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abstract: A common measure of generation time is the average
distance between two recruitment events along a genetic lineage. In
populations with stage structure that live in a constant environment,
this generation time can be computed from the elasticities of stable pop-
ulation growth to fecundities, and it is equivalent to another common
measure of generation time: the average parental age of reproductive-
value-weighted offspring. Here, we show three things. First, when the
environment fluctuates, the average distance between two recruitment
events along a genetic lineage is computed from the elasticities of the
stochastic growth rate to fecundities. Second, under environmental
stochasticity, this measure of generation time remains equivalent to
the average parental age of reproductive-value-weighted offspring.
Third, the generation time of a population in a fluctuating environment
may deviate from the generation time the population would have in the
average environment.

Keywords: age, environmental stochasticity, elasticities, genetic lin-
eage, reproductive value.

Introduction

Roughly, a generation is the time separating the birth of
parents from the birth of their offspring. Generations
set a natural timescale for many ecological and evolution-
ary processes. For example, mutations occur in the paren-
tal germline. But their presence is first detected in the off-
spring. The rate of genetic substitutions in a population is
then conveniently expressed in units of generations (Kimura
1968). Looking at the ability to adapt to ecological changes,
a given rate of environmental change per unit time requires
species with generations of different lengths to evolve at
different rates per generation to secure survival (Chevin
et al. 2010). In conservation studies of endangered species,
life span may differ wildly, ranging from days to years.
Expressing population decline and extinction risks over
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generations helps cross-species comparison (Mace et al.
2008).
Computing the time distance between generations is not

entirely obvious when populations have stage structure. In
these populations, individuals belong to distinct stages de-
pending on the value of some trait (e.g., age, size, or devel-
opmental phase). Individuals may produce offspring at dif-
ferent points in life. For example, reproduction may be
possible only at a minimal size. However, attaining this size
requires sufficient resources, which the members of a new-
born cohort may not be able to accrue simultaneously. Be-
cause of later heterogeneous scarcity of such resources,
some individuals could fail to maintain the minimal size
and, thus, discontinue reproduction. When reproduction
eventually occurs, offspring may be born in different stages
(e.g., large individuals may contribute large offspring).
Stage at birth impacts the timing of one’s future production
of offspring, as larger offspring should reach the minimal
reproductive size quicker.
The intricacies inherent to population structure have led

to devise distinct measures of generation time (Cochran
and Ellner 1992; Caswell 2009; Steiner et al. 2014; Bienvenu
and Legendre 2015), which only in some cases are equiva-
lent (Ellner 2018; Jonasson et al. 2022). A shared feature of
these measures, however, is their assumption that the pop-
ulation lives in a constant environment. But populations
typically experience fluctuating environmental conditions.
A measure of generation time under stochastic demogra-

phy has been derived for the special case of age structure
(Lehmann 2014)—that is, stages are ages. Another measure
has been proposed to account for environmental stochas-
ticity (Hernandez-Suarez et al. 2012). But thismeasure relies
on an approach (i.e., the megamatrix model) that is not di-
rectly informative about the long-term growth of a single
population (Tuljapurkar et al. 2003). To the best of our
knowledge, no measure proposed so far appears both to
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apply to any stage structure and to build on the usual ma-
chinery for demography in variable environments, as in
Tuljapurkar (1990). The purpose of the present work is
to obtain a measure of generation time with both these
characteristics.
To this aim,wefirst review somedemographic notions and

introduce two common concepts of generation time. Building
on the approach of Bienvenu and Legendre (2015) for a con-
stant environment and using insights from the work of
Lehmann (2014), Ellner (2018), and Lion (2018), we extend
both concepts to the case of environmental stochasticity
and show their equivalence. In the end,we illustrate the use-
fulness of our proposed measure of generation time. Ana-
lyzing published demographic data, we show that the gen-
eration time of a population in a fluctuating environment
may be only poorly approximated by the generation time
the population would have in the average environment.
This exposes the limited validity of estimating the former
via the latter.
Demographic Model

We adopt the framework of matrix population models
(for an introduction, see Caswell 2001). The matrix
A(t) p [ai,j(t)] projects the vector x(t) of individual
stage-specific abundances so that ai,j(t) is the number
of individuals in stage i at t 1 1 per individual in stage j
at t and

x(t 1 1) p A(t)x(t): ð1Þ

Distinguishing survival events from recruitment events, the
projection matrix decomposes into a sum A(t) p S(t)1
F(t) between the survival matrix S(t) p [si,j(t)] and the
fecundity matrix F(t) p [ f i,j(t)], where si,j(t) is the proba-
bility that an individual in stage j at t survives to be found
in stage i at t 1 1, while fi,j is the number of new recruits
in stage i at t 1 1 that were born to an individual in stage
j at t. The projection matrix depends on t because at each
time point the environment is in one of a finite number of
states. To each state, there corresponds a projection matrix
that reflects population demographics in that state. A sto-
chastic process governs the time sequence of environmental
states and, consequently, of projection matrices. While this
accounts for environmental stochasticity, we ignore demo-
graphic stochasticity (i.e., sampling variation in survival
and fecundity) by assuming that the population is large
enough so that the realized matrix at t deterministically
projects the population to t 1 1. We also assume that the
environmental and demographic processes are stationary
and ergodic and that a stochastic growth rate ln ls char-
acterizes every realization of the demographic process so
that, almost surely,
ln ls p lim
t→∞

