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Abstract 1 

The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other 2 

types of relational information, such as the transition probabilities between objects. However, 3 

objects can often be characterized in terms of different types of relations simultaneously, e.g. 4 

semantic similarities learned over the course of a lifetime as well as transitions experienced over 5 

a brief timeframe in an experimental setting. Here we ask how the hippocampal formation handles 6 

the embedding of stimuli in multiple relational structures that differ vastly in terms of their mode 7 

and timescale of acquisition: Does it integrate the different stimulus dimensions into one 8 

conjunctive map, or is each dimension represented in a parallel map? To this end, we reanalyzed 9 

functional magnetic resonance imaging (fMRI) data from Garvert et al. (2017) that had previously 10 

revealed an entorhinal map which coded for newly learnt statistical regularities. We used a triplet 11 

odd-one-out task to construct a semantic distance matrix for presented items and applied fMRI 12 

adaptation analysis to show that the degree of similarity of representations in bilateral 13 

hippocampus decreases as a function of semantic distance between presented objects. Importantly, 14 

while both maps localize to the hippocampal formation, this semantic map is anatomically distinct 15 

from the originally described entorhinal map. This finding supports the idea that the hippocampal-16 

entorhinal system forms parallel cognitive maps reflecting the embedding of objects in diverse 17 

relational structures.  18 
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Introduction 1 

The hippocampal-entorhinal system builds rich models of the world called cognitive maps that 2 

account for the relationships between locations, events, and experiences (e.g., Behrens et al., 2018; 3 

Moser, Kropff, & Moser, 2008; O’Keefe & Nadel, 1978; Tolman, 1948). Abstracting and 4 

organizing relational information in this way facilitates flexible behavior, enabling generalization 5 

and inference. Beyond classical findings on the importance of cognitive maps for spatial 6 

navigation (e.g., Burgess, Maguire, & O’Keefe, 2002; Ekstrom & Ranganath, 2018; O’Keefe & 7 

Nadel, 1978), they are also thought to organize the relationships between objects (Constantinescu, 8 

O’Reilly, & Behrens, 2016; Garvert, Dolan, & Behrens, 2017; Garvert, Saanum, Schulz, Schuck, 9 

& Doeller, 2021; Morton, Schlichting, & Preston, 2020, Theves, Fernandez, & Doeller, 2019, 10 

2020; Viganò, Rubino, Di Soccio, Buiatti, & Piazza, 2021), to represent temporal distances 11 

(Bellmund, Deuker, & Doeller, 2019; Bellmund, Deuker, Montijn, & Doeller, 2022; Burgess, 12 

Maguire, & O’Keefe, 2002; Schapiro, Kustner, & Turk-Browne, 2012; Solomon, Lega, Sperling, 13 

& Kahana, 2019), and to structure knowledge in the context of social cognition (Park, Miller, Nili, 14 

Ranganath, & Boorman, 2020; Son, Bhandari, & Feldmanhall, 2021; Tavares et al., 2015). While 15 

cognitive mapping is thus proposed to be a universal, domain-unspecific coding principle to 16 

systematically organize knowledge (Behrens et al., 2018; Bellmund, Gärdenfors, Moser, & 17 

Doeller, 2018; Stachenfeld, Botvinick, & Gershman, 2017), it is unclear how the brain handles 18 

stimuli embedded in multiple relational structures that are very distinct in terms of their mode and 19 

timescale of acquisition. Does the hippocampal-entorhinal system form one conjunctive map that 20 

integrates similarities along the different stimulus dimensions or does it form anatomically 21 

separable maps for each stimulus dimension? 22 
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In Garvert et al. (2017), participants acquired new relational knowledge about everyday 1 

objects that were already embedded in semantic structures. Here, participants were trained on 2 

object sequences generated from a pseudo-random walk along a hidden graph. Within the 3 

hippocampal–entorhinal system, the neural representations of the presented objects reflected the 4 

link distance on the graph (Garvert et al., 2017). In this situation, besides the newly learned 5 

transitional probabilities between objects, participants can be assumed to have explicit knowledge 6 

about the semantic relationships between the same objects (e.g., rabbit and dog are both animals) 7 

as acquired over the course of their lifetime. We conjectured that prior semantic knowledge about 8 

objects would be simultaneously mapped in the same system, which also represents knowledge 9 

about transition probabilities.  10 

Here we used a triplet odd-one-out task (Hebart, Zheng, Pereira, & Baker, 2020) to 11 

construct a model of object similarity. We matched the stimuli used in Garvert et al. (2017) with 12 

photographs of the same objects which have different visual features. This allowed us to isolate 13 

the semantic relationships, which reflect high-level conceptual knowledge acquired from 14 

experience, from low-level perceptual attributes of the specific objects (Rosch & Lloyd, 1978; 15 

