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The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information.
However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation
handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does
the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a
parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al. (2017) that had previously
revealed a map in the hippocampal formation coding for a newly learnt transition structure. Using functional magnetic resonance
imaging adaptation analysis, we found that the degree of representational similarity in the bilateral hippocampus also decreased as a
function of the semantic distance between presented objects. Importantly, while both map-like structures localized to the hippocampal
formation, the semantic map was located in more posterior regions of the hippocampal formation than the transition structure and
thus anatomically distinct. This finding supports the idea that the hippocampal-entorhinal system forms parallel cognitive maps that
reflect the embedding of objects in diverse relational structures.
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Introduction
The hippocampal-entorhinal system builds rich models of the
world, called cognitive maps, that account for the relationships
between locations, events, and experiences (e.g. Tolman 1948;
O’Keefe and Nadel 1978; Moser et al. 2008; Eichenbaum and Cohen
2014; Behrens et al. 2018). These maps capture the similarity
between symmetric, high-dimensional relationships in a cognitive
space, satisfying geometric constraints such as betweenness and
equidistance (Gärdenfors 2004; Bellmund et al. 2018). Abstract-
ing and organizing relational information in this way facilitates
flexible behavior, enabling generalization and inference. Beyond
classical findings on the importance of cognitive maps for spa-
tial navigation (e.g. Burgess et al. 2002; Ekstrom and Ranganath
2018; O’Keefe and Nadel 1978), they are also thought to orga-
nize the relationships between objects (Constantinescu et al.
2016; Garvert et al. 2017; Garvert et al. 2023; Morton et al. 2020,
Theves et al. 2019, 2020; Viganò et al. 2021), to represent temporal

distances (Bellmund et al. 2019; Bellmund et al. 2022; Burgess et al.
2002; Schapiro et al. 2012; Solomon et al. 2019), and to structure
knowledge in the context of social cognition (Park et al. 2020;
Son et al. 2021; Tavares et al. 2015). While cognitive mapping
is thus proposed to be a universal, domain-unspecific coding
principle to systematically organize knowledge (Stachenfeld et al.
2017; Behrens et al. 2018; Bellmund et al. 2018), it is unclear how
the brain handles stimuli that are simultaneously embedded in
multiple relational structures that are very distinct in terms of
their mode and timescale of acquisition. Does the hippocampal-
entorhinal system form one conjunctive map that integrates sim-
ilarities along the different stimulus dimensions or does it form
anatomically separable maps for each stimulus dimension?

In the study by Garvert et al. (2017), participants acquired new
relational knowledge about everyday objects which were already
linked by semantic connections. Here, participants were exposed
to object sequences following a pseudo-random walk along a

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad485/7513580 by M

PI C
ognitive and Brain Science user on 15 January 2024

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

 42104 28990 a 42104 28990 a
 
mailto:xiaochen.zheng@donders.ru.nl
mailto:xiaochen.zheng@donders.ru.nl
mailto:xiaochen.zheng@donders.ru.nl
mailto:xiaochen.zheng@donders.ru.nl


2 | Cerebral Cortex, 2024

graph. Within the hippocampal-entorhinal system, the similar-
ity of neural object representations reflected the link distance
between them on the graph (Garvert et al. 2017). In this situation,
besides the newly learned transition structure between objects,
participants can be assumed to have explicit knowledge about the
semantic relationships between the same objects (e.g. rabbit and
dog are both animals). Previous research has provided evidence
that semantic relationships are represented in the hippocampus
(Romero et al. 2019; Solomon et al. 2019; Pacheco Estefan et al.
2021) but also across various cortical regions (Charest et al. 2014;
Clarke and Tyler 2014; Bracci et al. 2015; Price et al. 2015; Huth
et al. 2016; Frisby et al. 2023).