[(t21(lnX(t)2 lnX(0))], ð2Þ

where X(t) is the population size at t and ln ls is a constant
independent of the stage distribution at t p 0. A detailed
treatment of ergodicity in demography and of the exis-
tence conditions of ln ls is given in Cohen (1977a,
1977b) and Tuljapurkar (1990).
When the environment is constant, there is a single

projection matrix A p S1 F. At demographic stability,
the population size changes by a constant factor l per
time step. This factor is equal to the dominant eigen-
value of A.
Generation Time in a Constant Environment

In genetics, the generation time is usually defined as the
average time from zygote to zygote along a genetic line-
age (Scally 2016). A genetic lineage is the path that a
randomly sampled gene follows in backward time
through all of the individuals that have hosted the gene
(fig. 1). At some point in the past along the genetic lin-
eage, the individual currently hosting the gene becomes
a zygote. Hence, the gene next moves (as a copy) into the
parent of this individual. This parent also becomes a zy-
gote at some point in backward time, and the gene then
moves to the grandparent of the initial individual. This
cycle repeats itself indefinitely. Break down the genetic
lineage into segments joining successive zygote forma-
tion events. The generation time is the average length of
these segments.
Bienvenu and Legendre (2015) quantified this genetic

notion of generation time for stage-structured popula-
tions that live in a constant environment and are demo-
graphically stable. Demographic models, however, rarely
include a zygote stage. Thus, these authors focused on
the average time G between two successive recruitment
events along a genetic lineage. Bienvenu and Legendre
(2015) proposed the formula

G p
l

v⊤Fw
ð3Þ

for this generation time, where w is the stage distribution
at demographic stability and v is the vector of stage-
specific reproductive values. These vectors are assumed
scaled so that the components of w add up to 1 and
v⊤w p 1, where ⊤ indicates vector transposition. Note
that the time length that G captures is not equivalent
to the demographic notion of interbirth interval (Keyfitz
and Caswell 2005, chap. 16). The quantity G is backward
looking and lineage centered. It captures the time elapsed
since the birth of an offspring to the birth of its mother
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and from the birth of this mother to the birth of the grand-
mother of the initial offspring and so on. The interbirth in-
terval is forward looking and individual centered. It
measures how far apart, on average, are all offspring births
to the same mother. However, lineage-based considerations
are common in demography as well, as they are behind re-
newal equations like the Euler-Lotka model (Keyfitz and
Caswell 2005, chap. 7; Bienvenu and Legendre 2015; Inaba
2017, chap. 1).
Biodemography has produced distinct measures of

generation time for stage-structured populations that ex-
perience a constant environment (Cochran and Ellner
1992; Caswell 2001; Steiner et al. 2014; Ellner 2018).
One of these measures is the weighted average age �A at
t of the parents of new recruits at t 1 1 (Cochran and
Ellner 1992; Ellner 2018). Assuming demographic stabil-
ity, the age-stage distribution of individuals, and therefore
of parents, is constant, and so are the production of new
recruits and their stage distribution. The average can then
be taken at any time point. The weights for this average
are the reproductive value of new recruits. Since new
recruits can be found in different stages, this weighting
accounts for their different future contributions to the
population. As Ellner (2018) notes, the reproductive-
value weighting is entirely natural in this context. Some
newborns die before their first census. Thus, they are in-
visible to the demographic model. (For the very same rea-
son, G takes a generation to be the time between recruit-
ment events, and not between zygotes, along a genetic
lineage.) By extension, Ellner argues, one should explic-
itly discount those offspring that are first observed in stages
(e.g., too small) that make any contribution of these off-
spring to the population unlikely. This is exactly what the
reproductive-value weighting accomplishes. The formula
for �A is complex (Cochran and Ellner 1992, eq. [26]),
so we do not give it here. However, this formula is not re-
ally needed because the genetic measure G and the bio-
demographic measure �A of generation time can be shown
equivalent:

A p G: ð4Þ
See Bienvenu and Legendre (2015) and Ellner (2018). In
the next section, we separately extend each of these two
measures of generation time to the case of environmental
stochasticity, and we show that an equivalence still holds.
We end this section by recalling that �A should not be

confused with the cohort generation time m1, which gives
the mean age at which a cohort of new recruits give birth,
or with the time T that it takes for a population to change
in size by a factor equal to the net reproduction rate (R0)
of the average individual (Cochran andEllner 1992; Caswell
2001, chap. 5.3.5). Bothm1 andT have been used tomeasure
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Figure 1: Genetic lineage and generation time. In this scheme, horizontal dashed lines indicate discrete time points. Each circle on a line is
an individual at the time of first appearance (age 1) in the population regardless of stage. Lines between circles indicate parent-offspring
relationships. Individuals can have offspring at different ages in their life. Individual age increases with time. The number of offspring pro-
duced at each time point and the probability of surviving to the next age depend on individual stage and on environmental state (neither are
shown here). Sampling a random gene in the future and tracking its path (red) in backward time as it climbs up from offspring to parent
along the genealogy defines a genetic lineage. The relevant quantity here is the time distance (red numbers) between two successive recruit-
ment events. The generation time is defined here as the average of this distance along the entire genetic lineage.
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the length of a generation in a constant environment. Some
version of m1 (possibly with reproductive-value weighting)
is common in demographic and evolutionary analyses that
use the next-generation matrix (e.g., Durinx et al. 2008;
Metz and de Kovel 2013; Steiner et al. 2014; Inaba 2017,
chap. 9; Ellner 2018) or approximate stable population
growth from R0 (e.g., Tuljapurkar et al. 2009; Steiner et al.
2014). An overview of the relationships among �A, T, and
m1 is given in Ellner (2018) and Jonasson et al. (2022).
Generation Time and Environmental Stochasticity

