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Abstract 
Understanding actions performed by others requires us to integrate different types of information 
about people, scenes, objects, and their interactions. What organizing dimensions does the mind 
use to make sense of this complex action space? To address this question, we collected intuitive 
similarity judgments across two large-scale sets of naturalistic videos depicting everyday actions. 
We used cross-validated sparse non-negative matrix factorization (NMF) to identify the structure 
underlying action similarity judgments. A low-dimensional representation, consisting of nine to 
ten dimensions, was sufficient to accurately reconstruct human similarity judgments. The 
dimensions were robust to stimulus set perturbations and reproducible in a separate odd-one-out 
experiment. Human labels mapped these dimensions onto semantic axes relating to food, work, 
and home life; social axes relating to people and emotions; and one visual axis related to scene 
setting. While highly interpretable, these dimensions did not share a clear one-to-one 
correspondence with prior hypotheses of action-relevant dimensions. Together, our results reveal 
a low-dimensional set of robust and interpretable dimensions that organize intuitive action 
similarity judgments and highlight the importance of data-driven investigations of behavioral 
representations. 
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Introduction 
Our ability to rapidly recognize and respond to others’ actions is remarkable, given the wide variety 
of human behaviors that span different contexts, goals, and motor sequences. When we see a 
person performing an action, we integrate visual information, social cues and prior knowledge to 
interpret the event, a task that still challenges state-of-the-art machine learning algorithms. How 
does the mind make sense of this complex action space?  

Previous work on action understanding in the mind and brain has focused on hypothesis-driven 
efforts to identify critical action features and their neural underpinnings. This work has highlighted 
semantic content (Lingnau & Downing, 2015; Tucciarelli et al., 2019), social and affective features 
(Dima et al., 2022; Tarhan & Konkle, 2020; Wurm et al., 2017), and visual features (Tarhan & 
Konkle, 2020; Wurm & Caramazza, 2019) as essential components in visual action understanding. 
However, such an approach requires the experimenter to pre-define actions and their potential 
organizing dimensions, necessarily limiting the hypothesis space. Action categories have 
commonly been defined based on the verbs they represent (Bedny & Caramazza, 2011) or 
everyday action categories as listed, for example, in the American Time Use Survey (ATUS; Dima 
et al., 2022; Tarhan et al., 2021; Tarhan & Konkle, 2020). Given the diversity of actions, a low-
dimensional, flexible representation may be a more efficient way to organize them in the mind and 
brain; but generating the hypotheses that could uncover this representation remains difficult, 
especially for naturalistic stimuli that vary along multiple axes. 

Data-driven methods provide an alternative to pre-defined representational spaces and have 
achieved great success in mapping perceptual and psychological representations in other visual 
domains. In object recognition, a data-driven computational model revealed 49 interpretable 
dimensions capable of accurately predicting human similarity judgments (Hebart et al., 2020). 
Recent work has extended this method to near scenes, known as reachspaces, and identified 30 
dimensions capturing their most important characteristics (Josephs et al., 2021). Low-dimensional 
representations have been also proposed that explain how people perceive others and their mental 
states (Gray et al., 2007; Thornton & Tamir, 2020) or psychologically meaningful situations 
(Parrigon et al., 2016; Rauthmann et al., 2014).  

To date there has been only limited data-driven work in the action domain. Using principal 
component analysis (PCA) of large-scale text data, a low-dimensional taxonomy of actions has 
been shown to explain neural data and human action judgments (Thornton & Tamir, 2021a), as 
well as guide predictions about actions (Thornton & Tamir, 2021b). However, since this taxonomy 
was generated from text data, most of these dimensions were relatively abstract (e.g. creation, 
tradition, spiritualism), and it is unclear whether a similar set of dimensions would emerge from 
visual action representations. In the visual domain, six broad semantic clusters were shown to 
explain semantic similarity judgments of controlled action images (Tucciarelli et al., 2019), 
suggesting that actions may be semantically categorized at the superordinate level. However, it 
remains unclear how this finding would generalize to more natural and diverse stimulus sets. 
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We analyzed a dataset containing unconstrained behavioral similarity judgments of two sets of 
natural action videos from the Moments in Time dataset (Monfort et al., 2019) collected in our 
prior study (Dima et al., 2022). Behavioral similarity has often been used as a proxy for mental 
representations (Edelman, 1998; Murphy, 2002; Shepard, 1987) and has been shown to correlate 
with neural representations (Bankson et al., 2018; Charest et al., 2014; Cichy et al., 2019; Proklova 
et al., 2019; Wardle et al., 2016). Specifically, the perceived similarity of actions has been found 
to map onto critical action features, such as their goals or their social-affective content, as well as 
onto the structure of neural patterns elicited by actions (Dima et al., 2022; Tarhan et al., 2021; 
Tucciarelli et al., 2019).  

Here, we employ a data-driven approach, sparse non-negative matrix factorization (NMF; Hoyer, 
2004) to recover the dimensions underlying behavioral similarity. We show that a cross-validated 
approach to dimensionality reduction produces a low-dimensional representation that is 
interpretable by humans and generalizes across stimulus categories. Importantly, the dimensions 
recovered by NMF are more robust than those generated by the more commonly used PCA. The 
non-negativity constraint is known to yield a parts-based description, supporting dimension 
interpretability (Lee & Seung, 1999).  