Here, we ask whether prior semantic knowledge about objects
would be simultaneously mapped in the same hippocampal sys-
tem which also represents knowledge about transition structure.
We reanalyzed the functional magnetic resonance imaging (fMRI)
data from Garvert et al. (2017). Specifically, we constructed a
model of object similarity that isolates the semantic relation-
ships reflecting high-level conceptual knowledge acquired from
experience from the low-level perceptual attributes of specific
objects (Tversky 1977; Rosch and Lloyd 1978). To this end, we
matched the stimuli used in Garvert et al. (2017) with photographs
of the same objects and asked a separate participant population
to assess their similarity using a triplet odd-one-out task (Hebart
et al. 2020). Using fMRI adaptation analysis, we found evidence
consistent with a map of semantic relationships between objects
that was precisely localized in the hippocampus, alongside the
previously identified map which coded for the newly learnt tran-
sition structure. Notably, although both map-like structures were
represented in the hippocampal-entorhinal system, the semantic
map was localized in more posterior regions than the transition
structure. By showing that the hippocampal formation represents
distinctive types of relationships simultaneously in parallel maps,
our results thus demonstrate that the hippocampal formation
does not construct conjunctive maps that integrate similarities
across distinct stimulus dimensions. Instead, different stimulus
dimensions are organized in anatomically separable maps, at
least in situations where the mode and timescale of acquisition
are very distinct.

Materials and methods
Experimental design
fMRI study
We reanalyzed the data from the fMRI study by Garvert
et al. (2017), where 23 human participants (15 male, 8 female,
meanage = 23.5, SDage = 3.7, age range 18–31) were tested.

On the day of training (day 1), participants were exposed to
object sequences in an implicit learning task. The object tran-
sitions followed a pseudo-random walk along a graph (Fig. 1A)
that was unknown to the participants. This means that each
object could only be followed by an immediate neighbor in the
graph structure. Participants performed a behavioral cover task,
in which they learned to associate a random stimulus orientation
with a specific button press. For example, the left-facing motor-
cycle was linked to button F, while the right-facing motorcycle
corresponded to button J. The graph structure was the same for
all participants. The link distance between any pair of objects in
the graph is defined as the minimum number of links between
this pair of objects (e.g. in the example displayed in Fig. 1A, the
link distance between the rabbit and the leaf is two), which ranges
from one to four. For each participant, a subset of 12 objects was
selected from a total of 31 objects used in the study, and randomly

assigned to the 12 nodes on the graph. The objects covered a wide
range of semantic categories (e.g. furniture, plants, body parts,
animals; see Fig. 2B, top rows for the full set of objects used).
Only one object within a semantic category was assigned to a
participant (e.g. either banana or strawberry, but not both) and
each participant was assigned a unique set of objects. Participants
were trained for 12 blocks, with 132 transitions in each block.

In the scanning session (day 2), 7 out of the 12 training objects
were used and presented in randomized order to reduce the total
number of stimulus–stimulus transitions and thereby increase
statistical power for the fMRI adaptation analysis. The transi-
tions no longer followed the graph structure, but were pseudo-
randomized in such a way that each possible stimulus–stimulus
transition occurred exactly ten times per block (no stimulus repe-
titions). To reduce the motor responses in the scanner, a different
behavioral cover task was employed that was orthogonal to the
imaging analysis of interest: In 10% of the fMRI trials, participants
performed an unrelated cover task, reporting whether a gray
patch had been present on the preceding object (Fig. 1B). This
means that participants were not required to pay active attention
to the object identity. The fMRI session consisted of three blocks,
with 420 transitions per block. Stimuli were presented for 1 s, with
a jittered inter-trial interval generated from a truncated Poisson
distribution with a mean of 2 s.

The study was in line with the Declaration of Helsinki and
was approved by the University College London Hospitals Ethics
Committee. All participants provided written consent.

Behavioral experiment of object similarity
Participants

A separate group of 128 human participants from the online
crowdsourcing platform Amazon Mechanical Turk took part in
a triplet odd-one-out task (55 male, 73 female, meanage = 42.6,
SDage = 11.9, age range 20–70). All participants were located in the
United States. The online research was approved by the Office of
Human Research Subject Protection and all participants provided
written informed consent. The participants were compensated
financially for their time.

Stimuli and task

We used a triplet odd-one-out task on the 31 objects in the original
study (Garvert et al. 2017, Fig. 2A) to measure the object similarity.
By repeatedly varying the third object for a pair of target objects,
their similarity could be assessed in a wide range of different
contexts (Hebart et al. 2020). All images depict colored and shaded
objects and were selected from the “Snodgrass and Vanderwart”
database (Rossion and Pourtois 2004).