Elasticities

Tuljapurkar (1990) pioneered a form of sensitivity analysis
of the stochastic growth rate that is now common in em-
pirical studies of populations living in a fluctuating envi-
ronment (e.g., Jonzén et al. 2010; Gaoue et al. 2011;
Smallegange and Coulson 2011; van der Meer et al. 2014;
Gamelon et al. 2016; Paniw et al. 2020). For our purposes,
we recall here one quantity from this analysis: the elasticity
esi,j, which quantifies the sensitivity of ln ls to the same pro-
portional change in the (i, j) entry of all projection matrices.
The relevant formula is

esi,j p lim
L→∞

1
L

XL21

tp0

vi(t 1 1)ai,j(t)wj(t)
l(t)

ð5Þ

(see Caswell 2001, eq. [14.98]), where vi(t) is the reproduc-
tive value of individuals in stage i at time t and wj(t) is the
population fraction in stage j at time t. These quantities are
assumed scaled so that for all t the components of the
time-specific stage distribution w(t) add up to 1 and

v⊤(t)w(t) p 1: ð6Þ
The quantity l(t) in equation (5) is the factor by which the
population size changes between t and t 1 1:

l(t) p
X(t 1 1)
X(t)

: ð7Þ

Since ai,j(t) is a random variable, the elasticity esi,j can be
seen as the sensitivity of ln ls to a proportional change
of the same magnitude in both the mean and the standard
deviation of this variable, thereby leaving its coefficient of
variation unaltered (Tuljapurkar et al. 2003).
The elasticity ei,j of stable population growth l is the

sensitivity of ln l to a proportional change in the (i, j)
entry of A. A formula for this quantity is

ei,j p
viai,jwj

l
ð8Þ

(see, e.g., de Kroon et al. 1986).
Genetic Approach

Using equation (8), Bienvenu and Legendre (2015) pro-
posed the following alternative formula for G in equa-
tion (3):

G p
1
eF
, ð9Þ

where eF p
P

i,jvif i,jwj=l p l21v⊤Fw is the sum of the
elasticities of l to fecundities. This result and the close cor-
respondence between equation (5) and equation (8) are
clues that the genetic concept that is behindG could extend
to fluctuating environments via the stochastic elasticities. In
particular, one can envisage that the sum esF of the elastici-
ties of ls to fecundities, which by equation (5) is

esF p lim
L→∞

1
L

XL21

tp0

v⊤(t 1 1)F(t)w(t)
l(t)

, ð10Þ

may play a role in this extension. Here, we show that this
indeed is the case.
Following Bienvenu and Legendre (2015), we look at a

genetic lineage traveling in backward time through the
individuals of a stage-structured population. Of our in-
terest are the visits of the genetic lineage to new recruits
at their first census. We assign age 1 to these recruits,
and we count age in the same time units as demographic
projection. Thus, an individual of age j at t is of age j1 1
at t 1 1, and new recruits at their first census exactly
form age class 1. The generation time of our interest
then is the mean first return time of the genetic lineage
to age class 1 (Lehmann 2014).
We recall the work of Lion (2018), who noted that

when demographic parameters change with time,

bi,j(t) p
ai,j(t)wj(t)

l(t)wi(t 1 1)
ð11Þ

is the probability that a randomly sampled gene in stage i
at t 1 1 is in stage j at t. This is because there are wj(t)X(t)
individuals in stage j at t, where X(t) is the total popula-
tion size at t. They each contribute ai,j(t) individuals to
stage i at t 1 1. These contributed individuals are a fraction
ai,j(t)wj(t)X(t)=X(t 1 1) of the total population size X(t 1
1) at t 1 1. Taking the ratio of this fraction to the total frac-
tion wi(t 1 1) in stage i at t 1 1 gives the probability that a
random gene in stage i at t 1 1 is in stage j at t. Expressing
this ratio by using equation (7) yields equation (11). Lion
(2018) also noted that thematrixB(t) p [bi,j(t)] is row sto-
chastic and updates in backward time the vector with com-
ponent i equal to vi(t 1 1)wi(t 1 1) (see the appendix).
Thus, vi(t 1 1)wi(t 1 1) can be interpreted as the probabil-
ity that a gene randomly sampled in the future population
belongs to a genetic lineage that was in stage i at t 1 1 when
looking backward in the past. The matrix B(t) generalizes a
Markov chain model of genetic lineages over stages that is
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classic to the population genetics of stable populations in a
constant environment (Bodmer and Cavalli-Sforza 1968;
Hill 1972; Taylor 1990, 1996; Rousset 2004; Lehmann 2014).
We leverage this result of Lion (2018) by defining

