
26 000 atoms (or roughly 100 000 electrons) (figure 20). We were able to observe the evolution
of the density of states of silicon nanocrystals to the bulk limit. This size of system is by
no means near a maximum with current computational resources. Systems with over several
hundred thousand electrons have been run.

Following the inexorable trend, future computing power will be greatly enhanced; however,
the communication speed between computing units and memory will still be limited. As a
result, minimizing data transfer will remain a focal point. A worthy area of investigation will
target the possibility of duplicating variables to decouple computation and communication and
maximize their overlap.

Concluding remarks

Real-space formalisms have advantages in simplicity and ease of implementation. Moreover,
owing to scalability, they have been employed for some of the large systems explored to date.
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Figure 20. Density of states of a large silicon nanocrystal and the bulk silicon. The
energy of the highest occupied state is set to 0 eV. The histogram bin width and the
standard deviation of the Gaussian functions for convolution are 0.1 eV. Reprinted with
permission from [95]. Copyright (2021) American Chemical Society.

The combination of real-space DFT and pseudopotentials constitutes a powerful and elegant
tool for discovering and understanding new materials often on par with experiment.

PARSEC uses a high-order finite-difference method to discretize the physical space. The
code supports a variety of restricted dimensionality for nanoscale structures, including spin-
polarized calculations for magnetic materials and systems with neutral and charged defects.
For the eigensolver, CheFSI is an efficient algorithm and a goodmatchwith real-spacemethods
implemented on highly parallel platforms.

In the next generation code, we plan to support high-level exchange-correlation functionals
to provide an option to include more accurate description for correlated physics problems. We
also plan to support additional pseudopotential types and formats to facilitate a wider range
of user needs. We will couple these thrusts to better computations of high-order forces and
mixers, SFCs based grid partitioning for non-orthogonal lattices, and the use of GPUs.

To meet the challenges of exascale computing, we plan to expand the current parallelization
scheme—from the topmost level of the spectrum of the Hamiltonian, Kohn–Sham states, down
to grid blocks and grid points. With this multilevel parallel model, we hope to capitalize the
opportunities provided by various hardware upgrades.
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We are looking forward to working with the ever-growing electronic structure community
to make use of the opportunities of the coming exascale era.
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11. The Qbox first-principles MD (FPMD) code

François Gygi

University of California, Davis, CA 95616, United States of America

Background and current status

FPMD simulations are an essential tool for computational modelling of complex materials.
Qbox is a C++/MPI/OpenMP implementation of FPMD based on the use of pseudopoten-
tials and the plane wave basis set. It was designed [97] for scalability on thousands of tasks,
involving tens of thousands of processor cores. Qbox is routinely used to perform MD simu-
lations of systems including several hundred atoms. Its features include constant-temperature
(NVT) and constant-pressure (NpT) MD simulations, the computation of maximally local-
ized Wannier functions, hybrid-DFT exchange-correlation functionals, and the computation
of electronic response to arbitrary periodic perturbations. Qbox also implements the recursive
subspace bisection algorithm that allows for an efficient computation of the exchange energy
in hybrid-DFT simulations with a controlled accuracy [98]. A notable Qbox feature is a client-
server interface which allows for its use as a ‘DFT engine’ driven by another program. This
interface has enabled coupling to other software for efficient sampling of free energy surfaces,
path-integral MD (PIMD) simulations, and the computation of excitation energies using the
BSEs. This approach relies on the development of flexible interoperable software components
rather than integration of all features into a single code [99].

Sampling of free energy surfaces is often necessary in the study of systems including hun-
dreds of atoms, that typically exhibit a complex energy landscape. The presence of energy bar-
riers makes this exploration inefficient using plain MD. Advanced sampling methods become
necessary to obtain an accurate picture of the free energy surface and compute e.g. reaction
barrier heights. Qbox addresses this challenge by coupling to the Software Suite for Advanced
Generalized Ensemble Simulations (SSAGES) [100] through its client-server interface. This
coupled approach has been used to explore the free energy surface of a dipeptide [101], cata-
lytic reactions on a metal surface [102], and the conformation of gold clusters [103]. In such
coupled Qbox-SSAGES simulations, multiple instances of Qbox are ‘driven’ by SSAGES
in order to improve the efficiency of statistical sampling (see figure 21). In applications to
PIMD simulations, Qbox was coupled to the i-PI software [104] that implements path integ-
ral sampling and various generalized Langevin thermostats. This was used to study nuclear
quantum effects in diamond and amorphous carbon [105]. Finally, Qbox was coupled to the
WEST code to compute electronic response integrals needed in a Bethe–Salpeter calculation
of optical excitations [106]. This strategy of coupling Qbox with other interoperable software
has considerably extended the range and accuracy of FPMD simulations [99].

Development priorities

The simulation of systems of increasing size usually implies the need for longer simulations
in order to reach equilibrium conditions. Together with the inherent high cost of FPMD simu-
lations, this puts a high premium on performance optimization. Reduction in the time needed
to obtain the electronic ground state is a prime target of optimization. Qbox offers several
choices of algorithms for the solution of the Kohn–Sham equations, the most commonly used
being a preconditioned block Jacobi–Davidson method. Further performance enhancements
are needed such as the efficient implementation of a parallel deflation algorithm and adaptive
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Figure 21. Schematic representation of a coupled Qbox-SSAGES simulation. The
SSAGES program is driving multiple instances of Qbox processes. Each Qbox instance
represents a separate copy of the system (or ‘walker’) used in the exploration of the free
energy surface. Atomic positions generated by SSAGES are sent to Qbox which returns
energies and forces computed within DFT.

preconditioners. Furthermore, the charge density mixing algorithm used between SCF itera-
tions in Qbox is based on a straightforward use of the Anderson acceleration algorithm (which
was shown to be equivalent to the LBFGS algorithm). However, the parameters used in this
approach, such as the dimension of the density subspace search, the parameters of Kerker mix-
ing and the mixing coefficient are not optimal for all possible systems, and sometimes lead to
convergence failure in large systems. Thus the exploration of robust and adaptive algorithms
is an important development goal. Furthermore, wave function extrapolation algorithms can
significantly impact performance during Born–Oppenheimer MD simulations by providing an
accurate starting point for a subsequent Kohn–Sham SCF computation. The current extrapola-
tion algorithm used in Qbox is a simple linear extrapolation preceded by subspace alignment.
While some extensions to more complex extrapolation schemes have been proposed by some
authors, a consensus has not been reached on the optimal way to extrapolate wave functions,
and further exploration of these algorithms is warranted.