The task was carried out in sets of 20 trials. Participants could
choose how many sets they would like to take part in. Participants
engaged in a variable number of trials, ranging from a minimum
of 20 to a maximum of 1460 (median = 50, 25th percentile = 20,
75th percentile = 145), with a median RT of 2221 ms (Supplemen-
tary Material S1). On each trial, participants were shown three
object images side by side and were asked to select the image
that was the least similar to the other two. Each object triplet and
the order of stimuli were chosen randomly, but such that after
collection of the entire dataset each cell in the 31 × 31 similarity
matrix had been sampled at least once. The object similarity
was defined as the probability p(i,j) of the participants choosing
objects i and j to belong together, irrespective of context imposed
by the third object (Hebart et al. 2020).
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Fig. 1. Experimental design. (A) Graph structure used to generate stimulus sequences on day 1. Trial transitions were drawn from random walks along
the graph. (B) Objects on reduced graph presented to participants in the scanner on day 2. Trial transitions were random. In both sessions, participants
performed simple behavioral cover tasks. Figure adapted from Garvert et al. (2017).

Statistical analysis
Computation of the parametric regressors
For each participant, we computed a link distance matrix and two
matrices describing object relations (i.e. semantic distance and
residual distance). The semantic distance matrix and the residual
distance matrix are derived from the object similarity matrices,
with the latter computed directly from the triplet odd-one-out
task described above (explained below).

Whereas the link distance matrix (values range from 1 to 4) was
identical for all participants, the object similarity matrices were
unique for each participant given that each participant received
a different set of object stimuli in the training. To turn object
similarities into a distance measure, we computed object dissim-
ilarities by subtracting the similarity values from 1. Therefore, a
number close to 1 means that two objects are dissimilar to each
other, whereas a number close to 0 means the objects are very
similar to each other.

To isolate semantic relationships, we made use of an indepen-
dent similarity rating from a different dataset (Hebart et al. 2020).
The rationale is that the part of variance that can be explained
by an independent rating reflects semantic knowledge that is
independent of the precise visual display of a particular object and
instead reflects more abstract, semantic knowledge about stimu-
lus relationships. The independent rating is based on 1854 images
from the THINGS database (Hebart et al. 2019) which depicts
photographs of objects embedded in a natural background, rated
by a total of 5301 participants using the same triplet odd-one-out
task. From the 1854 images, we selected 31 pictures that depict
the same objects as the 31 objects in the original study of Garvert
et al. (2017) and computed a sub-matrix of these 31 objects. Since
each fMRI participant was trained on 12 out of the total 31 stimuli,
we linearly regressed for each participant the 12 × 12 dissimilarity

matrix based on object images from the THING database (X in the
regression below, Hebart et al. 2020) onto the 12 × 12 dissimilarity
matrix based on object images from the original fMRI study (Y in
the regression, Garvert et al. 2017). Both matrices were z-scored;
therefore, no intercept was included in the regression:

Y ∼ β ∗ X + residual

We consider β ∗ X to reflect the variance of object dissimilar-
ity that could be explained by the independent rating, likely to
capture mostly semantic relationships. In contrast, the residual
values reflect the variance that is not shared across different
visual object stimuli, including specific perceptual features.

To visualize the object relatedness acquired from the triplet
odd-one-out task, we performed multidimensional scaling (MDS)
on the semantic and residual distance matrices. In the output
MDS, objects are arranged in a two-dimensional space, where the
Euclidean distances reflect the dissimilarities between objects as
well as possible. Note that MDS can only be performed on matrices
with positive entries. We therefore subtracted the minimum value
of the matrix and added 1. The addition of constants does not
affect the resulting visualization of distances.

fMRI adaptation analysis
Following the approach adopted in the original study, we exploited
fMRI adaptation (Grill-Spector et al. 2006; Barron et al. 2016) to
investigate the neural representations for transition structure and
semantic similarities. fMRI adaptation relies on the observation
that the repeated activation of the same population of neurons
leads to a suppressed response. In this way, the amount of sup-
pression can serve as a proxy for the similarity of the underlying
neural representations.
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Fig. 2. Semantic distance constructed using the triplet odd-one-out task. (A) An example trial of the triplet odd-one-out task. The task measures object
similarity as the probability of participants choosing two objects together, irrespective of the context imposed by the third object (Hebart et al. 2020).
(B) Stimuli used in the odd-one-out task. Top rows: all 31 stimuli from the original study; bottom rows: a subset of stimuli from the THINGS database,
matched with the 31 object stimuli used in the original study. The rating of the matched objects is done in the context of a total of 1854 objects (Hebart
et al. 2020). (C) Correlation between similarity ratings based on our own stimuli and ratings based on the corresponding stimuli from the THINGS
database (Spearman’s rho = 0.70, P < 0.001). (D) Visualization of the 31 objects’ semantic distance in a two-dimensional space according to MDS. (E) 2D
MDS visualization of the 31 objects’ residual distance.