wi,j(t) p population fraction in stage i and of age jat t

ð12Þ
as the component i of the vector wj(t), which contains the
stage distribution aged j. Thus, v⊤(t 1 1)w1(t 1 1) is the
probability that a gene randomly sampled in the future
population belongs to a genetic lineage that was in age
class 1 at t 1 1, independently of the stage it was in at
t 1 1. Suppose we can take the limit

p1 p lim
L→∞

1
L

XL21

tp0

v⊤(t 1 1)w1(t 1 1): ð13Þ

If it exists, this limit is the long-run fraction of time that
the gene spends in age class 1. To establish the existence
of this limit, we recall that the fraction aged 1 of the stage
distribution at t 1 1 is the number of new recruits pro-
duced by the population at t relative to the total popula-
tion size at t 1 1. Using the fecundity matrix F(t) and
equation (7),

w1(t 1 1) p
F(t)X(t)w(t)
X(t 1 1)

p
F(t)w(t)
l(t)

: ð14Þ

Plugging equation (14) into equation (13) and looking at
the formula for the stochastic elasticities in equation (5)
shows that

p1 p esF: ð15Þ
Therefore, the limit in equation (13) exists and is equal to
the sum of the elasticities of ls to fecundities. By Markov
chain theory (Kemeny and Snell 1983, p. 218), the inverse
of this limit is the mean first return time to age class 1 by
the genetic lineage. Hence, we suggest that the quantity

Gs p
1
esF

ð16Þ

measures the generation time under a fluctuating environ-
ment, as the measure G proposed by Bienvenu and Le-
gendre (2015) does under a constant environment.

Biodemographic Approach

Cochran and Ellner (1992) measured the generation time
in the demographically stable state as the average parental
age �A of offspring weighted by their reproductive value.
Here, we propose an analog �As of �A under environmental
stochasticity. From equations (12) and (14), the repro-
ductive value of new recruits at t 1 1 that are contributed
by individuals of age j at t independently of parental stage
is
cj(t) p
v⊤(t 1 1)F(t)wj(t)

l(t)
: ð17Þ

The sum of these contributions over all parental ages,

c(t) p
X

j

cj(t), ð18Þ

is the total reproductive value in new recruits at t 1 1. The
average parental age at t of all new recruits at t 1 1 when
these are weighted by their reproductive values then is

�As(t) p

P
jjcj(t)P
jcj(t)

: ð19Þ

When the environment is constant and the population sta-
ble, this formula for �As(t) reduces to that for �A (see the ap-
pendix). It would be tempting to regard the long-run aver-
age of �As(t) over time—that is, the limit of L21

PL21
tp0

�As(t) as
L → ∞—as the analog of �A under environmental stochas-
ticity. However, this would miss a key aspect played by the
assumption of demographic stability in the case of a con-
stant environment. The assumption implies that whenever
we look at the population, the fraction of the stage distri-
bution composed of those aged 1 is w1 p l21Fw. This
fraction always contains a reproductive value of l21v⊤Fw.
Thus, we can compute �A indifferently at any time point.
This average of parental ages will always be taken over
the parents of the average reproductive-value-weighted
offspring. But when the environment fluctuates, neither
the stage distribution nor the reproductive values are con-
stant. Both the fraction of the stage distribution composed
of those aged 1 and its reproductive value content vary
with time, and so do the overall stage distribution of indi-
viduals and their fecundities. Therefore, we should average
the �As(t) by weighting them to account for how the popu-
lation fraction aged 1 at t 1 1 compares in terms of repro-
ductive values with respect to the fraction aged 1 at all con-
sidered time points. In this way, we can get the average
parental age of the average reproductive-value-weighted
offspring. Looking at the demographic process from time
0 up to some time L and using equation (18), the appropri-
ate weight for �As(t) then is

C(t) p
c(t)PL21
kp0c(k)

, ð20Þ

where the reproductive value contained in new recruits at
t 1 1 is normalized to the reproductive value contained in
new recruits over the whole time interval under consider-
ation (see also Lehmann 2014). Hence, we suggest that the
quantity

�As p lim
L→∞

XL21

tp0

C(t)�As(t) ð21Þ
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measures the generation time under a fluctuating environ-
ment as the measure �A proposed by Cochran and Ellner
(1992) does under a constant environment.
Two issues, however, remain to be addressed. The first

is the existence of the limit in equation (21). Second, given
that �A p G, it is natural to wonder whether an equiva-
lence holds between �As and Gs too. In the appendix, we
show that indeed

As p Gs, ð22Þ
which solves both issues at once. This result and equa-
tion (4) are conceptually relevant in that they tell us that
both when the environment is constant and when it
fluctuates, the generation time can indifferently be mea-
sured as the average time interval between successive re-
cruitment events along a genetic lineage and as the average
parental age of the average reproductive-value-weighted
offspring. Equation (22) also is computationally relevant
because the formula for Gs is much less computationally
demanding than that for �As. The latter hinges on the age-
within-stage distribution, which varies with time through-
out the demographic process. The formula for Gs instead
does not rely on any information about the population age
distribution.