Using human labeling and semantic embeddings, we find that dimensions map to interpretable 
visual, semantic, and social axes and generalize across two experiments with different 
experimental structure, stimuli, and participants. Together, our results highlight the semantic 
structure underlying intuitive action similarity and show that cross-validated NMF is a useful tool 
for recovering interpretable, low-dimensional cognitive representations. 

 

  
Figure 1. Analysis overview. A. Using non-negative matrix factorization, we identified the optimal lower-
dimensional approximation of a behavioral similarity matrix. This uncovered the interpretable dimensions 

underlying the perceived similarity of naturalistic action videos. B. NMF cross-validation procedure. Individual 
similarity ratings were assigned to a cross-validation fold before averaging the input matrices for each fold. The 

sparsity parameters (s) were optimized using two-fold cross-validation on ~60% of the data, with a separate ~30% 
used to determine the number of dimensions (k), and a hold-out set of ~10% used for final evaluation.  
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Results 

NMF recovers robust dimensions  

We analyzed two datasets consisting of three-second naturalistic videos of everyday actions from 
the Moments in Time dataset (Monfort et al., 2019). In two previously conducted experiments 
(Dima et al., 2022), participants arranged two sets of 152 and 65 videos from 18 everyday action 
categories (ATUS, 2019) according to their unconstrained similarity. The first dataset also 
included videos of natural scenes as a control category (see Stimuli). 

We used sparse non-negative matrix factorization (Hoyer, 2002, 2004) with a nested cross-
validation approach (see Methods) to recover the optimal number of underlying dimensions in the 
behavioral data (Figure 1). This approach combines sparsity and non-negativity constraints to 
generate feature embeddings that can capture both categorical and continuous information (see 
Methods; Hebart et al., 2020; Navarro & Lee, 2004; Zheng et al., 2019). Using only behavioral 
similarity matrices as its starting point, this method can thus recover interpretable features that 
may shed light on how actions are organized in the mind. 

Despite differences in stimulus set size and sampling, both experiments were characterized by 
similar numbers of dimensions (9 and 10 respectively; Supplementary Figure 1) with a sparsity of 
0.1. In Experiment 1, the final NMF reconstruction of the entire training set correlated well with 
the training data (Kendall’s 𝜏! = 0.46) and the held-out data (𝜏!  = 0.19, true 𝜏! = 0.14). 
Performance was better in Experiment 2, with a training 𝜏! = 0.75 and a hold-out 𝜏! = 0.46 (true 
𝜏! = 0.45).  

Importantly, the dimensions were robust to systematic perturbations in the underlying stimulus 
sets (Figure 2). Even after removing critical stimulus categories (such as all outdoor or indoor 
videos or certain action categories), the NMF procedure resulted in similar numbers of dimensions 
in both experiments (mean±SD 8.4±0.89 and 8.2±1.64). All dimensions were significantly 
correlated to those resulting from the full stimulus set, suggesting that the NMF results generalize 
even after modifying the compositon of the underlying datasets.  

NMF dimensionality varied less as a function of stimulus set size (average k range 6-8.3) than as 
a function of number of action categories (average k range 3.6-10.2; Supplementary Figure 3). 
Further, NMF dimensions did not map directly onto any single visual, social, or action feature 
identified in our previous work (Dima et al., 2022; Supplementary Figure 2), suggesting that this 
method is able to capture additional information not revealed by a hypothesis-driven approach.  

Finally, NMF performance was better than that achieved by an equivalent cross-validated analysis 
using PCA, which recovered 8 dimensions in both experiments (Experiment 1: training 𝜏! = 0.41, 
hold-out 𝜏! = 0.16; Experiment 2: training 𝜏! = 0.63, hold-out 𝜏! = 0.41). In the robustness 
analysis, the number of dimensions generated by PCA after removing critical stimulus categories 
was less reliable than those obtained with NMF in Experiment 1 (Experiment 1: 7.8±2.49 vs. 
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8.4±0.98; Experiment 2: 6±1.58 vs 8.2±1.64). While on average correlations with the original 
dimensions were high, their variance was also more than twice as high as that obtained with NMF 
(Supplementary Figures 4-5). This suggests that dimensions recovered with PCA are more 
sensitive to variations in the underlying stimulus set than those found with NMF.   

 
Figure 2. NMF dimension robustness. A. The NMF procedure was repeated after removing key stimulus categories 

from the behavioral RDM from Experiment 1. Each dot shows the maximal correlation between each dimension 
obtained in the control analysis and any of the original dimensions with the same stimuli removed (repeats allowed).  

The grey rectangle depicts the chance level (min-max range). B. As for A., for Experiment 2. 

NMF recovers interpretable dimensions 

The hypothesis-neutral dimensions generated by NMF suggest a potential structure to the 
behavioral space of action understanding. However, further validation is needed to show whether 
(1) these dimensions are reproducible and (2) to what degree they are interpretable. 

To test reproducibility, participants in an online experiment selected the odd video out of a group 
consisting of seven highly weighted videos and one low-weighted video along each dimension. In 
a separate online experiment to test interpretability, participants were asked to provide up to three 
labels for each dimension after viewing the eight highest and eight lowest weighted videos. Their 
labels were quantitatively evaluated using FastText (Bojanowski et al., 2016), a 300-dimensional 
word embedding pretrained on 1 million English words. 