We used an event-related generalized linear model (GLMs) to
analyze the fMRI data. We included separate onset regressors for
each of the seven objects with a patch and without a patch. Each
onset regressor was accompanied by three parametric regres-
sors describing the link distance, the semantic distance, and the

residual distance in relation to its previous object, respectively. All
regressors were standardized in the GLM. No orthogonalization
was applied. By analogy to the original analysis, we included a
button press regressor as a regressor of no interest in the GLM.
Trials associated with a button press and the two subsequent
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trials were not included in the main regressors in order to avoid
button press-related artifacts. All regressors were convolved with
a canonical hemodynamic response function. In addition, we
included the same 6 motion regressors and the 17 physiological
regressors (10 for cardiac phase, 6 for respiratory phase, and 1
for respiratory volume) used in the original analysis were also
included in the current GLM. Blocks were modeled separately
within the GLM. Only the non-patch trials were included for our
contrasts of interest.

The contrast images of all participants from the first level
were analyzed as a second-level random effects analysis. We
expected both the semantic information and the transition struc-
ture to be mapped in the hippocampal formation. Therefore,
we focused our analysis on this region. The anatomical mask
is created using FreeSurfer (Fischl 2012) segmentation in MNI
space, combining bilateral hippocampus and bilateral entorhi-
nal cortex (Supplementary Material S2). We consider our results
significant if they survived family-wise error (FWE) correction
at the peak-level of P < 0.05 within this anatomically defined
mask (small volume correction, SVC). To explore the cortical
semantic representation, we performed additional SVC using two
anatomically defined masks: the left anterior temporal lobe and
the left angular gyrus, two regions previously reported to be
important in semantic processing (Visser et al. 2010; Humphreys
et al. 2021). Both masks are defined using the Harvard-Oxford
cortical structural atlas with a probabilistic threshold of 30%
(Supplementary Material S2). Activations in other brain regions
were only considered if they survived whole-brain peak-level FWE
correction at P < 0.05. All statistical parametric maps visualized
in the manuscript are thresholded at P < 0.01 uncorrected and
unmasked for illustration.

To illustrate the non-overlapping clusters for the link distance
effect and the semantic distance effect, we defined two functional
regions of interest (ROIs) based on the two parametric estimations
from non-patch trials in the main GLM. The link distance effect
revealed a cluster in bilateral entorhinal cortex, which we used to
define the entorhinal ROI; the semantic distance effect revealed
a cluster in bilateral hippocampus, which we used to define
the hippocampal ROI. For both ROIs, we included all the voxels
exceeding a t-value of 2.5, corresponding to P < 0.01. From the two
ROIs, we then extracted parameter estimates for each of the 23
participants for the two effects. Due to the statistical dependence
between the data and the ROI definition, no statistical inference
was made regarding the interaction. In order to demonstrate both
effects as response gradients along the hippocampal long axis, we
defined nine voxel-size ROIs along the left and right hippocampus,
respectively. Group-level t-stats were extracted and plotting for
these ROIs for link and semantic distances.

The statistical analysis was done using SPM12 (Wellcome Trust
Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm). Visu-
alization was done using FSLeyes (Wellcome Centre for Integrative
Neuroimaging, https://git.fmrib.ox.ac.uk/fsl/fsleyes/fsleyes/) and
Connectome Workbench (http://www.humanconnectome.org/
software/connectome-workbench).

Results
Human participants were trained on object sequences whose
transition probabilities followed a discrete, non-spatial graph
(Fig. 1A, Garvert et al. 2017). Without being consciously aware
of the hidden graph structure, participants’ neural activity in the
hippocampus and entorhinal cortex reflected the transitional
relationships they had experienced between the objects on a

subsequent day (Figs 1B, 3A). However, the brain may not only
represent the newly learned transition structure, but also the
semantic relationships between the objects. Thus, we asked
whether this information is also mapped in the same system.