In addition to the optimization goals mentioned above, more immediate attention will be
paid to the optimization of on-the-fly computation of polarization and polarizabilities dur-
ing MD simulations, which directly affects the performance of simulations of the infrared
and Raman spectra. The current Qbox implementation relies on a finite difference approach
for the computation of polarizability, which can likely be accelerated using initial estimates
from perturbation theory. Last but not least, the general question of the potential use of mixed
floating-point precision algorithms in the context of Kohn–Sham solvers must be explored, in
particular in view of the increasing imbalance of the cost of communication and computation
on modern architectures.

Meeting the exascale challenges

Future exascale computers (with the notable exception of Fugaku installed at RIKEN in
Kobe, Japan) are expected to achieve their peak performance using GPUs. This architectural
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development continues the trend of increasing aggregate peak floating point performancewhile
the bisection bandwidth and byte/flop ratio continue to decrease. This poses a particular chal-
lenge for the implementation of algorithms that are not naturally embarrassingly parallel. The
parallel solution of the Kohn–Sham equations in the plane wave basis is a tightly coupled prob-
lem involving frequent communication between different tasks, notably during parallel FFT.
It also includes several computations that can be expressed as matrix products, an operation
that has been traditionally thoroughly optimized and achieves near-peak performance.

On a traditional CPU-based platform, Qbox minimizes communication by partitioning pro-
cessors into groups that host independent subtasks. For example, the solution of the Kohn–
Sham equations for different k-points in the Brillouin zone, or for different spin indices, are
largely independent. Furthermore, the computation of the electronic charge density requires
Fourier transforms of each electronic orbital, leading to hundreds of independent tasks. Qbox
currently divides tasks into a four-dimensional process grid in which plane wave coefficients,
band, k-point and spin indices are distributed to different processors. FFT operations only
involve communication along the first dimension of the process grid. Similar strategies are
used to minimize communications in other parts of the computation.

On a mixed CPU-GPU architecture, communication between CPU and GPU, and between
GPUs occurs at a much reduced rate compared to the memory bandwidth within a GPU. This
makes the implementation of a plane wave Kohn–Sham solver difficult. A prototype of Qbox
was developed for operation on NVIDIA A100 GPUs, demonstrating that the performance
of a single GPU can be successfully exploited using hand-coded kernels and vendor-supplied
libraries for FFT and matrix operations. The extension to multiple GPUs remains a challenge
and will likely require substantial redesign of the parallelization strategy.

The constant evolution of GPU architectures, and the concomitant need for redesign implies
that such an ad-hoc approach to specialize a code for a particular GPU model is unsustainable.
As multiple vendors currently offer multiple GPU architectures (NVIDIA, AMD, Intel) that
all rely on different programming models, the task of porting and maintaining a code on all
such architectures appears daunting. Ideally, the adoption of a single, directive-based, port-
able programming model such as OpenMP, OpenACC or OneAPI should make it possible to
maintain a single branch of a code. This approach must however be tested to verify that the
resulting performance is comparable to hand-written specialized versions of the code. As this
evaluation requires considerable rewriting, it has not yet been performed on Qbox. We plan
to explore an alternative way to facilitate portability. Using the polymorphism and inheritance
features available in C++, the architecture-dependent, hand-optimized parts of the code may
be limited to specific platform-dependent derived classes, which are selectively instantiated
at run time according to the available hardware. This approach can in principle preserve the
performance of hand-optimized code while limiting the amount of such specialized code.

As we pursue the development of GPU-enabled algorithms, a more direct use of exascale
platforms can be made in the context of FPMD simulations coupled with advanced sampling.
Using multiple replicas, or walkers, in sampling algorithms leads to nearly independent prob-
lems that can easily take advantage of large computing resources. It is therefore likely that
future simulations will involve such weakly coupled FPMD problems and will allow for
improved accuracy and reduced statistical error.

Concluding remarks

The developers of first-principles simulation codes face a growing demand for numerous new
additional features, while having to maintain a high-performance implementation. The human
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resources needed to manage such software development invariably grow with its complexity,
which increases the maintenance cost over time.We have explored an approach involving mul-
tiple interoperable software components that helped limit the cost of software development,
while allowing for extension of the available features. This approach also led to an efficient
use of the latest developments implemented by the various software teams involved, e.g. the
inclusion of the latest sampling algorithms in SSAGES, or the latest thermostats implemented
in i-PI. Finally, the evolution of first-principles simulation codes has been strongly affected by
changes in hardware architecture. The current multiplication of hardware architectures puts
the emphasis on the design of a flexible software architecture that avoids redesign or confines
it to limited parts of the code. History has shown that simulation codes must adapt to multiple
changes in hardware architecture during their lifetime. We expect that the design of a flexible
software architecture will become the most important feature of a simulation code as further
changes in architecture will no doubt appear at a sustained pace.

Code availability

The examples mentioned in this work use open-source codes: Qbox (http://qboxcode.org),
WEST (http://west-code.org), SSAGES (https://ssagesproject.github.io/), i-PI (http://ipi-code.
org).
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12. Q-Chem: high-efficiency software for quantum molecular workflows

John M Herbert

Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210,
United States of America

Background and current status

Unlike much of the other software described in this article, Q-Chem is first and foremost a
molecular quantum chemistry code, designed to describe a finite system using atom-centered
Gaussian basis functions and featuring both DFT and correlated wave function models. Q-
Chem is also a relatively mature code, having been under continuous development since 1993
[107], albeit with an evolving code base and an infrastructure representative of modern pro-
gramming practices [108]. One of Q-Chem’s greatest strengths is its large academic developer
base, with more than 200 co-authors for the latest release [108], representing contributors to
Q-Chem versions 4 and 5. This outsized developer group provides for tremendous diversity of
features and methods, some of which are not widely available in other codes.

From a user perspective, Q-Chem’s target audience has historically been chemists and other
molecular scientists interested in the structure, reactivity, and spectroscopy of single molecules
or small clusters of molecules. For larger systems, Q-Chem can function as the quantum engine
of a quantum/classical (QM/MM) approach [109–111], or else a QM/QMembedding approach
[108, 112]. Emphasis on molecular problems has steered Q-Chem’s design philosophy, which
has long targeted performance on workstation-type hardware with particular focus on single-
node, shared-memory parallelism. Q-Chem’s engine for computing electron repulsion integ-
rals is optimized to minimize both memory operations and floating-point operations [113],
via a meta-algorithm that determines the optimal approach at runtime based on characterist-
ics of the requested Gaussian basis set. An analogous meta-algorithm for graphics processing
units [114], which can be interfaced with Q-Chem, also determines whether single- or double-
precision arithmetic should be used for each class of integrals. The result is near-optimal
single-processor efficiency, with multithreaded parallelization accomplished via the OpenMP
protocol.