Age Structure

For stable populations with age structure, the classic ge-
netic measure of generation time is

Ga p
X

j

jljmjl
2j ð23Þ

(see Charlesworth 1994), where lj is the probability of sur-
viving at least to age j for an individual of age 1, mj is the
number of individuals of age 1 at t 1 1 per individual of
age j at t, and l is stable population growth. Bienvenu
and Legendre (2015) showed that Ga is a special case of
G when stages are ages.
Lehmann (2014) derived a stochastic generalization of

equation (23) for age-structured populations. His result is
based on a model of genetic lineages that is slightly differ-
ent from ours and can account for both demographic and
environmental stochasticity. In particular, Lehmann (2014)
considered an ergodic Markov chain on a finite number
of states. Each state corresponds to a possible population
configuration (i.e., abundances in each age). We can never-
theless express Lehmann’s measure of generation time,
which we shall call Gs,a, within our framework. Suppose
the stages 1, 2, ::: , n are successive ages. The result of Leh-
mann (2014, eq. [20]) translates to our setting as

Gs,a p lim
L→∞

1
L

XL21

tp0

v1(t 1 1)w1(t 1 1)

 !21

: ð24Þ
For age structure, our formula forGs in equation (16) takes
exactly this form. Consider the fraction w1(t) of the stage
distribution at t that is composed of individuals of age 1
at t. When stages are ages, the only nonzero component
ofw1(t) always is the first and equal to the first component
w1(t) of the overall stage distribution w(t), which now is
the age distribution. Therefore, for age structure the right-
hand side of equation (24) corresponds to the inverse of
the right-hand side of equation (13). Thus, we recover the
result of Lehmann (2014) as a special case.
Application

A natural question is whether a separate formula to mea-
sure generation time under fluctuating environments is
worth having. Perhaps formulas devised for a constant en-
vironment could well approximate the generation time
when they are applied to average demographics. Here,
we address this doubt. We took demographic data of the
volunteer (weedy) oilseed rape (Brassica napus) fromClaes-
sen (2005) and Claessen et al. (2005). In this data set, three
stages are distinguished: flowering plants, seeds in a shal-
low seed bank, and seeds in a deep seed bank. At each time
point, the environment is in one of two possible states:
“good” (with probability 0.1) and “bad” (with probability
0.9). A good year results from failure to remove a small
patch of this weed. In poor years, the plant reproduces
much less; seeds tend to survive but are very unlikely to
lead to flowering plants. The parameter 0 ≤ v ≤ 1 tunes
between-year variability. The projection matrix for good
years is U1 v(Ag 2 U) and the projection matrix for
bad years is U1 v(Ab 2 U), where U p 0:1Ag 1 0:9Ab.
To get a sense of the impact of v, consider its effect on
fecundity. When v p 1, in a good year a flowering plant
contributes almost 15 new flowering plants, between one
and two seeds in the shallow seed bank, and almost
1,000 seeds in the deep seed bank. In a bad year, a flower-
ing plant rarely contributes a single new flowering plant;
it contributes at most one seed in the shallow seed bank
and less than 400 seeds in the deep seed bank. When
v p 0, there is no difference between bad and good years,
and a flowering plant always contributes between one and
two flowering plants, approximately one seed in the shal-
low seed bank, and between 400 and 500 seeds in the deep
seed bank. Contributions occur over a year.
In the projection matrices, we took the column corre-

sponding to the stage of flowering plants as containing
all fecundities. We computed the generation time for all
v values in four different ways. After estimating the elas-
ticities of ls to fecundities from simulation that was
50,000 time steps long, we computedGs using the formula
in equation (16). We retrieved the fecundity elasticities of
the dominant eigenvalue of the matrix for good years, of
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the matrix for bad years, and of the weighted average of
these matrices where the weights are the probabilities of
the corresponding environmental state. (This is a com-
mon way of averaging projection matrices. An alternative
averaging method proposed by Logofet [2013, 2019] may
be more recommendable, but we do not explore it here.)
With these elasticities and the formula in equation (9), we
computed the generation time in a constantly good envi-
ronment, in a constantly bad environment, and in the av-
erage environment. We called �G the generation time in
the average environment. Results (fig. 2) show that for
small between-year variability, Gs and �G are relatively
close to one another. However, as this variability becomes
substantial, the two quantities progressively diverge: while
Gs increases with v, �G is almost insensitive to this parame-
ter. At maximum variability (v p 1), Gs is approximately
three times larger than �G. Hence, the latter cannot be taken,
in general, as a good proxy for the former. Systematically
exploring the relationship between Gs and �G is an open
problem. Data and code for the simulations in figure 2 are
in Giaimo and Traulsen (2022).
Discussion

The generation time is a key quantity in ecology and evo-
lution. However, defining and measuring it under envi-
ronmental stochasticity for stage-structured populations
has been deemed difficult (Dalgleish et al. 2010). Here,
we have proposed one possible way of overcoming this
difficulty. We have quantified the generation time in a
fluctuating environment in two equivalent ways: the aver-
age distance between successive recruitment events along
a genetic lineage and the average parental age of the aver-
age reproductive-value-weighted offspring. The obtained
formula is easy to evaluate. It seamlessly merges with the
computation of the elasticities of the stochastic growth
rate, which are customary quantities for ecologists and
evolutionary biologists interested in stochastic popula-
tion dynamics. Computational procedures for these elas-
ticities are widely available; see Caswell (2001) andMorris
and Doak (2002).
Elasticities of population growth, both stochastic and