To address this question, we measured the semantic relation-
ship between these objects using a triplet odd-one out task, where
participants were shown three objects on each trial and asked
to select the image that was the least similar to the other two
(Fig. 2A; Hebart et al. 2020). To separate the semantic relationships
between objects from the perceptual similarities, we matched
the similarity rating of our objects used in the original study
(Fig. 2B, top rows) to a separate rating of corresponding real-world
photographs of the same objects in the THINGS database (Fig. 2B,
bottom rows; Hebart et al. 2019). The THINGS database shows
photographs of objects embedded in a natural environment as
opposed to simple line drawings of stereotypical objects used
in our fMRI study. In this way, the shared perceptual similarity
between objects in these two data sets should be reduced (see
Supplementary Material S3 for additional analysis on object sim-
ilarity). Although rated by different groups of participants and in
different contexts, the similarity ratings obtained for our objects
and the corresponding objects in the THINGS database were
highly correlated (Spearman’s rho = 0.89, P < 0.001, Fig. 2C, Sup-
plementary Material S1). This suggests that semantic relations are
preserved across datasets.

We regressed the matched similarity matrix (x-axis, Fig. 2C)
onto our original similarity matrix (y-axis, Fig. 2C). By doing
this, we were able to separate the variance into two parts:
(i) the part that could be explained by an independent measure of
object similarity obtained from a matched set of stimuli, and
(ii) the part that could not be explained by the independent
measure. Although semantic and perceptual features are unlikely
to be fully separable in this way, we consider the first part
to primarily reflect the semantic relationships between our
objects that are preserved across different ways of visualizing
objects; while the second, residual part reflected a combination
of features that are not accounted for in terms of semantics,
including perceptual similarities. The MDS of the semantic
distance reveals that the similarity ratings led to the emergence
of object category clusters (e.g. fruit, animals, man-made objects)
and replicates well-known distinctions between “animate -
inanimate” and “natural - man-made” (Hebart et al. 2020, Fig. 2D).
The residual distance continued to express differences between
man-made and natural objects, however the overall arrangement
was less structured (Fig. 2E). Neither the semantic distance
nor the residual distance was correlated with link distance
(semantic: Spearman’s rho mean = 0.03, SD = 0.12, range = −.25
–.30, t22 = 1.04, P = 0.31; residual: Spearman’s rho mean = −.03,
SD = 0.09, range = −.22–.15, t22 = −1.52, P = 0.14).

Following the approach adopted in the original study, we
exploited fMRI adaptation to investigate the representational
similarity for different objects. In line with the decrease in
fMRI adaptation as a function of link distance observed in the
hippocampal formation (Garvert et al. 2017) and previous work
measuring semantic distance using fMRI (Bedny et al. 2008; Kim
et al. 2009; Yee et al. 2010; Conca et al. 2021), we reasoned
that in areas representing object relationships, objects that
are closer to each other in the corresponding representational
space should have a more similar representation and therefore
fMRI adaptation should scale with the corresponding semantic
distance measure. The results replicated our original link distance
effect after accounting for the semantic distance and the
residual distance. The fMRI adaptation analysis showed a cluster
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Fig. 3. Transition structure and semantic similarities are represented in the hippocampal-entorhinal system. (A) Whole-brain analysis showing a
decrease in fMRI adaptation with link distance in the hippocampal formation, when link distance, semantic distance and residual distance are included
in the model. (B) Whole-brain analysis showing a decrease in fMRI adaptation with semantic distance in the hippocampal formation, when link distance,
semantic distance and residual distance are included in the model. Both (A) and (B) are thresholded at P < 0.01, uncorrected for visualization. The clusters
containing voxels surviving correction for multiple comparisons (FWE, P < 0.05) are highlighted in solid black lines.

bilaterally in the entorhinal cortex (Fig. 3A; FWE corrected at
peak level, peak t22 = 4.44, P = 0.042, [−18, −19, −25]). Critically,
we also observed a semantic distance effect in the bilateral
hippocampus (Fig. 3B; peak t22 = 4.69, P = 0.028, [24, −31, −10]).
No other regions showed fMRI adaptation effects as a function
of semantic distance (all Ps > 0.73), including the left anterior
temporal lobe (see Visser et al. 2010, for a meta-analysis) and
the left angular gyrus (see Humphreys et al. 2021, for a recent
review), two ROIs that have previously been associated with
semantic processing. This suggests that the reported semantic
effect is specific to the hippocampal formation. No brain region
showed fMRI adaptation effects covarying with residual distance
(all Ps > 0.99, no suprathreshold cluster using SVC).