Development priorities

Single-node performance is demonstrated in figure 22, for single-point energy calculations at
the level of second-order Møller-Plesset perturbation theory (MP2). The resolution-of-identity
(RI) approximation is used for the electron repulsion integrals in both the HF andMP2 calcula-
tions. Timing data are shown for a tight integral screening threshold of 10–12 a.u. Numerical lin-
ear dependencies can significantly hamper SCF convergence in systems of this size, if numer-
ical thresholds are too aggressive. Therefore, as exascale platforms make applications of this
size (or larger) more routine, one may anticipate that drop tolerances will need to tighten relat-
ive to values of∼10–8–10–9 a.u. that are more typical at present. These values work acceptably
well for medium-size molecules but are problematic for larger systems.

Moving forward, Q-Chem plans to pursue a distributed-memory, hybrid OpenMP/MPI par-
allelization strategy that will facilitate applications to systems that are simply too large for the
single-node approach. This will be necessary for periodic DFT calculations, a capability that
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Figure 22. Strong scaling data for (a) Hartree–Fock calculations of coronene dimer
using the def2-TZVPD basis set (72 atoms and 1992 basis functions) and (b)MP2 calcu-
lations of a graphene/oligothiophene dimer using the same basis set (149 atoms and 4194
basis functions). Both calculations use the RI approximation, a screening threshold of
10–12 a.u., and a SCF convergence threshold of 10–5 Ha. Parallel speedup data are shown
on the right, relative to single-processor timings.

is under development [115, 116]. The parallelization strategy to be pursued is a conservative
one, however, designed to avoid sacrificing Q-Chem’s excellent single-node performance. This
may limit the scalability but will preserve Q-Chem’s outstanding price-to-performance ratio
that makes large systems accessible without the need for supercomputer centers or leadership-
class computing resources.

Q-Chem’s design philosophy is well-suited for high-level calculations of the spectroscopic
properties of molecular chromophores, which might themselves be embedded in a larger
framework. (In addition to conventional QM/MM frameworks [109–111], projector-based
wave function-in-DFT embedding methods are also available [108, 112] along with some
types of frozen-density embedding [108].) Computational spectroscopy has long been an area
of strength for Q-Chem; a variety of excited-state wave function models are available, in addi-
tion to DFT-based approaches that include both real-time and linear-response TD DFT, ∆SCF
methods, and transition-potential approaches [108, 117]. Given its structure and design philo-
sophy, it is unrealistic to imagine that Q-Chem will soon become a code that scales to thou-
sands of processors. Instead, its power lies in leveraging excellent single-node performance to
tackle large problems by breaking them up into smaller ones, or in other words, paralleliza-
tion at the level of workflows. Fragment-based approximations [118], which employ physic-
ally motivated divide-and-conquer strategies to turn large problems into collections of much
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smaller ones, represent one of the best ways that a code like Q-Chem can be used to attack
large problems.

Meeting the exascale challenges

In this author’s opinion, efforts to demonstrate that electronic structure software can run on
thousands or hundreds of thousands of processors often feel performative, with funding agen-
cies or program officers as the presumed audience. Typical users do not always have easy
access to this kind of computing resources, and brute-force scaling demonstrations often
sidestep the question of whether resources are being used efficiently to solve the problem at
hand. In this context, ‘resources’ means the electricity required to operate the hardware, and
from that standpoint the cost of a given calculation ought to be measured not by wall-clock
time but instead by power consumption or carbon footprint. That metric is tricky to evaluate on
shared computing resources, but total CPU time (aggregated across all processors) is a readily
available measurement and can serve as a stand-in to reflect the true cost of a given calcula-
tion. Wall-clock time is a more selfish metric, reflecting only a single user’s time-to-solution.
Resources are wasted if parallel efficiency is low.

With the aim of using fragment-based methods to target large systems, figure 23 shows tim-
ing data for HF/6-31G∗ calculations on full proteins. Alongside the conventional results are
data from a fragment-based approach called pp-GMBE(2) [119], which does not require any
single calculation that is larger than four amino acids yet provides conformational energy pro-
files that are faithful to the macromolecular result. Thermochemistry [120] and non-covalent
interactions [121, 122] can also be reproduced with high fidelity, via fragmentation. By the
nature of the approximation, wall-clock time for the protein calculations in figure 23 can
be reduced to the cost of a single subsystem calculation if sufficient hardware is available.
Nevertheless, the aggregate CPU cost is considerably lower for the standard (supersystem)
HF calculation than it is for the fragment-based approximation, even for a protein with more
than 1000 atoms [119]!

Fragment-based approximations have grown in popularity in recent years but many of the
proposed approximations fail to maintain good fidelity with respect to a well-defined supersys-
tem calculation [118, 123]. Conversely, methods that are faithful to within ∼1 kcal mol−1 of
the supersystem result have proven to be more expensive, when cost is measured in aggregate
CPU time [119, 123], as seen for proteins in figure 23. Recently, however, significant progress
has beenmade in reducing the computational expense of the fragment-based approaches, while
preserving high fidelity, by screening fragments at a low level of theory [124]. The result is
a method that maintains ∼1 kcal mol−1 accuracy for challenging problems such as energy
differences for proton ordering in water clusters, yet is more affordable than the full system
calculation even for small water clusters [124].

Concluding remarks

At first glance, Q-Chemmight seem ill-suited for the ‘exascale era’. However, multi-node par-
allelization at the level of workflows (rather than individual energy or gradient evaluations) is
an effective and efficient route to supercomputing in quantum chemistry, especially if the cost
of a given calculation is measured by its carbon footprint, meaning total CPU time aggregated
across all processors. This is no less true in an era of machine learning and other ‘big data’
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Figure 23. (a) Total CPU time and (b) wall-clock time for Hartree–Fock/6-31 G∗ cal-
culations on various proteins, comparing a full-system calculation to a fragment-based
calculation [pp-GMBE(2)] that preserves relative energies at the level of 1–3 kcal mol−1

while requiring no single electronic structure calculation larger than four amino acid
residues. Full-system calculations were performed on a single 12-core compute node
whereas pp-GMBE(2) calculations used 10 of the same nodes (120 cores). Reprinted
with permission from [119]. Copyright (2016) American Chemical Society.