Tversky, 1977), while maintaining the richness of the visually perceived stimuli. Using fMRI 16 

adaptation analysis on the data by Garvert et al. (2017), we found evidence consistent with a map 17 

of semantic relationships between objects that precisely localized to the hippocampus. Although 18 

both maps were represented in the hippocampal-entorhinal system, this semantic map was 19 

anatomically distinct from the previously described entorhinal map, which coded for newly learnt 20 

statistical regularities. By showing the hippocampal formation maps distinctive types of 21 

relationships simultaneously in parallel maps, our results thus demonstrate that the hippocampal 22 

formation does not form conjunctive maps that integrate similarities across distinct stimulus 23 
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dimensions. Instead – at least in situations where the mode and timescale of acquisition are very 1 

distinct – different stimulus dimensions are organized in anatomically separable maps. 2 

 3 

Results 4 

23 human participants were trained on object sequences whose transition probabilities followed a 5 

discrete, non-spatial graph (Figure 1A, Garvert et al. 2017). Without being consciously aware of 6 

the statistical regularities, participants’ neural activity in the hippocampus and entorhinal cortex 7 

reflected the transitional relationships they had experienced between the objects on a subsequent 8 

day (Figure 1B, 3A). However, the brain may not only represent the newly learned statistical 9 

regularities, but also the semantic relationships between the objects acquired over the course of a 10 

lifetime. Thus, we asked whether this information is also mapped in the same system.  11 

 12 

 13 
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Figure 1. Experimental design. (A) Graph structure used to generate stimulus sequences on day 1 

1. Trial transitions were drawn from random walks along the graph. (B) Objects on reduced graph 2 

presented to participants in the scanner on day 2. Trial transitions were random. In both sessions, 3 
participants performed simple behavioral cover tasks. Figure adapted from Garvert et al. (2017).  4 
 5 

To address this question, we measured the semantic relationship between these objects using a 6 

triplet odd-one out task, where participants were shown three objects on each trial and asked to 7 

select the image that was the least similar to the other two (Figure 2A, Hebart et al., 2020). By 8 

repeatedly varying the third object for a pair of target objects, their similarity could be assessed 9 

in a wide range of different contexts. We first asked a separate group of 128 participants online 10 

to rate the similarities of all 31 objects used in the original study. We then computed object 11 

similarity as the probability of participants choosing two objects together, irrespective of the 12 

context imposed by the third object. To separate the semantic relationships between objects from 13 

the perceptual similarities, we matched our objects (Figure 2B, top rows) to corresponding real-14 

world photographs of the same objects in the THINGS database (Figure 2B, bottom rows; Hebart 15 

et al., 2019). The THINGS database shows photographs of objects embedded in a natural 16 

environment as opposed to simple line drawings of stereotypical objects used in our fMRI study. 17 

In this way, the shared perceptual similarity between objects in these two data sets should be 18 

reduced. The similarity of objects in the THINGS database was assessed by 5,301 participants in 19 

an independent study using the same triplet odd-one-out task, in the context of a total of 1,854 20 

objects (Hebart et al., 2020). The similarity ratings obtained for our objects and the 21 

corresponding objects in the THINGS database were highly correlated (Spearman’s Rho = .89, p 22 

< .001, Figure 2C) as expected if semantic relations are preserved across datasets. 23 

We regressed the matched similarity matrix (x-axis, Figure 2C) onto our original 24 

similarity matrix (y-axis, Figure 2C). By doing this, we were able to separate the variance into 25 
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two parts: (1) the part that could be explained by an independent measure of object similarity 1 

obtained from a matched set of stimuli, and (2) the part that could not be explained by the 2 

independent measure. Although semantic and perceptual features are unlikely to be fully 3 

separable in this way, we consider the first part to primarily reflect the semantic relationships 4 

between our objects that are preserved across different ways of visualizing objects (hereafter: 5 

semantic distance); while the second part reflected a combination of features that are not 6 

accounted for in terms of semantics, including perceptual similarities (hereafter: residual 7 

distance). To visualize the most faithful two-dimensional representation of distances between 8 

objects, we applied multidimensional scaling (MDS) to the two resulting distance matrices. The 9 

semantic MDS reveals that the similarity ratings led to the emergence of object category clusters 10 