stable, to matrix entries add up to 1 (de Kroon et al. 1986;
Caswell 2001). From this and the fact that the sum of fe-
cundity elasticities equals the inverse of the generation time,
Bienvenu and Legendre (2015, p. 840) observed that for
stage-structured populations in a constant environment,
the sum of survival elasticities is equal to 1 minus the in-
verse of the generation time. This was an observation pre-
viously limited to populations with age structure (Houllier
and Lebreton 1986; Lebreton 1996). Giaimo and Traulsen
(2019) made a further, related observation based on the
Figure 2: Generation time for the volunteer oilseed rape (Brassica napus). In good years, the plant reproduces more than in bad years.
Parameter v modulates how much fecundity and survival vary between good years and bad years (see the main text). A, The generation
time G for different v values is reported when the environment is permanently good or bad and when it fluctuates. Under fluctuations,
we computed both the generation time, �G, via stable population theory by applying the formula in equation (3) to the constant projection
matrix for the average year and the generation time, Gs, via theory for environmental stochastic demography by applying the formula in
equation (16). B, The stochastic generation time (black line) is reported as progressively computed along a realization of the demographic
process when v p 1 using equation (21). In the initial population, maximum age is set equal to 3 years, and the age distribution is random.
Horizontal lines mark the generation time when the environment is permanently in one state or it fluctuates. Vertical green bars mark good
years. The analysis is based on data from Claessen (2005) and Claessen et al. (2005). Data and code behind this figure are provided in
Giaimo and Traulsen (2022).
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identification of stable growth l with fitness: if there is a
trade-off between survival and fecundity, the rate at which
survival can increment at the expense of a proportional de-
crease in fecundity around a fitness optimum is equal to 1
minus the optimal generation time.Our result that the gen-
eration time is the inverse of the stochastic elasticities to
fecundities extends these observations to fluctuating envi-
ronments, provided ln ls gives fitness (Tuljapurkar 1982;
Metz et al. 1992; Tuljapurkar et al. 2009).
There is a need in biodemography for distinct concepts

of the time interval separating generations (Caswell 2001,
chap. 5.3.5; Ellner 2018). Measures of generation time un-
der fluctuating environments that are alternative to ours
are likely to emerge out of the same need. In particular,
a stochastic analog of the cohort generation time can be
envisaged. In its version for constant demography, this
measure has been employed in approximations to the sto-
chastic growth rate (Tuljapurkar et al. 2009) and has been
generalized to populations with age-stage structure using
reproductive-value weighting (Steiner et al. 2014). Amega-
matrix approach to this quantity under environmental sto-
chasticity is given in Hernandez-Suarez et al. (2012). No
version of the cohort generation time appears to exist
where the weights are the reproductive values as defined
for variable environments in Tuljapurkar (1990). How-
ever, developments in capturing cohort dynamics (Tulja-
purkar andHorvitz 2006) and reproduction numbers (Inaba
2012) when the environment varies indicate that such gen-
eralization might be feasible.
Lack of a spectrum of measures of generation time for

fluctuating environments has sometimes forced research-
ers interested in stochastic population dynamics to apply
to the average demographics some formula of generation
time that was devised for the case of a constant environ-
ment (Dalgleish et al. 2010). Here, we have given an ex-
ample where a similar strategy can fail in approximating
the true generation time in the population. This highlights
once more the importance of accounting for environmen-
tal stochasticity in demographic modeling (Steiner 2020).
Tuljapurkar et al. (2009) similarly found that for life histo-
ries with identical net reproduction rates, fitness in the av-
erage environment may not be a good proxy to true fitness
in a fluctuating environment. Differences in generation
times in the average environment explain part of this dis-
crepancy. It would be interesting to look at how these life
histories compare in terms of their generation times com-
puted for the fluctuating environment. The formula we
have derived, however, may be not directly relevant in this
case, as Tuljapurkar et al. (2009) looked at the cohort gen-
eration time.
The generation time may play a role in the diversity of

mutation rates (Martin and Palumbi 1993; Ohta 1993; Li
et al. 1996; Thomas et al. 2010; Sayres et al. 2011; Weller
andWu 2015; Amster and Sella 2016; Gao et al. 2016). For
example, molecular evolution might be faster in verte-
brates with shorter generation times as a result of a higher
yearly number of DNA replication events (Bromham 2009),
which are occasions for mutations to occur. Critical to this
research is a sound way of measuring the generation time
(Thomas et al. 2010). Presumably, this can get compli-
cated by the generalized absence of detailed demographic
data (Amster and Sella 2016; Conde et al. 2019). Our work
reveals a further layer of complexity: solid estimates of the
generation time require explicitly accounting for the de-
mographic effects of environmental variability.
More generally, we hope that our work can contribute

to understand the role of environmental stochasticity in
shaping a crucial life history trait like the intergenerational
distance.
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APPENDIX

Derivations

Genetic Lineage Update

Here, we recall the result by Lion (2018) that the matrix
where ai,j(t)wj(t)=(l(t)wi(t 1 1)) is the (i, j) entry updates
in backward time the row vector, of which the compo-
nent i is vi(t 1 1)wi(t 1 1). Suppose we observe the demo-
graphic process generated by the recursion x(t 1 1) p
A(t)x(t) from some initial time 0 up to some time L. The
recursion for the stage distribution for this process is

w(t 1 1) p
A(t)w(t)
l(t)