All dimensions were reproducible in the odd-one-out experiments (Figure 3A; all P<0.004), 
though participants performed significantly better on average in Experiment 1 (mean accuracy 
0.8±0.13) than in Experiment 2 (mean accuracy 0.61±0.13, t(15.82) = 3.69, P=0.002).  
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 Figure 3. Behavioral results. A. Accuracy on the odd-one-out task for each dimension plotted against the chance 

level of 12.5% (horizontal line). B. Proportion of participants who agreed on the top label for each dimension, where 
agreement is defined as a word embedding dissimilarity in the 10th percentile within all dimensions in both 
experiments. The horizontal line marks a chance level based on embedding dissimilarity across different 

dimensions. 

 

Participants’ labels were consistent for most dimensions (Figure 3B). Agreement, as measured via 
word embeddings, was higher in Experiment 1 (mean proportion 0.5±0.2) than in Experiment 2 
(mean proportion 0.34±0.17), though this difference was not significant (t(15.78) = 1.84, P=0.08).  

The most common labels (Figure 4) captured different types of information, ranging from visual 
(nature/outdoors), to action-related (eating, cleaning, working), as well as social and affective 
(children/people, talking, celebration/happiness, chaos). Dimensions in Experiment 2 included 
more social information overall, with four dimensions labeled with social or affective terms 
(talking, people, celebration, chaos), compared to one in Experiment 1 (children). Although many 
dimensions reflected action categories included in the dataset (eating, cleaning, working, driving, 
reading) or labeled features that explained the most variance our previous experiment (relating to 
people and affect), the information they provided was richer than the a priori category labels and 
crossed predefined category boundaries. For example, some videos were highly rated along several 
different dimensions (e.g. work and learning), thus capturing the complexity of naturalistic stimuli 
which often depict several actions or lend themselves to different interpretations.  
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Figure 4. Label correspondence across experiments. Wordclouds showing the labels assigned by participants to 
each NMF dimension in Experiment 1 (left) and Experiment 2 (right), with larger font sizes representing more 

frequent labels. Bars connect dimensions from Experiment 1 to their most related dimensions from Experiment 2. 
The values shown are normalized relative similarities. Dimensions from Experiment 1 are sorted in descending 

order of their summed weights, while those from Experiment 2 are organized for clarity of visualization. 
 

Further, not all action categories were reflected in NMF dimensions, suggesting that certain action 
categories are more important than others in organizing behavior. Certain action categories were 
absorbed by others (e.g. eating included both eating and preparing food), while other related 
actions remain separated (e.g. work was split into office work vs chores/cleaning).  

A shared semantic space 

To better understand the relationship between dimensions revealed by the two datasets, we 
calculated Euclidean distance between averaged word embeddings for dimensions in each 
experiment (see Methods). This analysis revealed several dimensions that were present in both 
datasets: eating, nature/outdoors, learning/reading, chores/cleaning, and work (Figure 5). 
Furthermore, some dimensions were moderately related to several others: games: people, 
celebration; work: talking, working; reading: working, learning. In Experiment 1, the only 
dimension that did not have a counterpart in Experiment 2 was driving, possibly because of the 
low number of driving videos in Experiment 2.  

 

 
 

Figure 5. T-SNE plot displaying the distances between the averaged embeddings corresponding to each dimension 
from both experiments in a 2D space. Eating, nature, cleaning, reading, and work are the dimensions that most 

clearly replicate across experiments. 
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Discussion 
 
Here, we used sparse non-negative matrix factorization to recover a low-dimensional 
representation of intuitive action similarity judgments across two naturalistic video datasets. This 
resulted in robust and interpretable dimensions that generalized across experiments. Our results 
highlight the visual, semantic and social axes that organize intuitive visual action understanding. 

Non-negative matrix factorization as a viable approach to understanding similarity 
judgments 

In the visual domain, it is reasonable to assume that features can be either absent or present to 
variable degrees, and that they can be additively combined to characterize a stimulus. Previous 
work has demonstrated that sparsity and positivity constraints enable the detection of interpretable 
dimensions underlying object similarity judgments (Hebart et al., 2020). Here, we showed that a 
different approach with the same constraints can recover robust, generalizable and interpretable 
dimensions of human actions. As opposed to those recovered for objects, the action dimensions 
were only moderately sparse, potentially due to the naturalistic nature of our stimuli, with many 
of them reflecting a combination of different dimensions. However, optimizing sparsity enabled 
us to strike the right balance between categorical and continuous descriptions of our data, thus 
capturing a rich underlying feature space (Hebart et al., 2020; Navarro & Lee, 2004; Zheng et al., 
2019).  

Our approach recovered a similar number of dimensions across the two experiments (ten and nine), 
despite their different stimulus set sizes (152 vs. 65 videos). While the dimensions all had an 
interpretable, semantic description, none mapped directly onto previously used visual, semantic, 
or social features, suggesting that a data-driven approach can uncover additional information 
beyond hypothesis-driven analyses. Furthermore, the dimensions generalized across important 
stimulus categories like action category and scene setting (Figure 2).  

While a cross-validated PCA analysis uncovered a similar number of dimensions (eight), there 
was higher variance in the number and content of dimensions obtained after manipulating stimulus 
set composition (Supplementary Figures 4-5). Visual inspection of the dimensions also suggested 
that they may be less interpretable than those uncovered by sparse NMF. For example, two 
dimensions in Experiment 1 appeared to depict driving videos as the highest-weighted, yet these 
were interspersed with videos from different categories (e.g. cooking or socializing) that would 
make these dimensions difficult to label. The NMF driving dimension, on the other hand, showed 
the highest weights for the eight driving videos present in the dataset. Together, these results 
suggest that the positivity and sparsity constraints applied by NMF enable it to recover more robust 
and interpretable components from human behavioral data than PCA. These benefits are likely to 
extend to neural data, as suggested by the recent application of NMF to reveal novel category 
selectivity in human fMRI data (Khosla et al., 2022). 