(e.g., fruit, animals, man-made objects) and replicates well-known distinctions between 11 

“animate-inanimate” and “natural - man-made” (Hebart et al. 2020, Figure 2D). The residual 12 

distance continued to express differences between man-made and natural objects, however the 13 

overall arrangement was less structured (Figure 2E). Neither the semantic distance nor the 14 

residual distance was correlated with link distance (semantic: Spearman’s Rho mean = .03, SD 15 

= .12, range = -.25 – .30, t22 = 1.04, p = .31); residual: Spearman’s Rho mean = -.03, SD = .09, 16 

range = -.22 – .15, t22 = -1.52, p = .14).  17 
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 1 

Figure 2. Semantic distance constructed using the triplet odd-one-out task. (A) An example 2 

trial of the triplet odd-one-out task. The task measures object similarity as the probability of 3 
participants choosing two objects together, irrespective of the context imposed by the third object 4 

(Hebart et al., 2020). (B) Stimuli used in the odd-one-out task. Top rows: all 31 stimuli from the 5 
original study; bottom rows: a subset of stimuli from the THINGS database, matched with the 31 6 
object stimuli used in the original study. The rating of the matched objects is done in the context 7 
of a total of 1,854 objects (Hebart et al., 2020). (C) Correlation between similarity ratings based 8 
on our own stimuli and ratings based on the corresponding stimuli from the THINGS database 9 

(Spearman’s Rho = .70, p < .001). (D) Visualization of the 31 objects’ semantic distance in a two-10 
dimensional space according to multi-dimensional scaling (MDS). (E) 2D MDS visualization of 11 
the 31 objects’ residual distance.  12 
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Following the approach adopted in the original study, we exploited fMRI adaptation 1 

(Barron, Garvert, & Behrens, 2016; Grill-Spector, Henson, & Martin, 2006) to investigate the 2 

representational similarity for different objects. fMRI adaptation relies on the observation that the 3 

repeated activation of the same population of neurons leads to a suppressed response. In this way, 4 

the amount of suppression can serve as a proxy for the similarity of the underlying neural 5 

representations. In line with the decrease in fMRI adaptation as a function of link distance observed 6 

in the entorhinal cortex (Garvert et al. 2017), we reasoned that in areas representing object 7 

relationships (e.g., semantic relationships), fMRI adaptation should scale with the corresponding 8 

distance measures (i.e., semantic distance). We included link distances, semantic distance, and 9 

residual distance as parametric regressors in the same GLM and looked for brain regions whose 10 

fMRI responses to each object decreased as a linear function of these distance measures to the 11 

preceding object. 12 

We expected both the semantic information and the statistical regularities to be mapped in 13 

the hippocampal formation. Therefore, we focused our analysis on regions within an anatomical 14 

mask comprising bilateral entorhinal cortex, subiculum, and hippocampus (see mask used for 15 

small-volume correction in Supplementary material S1). Areas outside these regions were only 16 

considered significant if they survived whole-brain correction.  17 

The results replicated our original finding of the link distance effect after accounting for 18 

the semantic distance and the residual distance. The fMRI adaptation analysis showed a cluster 19 

bilaterally in the entorhinal cortex (Figure 3A), with the left, but not the right peak surviving small-20 

volume correction within the entorhinal-hippocampal mask (family-wise error (FWE) corrected at 21 

peak level, left peak t22 = 4.44, p = .029, [-18, -19, -25], right peak t22 = 3.50, p = .17, [21, -22, -22 