While the link distance and the semantic distance are both
represented in the hippocampal formation, they were located
in two non-overlapping clusters (Fig. 4A). To investigate this at
a more fine-grained level, we defined two functional ROIs: (i) a
bilateral ROI in the entorhinal cortex defined by the link dis-
tance effect (EC ROI), and (ii) a bilateral ROI in the hippocampus
defined by the semantic distance effect (HC ROI). Figure 4(B)
shows parametric estimates of the semantic and the link distance
effects extracted from the ROIs defined by the opposite contrast,
respectively. The individual semantic distance effect extracted
from the EC ROI and the link distance effect extracted from the HC
ROI were not significantly different from 0 (semantic: t22 = −0.25,
P = 0.81; link: t22 = 0.54, P = 0.60). To better understand the relative
localization of the link distance effect and the semantic distance
effect, we visualized the difference between the two contrasts

in the hippocampal formation (Fig. 4C) and extracted t-values
from spherical ROIs located along the hippocampal axis (Fig. 4D).
These analyses demonstrate that the semantic similarity effect is
localized in more posterior regions of the hippocampal formation,
whereas the transition structure effect resides in more anterior
regions. This difference, found in both hemispheres, suggests the
existence of a posterior–anterior gradient along the hippocampal
long axis (Poppenk et al. 2013). This effect is particularly pro-
nounced in the right hemisphere where peaks do not overlap.
This suggests that the brain does not integrate the two relational
structures into one conjunctive map, but instead forms separate
relational structures.

Together, our results suggest that both recently learned transi-
tion structure of which participants have no conscious awareness,
as well as semantic relationships that are explicitly accessible
and acquired over the course of a lifetime, are represented in
the hippocampal formation simultaneously, albeit in different
subregions: While transition structures are represented in more
anterior hippocampal regions, semantic relationships are repre-
sented in more posterior regions.

Discussion
The brain forms cognitive maps of the relationships between
landmarks that help an animal navigate their physical
environment (Tolman 1948; O’Keefe and Nadel 1978; Burgess
et al. 2002; Ekstrom and Ranganath 2018). Previous studies have
shown that the same organizing principle also applies to other
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Fig. 4. Anatomical localization of transition structure and semantic similarities. (A) Left: link distance (red) and semantic distance (blue) are represented
in non-overlapping clusters (thresholded at P < 0.01, uncorrected). Two ROIs were defined based on the link distance effect (in red) and the semantic
distance effect (in blue) and included voxels exceeding a cluster-defining threshold of P < 0.01, uncorrected (both ROIs highlighted in solid lines). Right:
boxplot of the parameter estimates for the link distance and semantic distance effects extracted from these two ROIs. The thick horizontal line inside
the box indicates the median, and the bottom and top of the box indicate the first and third quartiles of each condition. Each dot represents one
participant. The plot is for visualization only, since the contrast used for defining the ROIs is not independent from the interaction effect of interest
here. (B) Anatomical location where the link distance is represented more strongly (red) versus where the semantic distance is represented more strongly
(blue). The analysis is restricted to the hippocampal formation (incl. hippocampus and entorhinal cortex). (C) Visualization of response gradient along
the hippocampal long axis. In both the left and the right hippocampus, the semantic distance peaks at more posterior locations compared to the link
distance.
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non-spatial types of relational information (Constantinescu et al.
2016; Garvert et al. 2017; Theves et al. 2019, 2020; Morton et al.
2020; Viganò et al. 2021; Garvert et al. 2023). For example, when
participants acquire new knowledge about the relationships
between objects by being exposed to experimentally generated
object sequences, the hippocampal formation extracts the asso-
ciated transition structure and stores it as map-like structural
representations (Garvert et al. 2017). However, participants also
already have existing knowledge about the semantic relationships
between these objects acquired over an entire lifetime. Here we
show that this prior semantic knowledge is also simultaneously
mapped in the same neural system that codes for newly learned
structural information. Specifically, we observed that repetition
suppression of signals in the hippocampus scales with semantic
distance. This representation aligns with the defining features
of a cognitive map: relationships can be quantified in terms of
a metric; this metric is symmetric and it adheres to geometric
norms (Gärdenfors 2004; Gärdenfors and Zenker 2015; Bellmund
et al. 2018). Not only are both knowledge structures mapped in
the hippocampal-entorhinal system, they also both adhere to geo-
metric coding principles whereby similar states are represented
more similarly. This suggests that different types of relational
knowledge, regardless of whether that knowledge was gathered
over short durations or over a lifetime, might be structured within
a similar cognitive mapping framework in the hippocampus.