Mapping internal action representations 
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We validated the resulting NMF dimensions in separate behavioral experiments. All dimensions 
were reproducible in an odd-one-out task (Figure 3A) and consistently labeled by participants, as 
quantified through semantic embeddings (Figure 3B). We visualized the most commonly assigned 
labels and assessed how they related to each other across the two experiments.  

These analyses revealed several interpretable and reproducible dimensions, including those related 
to environment (nature/outdoors) and common everyday actions (work, cleaning/chores, eating, 
reading/learning). Importantly, these semantic distinctions emerged in the absence of a semantic 
task: participants were free to use their own criteria to define similarity, and the repetition of video 
pairs across multiple trials meant that different features could be used for judging similarity 
throughout the task. A previous data-driven analysis of semantic action similarity judgments found 
six clusters of actions related to locomotion, cleaning, food, leisure, and socializing (Tucciarelli et 
al., 2019). Here, we found that some semantic categories emerged in the absence of an explicit 
task, while other dimensions reflected visual or social-affective features. Indeed, several 
dimensions were given labels pertaining to people (children/family, talking, people), highlighting 
the social structure of the similarity data revealed by our previous hypothesis-driven work (Dima 
et al., 2022).  

Importantly, the NMF procedure did not simply return the action categories used to curate the 
dataset, and in fact none of the dimensions provided a one-to-one correspondence with semantic 
action category (Figures 4-5). Instead, the dimension labels suggest that certain action categories 
were more salient than others (e.g. work or eating), while others tended to be grouped together 
based on other critical features. For example, activities that take place outdoors, like hiking and 
certain sports, were grouped together under a nature/outdoors dimension. In Experiment 1, this 
dimension included control videos depicting natural scenes, while in Experiment 2, this dimension 
emerged in the absence of such control videos, suggesting that the natural environment is a salient 
organizing feature in itself (Figure 4). In Experiment 2, videos depicting different actions were 
grouped together based on social or affective features like communication (talking face-to-face or 
on the phone) or negative affect (the chaos dimension, present, among others, in videos of people 
crying or fighting). This outcome is particularly important when dealing with naturalistic stimuli, 
where the actions depicted often belong to multiple categories (e.g. talking+eating or 
fighting+driving). In this case, a semantic model that does not take these complexities into account 
would fail to explain the behavioral data. 

The dimension labels revealed differences as well as similarities between the two experiments. 
Notably, dimensions in Experiments 2 included more social-affective information (Figure 4), 
despite the fact that the two stimulus sets included the same action categories and were well-
matched along social and affective dimensions (see Dima et al., 2022). However, the stimulus set 
in Experiment 2 was smaller, and stimulus sampling was conducted differently across the two 
experiments, resulting in more reliable similarity judgements in Experiment 2 (see Methods: 
Multiple arrangement). Despite these differences, the majority of dimensions correlated across 
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experiments, suggesting that the NMF reconstructions form a shared semantic space, emerging in 
spite of stimulus set and sampling differences across experiments.  

 

From actions to event representations 

How should action categories be defined? This is a challenging question, particularly given 
neuroimaging evidence that actions are processed in the brain at different levels of abstraction 
(Dima et al., 2022; Iordan et al., 2015; Spunt et al., 2016). Our results suggest that coarse semantic, 
visual, and social distinctions organize internal representations. The ACT-FAST taxonomy 
derived from data-driven text analysis proposed six broad distinctions (Thornton & Tamir, 2021a); 
however, our dimensions are more concrete and specific, likely reflecting our input of visually 
depicted everyday human actions. Two dimensions (food and work) emerged in both the text data 
and our two video datasets. This opens exciting avenues for research into visual and language-
based action understanding and whether they share a conceptual taxonomy. 

Relatedly, stimulus selection is the biggest factor in determining the structure of similarity 
judgments. Here, both stimulus sets represented 18 everyday action categories based on the 
American Time Use Survey, curated so as to minimize visual confounds. While the number of 
stimuli does not impact the dimensionality of the final NMF reconstruction, the number of action 
categories does (Supplementary Figure 3), and thus an accurate map of internal action 
representations will depend on comprehensive sampling of the relevant action space. Our results 
highlight a number of critical dimensions that organize how we judge the most common everyday 
actions; however, future research should expand this with datasets that sample actions in different 
ways, taking into account cultural and group differences in how we spend our time. 

The low dimensionality of the NMF reconstruction may seem surprising. Actions bridge visual 
domains, including scenes, objects, bodies and faces, and thus vary along a wide range of features. 
Furthermore, our use of naturalistic videos adds a layer of complexity compared to previous work 
using still images. However, a low-dimensional internal representation is more likely to enable the 
efficient and flexible action recognition that guides human behavior.  

Together, our results highlight the low-dimensional structure that supports human action 
representations, and open exciting avenues for future research. Our stimuli and the resulting 
dimensions bridge the boundary between actions and events, suggesting that our data-driven 
approach can be extended beyond specific visual domains to investigate how conceptual 
representations emerge in the mind and brain. 
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Methods 

Stimuli 

We analyzed two video datasets (Dima et al., 2022), each consisting of three-second naturalistic 
videos of everyday actions from the Moments in Time dataset (Monfort et al., 2019).  