25]). Critically, we also observed a semantic distance effect in the bilateral hippocampus (Figure 23 
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3B), which was significant in the right hemisphere in the same entorhinal-hippocampal mask (left 1 

peak t22 = 4.10, p = .06, [-27, -34, -10], right peak t22 = 4.69, p = .019, [24, -31, -10]). No region 2 

showed fMRI adaptation effects covarying with residual distance (all ps > .99, FWE corrected on 3 

the cluster level, no suprathreshold cluster).  4 

When we assessed object dissimilarity using our own stimuli, a measure that encompasses 5 

not only semantic, but also perceptual and other types of object relationships, and used this as a 6 

predictor in our fMRI adaptation analysis, we identified a cluster in the visual cortex, whereas a 7 

hippocampal cluster surpassed the cluster-defining threshold, but did not survive correction for 8 

multiple comparisons (Supplementary Material S2). This is consistent with the view that object 9 

similarity ratings are strongly influenced by both perceptual and semantic features (Rosch & 10 

Lloyd, 1978; Tversky, 1977). 11 

While the link distance and the semantic distance are both represented in the 12 

hippocampal formation, they were located in two non-overlapping clusters within this region 13 

(Figure 3C). To investigate this at a more fine-grained level, we defined two functional regions 14 

of interest (ROIs): (1) a bilateral ROI in the entorhinal cortex defined by the link distance effect 15 

(Figure 3A, hereafter: EC ROI), and (2) a bilateral ROI in the hippocampus defined by the 16 

semantic distance effect (Figure 3B, hereafter: HC ROI). We used these two ROIs (both 17 

thresholded at p < .01, uncorrected) to extract parametric estimates from the opposite contrast. 18 

As shown in Figure 3D, the individual semantic distance effect extracted from the EC ROI and 19 

the link distance effect extracted from the HC ROI were not significantly different from 0 20 

(semantic: t22 = -0.25, p = .81; link: t22 = 0.54, p = .60). 21 
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 1 

 2 

Figure 3. Statistical and semantic relationships are represented in non-overlapping clusters 3 
in the hippocampal-entorhinal system. (A) Whole-brain analysis showing a decrease in fMRI 4 
adaptation with link distance in the entorhinal cortex, when link distance, semantic distance and 5 

residual distance are included in the model. (B) Whole-brain analysis showing a decrease in fMRI 6 
adaptation with semantic distance in the hippocampus, when link distance, semantic distance and 7 
residual distance are included in the model. (C) Link distance effect (red) and semantic distance 8 

effect (blue) are represented in non-overlapping clusters. Whole-brain results are displayed using 9 
Slice Display (Zandbelt, 2017) using a dual-coding data visualization approach (Allen, Erhardt, & 10 
Calhoun, 2012), with color indicating the parameter estimates and opacity the associated t 11 
statistics. Solid and dotted contours outline statistically significant clusters for the link and the 12 
semantic effects, respectively. (D) Bottom: The two ROIs defined based on the link distance effect 13 
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in the entorhinal cortex (in red) and the semantic distance effect in the hippocampus (in blue). Top: 1 

boxplot of the parameter estimates for the link distance and semantic distance effects extracted 2 

from the two ROIs. The thick horizontal line inside the box indicates the median, and the bottom 3 
and top of the box indicate the first and third quartiles of each condition. Each dot represents one 4 
participant. The plot is for visualization only, since the contrast used for defining the ROIs is not 5 
independent from the interaction effect of interest here. Both (A) and (B) are thresholded at p < .01, 6 
uncorrected for visualization. 7 

 8 

Together, our results suggest that both recently learned statistical regularities of which 9 

participants have no conscious awareness, as well as long-term semantic relationships that are 10 

explicitly accessible and acquired over the course of a lifetime, are represented in the hippocampal 11 

formation simultaneously, albeit in different subregions: While transition probabilities are 12 

represented in more entorhinal regions, semantic relationships are represented in more 13 

hippocampal regions.  14 

 15 

Discussion 16 

The brain forms cognitive maps of the relationships between landmarks that help an animal 17 

navigate their physical environment (Burgess et al., 2002; Ekstrom & Ranganath, 2018; O’Keefe 18 

& Nadel, 1978; Tolman, 1948). Previous studies have shown that the same organizing principle 19 

also applies to other non-spatial types of relational information (Constantinescu et al., 2016; 20 