, ðA1Þ

where w(0) is an arbitrary nonnegative vector whose only
constraint is that its components add up to 1. According

https://doi.org/10.5061/dryad.x95x69pmt
https://doi.org/10.5061/dryad.x95x69pmt
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to the scaling in equation (6), the recursion for the repro-
ductive value is

v⊤(t) p
v⊤(t 1 1)A(t)

l(t)
, ðA2Þ

where v(L) is an arbitrary nonnegative vector whose only
constraint is that v⊤(L)w(L) p 1. Form the row vector
with the ith component vi(t 1 1)wi(t 1 1) and the matrix
with the (i, j) entry equal to ai,j(t)wj(t)=(l(t)wi(t 1 1)).
Using equations (A1) and (A2), the result of multiplying
this vector on the left of this matrix simplifies to

X
i

vi(t 1 1)wi(t 1 1)
ai,j(t)wj(t)

l(t)wi(t 1 1)

p
X

i

vi(t 1 1)ai,j(t)wj(t)
l(t)

p vj(t)wj(t):
ðA3Þ

That is, the matrix updates the vector in backward time.
Eliminating time indexing from equation (A3), one gets
the classic result for the case of stable demography that
the matrix with the (i, j) entry equal to ai,jwj=(lwi) has a
left eigenvector (corresponding to the eigenvalue 1) with
component i equal to viwi (Bodmer and Cavalli-Sforza
1968; Hill 1972; Taylor 1990, 1996; Rousset 2004; Leh-
mann 2014; Bienvenu and Legendre 2015).
Average Parental Age of
Reproductive-Value-Weighted Offspring

Here, following a reasoning analogous to that of Ellner
(2018, eq. [12]), we show that in the absence of environ-
mental variability, �As(t) in equation (19) is equal to �A when
the population is demographically stable. Removing time
indexing from equation (19) and using equation (17),P∞

jp1jcjP∞
jp1cj

p
l21v⊤F

P∞
jp1jwj

l21v⊤Fw
: ðA4Þ

To simplify this expression, we recall three facts.
First, wj is the present stage distribution aged j. It con-

sists of those recruits that were first censused j time steps
before in relative number Fw and have survived until
now. Since the birth of these recruits, the population has
stably grown by a factor lj. By virtue of demographic sta-
bility, Fw is a constant vector. Survival is regulated by the
matrix S. Hence, wj p l2jS j21Fw.

Second, the survival-fecundity decomposition of A to-
gether with the eigenvector equations for this matrix im-
ply that v⊤F p v⊤(lI2 S) and Fw p (lI2 S)w, where
I is the identity matrix.

Third, recall the series expansion (I2M)22 p I1
2M1 3M2 1⋯ for a matrix M with r(M) ! 1, where r
is the spectral radius. To apply this expansion to l21S, we
assume, as is customary in demography (Caswell 2001),
that l is the Perron root of A and therefore l p r(A). By
the Perron-Frobenius theorem (Varga 2000, chap. 2.7), the
spectral radius of A is an increasing function of its entries.
Since the eigenvector equation lw p Aw implies that 1 is
the Perron root of l21A, we have that 1 1 r(l21S) because
A2 S p F ≥ 0 is not the zero matrix.

Let us then focus on the numerator of equation (A4),

l21v⊤F
X∞
jp1

jwj p l21v⊤F
X∞
jp1

jl2jSj21Fw

p v⊤F(lI2 S)22Fw
p v⊤w
p 1,

ðA5Þ

where in the last line we have used the normalization in
equation (6). Therefore, from equations (3) and (A5), the
right-hand side of equations (A4) is equal to l=(v⊤Fw) p
G. By equation (4), we have that in a constant environ-
ment and at demographic stability, the quantity �As(t) is
equal to �A.
Derivation of Equation (22)

Here, we derive equation (22) under the biologically real-
istic assumption that there is a maximum age q, possibly
very large, beyond which survival is not possible. In the
next section, we relax this assumption by giving sufficient
conditions to consider an infinity of ages in a way that
parallels the proof of equation (4) contained in the previ-
ous section of this appendix. Note that equation (4) is the
analog of equation (22) for a constant environment.

We start by observing that the stage distribution aged
j1 1 at t 1 1 is

wj11(t 1 1) p
S(t)wj(t)
l(t)

, ðA6Þ

which is the surviving fraction of the stage distribution j
at t scaled to account for population growth between t
and t 1 1. The full stage distribution at t is

w(t) p
Xq
jp1

wj(t) ðA7Þ

with

kw(t)k p 1, ðA8Þ
where ∥⋅∥ is the 1-norm (i.e., the sum of the absolute
values of the vector components) and wj(t) is the zero vec-
tor for j 1 q. We then follow a reasoning analogous to that
of Lehmann (2014, app. C). Let us multiply the fraction
wj(t) of the stage distribution composed of those aged j on
the right of v(t) in equation (A2) and use equation (A6):
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v⊤(t)wj(t) p
v⊤(t 1 1)S(t)wj(t)

l(t)

1
v⊤(t 1 1)F(t)wj(t)

l(t)

p v⊤(t 1 1)wj11(t 1 1)

1
v⊤(t 1 1)F(t)wj(t)

l(t)
:

ðA9Þ

Multiplying both sides of equation (A9) by j1 1, sub-
tracting the first term of the right-hand side, adding equa-
tions for all ages, and then flipping sides, we find that