The videos were selected to represent the following 18 common action categories based on the 
American Time Use Survey (ATUS, 2019): childcare; driving; eating; fighting; gardening; 
grooming; hiking; housework; instructing; playing games; preparing food; reading; religious 
activities; sleeping; socializing; sports; telephoning; and working. The dataset used in Experiment 
1 included 152 videos, with 8 videos per action category and 8 control videos depicting natural 
scenes or objects. The dataset used in Experiment 2 included 65 videos, with 3-4 videos per action 
category. For more details, see Dima et al., 2022. 

Participants 

We analyzed data from two previously conducted multiple arrangement experiments (Dima et al., 
2022). Experiment 1 involved 374 participants recruited via Amazon Mechanical Turk (300 after 
exclusions, located in the United States, gender and age not collected). 58 participants recruited 
through the Department of Psychological and Brain Sciences Research Portal at Johns Hopkins 
University took part in Experiment 2 (53 after exclusions, 31 female, 20 male, 1 non-binary, 1 not 
reported, mean age 19.38±1.09). 

Two experiments were conducted to validate the dimensions resulting from Experiments 1 and 2. 
54 participants validated the dimensions from Experiment 1 (51 after exclusions, 33 female, 13 
male, 1 non-binary, 4 not reported, mean age 19.25±1.18) and a different set of 54 participants 
validated the dimensions from Experiment 2 (51 after exclusions, 37 female, 11 male, 3 not 
reported, mean age 20.12±1.78). All subjects were recruited through the Department of 
Psychological and Brain Sciences Research Portal at Johns Hopkins University.  

All procedures for online data collection were approved by the Johns Hopkins University 
Institutional Review Board, and informed consent was obtained from all participants. 

Multiple arrangement 

To measure the intuitive similarity between videos depicting everyday action events, we 
implemented a multiple arrangement task using the Meadows platform (www.meadows-
research.com). Participants arranged the videos inside a circular arena according to their similarity. 
In order to capture intuitive, natural behavior, we did not define or constrain similarity. An adaptive 
algorithm ensured that different pairs of videos were presented in different trials, until a sufficient 
signal-to-noise ratio was achieved for each distance estimate. Behavioral representational 
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dissimilarity matrices (RDM) were then constructed using inverse multi-dimensiomal scaling 
(Kriegeskorte & Mur, 2012). See Dima et al., 2022 for more details on the experimental procedure.  

In Experiment 1, different subsets of 30 videos from the 152-video set were shown to different 
participants. The resulting behavioral RDM contained 11,476 video pairs with an average of 
11.37±3.08 ratings per pair.  

In Experiment 2, participants arranged all 65 videos. The resulting behavioral RDM contained 
2,080 video pairs with 53 ratings per pair. 

Non-negative matrix factorization (NMF) 

We used a data-driven approach, sparse NMF (Hoyer, 2002, 2004), to investigate the dimensions 
underlying action representations. This method has two important advantages over other forms of 
matrix decomposition, such as principal component analysis (PCA).  

In aiming to represent each action video through a combination of underlying features, some of 
these may be assumed to be categorical. Such features would be present in some of the videos, but 
not in others, such that participants would arrange videos from the same category close together, 
and those outside the category farther apart. Sparse NMF applies sparsity constraints, allowing us 
to detect such categorical features that may group specific actions together.  

However, the degree to which a feature is present may also distinguish certain actions from others, 
especially for features that capture non-categorical information. By enforcing positivity, NMF 
recovers continuous features with interpretable numerical values, reflecting the degree to which 
each feature is present in each stimulus. These two constraints thus allow both categorical and 
continuous structure to emerge, an approach well-suited to capture how real-world stimuli are 
represented in the mind (Navarro & Lee, 2004; Zheng et al., 2019). 

Given a data matrix 𝑉, NMF outputs a basis vector matrix 𝑊 and a coefficient matrix 𝐻 with 
specified levels of sparsity and with 𝑘 dimensions, such that 𝑉 ≈ 𝑊𝐻. Since NMF can output 
different results when initialized with random matrices, we used non-negative singular value 
decomposition for initialization (Boutsidis & Gallopoulos, 2008).  

We first converted the behavioral RDM to a similarity matrix as used in symmetric applications 
of NMF (Kuang et al., 2012). As this matrix was symmetric, the output matrices were highly 
correlated (Pearson’s r>0.93), leading in practice to a similar solution to that given by symmetric 
NMF, where 𝑊 = 𝐻". We used nested cross-validation on ~90% of the data for parameter 
selection, with the rest of the data (9.52% in Exp 1 and 9.43% in Exp 2) held out to evaluate the 
final performance (Figure 1B).  

In Experiment 1, cross-validation was implemented by leaving out one individual similarity rating 
for each pair of videos (orange in Figure 1B). Since different subjects had arranged different 
subsets of videos, this helped ensure sufficient data per pair of videos and cross-validation fold. 
The training similarity matrix was then created by averaging the remaining ratings for each pair. 
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Any missing datapoints within a fold were imputed (no more than 0.2% of any given similarity 
matrix).   

In Experiment 2, cross-validation was implemented across participants, and there were no missing 
datapoints. The final hold-out matrix included the data of five participants. 