approaches to computational science, which place a premium on efficient generation of large
data sets. Even in the exascale era, this author predicts that a significant amount of computing
will continue to be done on workstations or single compute nodes, for which Q-Chem is highly
optimized.
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13. QUANTUM ESPRESSO (QE)
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Background and current status

QE is a distribution—an integrated suite—of codes for electronic-structure calculations of
materials properties, based on DFT, pseudopotentials, and plane waves [125]. The roots of
QE are in solid-state physics: the oldest parts of QE have been in use and under develop-
ment since the mid-80’s, originally applied to compute structural and electronic properties of
simple semiconductors. In particular, the linear-response and MD codes in QE derive from
the original implementations of DFPT [126] and of Car–Parrinello MD [127], respectively.
QE has since been extended to cover a much wider class of materials and properties, provid-
ing basic functionalities—structural optimization and first-principle MDwith semi-local, non-
local, Hubbard-corrected, and hybrid functionals—aswell asmore advanced ones—e.g.: NEB,
linear response—formaterials science, geophysics, chemical and biological physics, andmany
branches of engineering [128]. The current version (7.1) allows the computation of the vibra-
tional spectra (phonons), of EPH coefficients via the EPW package [129], of electronic excit-
ations with TD DFT, and of spin-wave excitations (magnons) [130].

The open character of the development and the considerable work done to enable various
forms of interoperability with external software make QE suitable both as a building block
for more complex software suites and as a generator of the starting electronic structure for
advanced theories like MBPT or QMC.

QE is developed followingmodern software best practices, including continuous integration
and extensive testing. It has a significant number of active developers and a rather large user
basis, ensuring a very careful monitoring of the correctness of the results. QE is written in mod-
ern Fortran (up to 2008 standard) but its coding reflects as closely as possible the underlying
physics, thus allowing to make experiments, customizations, extensions, new developments,
without a too high learning barrier.

Efficiency on available computers has always been a major concern for developers. QE
has been working on the entire range of computer hardware available at any given time: from
personal workstations and laptops to earlier vector supercomputers and parallel machines, up
to the most recent hybrid accelerated architectures. Excellent performance on various kinds of
pre-exascale machines with Nvidia GPUs has already been achieved [131], and rapid progress
is being done for other kinds of accelerated hardware.

Development priorities

One of the original goals of QE was to become a hotbed for innovation. While it is hard to
predict which new developments will be proposed by the scientific community in the future,
one can be confident that a primary goal of QE will always be to make implementation of new
algorithms, methods, and theories as easy as possible. In order to achieve such a goal while
keeping the complexity of QE under control, an open and sustainable development model
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Figure 24. Schematic illustration of the structure of the Quantum ESPRESSO distri-
bution. Reprinted from [131], with the permission of AIP Publishing.

was devised. An increasing number of QE components are being encapsulated into reusable
libraries and Fortran modules, thus making new developments easier to implement (figure 24).

Among development priorities for the next few years, we mention in particular the imple-
mentation of new advanced functionals, notably Hubbard-corrected, Koopmans-compliant,
meta-GGA and nonlocal van-der-Waals functionals. Moreover, for several already implemen-
ted cases of advanced functionals, improvements to their numerical stability and speed are
needed in order to make such advances more usable and useful. For hybrid functionals, in
particular, it is planned to use more extensively the localization of wavefunctions to boost the
performance [132].

For non-collinear magnetic or even conventional (e.g. GGA) calculations, improving the
robustness of self-consistency for both GS and linear-response calculations is one of the main
goals for the near future. This is especially important given the increasing usage of QE for
high-throughput calculations and for machine-learning techniques, requiring large quantities
of reliable data to be produced and reproducible in an automated way. A global minimization
approach already exists in the QE distribution but is limited to the Car–Parrinello code. It will
be ported, possibly encapsulating it in a module, to the main electronic-structure code, as a
more robust alternative to the traditional, and usually faster, self-consistent procedure.

In the field of spectroscopic properties, a major development goal is MD on the excited
state, using TD DFT. This is a very important tool for the understanding e.g. of photochemical
reactions and photovoltaic processes.

A further field of active development is the introduction of new ‘multi-scale’ methods, or
the consolidation and extension of existing ones. With such expression we mean methods in
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which the effect of the environment surrounding the quantum-mechanical system is introduced
in some approximateway. In addition to the prototypical QM-MMMD,wemention here SCCS
(Environ) [133], ESM and 3D-RISM [134].

A development priority of more technical character, but one related to some of the men-
tioned applicative objectives, is making QE more interoperable with other languages (notably
modern object-oriented ones like python) and with other pieces of software. The effort in this
field is ongoing since several years and has already produced significant results, such as struc-
tured (xml, hdf5) I/O files and various degrees of actual interoperability with other software.
As a further step forward in this direction, a set of documented API’s for calling QE sub-
routines will be introduced, making QE routines more easily accessible from other codes or
directly from Python-based software packages.

Meeting the exascale challenges

For conventional machines based on many multi-core CPU nodes, the main parallelization
strategy implemented in QE—dividing plane-wave components, in both real and reciprocal
space, across processors—is well established and effective. Strong scaling is limited by the size
of the real- and reciprocal-space grids and by the parallel distributed Fourier Transforms. QE
uses both MPI and OpenMP parallelization and introduces several additional parallelization
levels to achieve better scaling. In practice, the basic self-consistency or molecular-dynamics
calculations scale well up to dozens of processors for small-medium size system (described by
supercells containing hundreds of atoms), up to a few thousand processors for large-scale cal-
culations (supercells up to a few thousand atoms). Scaling beyond such limits strongly depends
upon the specific calculation and in particular upon the availability of additional parallelization
levels (see figure 25).

The push towards hybrid and accelerated processors (e.g. GPGPU) of the last few years
has been addressed in QE with a variety of approaches. For Nvidia GPUs, the first approach
was a porting based on the CUDA Fortran extension [131]. The result was very gratifying in
terms of performance, much less so in terms of portability to other architectures and also of
maintainability (due to extensive code duplications, imposed by limitations of CUDAFortran).

More recently, most NVidia-specific code has been moved to OpenACC, with no loss of
performance and much reduced code duplication. An ongoing effort is under way, and almost
completed, to extend the NVidia porting with OpenACC to the entire suite and not only to
the most used basic components. Work is also under way to implement OpenMP for other
hybrid architectures, in the hope that the latter will become the open standard. The pathway
for further porting becomes much easier and is limited only by the availability of compilers
enabling OpenACC and OpenMP.