Garvert et al., 2017; Garvert et al. 2021; Morton et al., 2020; Theves et al, 2019, 2020; Viganò et 21 

al, 2021). For example, when participants acquire new knowledge about the relationships between 22 

objects by being exposed to experimentally generated object sequences, the hippocampal 23 

formation extracts the associated transition structure and stores it as a cognitive map (Garvert et 24 

al. 2017). However, it is also the case that participants already have existing knowledge about the 25 

semantic relationships between these objects acquired over an entire lifetime. Here we show that 26 

this prior knowledge is also simultaneously mapped in the same neural system that codes for newly 27 
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learned structural information. This suggests a common framework for the representation of 1 

relational knowledge that extends beyond relationships that can be extracted from the statistics of 2 

sequences we experience in the short term, with knowledge acquired over vastly different time 3 

frames (an hour on the previous day as opposed to an entire lifetime) organized in similar ways.  4 

Cognitive mapping is proposed to be an organizing principle that underlies our ability to 5 

generalize and make inferences (Behrens et al., 2018). Here we show that the hippocampal 6 

formation extracts the embedding of a stimulus in multiple relational structures even when neither 7 

stimulus feature is directly task relevant. The representation of both a statistical map and a semantic 8 

map in the same system is remarkable, given their very different timescales and modes of 9 

acquisition (i.e., implicit vs. explicit learning). However, while the two relational structures are 10 

represented in the same neural system, they are not represented in overlapping voxels, suggesting 11 

that the brain extracts separable relational structures in parallel rather than integrating multiple 12 

structures in one compositional map (Spiers, 2020). A representation of separable maps could be 13 

useful in situations where different stimulus dimensions can become relevant for generalization at 14 

different times, enabling the hippocampus to guide generalization flexibly depending on the task 15 

demands (Garvert et al., 2021). Our finding that a semantic map is represented in the hippocampus 16 

is also consistent with previous findings that hippocampal activity reflects distances in semantic 17 

spaces (Estefan et al., 2021; Romero, Barense, & Moscovitch, 2019; Solomon et al., 2019). 18 

Notably, we decoded the semantic map even though we did not explicitly manipulate the semantic 19 

similarity of the stimuli and this information was not task-relevant, demonstrating how prevalent 20 

the representation of relational information is in the hippocampus.  21 

Interestingly, the statistical map is found in the entorhinal cortex whereas the semantic map 22 

is represented in the hippocampus. One potential reason for this segregation may relate to a 23 
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difference in the “age” of the acquired regularities. Whereas the statistical regularities were learnt 1 

on the day prior to scanning, the semantic relationships were acquired over the course of one’s 2 

lifetime. One possibility is that relational memories might transition from the entorhinal cortex 3 

(“new” knowledge) to the hippocampus (“old” knowledge), a suggestion that however contradicts 4 

the conventional view that memories are first encoded in hippocampus and later represented in the 5 

neocortex in a more permanent form of storage (Dudai, Karni, & Born, 2015; Marr, 1971). 6 

Alternatively, the segregation of the two maps might reflect differences in the learning process by 7 

which statistical versus semantic relational knowledge is acquired. The formation of a statistical 8 

map requires learning transitional probabilities between sequential states (Whittington, 9 

McCaffary, Bakermans, & Behrens, 2022). Entorhinal grid cell activity has been suggested to 10 

reflect a principal component decomposition of predictive maps, or successor representations 11 

(Stachenfeld, Botvinick, & Gershman, 2014; Stachenfeld et al., 2017). A representation of the 12 

transition structure in this region is consistent with this account of grid cell function. Conversely, 13 

semantic knowledge is not necessarily acquired in a sequential fashion and might instead reflect 14 

common associations or co-occurrences between objects, a representation much better suited to 15 

putative coding principles underlying hippocampal place cell firing. 16 

In sum, our study shows that the hippocampal-entorhinal system extracts diverse relational 17 

structures in which a stimulus is embedded. Both the semantic and the statistical maps are 18 

separately and simultaneously represented even when neither structure is task relevant. This allows 19 

relevant knowledge to be flexibly selected at a later timepoint in order to guide goal-directed 20 

behavior in novel situations (Behrens et al., 2018; Spiers, 2020; Whittington et al., 2020).  21 

 22 
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Materials and Methods 1 

fMRI study 2 

23 human participants (15 men, meanage = 23.5, SDage = 3.7, rangeage 18-31) were trained on object 3 

sequences whose transitions followed a pseudo-random walk along a graph (Figure 1A). The graph 4 

structure was the same for all participants, with the link distance between objects on the graph 5 

ranging from one to four. For each participant, a subset of 12 objects were selected from a total of 6 