Cognitive maps have been proposed to be an organizing prin-
ciple that underlies our ability to generalize and make inferences
(Behrens et al. 2018). The representation of both graph structure
and semantic relationships in the same system is remarkable,
given their very different timescales and modes of acquisition.
However, while the two relational structures were represented in
the same neural system, they were only partially represented in
overlapping voxels. This suggests that the brain extracts separable
relational structures in parallel rather than integrating them into
one compositional map (Spiers 2020). Parallel representations of
separable maps likely facilitate generalization and inference in
an ever-changing environment where the relevance of stimulus
dimensions can shift rapidly. When different stimulus dimen-
sions become relevant at different times, the parallel coding of
multiple knowledge structures allows for flexible selection of
relevant information. Such cognitive computations enable the
hippocampus to adaptively generalize based on task demands
(Garvert et al. 2023) and to guide goal-directed behavior in novel
situations (Whittington et al. 2020). Additionally, attention can be
selectively allocated to relevant state representations (Radulescu
et al. 2021) and multiple relational structures can be flexibly
combined into more complex compositional structures for gen-
eralization (Saanum et al. 2021).

Our finding that object relationships are represented in the
hippocampus is also consistent with previous findings that the
hippocampus is involved in the retrieval of semantic memory, par-
ticularly for relational knowledge between concepts, and that hip-
pocampal activity reflects distances in semantic spaces (Pacheco
Estefan et al. 2021; Romero et al. 2019; Solomon et al. 2019).
The hippocampus thus seems to support domain-general pro-
cessing of semantic knowledge (Staresina et al. 2011; Ranganath
and Ritchey 2012; Morton et al. 2021). By decoding the seman-
tic map without explicitly manipulating the semantic similarity
of the stimuli or demanding this information in the task, we
demonstrate how prevalent the representation of relational infor-
mation is in the hippocampus.

However, previous research on semantic representations often
shows the additional involvement of a broader set of brain areas,

including cortical regions such as the anterior temporal lobe, the
angular gyrus, the inferior frontal gyrus and the fusiform gyrus
(Bracci et al. 2015; Charest et al. 2014; Clarke and Tyler 2014; Huth
et al. 2016; Price et al. 2015; Tucciarelli et al. 2019; see Frisby et al.
2023 for a recent review). These regions are thought to be involved
in various aspects of semantic processing, such as semantic cat-
egorization, semantic retrieval, and the integration of semantic
and perceptual information (Binder et al. 2009; Bookheimer 2002;
Lambon Ralph et al. 2017; Visser et al. 2010). Importantly, none
of these functions were task-relevant in our study. Participants
were not even required to pay attention to the objects, as they
only had to attend to the presence of a gray patch on the screen.
It is likely that the other regions that are involved in processing
of semantic knowledge only become involved in situations where
semantic knowledge is more relevant to task performance (see
also Martin et al. 2018). It is also worth noting that object-specific
semantic representations have been identified previously in the
perirhinal cortex (Clarke and Tyler 2014), a cortical region close
to the hippocampal formation. However, due to fMRI signal drop-
out in this region, we could not examine whether our effects of
interest are also represented there.

Notably, we found an anatomical gradient along the anterior–
posterior axis of the hippocampus (Poppenk et al. 2013; Strange
et al. 2014), with the graph structure represented in more anterior
parts of the hippocampal formation and the semantic map in
more posterior parts. Alternatively, this could also be viewed as
two functionally dissociated clusters, with the cluster residing
in the entorhinal cortex encoding statistical information about
transition structures and the cluster in hippocampus encoding
semantic similarities between specific objects. Distinct functional
clusters would suggest more specialized processing within the
hippocampus, suggesting that different types of knowledge are
more rigidly localized, perhaps facilitating categorization of infor-
mation for more systematic retrieval. A gradient on the other
hand suggests a more integrated and potentially overlapping
functionality within the hippocampus, perhaps facilitating pro-
cessing in ambiguous situations and retrieval of information in
context-rich situations. Due to spatial correlations inherent to
fMRI data, it is not possible to completely disentangle a gradient
from two separable clusters. Future studies, potentially employing
higher-resolution fMRI or intracranial recordings, can provide
more definitive answers.