The porting on accelerated architectures is especially important in view of the future avail-
ability of ‘exascale’ machines, that will be presumably based on such architectures. The pro-
spect of a machine that is capable of 1018 operations per second, and of the results that could be
obtained with it, is exciting. Translating such unprecedented computer power into actual sci-
entific results is however a challenge, and not just for code developers. One has first to identify
which kind of calculations can actually profit from exascale capabilities. The vast majority
of basic DFT simulations—structural optimizations, first-principle MD calculations—may
neither exploit nor really need such a huge computing power. Improving the performances
and usability of additional parallelization levels, in particular over Kohn–Sham states, will
be key for better exploiting future architectures and a top development priority of QE. In
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Figure 25. Top: magnon dispersions in CrI3 (reprinted with permission from [130]).
Bottom: scaling performances of the TURBO-MAGNON code for each magnon
wavevector. Each node has two 24-core CPUs and executes 24 MPI processes and 2
OpenMP threads. Reproduced from [130]. CC BY 4.0.

practice, this means a systematic distribution over nodes of all arrays, a careful optimization of
inter-node communications, the removal of unneeded synchronization points and overlapping
computation and communications whenever possible.

Scientifically relevant cases requiring many loosely coupled calculations of different sys-
tems, or different replicas of the same systems, are often encountered. Typical cases include
high-throughput calculations (many independent configurations), calculations of phonon spec-
tra (many irreproducible representations and wave-vectors) and NEB (several images on a
string). Those cases may potentially require exascale capabilities. QE can already address this
kind of massive parallelization by exploiting additional levels of parallelism.

Among single calculations potentially requiring exascale capabilities within the scope of
QE, we mention calculations with hybrid functionals, where a wise usage of parallelization
over Kohn–Sham states may allow to perform highly accurate calculations on large unit cells,
currently not feasible, using a very large number of processors [132].

Concluding remarks

The original motivation to develop QEwas to provide a unified set of software tools for a small
but very active community of experts in first-principle methodologies and simulations. The
scope of QE has grown during the years and its ambition is now to cater to a wider community
of scientists and engineers, working in different fields, that includes non-specialists as well. For
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this reason the development of new capabilities is accompanied by an intense dissemination
activity, especially targeting younger scientists and aimed towards spreading knowledge and
expertise in first-principle DFT calculations and in their usefulness. We consider this activity
an integral part of the ‘QE experience’ and one of the most successful aspects of QE.
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Background and current status

SPARC [135, 136] (https://github.com/SPARC-X/SPARC) is an open-source, real-space DFT
code that accommodates Dirichlet and Bloch-periodic boundary conditions, enabling the treat-
ment of finite, semi-infinite, and charged systems, as well as bulk 3D systems. SPARC employs
the finite difference method, wherein quantities of interest are discretized on a uniform real-
space grid and convergence is controlled by a single parameter. The finite-difference method’s
simplicity, locality, and freedom from communication-intensive transforms enables efficient
implementation on large-scale parallel computers. Because the representation is maximally
local in real space, modern O(N)-scaling as well as traditional O(N3)-scaling methods are
readily implemented.

Current features of SPARC include:
• Applicable to isolated systems such as molecules as well as extended systems such as crys-

tals, surfaces, and wires.
• Local, semilocal, and nonlocal (including hybrid) exchange-correlation functionals.
• Standard ONCV pseudopotentials, including complete SPMS database [137].
• Calculation of ground state energy, atomic forces, and stress tensor.
• Structural relaxation and ab initioMD (NVE, NVT, and NPT).
• Spin polarized and unpolarized calculations.
• Spin–orbit coupling.
• Dispersion interactions through DFT-D3, vdW-DF1, and vdW-DF2 methods.
• Linear-scaling spectral quadrature (SQ) method [138].
• Discrete discontinuous basis projection (DDBP) method [139].
• Symmetry adaption for cyclic and helical symmetries [140].
• Orbital-free DFT with Thomas–Fermi–Weizsäcker, Wang–Teter, and Wang–Govind–Carter

kinetic energy functionals.
• MATLAB version available for rapid prototyping: M-SPARC [141].

SPARC is portable and straightforward to install, use, and modify, with external dependencies
limited to industry standard BLAS, LAPACK/ScaLAPACK, and MPI. It has been extensively
validated and benchmarked against established planewave codes [135, 136], where SPARC has
shown to be both fast and accurate, with increasing advantages as the number of processors is
increased [135]. It can efficiently utilize modest as well as substantial computational resources,
with parallel scaling bringing solution times to about a minute for systems with O(500–1000)
atoms (figure 26), and a few seconds for O(100–500) atoms [135]. Using the O(N) SQmethod,
it has been scaled to system sizes of over amillion atoms (figure 27). Unique features of SPARC
enable the study of extreme conditions of temperature/pressure [142] as well as systems with
cyclic/helical symmetry, as found in nanostructures intrinsically and subject to bending and
torsional deformations [143].
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Figure 26. Efficiency and scaling of SPARC for an AIMD step with a range of
exchange-correlation approximations, obtained on Phoenix computer at Georgia Tech.

Development priorities

SPARC is under active development to increase length/time scales and level of theory access-
ible. Key developments targeted in the next 5 years include:

• O(N)DFT: the main bottleneck in DFT calculations is the solution of the Kohn–Sham eigen-
problem, which not only scales as O(N3) with system size but also involves global com-
munications between processors, limiting parallel scalability. As a result, much research
has been devoted to the development of O(N) methods, with reduced scaling achieved by
exploiting the locality of electronic interactions in real space [144]. While these efforts have
yielded significant advances, concerns remain regarding the accuracy, stability, and large
prefactors, particularly for metallic systems. The O(N) SQ method implemented in SPARC
addresses the first two concerns, however its prefactor increases with decreasing electronic
temperature. To address this, the DDBP method will be employed to reduce the prefactor by
orders of magnitude.

• DFPT: DFPT is an elegant approach for determining the system’s response to perturbations
in electronic structure calculations, without the need for large supercells and/or a series of
ground state calculations involving unperturbed and perturbed systems. DFPT has found
a number of applications including structural stability, elastic moduli, flexoelectric coeffi-
cients, Raman spectra, electro-optic coupling, ferroelectric transitions, transport properties,
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and thermodynamic properties. Conventional DFPT calculations scale as O(N3-N4), with a
large prefactor associated with the solution of a linear system. O(N2-N3) formulations of
DFPT will be developed and implemented, with orders of magnitude reduction in prefactor
achieved through the use of the DDBP method, and preconditioning techniques that exploit
the similarity in linear systems solved.