31 objects used in the study, and randomly assigned to the 12 nodes on the graph. Objects within 7 

the same semantic categories were avoided to be assigned to the same participant. In the scanning 8 

session, 7 out of the 12 training objects were used (Figure 1B) to reduce the total number of 9 

stimulus–stimulus transitions and thereby increase statistical power. 10 

 11 

Behavioral experiment of object similarity 12 

Participants 13 

A separate group of 128 workers from the online crowdsourcing platform Amazon Mechanical 14 

Turk took part in a triplet odd-one-out task (55 men, meanage = 42.6, SDage = 11.9, rangeage 20-70). 15 

All workers were located in the United States and provided informed consent. The online research 16 

was approved by the Office of Human Research Subject Protection and conducted following all 17 

relevant ethical regulations, and the workers were compensated financially for their time. 18 

 19 

Stimuli and task 20 

The 31 objects in the original study (Garvert et al., 2017) were used in the triplet odd-one-out task. 21 

All images depict colored and shaded objects and were selected from the “Snodgrass and 22 

Vanderwart” database (Rossion & Pourtois, 2004). 23 
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The task was carried out in sets of 20 trials. Participants could choose how many sets they 1 

would like to take part in. On average, participants performed 140.63 trials (min = 20, max = 1460), 2 

with a median RT of 2221 ms. On each trial, participants were shown three object images side by 3 

side and were asked to select the image that was the least similar to the other two (Figure 2A). 4 

Each object triplet and the order of stimuli were chosen randomly, but such that after collection of 5 

the entire data set each cell in the 31 × 31 similarity matrix had been sampled at least once. The 6 

object similarity was defined as the probability p(i,j) of the participants choosing objects i and j to 7 

belong together, irrespective of context (Hebart et al., 2020). 8 

 9 

fMRI data analysis 10 

Computation of the parametric regressors 11 

For each participant, we compute a link distance matrix and three matrices describing object 12 

relations (i.e., object dissimilarity, semantic distance, residual distance, explained below). 13 

Whereas the link distance matrix (values range from 1 to 4) was identical for all participants 14 

(Figure S2A, left panel), the object similarity matrices were unique for each participant (Figure 15 

S2A, right panel). To turn object similarities into a distance measure, we computed object 16 

dissimilarities by subtracting the similarity values from 1. Therefore, a number close to 1 means 17 

that two objects are dissimilar to each other, whereas a number close to 0 means the objects are 18 

very similar to each other. 19 

The object dissimilarity matrix was derived directly from the triplet odd-one-out task 20 

described above. Given that each participant received a different set of object stimuli in the 21 

training, we standardized the individual 12 * 12 dissimilarity matrices for each participant and 22 

used the z-score values as parametric regressors in the fMRI analysis.  23 
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To isolate semantic relationships, we made use of an independent similarity rating from a 1 

different dataset (Hebart et al., 2020). The rationale is that the part of variance that can be explained 2 

by an independent rating reflects prior semantic knowledge that is independent of the precise visual 3 

display of a particular object. The independent rating is based on 1,854 images from the THINGS 4 

database (Hebart et al., 2019) which depicts photographs of objects embedded in a natural 5 

background, rated by a total of 5,301 participants using the same triplet odd-one-out task. From 6 

the 1,854 images, we selected 31 pictures (Figure 2B) that depict the same objects as the 31 objects 7 

in the original study of Garvert et al. (2017) and computed a sub-matrix of these 31 objects. Since 8 

each fMRI participant was trained on 12 out of the total 31 stimuli, we linearly regressed for each 9 

participant the 12  12 dissimilarity matrix based on object images from the THING database (X 10 

in the regression below, Hebart et al., 2020) onto the 12  12 dissimilarity matrix based on object 11 

images from the original fMRI experiment (Y in the regression, Garvert et al., 2017). Both matrices 12 

were z-scored, therefore no intercept was included in the regression. 13 

Y ~ β * X + residual 14 

We consider β * X to reflect the variance of object dissimilarity that could be explained by 15 

an independent rating, likely to capture mostly semantic relationships. In contrast, the residual 16 

values reflect the variance that is not shared across different visual object stimuli, including 17 

specific perceptual features.  18 

To visualize the object relatedness acquired from the triplet odd-one-out task, we 19 

performed multidimensional scaling (MDS) on the dissimilarity matrices. In the output MDS 20 