The two sparsity parameters for W and H were selected using two-fold cross-validation on two 
thirds of the training data. To speed up computation, we only tested combinations of sparsity 
parameters (s) ranging between 0 (no sparsity) and 0.8 (80% sparsity) in steps of 0.1. We selected 
the combination with maximal accuracy across the average of both folds, defined as the Kendall’s 
𝜏! correlation between the reconstructed 𝑊𝐻 matrix and the test matrix. This analysis was repeated 
for different numbers of dimensions (𝑘) up to 150 in Experiment 1 and 65 in Experiment 2 (just 
below the maximum number of videos in each experiment). The best combination of sparsity 
parameters was applied to the remaining one third of the training data.  

Five iterations of the above cross-validation for parameter selection were performed, and the best 
number of dimensions was selected using the average performance curve on the held-out training 
set. To avoid overfitting, we identified the elbow point in this performance curve, defined as the 
point maximally distant from a line linking the two ends of the curve.  

The NMF procedure was then reinitialized with the output of the first cross-validation fold and 
rerun on the whole training set (90% of the data) with the selected combination of parameters. The 
held-out 10% of the data was used to evaluate performance.  

Control analyses relating NMF dimensions to stimulus categories 

We performed a post-hoc control analysis to assess the robustness of NMF dimensions to 
perturbations in the stimulus set. The NMF procedure was repeated after leaving out key stimulus 
categories that correlated with identified NMF dimensions (outdoors, indoors, childcare, driving, 
and fighting). To ensure these stimulus categories did not drive results, the dimensions obtained 
from each control analysis were correlated to the original dimensions. The correlations were then 
tested against chance using one-tailed randomization testing with 1000 iterations of component 
matrix shuffling.  

To evaluate whether NMF dimensions captured any obvious stimulus features (e.g. scene setting, 
action category or sociality), we assessed the correlation between each NMF dimension and 12 
visual, action-related, and social features (Supplementary Figure 2; Dima et al., 2022). 

Control PCA analysis 

To asssess whether NMF provides an advantage over the more commonly used PCA, we 
conducted a similar cross-validated analysis using PCA, and assessed the resulting reconstruction 
accuracy and robustness to stimulus set perturbations in both experiments. The cross-validation 
procedure was exactly the same, except that no search for sparsity parameters was conducted. 
Instead, only the number of dimensions (k) was selected using two-fold cross-validation on the 
training data (~90% of the data). 
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Dimension validation 

We used two tasks in two separate online experiments (corresponding to Experiments 1 and 2) to 
assess the interpretability of NMF dimensions in separate participant cohorts. We presented the 
eight highest weighted and eight lowest weighted videos along each dimension obtained from 
NMF as stimuli to the subjects. The experiment was implemented in JavaScript. 

First, participants were asked to select the odd video out of a group consisting of seven highly 
weighted videos and one low-weighted video (odd-one-out) for a given dimension. This was done 
20 times for each dimension with random resampling (from the top and bottom eight) of the videos 
shown. Participants were excluded if they did not achieve above-chance performance (over 12.5%) 
on catch trials involving a natural scene video as the odd-one-out among videos containing people. 
Dimensions were considered reproducible if participants achieved above-chance accuracy in 
selecting the odd-one-out (sign permutation testing, 5000 iterations, omnibus-corrected for 
multiple comparisons).  

After completing this task, participants were asked to provide up to three labels (words or short 
phrases) for each dimension based on a visual inspection of the eight highest and eight lowest 
weighted videos.  

Semantic analyses 

We visually inspected the labels provided by participants to correct spelling errors and identify 
cases where pairs of antonyms were used to label a dimension (e.g. nature vs home); in these cases, 
we only kept the first label. Next, we visualized the labels by creating word clouds of the most 
common labels using the MATLAB wordcloud function. 

To quantify participant agreement on labels, we used FastText (Bojanowski et al., 2016), a 300-
dimensional word embedding pretrained on 1 million English words. Embeddings were generated 
for each of the words and phrases provided by participants. Euclidean distances were then 
calculated across all labels within each dimension. Labels were considered related if the distance 
between them was in the 10th percentile across dimensions and experiments (below a threshold of 
d = 1.2). To generate a chance level for participant agreement, we calculated the proportion of 
related labels across different dimensions.  

Finally, we assessed whether the NMF dimension labels replicated across the two experiments. To 
generate a dissimilarity matrix, embeddings were averaged across labels within each dimension 
before calculating Euclidean distances between dimensions. This allowed us to visualize which 
dimensions were most semantically related across experiments.  

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509054
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
 
ATUS. (2019). American Time Use Survey. In United States Department of Labor. Bureau of 

Labor Statistics. 
Bankson, B. B., Hebart, M. N., Groen, I. I. A., & Baker, C. I. (2018). The temporal evolution of 

conceptual object representations revealed through models of behavior, semantics and deep 
neural networks. NeuroImage, 178(May), 172–182. 
https://doi.org/10.1016/j.neuroimage.2018.05.037 

Bedny, M., & Caramazza, A. (2011). Perception, action, and word meanings in the human brain: 
The case from action verbs. In Annals of the New York Academy of Sciences (Vol. 1224, 
Issue 1, pp. 81–95). Blackwell Publishing Inc. https://doi.org/10.1111/j.1749-
6632.2011.06013.x 

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with 
Subword Information. Transactions of the Association for Computational Linguistics, 5, 
135–146. https://doi.org/10.1162/tacl_a_00051 