• RPA: at the fifth and highest rung of Jacob’s ladder of exchange-correlation functionals,
RPA—capturing Van der Waals interactions, free from self-interaction error, and applicable
to small-gap and metallic systems—is considered the gold standard for condensed matter
systems in a number of research areas, particularly where there is demonstrated need to
increase the accuracy of energies beyond traditional DFT. Conventional RPA calculations
for the correlation energy scale as O(N4), with a large prefactor that grows as the fourth
power of the number of grid points/atom. O(N2) formulations of RPA will be developed
and implemented using the SQ approach in the DFPT framework, with orders of magnitude
reduction in prefactor achieved through the DDBP method.

• On-the-fly machine learned force fields (MLFF): a variety of machine learning techniques
have been developed to accelerateMD simulations, leveraging the substantial data generated
in the course of such simulations. This includes Gaussian process regression (GPR)-based
on-the-flyMLFF, which has found a number of applications, including phase transitions and
transport properties [145]. However, this method is currently limited to system sizes that
are of same order as typical DFT simulations, due to the cubic scaling bottleneck of GPR
training, quadratic scaling of the feature vector with number of chemical elements, and the
need for significantly more training configurations for systems with highly heterogeneous
bonding. GPR-based on-the-fly MLFF schemes will be developed and implemented, with
featurization schemes and hierarchical matrix algorithms that overcome the aforementioned
bottlenecks.

Meeting the exascale challenges

The key computational kernel in real-space KS-DFT calculations is the solution a large sparse
nonlinear eigenproblem for the orbitals and corresponding eigenvalues. The number of orbitals
and eigenvalues that need to be computed is proportional to the number of atoms/electrons in
the system. Since these orbitals need to be orthogonal, the computational complexity of the
kernel scales as O(N3) with number of atoms/electrons. This orthogonality constraint also
limits parallel scalability, due to the need for global communication in parallel computations.
Therefore, even with the advent of highly scalable eigensolvers, the efficient use of petascale
and exascale machines presents a significant challenge.

However, the Kohn–Sham problem can be formulated in terms of the density matrix rather
than orbitals and eigenvalues, from which quantities such as electron density, energy, atomic
forces, and stresses can be determined directly. By exploiting the decay of the density mat-
rix in real space, i.e. locality of electronic interactions, O(N) scaling can be achieved [144].
However, while significant progress has been made in the development of O(N) methods over
the past two decades, petascale and exascale machines present new challenges. In particular,
even though O(N) methods require minimal global communications, efficient large-scale par-
allelization poses a significant challenge due to complex communications patterns and load
balancing issues associated with underlying localized orbital representations. In addition, the
dramatically larger prefactors associated with present methods, for metallic systems in partic-
ular, significantly limits practical utility.
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Figure 27. Strong and weak scaling of the O(N) SQ method in SPARC for a metallic
system on Quartz computer at LLNL, with energies and forces computed to chemical
accuracy. The largest system in the weak scaling contains 1,000,187 atoms.

The SQ method in SPARC, which is applicable to metals and insulators alike, addresses
the challenge for O(N) scaling and large-scale parallelization (figure 27). It is well suited to
scalable high-performance parallel computing, with nearly all communications localized to
nearby processors, with a pattern that remains fixed throughout the simulation. In particu-
lar, once the localized communication is complete, the calculations associated with each grid
point are completely independent, whereby the SQ method naturally scales to the number of
processors equaling the number of grid points, and beyond when an additional level of par-
allelization for computations at each grid point is implemented. Given that typical real-space
DFT calculations employ O(500–30 000) grid points/atom, the SQ method is well suited to
scale efficiently on petascale and exascale machines.

To reduce the prefactor of the SQmethod, while retaining its parallel scalability and system-
atic convergence to O(N3) results, it will be implemented within the framework of the DDBP
method. In particular, the DDBP method systematically reduces the dimension of the discrete
real-space eigenproblem that must be solved by 1–3 orders of magnitude, which translates to
a similar reduction in prefactor. Indeed, the generation of the DDBP basis—strictly localized,
orthonormal, and discontinuous—scales as O(N) with natural and efficient parallelism, given
the multiple levels of parallelization available with all communications localized to nearby
processors.

The implementation of SPARC on heterogeneous architectures for local and semilocal
exchange-correlation functionals has recently been developed, with minimal device-specific
features [146]. Leveraging the locality and multiple levels of parallelism available in the SQ
and DDBPmethods, working sets and data can be GPU-resident and efficient multi-GPU oper-
ation can be targeted while minimizing inter-node communication.

Concluding remarks

SPARC is an accurate, efficient, and scalable open-source electronic structure code, with
many advanced features, able to efficiently leverage moderate and large-scale computational
resources alike. It is straightforward to install, use, and modify, with minimal external library
dependencies. It has shown to be both fast and accurate, with a range of exchange-correlation

72



Modelling Simul. Mater. Sci. Eng. 31 (2023) 063301 Roadmap

functionals, and with increasing advantages as the number of processors is increased. In partic-
ular, SPARC efficiently scales to thousands of processors in regular operation, bringing solu-
tion times down to about a minute for systems with O(500–1000) atoms, and a few seconds
for O(100–500) atoms. Using the O(N) SQ method, it has been scaled to system sizes of over
a million atoms. Further reductions in solution times are on the horizon with the release of the
DDBPmethod within SPARC. Given the excellent parallel scalability of SPARC, cutting-edge
methods such as O(N) SQ and DDBP that are well suited to petascale and exascale machines,
and variety of boundary conditions, SPARC promises to enable a number of new and exciting
applications that were previously beyond reach.
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Background and current status

Computer simulations based on first-principles electronic structure methods are widely adop-
ted to explain, complement, and guide experiments in materials science. Applications in areas
of energy sustainability and quantum information science require atomic-scale understanding
of the GS and excited-state properties of complex heterogeneous systems, including nano-
structures, surfaces, interfaces, and defects in solids. Despite the success of DFT in describing
a wide range of GS properties, many implementations of DFT are known to be inaccurate to
describe excited states and strongly correlated systems. MBPT has been developed into main-
stream methods, for example GW and the BSE, that reliably describe a variety of charged and
neutral electronic excitations. In addition, MBPT may serve as the basis for calculations of
strongly correlated electronic states using Green’s function embedding approaches.

In general, calculations based on MBPT methods are computationally more demanding
than those using DFT. Conventional implementations of GW and BSE, for instance, exhibit a
computational complexity that scales as O(N4) and O(N6), respectively, whereN is the number
of electrons in the system, posing difficulties in carrying out MBPT calculations for complex,
heterogeneous materials.