(Figures 2D, 2E, S2B), objects are arranged on a two-dimensional space, where the Euclidean 21 

distances reflect the dissimilarities between objects as well as possible. Note that MDS can only 22 

be performed on matrices with positive entries. We therefore subtracted the minimum value of the 23 
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matrix and added 1. The addition of constants does not affect the resulting visualization of 1 

distances.  2 

 3 

fMRI adaptation analysis 4 

We performed two event-related generalized linear models (GLMs) to analyze the fMRI data. In 5 

the GLM for the main analysis, we included three parametric regressors which corresponded to 6 

the link distance (defined as the minimum number of links between the pairs of objects; i.e. 7 

distance 1, 2, or 3) and the semantic and residual distance derived from the ratings of the triplet 8 

odd-one-out task between the object on trial t and the preceding object on trial t-1. In the GLM for 9 

the supplementary analysis, we included the object dissimilarity regressor extracted from the odd-10 

one-out task performed on the original stimuli and the link distance regressor. All regressors were 11 

standardized in the GLMs. No orthogonalization was applied.  12 

Both GLMs contained separate onset regressors for each of the seven objects with a patch 13 

and without a patch. Each onset regressor was accompanied by different parametric regressors. By 14 

analogy to the original analysis, both GLMs included a button press regressor as a regressor of no 15 

interest. Trials associated with a button press and the two subsequent trials were not included in 16 

the main regressors in order to avoid button press-related artifacts. The same six motion regressors 17 

and the 17 physiological regressors (ten for cardiac phase, six for respiratory phase and one for 18 

respiratory) used in the original analysis were also included in the current GLMs. All regressors 19 

were convolved with a canonical hemodynamic response function. Blocks were modeled 20 

separately within the GLMs. Only the non-patch trials were included for our contrasts of interest.  21 

The contrast images of all participants from the first level were analyzed as a second-level random 22 

effects analysis. We report our results at a cluster-defining statistical threshold of p < .01 23 
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uncorrected, combined with small-volume correction (SVC) for multiple comparisons (peak-level 1 

FWE corrected at p < .05). For the SVC procedure, we used an anatomically defined mask 2 

comprising bilateral entorhinal cortex, subiculum, and hippocampus (Supplementary figure S1). 3 

Activations in other brain regions were only considered significant at a level of p < .001 4 

uncorrected if they survived whole-brain FWE correction at the cluster level (p < .05). All 5 

statistical parametric maps presented in the manuscript are unmasked. 6 

To illustrate the non-overlapping clusters for the link distance effect and the semantic 7 

distance effect (Figure 3C), we defined two regions of interest (ROIs) based on the two parametric 8 

estimations from non-patch trials in the main GLM. The link distance effect revealed a cluster in 9 

bilateral entorhinal cortex, which we used to define the EC ROI; the semantic distance effect 10 

revealed a cluster in bilateral hippocampus, which we used to define the HC ROI. For both ROIs 11 

we included all the voxels exceeding a t value of 2.5, corresponding to p < .01. From the two ROIs, 12 

we then extracted parameter estimates for each of the 23 participants for the two effects (Figure 13 

3D). Due to the statistical dependence between the data and the ROI definition, no statistical 14 

inference was made regarding the interaction.  15 

The statistical analysis was done using SPM12 (Wellcome Trust Centre for Neuroimaging, 16 

http://www.fil.ion.ucl.ac.uk/spm) and visualization was done using FSLeyes (Wellcome Centre 17 

for Integrative Neuroimaging, https://git.fmrib.ox.ac.uk/fsl/fsleyes/fsleyes/). The dual coded 18 

visualization of the fMRI data (Figure 3C) used a procedure introduced by Allen et al. (2012) and 19 

implemented by Zandbelt (2017). Clusters in the dual-coded map show brain activities as a 20 

function of the link distance (red) and the semantic distance (blue) simultaneously. The hue 21 

indexes the size of the parameter estimate, and the opacity indexes the unthresholded t values. 22 
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Significant clusters (cluster-level corrected, FWE, p < .05) are encircled in solid (link distance) or 1 

dotted (semantic distance) contours.  2 

 3 

Data and Code Availability 4 

Data and codes of the original study are available on datadryad 5 

(https://doi.org/10.5061/dryad.nk08s).  6 

Additional data and codes for the current follow-up study are available at the Donders Repository 7 