Boutsidis, C., & Gallopoulos, E. (2008). SVD based initialization: A head start for nonnegative 
matrix factorization. Pattern Recognition, 41(4), 1350–1362. 
https://doi.org/10.1016/j.patcog.2007.09.010 

Charest, I., Kievit, R. A., Schmitz, T. W., Deca, D., Kriegeskorte, N., & Ungerleider, L. G. 
(2014). Unique semantic space in the brain of each beholder predicts perceived similarity. 
Proceedings of the National Academy of Sciences of the United States of America, 111(40), 
14565–14570. https://doi.org/10.1073/pnas.1402594111 

Cichy, R. M., Kriegeskorte, N., Jozwik, K. M., van den Bosch, J. J. F., & Charest, I. (2019). The 
spatiotemporal neural dynamics underlying perceived similarity for real-world objects. 
NeuroImage, 194(July 2018), 12–24. https://doi.org/10.1016/j.neuroimage.2019.03.031 

Dima, D. C., Tomita, T. M., Honey, C. J., & Isik, L. (2022). Social-affective features drive 
human representations of observed actions. ELife, 11. https://doi.org/10.7554/ELIFE.75027 

Edelman, S. (1998). Representation is representation of similarities. The Behavioral and Brain 
Sciences, 21(4), 449–498. https://doi.org/10.1017/S0140525X98001253 

Gray, H. M., Gray, K., & Wegner, D. M. (2007). Dimensions of mind perception. Science, 
315(5812), 619. https://doi.org/10.1126/science.1134475 

Hebart, M. N., Zheng, C. Y., Pereira, F., & Baker, C. I. (2020). Revealing the multidimensional 
mental representations of natural objects underlying human similarity judgements. Nature 
Human Behaviour, 4(11), 1173–1185. https://doi.org/10.1038/s41562-020-00951-3 

Hoyer, P. O. (2002). Non-negative sparse coding. Neural Networks for Signal Processing - 
Proceedings of the IEEE Workshop, 2002-Janua, 557–565. 
https://doi.org/10.1109/NNSP.2002.1030067 

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of 
Machine Learning Research, 5, 1457–1469. 

Iordan, M. C., Greene, M. R., Beck, D. M., & Fei-Fei, L. (2015). Basic Level Category Structure 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509054
http://creativecommons.org/licenses/by-nc-nd/4.0/


Emerges Gradually across Human Ventral Visual Cortex. Journal of Cognitive 
Neuroscience, 27(7), 1427–1446. https://doi.org/10.1162/jocn_a_00790 

Josephs, E. L., Hebart, M. N., & Konkle, T. (2021). Emergent dimensions underlying human 
perception of the reachable world. PsyArXiv. 

Khosla, M., Ratan Murty, N. A., & Kanwisher, N. (2022). A highly selective response to food in 
human visual cortex revealed by hypothesis-free voxel decomposition. Current Biology, 1–
13. https://doi.org/10.1016/j.cub.2022.08.009 

Kriegeskorte, N., & Mur, M. (2012). Inverse MDS: Inferring dissimilarity structure from 
multiple item arrangements. Frontiers in Psychology, 3(JUL), 1–13. 
https://doi.org/10.3389/fpsyg.2012.00245 

Kuang, D., Ding, C., & Park, H. (2012). Symmetric nonnegative matrix factorization for graph 
clustering. Proceedings of the 12th SIAM International Conference on Data Mining, SDM 
2012, 106–117. https://doi.org/10.1137/1.9781611972825.10 

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix 
factorization. Nature, 401(21), 788–791. https://www.nature.com/articles/44565.pdf 

Lingnau, A., & Downing, P. E. (2015). The lateral occipitotemporal cortex in action. In Trends 
in Cognitive Sciences (Vol. 19, Issue 5, pp. 268–277). Elsevier Ltd. 
https://doi.org/10.1016/j.tics.2015.03.006 

Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S. A., Yan, T., Brown, L., Fan, 
Q., Gutfruend, D., Vondrick, C., & Oliva, A. (2019). Moments in Time Dataset: one million 
videos for event understanding. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 1–8. http://arxiv.org/abs/1801.03150 

Murphy, G. L. (2002). The big book of concepts. MIT Press. 
Navarro, D. J., & Lee, M. D. (2004). Common and distinctive features in stimulus similarity: A 

modified version of the contrast model. Psychonomic Bulletin & Review, 11(6), 961–974. 
Parrigon, S., Woo, S. E., Tay, L., Wang, T., & Wang, T. (2016). Journal of Personality and 

Social Psychology CAPTION-ing the Situation : A Lexically-Derived Taxonomy of 
Psychological Situation Characteristics CAPTION-ing the Situation : A Lexically-Derived 
Taxonomy of Psychological Situation Characteristics. 

Proklova, D., Kaiser, D., & Peelen, M. V. (2019). MEG sensor patterns reflect perceptual but not 
categorical similarity of animate and inanimate objects. NeuroImage, 193, 167–177. 
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.03.028 

Rauthmann, J. F., Gallardo-Pujol, D., Guillaume, E. M., Todd, E., Nav, C. S., Sherman, R. A., 
Ziegler, M., Jones, A. B., & Funder, D. C. (2014). The situational Eight DIAMONDS: A 
taxonomy of major dimensions of situation characteristics. Journal of Personality and 
Social Psychology, 107(4), 677–718. https://doi.org/10.1037/a0037250 

Shepard, R. N. (1987). Towards a Universal Law of Generalization for Psychological Science. 
Science, 237, 1317–1323. 