We have implemented MBPT in an open-source software package named WEST (Without
Empty States, http://west-code.org) [147] that is interfaced with the QE (https://quantum-
espresso.org) and Qbox (http://qboxcode.org) plane-wave pseudopotential codes. The key
functionalities of WEST are summarized in figure 28. WEST adopts distinctive algorithms
to circumvent computational bottlenecks commonly encountered in large-scale MBPT calcu-
lations. Specifically,G0W0 [147], BSE [106], electron-phonon [148], and quantum embedding
[149] calculations are implemented in WEST without performing any summation over empty
electronic states to obtain dielectric matrices and Green’s functions, thus avoiding a severe
computational burden present in traditional plane-wave basedMBPT implementations. WEST
utilizes spectral decompositions of density-density response functions, and compact basis
sets of dielectric eigenpotentials, thus eliminating the need to store and invert large dielec-
tric matrices. The G0W0 implementation is carried out using full integration over the fre-
quency domain without using generalized plasmon-pole models to approximate frequency-
dependent dielectric response functions. The G0W0 implementation of the WEST code was
verified by comparing calculations using pseudopotentials to all-electron reference data [150]
and generalized to include spin–orbit coupling. The solution of the BSE is implemented using
a finite field approach and uses the recursive bisection method to reduce the scaling of the
calculation [106]. The calculation of electron-phonon self-energies is implemented for ground
states obtained either with semi-local or hybrid functionals.
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WEST has been used to study excited states for a variety of systems, including molecules,
nanoparticles, two-dimensional materials, spin defects in solids, liquids, amorphous, and
solid/liquid interfaces. These systems are often represented with super-cells with tens of thou-
sands of electrons and their finite temperature description may require averaging results over
several configurations extracted from MD simulations, thus leading to a computational work-
load of tens or even hundreds of exaFLOPs (1018 floating point operations) [151]. In the fol-
lowing we discuss the current development priorities and our strategy to meet the exascale
challenges.

Development priorities

(i) Adaptation of the WEST code to heterogeneous computing. The rise of heterogeneous com-
puting has substantially increased the throughput available in leadership high-performance
computing systems, due to the single instruction multiple threads (SIMT) parallelism intro-
duced by modern general-purpose GPUs. Such massive and hierarchical parallelism requires
a careful design of the algorithms and of the data structures used in WEST to carry out MBPT
calculations. As discussed below, we are leveraging SIMT parallelization by refactoring the
data and loop distribution in the code. A current challenge is to extend the performance gains,
initially achieved onNVIDIAGPUs forG0W0 calculations [151], to all features of the code and
using devices of other brands, as their GPU software toolchains and hardware become mature.
Code refactor and optimization will allow us to leverage high-performance computing sys-
tems and enable the study of complex heterogeneous materials, e.g. defects and interfaces in
oxide materials; for these systems an accurate description of the single particle wavefunctions
that serve as a starting point of MBPT calculations is expected to require the use of hybrid
functionals, which are computationally more demanding than semi-local ones.

(ii) Connecting different levels of theory using quantum embedding. Numerous interest-
ing problems in materials science and chemistry require the description of a small portion of
the entire system at a level of theory higher than the rest of the material. For example, this
may be the case for defects in solids, molecules undergoing chemical reactions at surfaces or
nanoparticles embedded in matrices. There are multiple reasons for the need of a higher level
of theory for a specific region, one being, for example, the presence of highly correlated elec-
tronic states localized in space and energy in a solid, that cannot be described using mean-field
theories such as DFT. The development of embedding theories to describe different portions
of a complex system at different levels of theory is an active field of research. We have recently
developed the quantum defect embedding theory (QDET) based on Green’s functions methods
[149], where an active space is defined and an effective Hamiltonian is diagonalized exactly to
obtain correlated many-body states. The extension of this method to systems other than cova-
lently bonded semiconductors, e.g. oxides and aqueous interfaces, requires the development
of methods to include vertex corrections and achieve self-consistency in the Green’s function
description of the entire system, or the application of hybridization schemes between the active
space and the environment.

(iii) Code interoperability. Workflows used in electronic structure calculations are increas-
ing in complexity, as theoretical methods advance and the computational power grows. It is
therefore of great importance to develop flexible and extensible workflows where one or more
codes cooperate through in-vivo or ex-vivo coupling [152], possibly operating on different
architectures, including both classical (CPUs and GPUs) [151] and quantum (QPUs) [153].
We have recently developed several coupling schemes to improve the efficiency of MBPT-
based calculations and facilitate the development of coupled codes, as shown in figure 28.
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Figure 28. Overview of the WEST software package. Key functionalities of WEST
include the computation of quasiparticle energies using full-frequency G0W0 and
electron-phonon self-energies, and the description of excitation processes using dens-
ity matrix perturbation theory (Bethe–Salpeter equation and time-dependent density-
functional theory) and the quantum defect embedding theory. Several computational
kernels of WEST have been optimized for massively parallel computers based on
CPUs and GPUs. WEST utilizes a Python interface layer, WestPy, and standard data
formats such as JSON, XML, and HDF5, to interoperate with other electronic structure
codes [152], currently including Quantum ESPRESSO, Qbox, and PySCF. In addi-
tion, WEST can use the TensorFlow and Qiskit open-source frameworks to implement
machine learning and quantum computing protocols, respectively.

For example, we developed a coupling scheme between WEST and the FPMD code Qbox to
improve the efficiency of the solution of the BSE by performing electronic structure calcula-
tions in finite electric field, while taking advantage of electronic orbital localization. In addi-
tion, QDET calculations are performed by coupling a DFT engine (QE or Qbox), a MBPT
solver (WEST), and diagonalization codes for the effective Hamiltonian. The latter are based
on quantum chemistry methods and may be run on classical or quantum architectures. As
the next generation of supercomputers will be more modular and heterogeneous, and the size
and fidelity of QPUs continue to improve, code coupling represents an interesting avenue to
combine the strengths of diverse types of computing paradigms [153].