In either case, the anatomical segregation of the two maps may
reflect differences in the nature of the underlying knowledge
structures (Peer et al. 2021). The semantic relationships may
reflect taxonomic knowledge derived from shared features and
properties between objects that participants formed over their
lifetimes. The transition structure on the other hand could stem
from recent associative learnings. Our findings are thus consis-
tent with the idea that structural information about statistical
regularities is encoded separately from semantic similarities
between specific objects (Whittington et al. 2020). Several pre-
vious investigations should also be mentioned here. Leshinskaya
and Thompson-Schill (2020) suggested that perceptual features,
newly acquired associations as well as generalizable relational
knowledge manifest in neighboring regions of the lateral temporal
areas. However, in contrast to our own observations, the authors
did not find any evidence of associative coding in medial temporal
lobes or the hippocampus. In addition, Mirman et al. (2017) report
a neural dissociation between taxonomic and thematic semantics
across a set of studies (e.g. Schwartz et al. 2011; Davey et al.
2016; Kalénine and Buxbaum 2016). These studies suggest that
anterior temporal lobes (ATL) predominantly encode taxonomic
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semantic knowledge and the temporo-parietal cortex (TPC)
encodes thematic semantic processing. However, the literature
on this neural observation is by no means conclusive, and many
studies, including our own, do not echo this ATL-TPC dissociation.

Our findings suggest a more integrative role for the hippocam-
pus, accommodating various types of relational knowledge, both
taxonomic (semantic) and associative/temporal (transition struc-
ture) (Peer et al. 2021), underscoring the dynamic and flexible
nature of hippocampal codes. This is further supported by the
anatomical gradient reminiscent of the gradient observable in
the scale of hippocampal spatial codes, where anterior parts of the
hippocampus display coarser spatial codes than posterior parts of
the hippocampus (Poppenk et al. 2013; Strange et al. 2014; Brunec
et al. 2018). This hints at broader organizational principles within
the hippocampus.

The anatomical separability we report could also be attributable
to the temporal disparity in the acquisition and consolidation
of semantic relationships versus newly learned relations.
Semantic relationships, built and reinforced over a lifetime, have
undergone extensive consolidation processes, perhaps resulting
in more stable and distinct neural representations within the
hippocampus. In contrast, relationships acquired over a short
duration, such as those from a single training session, might still
be in the early phases of consolidation (Walker and Stickgold
2004; Squire et al. 2015). In short, several features differ between
the two relational structures in our study, including the recency of
learning, the nature of the type of relational knowledge, and the
degree to which knowledge is explicit or implicit. The observed
spatial segregation in the hippocampus is likely driven by a
combination of these features, potentially reflecting the nature
of the encoded information.

It is also worth noting that there are other plausible mea-
sures that might better characterize the neural representation
of the transition structure, which are discussed comprehensively
in Garvert et al. (2017). In the domain of reinforcement learn-
ing, the utility of a cognitive map is greatly enhanced when
the representation of a state not only embodies the present but
is also predictive, encompassing a spectrum of probable future
states. This concept is encapsulated in the successor represen-
tation (Dayan 1993; Momennejad et al. 2017; Russek et al. 2017),
which is suggested to be encoded by hippocampal place cells
(Stachenfeld et al. 2014, 2017). From this perspective, hippocampal
place cells are posited to encode not the immediate location
of an animal, but a predictive array of forthcoming locations.
Such a representation is advantageous for reinforcement learn-
ing, as it amalgamates predictive insights of future states with
reward information, thereby facilitating the swift computation
of potential navigational paths (Baram et al. 2018; Dayan 1993;
Momennejad et al. 2017; Russek et al. 2017). Analogous to the
successor representation, graph theory introduces the matrix
resolvent as a means to quantify “communicability” or the close-
ness between nodes. Similarly, the matrix exponential, another
graph theory measure, computes a weighted summation over
future states and exhibits versatility across various dimensions
and contexts (Estrada and Hatano 2008). Both the successor rep-
resentation and these graph-theoretic measures explain the fMRI
adaptation effects observed by Garvert et al. (2017). Nonetheless,
disentangling their unique neural contributions presents a chal-
lenge, primarily due to the high intercorrelations among these
distinct distance metrics.

In sum, our study shows that the hippocampal-entorhinal
system encodes diverse relational structures in which a stimu-
lus is embedded. Both the semantic relationships and transition

structures are represented simultaneously but with distinct spa-
tial organization, even when neither structure is task relevant.
This enables flexible selection of relevant knowledge in order to
guide goal-directed behavior in novel situations (Behrens et al.
2018; Spiers 2020; Whittington et al. 2020).
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