(https://doi.org/10.34973/8m6q-qj39). They will be shared publicly upon manuscript acceptance. 8 
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Supplementary Materials  1 

Supplementary Figure S1: Anatomically defined mask used for small-volume correction 2 

(incl. bilateral entorhinal cortex, subiculum, and hippocampus)  3 

 4 

Supplementary Material S2: Additional analysis of object similarity 5 

To explore the representation of stimulus dissimilarities for the objects we used in our study, we 6 

ran a triplet odd-one-out task (Hebart et al., 2020) in a separate group of 128 participants. 7 

Participants were instructed to select the object that was the least similar to the other two, without 8 

a specific instruction as to whether specific stimulus features such as semantic or perceptual 9 

similarities should guide this decision. Stimulus similarity ratings are therefore likely to be 10 

influenced by both of those stimulus dimensions. We then computed object similarity as the 11 

probability of participants choosing two objects together, irrespective of the context imposed by 12 

the third object and transformed the similarity rating into an object dissimilarity measure by 13 

subtracting each similarity measure from 1. Since every participant was only exposed to a unique 14 

subset consisting of 12 of the 31 objects, the dissimilarity matrix was different for each participant 15 

(Figure S2A, right panel). In contrast, the link distance between objects on the graph was the same 16 
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for all participants (Figure S2A, left panel). It is worth noting that the link distance matrix and the 1 

object dissimilarity matrix did not correlate across participants (Spearman’s Rho mean = .01, SD 2 

= .11, range = -.20 – .25, t22 = 0.34, p = .74). We standardized each individual’s 12 * 12 object 3 

dissimilarity matrix based on the unique set of 12 objects each participant was trained on. A two-4 

dimensional representation of distances between objects in the dissimilarity matrix using MDS 5 

confirms that the objects are closely grouped according to semantic features (e.g., natural - man-6 

made, Figure S2B). In addition, perceptual properties such as object color also influenced 7 

similarity ratings to some degree, suggesting that object similarity ratings reflect a mixture of 8 

perceptual and semantic relationships (Rosch & Lloyd, 1978; Tversky, 1977). 9 

To investigate the representation of these dissimilarity structures in the brain, we set up a 10 

GLM that included the link distance as well as this measure of object dissimilarity. We observed 11 

that fMRI adaptation scaled as a function of object dissimilarity in the visual cortex (FWE 12 

corrected at cluster-level, KE = 86, p = .004, peak t22 = 5.49, [27, -76, 17]). Voxels in the 13 

hippocampal formation also passed the cluster-defining threshold for both the object dissimilarity 14 

effect (Figure S2C) and the link distance effect (Figure S2D). However, neither of them survived 15 

small-volume correction using the hippocampal-entorhinal mask (link: right peak t22 = 3.93, p 16 

= .08, [24, -25, -25] and left peak t22 = 3.40, p = .21, [-18, -19, -25]; object: right peak t22 = 4.01, 17 

p = .07, [24, -31, -10] and left peak t22 = 3.42, p = .21, [-24, -31, -10]). We reason that this might 18 

be due to similarity ratings in this setting reflecting a mixture of semantic and perceptual 19 

similarities.  20 

 21 
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 1 

Supplementary Figure S2. Additional analysis of object similarity. (A) The link distance 2 
matrix (left) and one example object dissimilarity matrix (right) corresponding to the graph 3 

structure and the stimulus set used in the original fMRI study. The link distance matrix was the 4 
same for all participants. The object dissimilarity matrix was unique for each participant. The 5 

black frame indicates the subset of seven objects presented in the scanner and used in the fMRI 6 
analysis. (B) Visualization of the object dissimilarity matrix in two dimensions, according to 7 

multi-dimensional scaling (MDS). More similar objects are located near each other. (C, D) fMRI 8 
adaptation effects of object dissimilarity (C) and link distance (D). Whole-brain analysis 9 
showing a decrease in fMRI adaptation with object dissimilarity in the visual cortex, when link 10 
distance and object dissimilarity are both included as parametric modulators in the model. All 11 
images are thresholded at p < .01, uncorrected for visualization. 12 
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