(iv) Introducing machine learning protocols in EST. Advances in machine learning and
deep learning techniques have substantially improved the efficiency of several electronic struc-
ture methods. We recently applied data-driven approaches to the calculation of the dielectric
screening, a key ingredient required to compute absorption spectra using the BSE [154]. In
specific cases (water and some aqueous interfaces), we obtained a model for the screening that
outperforms the direct calculation of dielectric matrices by one to two orders of magnitude,
while retaining transferability across multiple configurations extracted from FPMD simula-
tions. Some of the challenges in improving this technique include the updating procedure of
the screening necessary in MD simulations and its extension to compute properties other than
absorption spectra. Overall, we expect that machine learning may help reduce the cost of first-
principles methods by identifying redundant calculations or by providing surrogate models of
complex quantities, e.g. response functions. Hence, defining protocols to rigorously verify and
validate machine learning models is as important as developing the models themselves.
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Figure 29. Strong scaling of the GPU version of the WEST code on the Summit super-
computer for two silicon supercells containing 1000 atoms (blue circles) and 1728 atoms
(red squares), respectively. The black dashed lines indicate the slope of ideal scaling.
Eighty quasiparticle energies (around the Fermi level, 40 below and 40 above) were cal-
culated for each system. Timing results correspond to the total wall clock time, including
the time spent on I/O operations and CPU-GPU communications. Reprinted with per-
mission from [151]. Copyright (2022) American Chemical Society.

Meeting the exascale challenges

High-performance computing (HPC) has recently entered in earnest the exascale era, with
new opportunities and challenges for the electronic structure community. The throughput of
HPC systems keeps increasing at a rapid pace, promising the feasibility of atomistic and
first-principles simulations at unprecedented scales. However, HPC systems are becoming
heterogeneous, with most of the performance currently contributed by GPU accelerators.
Fully harnessing the parallelism available in leadership HPC systems, and specifically SIMT
parallelism, mandates a redesign of most of the code architecture and even of the underly-
ing algorithms. A cornerstone algorithm in WEST is the projective dielectric eigenpotentials
(PDEP) method that determines the spectral decomposition of the static dielectric matrix at
zero frequency by an iterative diagonalization [147]. This algorithm lends itself to efficient
parallelization. The computation of the density response to multiple perturbations can be car-
ried out fully in parallel for each perturbation, spin channel, and wavefunction, making the
PDEP method scalable to over ten thousand CPU cores [147] and GPUs [151].

Code optimization is another key step required to maximize performance on heterogeneous
HPC architectures. Initially written for compute nodes based on multi-core CPUs, WEST has
been extended to use accelerators, starting from NVIDIA GPUs [151]. A significant spee-
dup over the CPU version of WEST was achieved by utilizing high-performance GPU lib-
raries, overlapping computations with communications, and mixed-precision (FP32/FP64) as
GPUs are particularly efficient with reduced precision throughput. The GPU version ofWEST
was demonstrated to scale to 25 920 GPUs of the Summit supercomputer, reaching a mixed-
precision performance of 58.8 PFLOPs for full-frequency G0W0 calculations (see figures 29
and 30). Work is under way to achieve performance portability targeting the exascale super-
computers powered by NVIDIA, AMD, and Intel GPUs. To achieve this goal, we are follow-
ing the principle of ‘separation of concerns’, that is, making the code modular and relying as
much as possible on existing infrastructure of libraries optimized and maintained by domain
experts. In addition, we take advantage of containerization techniques to facilitate the testing
of the code and its deployment on leadership HPC systems as well as mid-size clusters and

77



Modelling Simul. Mater. Sci. Eng. 31 (2023) 063301 Roadmap

Figure 30. Large-scale full-frequency G0W0 calculations using the GPU version of the
WEST code: (a) a Janus-like heterostructure formed by a chlorine-terminated nano-
particle made of cadmium sulfide and lead sulfide (2816 electrons), (b) an interface
of silicon and silicon nitride (10 368 electrons), and (c) a neutral hh divacancy in 4H
silicon carbide (6392 electrons, spin-polarized). The top panels show a ball-and-stick
representation (side view) of the simulation cells, where Cl, Cd, S, Pb, Si, N, C atoms
are represented as green, black, orange, light gray, beige, blue, and dark gray spheres,
respectively. The bottom and middle panels show the local density of states (LDOS)
obtained using G0W0@PBE and DFT energies, respectively. A color scale that ranges
from white to black is used to represent the LDOS values; white areas indicate energy
gaps. For the hh divacancy in SiC, the defect states in the up (down) spin channel are
shown in red (blue). Reprinted with permission from [151]. Copyright (2022) American
Chemical Society.

workstations. A challenging activity is to deliver code that is optimized for multiple architec-
tures while keeping the structure of the code simple and extensible, so as to avoid barriers for
future developments and facilitate contributions from scientists not familiar with cutting-edge
coding paradigms.

We expect the coupling of different codes running on different architectures, including
QPUs and the use of machine learning methods will play an important role in exascale com-
puting. The GPU accelerators, which will power the announced exascale architectures, are
optimized for machine learning workloads. Last but not least, we mention the importance of
data collection, analysis, and curation in the exascale computing era. The unprecedented com-
putational power will generate an unprecedented amount of data. Handling these data may be
more challenging than generating them. In recent years, community efforts from all over the
world have started to build data infrastructures serving the electronic structure community.
Our contribution to these efforts is Qresp [155], a tool to facilitate reproducibility in science
by curating data associated with scientific publications.
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Concluding remarks

We have presented the state-of-the-art implementation of calculations based on MBPT using
the WEST code, which comprise calculations of electron–electron, electron–hole and EPHs
of large heterogeneous systems, as well as of strongly correlated active regions of condensed
systems. Development priorities include adapting theWEST code to heterogeneous computing
to enable the modeling of increasingly complex heterogeneous systems; refining embedding
techniques to broaden their applicability to wider classes of systems; increasing the coupling
of WEST with other codes and libraries to enable the use of modular workflows on exascale
and QPUs; and using methods based on machine learning to speed up electronic structure
calculations.

Progress towards exascale computing was achieved by focusing on the porting of the full-
frequency G0W0 solver on NVIDIA GPUs. Strong and weak scaling was demonstrated for
a system that contains ∼10k electrons on up to 25 920 GPUs of the Summit supercomputer,
leading to a mixed FP32/FP64 performance of 58.8 PFLOPs. The porting to NVIDIA GPUs
led to a refactored code, that can be used as base line to port the performance of the code to
GPUs of other vendors, as they become widely accessible.

We conclude by noting that while exascale computing is pushing the envelope of both theory
and simulation, a vast range of scientists operates on tera- and petascale resources and relies
on such resources to carry out their research activity. Algorithms implemented in community
open-source codes like WEST need to reconcile code maintainability with the complexity
required to adapt to a variety of diverse computing resources and sweeping changes in coding
paradigms. As part of code maintenance, verification and testing, including testing the code at
scale, are important activities. Workforce development is essential in order to sustain growth.
In particular, the training and deployment of domain scientists with a diverse combination of
coding skills and proficiency in artificial intelligence and quantum computing are necessary
to unlock the power of emerging and future computing.
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