Spunt, R. P., Kemmerer, D., & Adolphs, R. (2016). The neural basis of conceptualizing the same 
action at different levels of abstraction. Social Cognitive and Affective Neuroscience, 11(7), 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509054
http://creativecommons.org/licenses/by-nc-nd/4.0/


1141–1151. https://doi.org/10.1093/scan/nsv084 
Tarhan, L., De Freitas, J., & Konkle, T. (2021). Behavioral and Neural Representations en route 

to Intuitive Action Understanding. Neuropsychologia, 163(July), 108048. 
https://doi.org/10.1016/j.neuropsychologia.2021.108048 

Tarhan, L., & Konkle, T. (2020). Sociality and interaction envelope organize visual action 
representations. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-
16846-w 

Thornton, M. A., & Tamir, D. I. (2020). People represent mental states in terms of rationality, 
social impact , and valence : Validating the 3d Mind Model. Cortex, 125, 44–59. 
https://doi.org/10.1016/j.cortex.2019.12.012.People 

Thornton, M. A., & Tamir, D. I. (2021a). Six Dimensions Describe Action Understanding: The 
ACT-FASTaxonomy. Journal of Personality and Social Psychology, 122(4), 577–605. 
https://doi.org/10.1037/pspa0000286 

Thornton, M. A., & Tamir, D. I. (2021b). People accurately predict the transition probabilities 
between actions. Science Advances, 7(9), eabd4995. https://doi.org/10.1126/sciadv.abd4995 

Tucciarelli, R., Wurm, M., Baccolo, E., & Lingnau, A. (2019). The representational space of 
observed actions. ELife, 8, 1–24. https://doi.org/10.7554/eLife.47686 

Wardle, S. G., Kriegeskorte, N., Grootswagers, T., Khaligh-Razavi, S. M., & Carlson, T. A. 
(2016). Perceptual similarity of visual patterns predicts dynamic neural activation patterns 
measured with MEG. NeuroImage, 132, 59–70. 
https://doi.org/10.1016/j.neuroimage.2016.02.019 

Wurm, M. F., & Caramazza, A. (2019). Lateral occipitotemporal cortex encodes perceptual 
components of social actions rather than abstract representations of sociality. NeuroImage, 
202. https://doi.org/10.1016/j.neuroimage.2019.116153 

Wurm, M. F., Caramazza, A., & Lingnau, A. (2017). Action categories in lateral 
occipitotemporal cortex are organized along sociality and transitivity. Journal of 
Neuroscience, 37(3), 562–575. https://doi.org/10.1523/JNEUROSCI.1717-16.2016 

Zheng, C. Y., Baker, C. I., Pereira, F., & Hebart, M. N. (2019). Revealing interpretable object 
representations from human behavior. 7th International Conference on Learning 
Representations, ICLR 2019, 2005, 1–16. 

 
 

 
 

 
 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509054
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supporting Information 
 
 

 
Supplementary Figure 1. NMF performance. A. Training set NMF reconstruction performance in Experiment 1 

evaluated on the three sections of the training set (see Figure 6). Error bars are ±1SD. Performance on the outer set 
in the nested cross-validation procedure plateaus with nine dimensions. B. As in A, for Experiment 2. C. Final 

performance of the reconstructed matrix on the whole training set (~90% of the data) and the held-out set (~10% of 
the data), plotted against the true hold-out correlation (gray horizontal bars). 
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Supplementary Figure 2. Absolute correlations between visual, social, and action features and each NMF 

dimension for A. Experiment 1 and B. Experiment 2, shown in a stacked plot. Dimension are sorted in descending 
order of their summed weights. 

 
 

  

 
  

Supplementary Figure 3. Dimensionality as a function of dataset size. Left: number of dimensions obtained by 
running the NMF procedure using random subsets of the stimuli from Experiment 1 (10 iterations). Right: number 

of dimensions obtained by running NMF after leaving out a number of randomly selected action categories (10 
iterations). The number of action categories has a larger effect on dimensionality than the dataset size. 
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Supplementary Figure 4. NMF and PCA dimension robustness. The PCA procedure was repeated five times, after 
removing key stimulus categories from the behavioral RDM from Experiment 1. Each dot shows the number of 

dimensions resulting from each iteration, with horizontal lines showing the number of dimensions recovered from 
the full datasets.  

 
 
 

 
 

Supplementary Figure 5. PCA dimension robustness. The PCA procedure was repeated five times, after removing 
key stimulus categories from the behavioral RDM from Experiment 1. Each dot shows the maximal correlation 

between each dimension obtained in the control analysis and any of the original dimensions with the same stimuli 
removed (repeats allowed).  The grey rectangles depict the chance level. Although on average correlations are 

higher than those obtained with NMF, their variance is overall almost twice as high, suggesting that stimulus set 
perturbations have a stronger impact on some of the PCA dimensions. 
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Supplementary Figure 6. Validation variability. Dimensions are named according to their most common labels, 
and ranked according to the accuracy obtained for each of them in the odd-one-out task. Participant agreeement on 

the most common label is also shown for each dimension. 
 
 

 
 
 
 Supplementary Figure 7. Examples of how three dimensions from Experiment 2 map onto the dimensions 
from Experiment 1, as measured via semantic embeddings of the labels given by participants. The similarity values 

shown are relative (i.e. normalized to the 0-1 range).  
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