Xq
jp1

( j1 1)v⊤(t 1 1)F(t)wj(t)
l(t)

p
Xq
jp1

( j1 1)v⊤(t)wj(t)2
Xq
jp1

( j1 1)v⊤(t 1 1)wj11(t 1 1),

ðA10Þ
On the right-hand side of equation (A10), we reindex the
second sum and use equations (6) and (A7) to simplify the
first one:

Xq
jp1

( j1 1)v⊤(t 1 1)F(t)wj(t)
l(t)

p 11
Xq
jp1

jv⊤(t)wj(t)2
Xq
jp2

jv⊤(t 1 1)wj(t 1 1):

ðA11Þ
Next, we multiply out and use equation (A7) for the sum
on the left-hand side, and we rewrite the second sum on
the right-hand side of equation (A11):

Xq
jp1

jv⊤(t 1 1)F(t)wj(t)
l(t)

1
v⊤(t 1 1)F(t)w(t)

l(t)

p 11
Xq
jp1

jv⊤(t)wj(t)1 v⊤(t 1 1)w1(t 1 1)

2
Xq
jp1

jv⊤(t 1 1)wj(t 1 1):

ðA12Þ
By equation (14), the second term on the left-hand side and
the third term on the right-hand side of equation (A12)
cancel out. Thus, equation (A12) simplifies to

Xq
jp1

jv⊤(t 1 1)F(t)wj(t)
l(t)

p 11
Xq
jp1

jv⊤(t)wj(t)

2
Xq
jp1

jv⊤(t 1 1)wj(t 1 1):

ðA13Þ

(A10)
Taking the sum from t p 0 to t p L2 1 over equa-
tion (A13), we obtain a telescoping sum on the right-
hand side. Dividing then by L,

1
L

XL21

tp0

Xq
jp1

jv⊤(t 1 1)F(t)wj(t)
l(t)

p 11
1
L

Xq
jp1

jv⊤(0)wj(0)2
Xq
jp1

jv⊤(L)wj(L)

 !
:

ðA14Þ
Taking the limit of equation (A14) as L → ∞, the term on
the right-hand side vanishes because the quantity between
parentheses is bounded. We are then left with

lim
L→∞

1
L

XL21

tp0

Xq
jp1

jv⊤(t 1 1)F(t)wj(t)
l(t)

 !
p 1: ðA15Þ

Using equations (17), (19), (20), and (A7), we express �As

in equation (21) as

�As p lim
L→∞

PL21
tp0

P
q
jp1

jv⊤(t 1 1)F(t)wj(t)
l(t)PL21

tp0

v⊤(t 1 1)F(t)w(t)
l(t)

0
BB@

1
CCA: ðA16Þ

From equations (13)–(16) and (A15),

�As p lim
L→∞

1
L

XL21

tp0

v⊤(t 1 1)F(t)w(t)
l(t)

 !21

p Gs, ðA17Þ

which proves equation (22).
No Maximum Age

Assuming no maximum age, we set q p ∞ in all equa-
tions of the previous section of this appendix. Here, we
propose one possible set of sufficient conditions that en-
sure that the calculations therein remain valid. In partic-
ular, we show how these conditions ensure both that in
the step from equation (A9) to equation (A10), the series
on the right-hand side of equation (A10) that arise when
we set q p ∞ are convergent, and that in the step from
equation (A14) to equation (A15), we have convergence
to zero of the second term on the right-hand side of equa-
tion (A14) as L → ∞ when we set q p ∞ in the terms be-
tween parentheses.

First of all, we make some preliminary considerations
and assumptions. We use ∥⋅∥ to denote the 1-norm both
for vectors (i.e., the sum of the absolute values of the vec-
tor components) and for matrices (i.e., the maximum
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column sum of the absolute values of the matrix entries).
We assume that the maximal individual survival p per
time step that the survival matrices S(t) allow for is such
that

p ! ls: ðA18Þ
Suppose that there are q environmental states. Then,
S(t) ∈ fS1, S2, ::: , Sqg. Survival to t 1 1 (independently of
stage at t 1 1) for an individual in stage h at t equals the
sum of column h of S(t). Hence,

p p max
i

kSik: ðA19Þ
For our purposes, we also define

m p max
i

kFik, ðA20Þ
where themaximum is taken over the set fF1, F2, ::: , Fqg in
which F(t) takes values. We also recall from equations (2)
and (7) that, almost surely, we have

ln ls p lim
L→∞

1
L

XL21

tp0

ln l(t) ðA21Þ

because the sequence ln l(0), ln l(1), ::: is ergodic (Tul-
japurkar 1990). Let then Z(t) p (w(t 1 1),A(t)). In the
long run, the sequence Z(0),Z(1), ::: of population stage
distribution and projection matrix approaches a stationary
sequence and the stage distribution w(t) is component-
wise positive independently of initial conditions (Tuljapur-
kar 1990). Here, we assume stationarity of the sequence
Z(0),Z(1), ::: and positivity of w(t) throughout. We also
suppose that the demographic process described by equa-
tion (1) has been stationary indefinitely backward in time
before we started observing the population at t p 0. The
only difference is then that only for t ≥ 0 are we in position
to observe the realization of A(t) into one of its q values.
Thus, the time variable t runs from2∞ to∞. This assump-
tion is coherent with the approach in themain text where a
genetic lineage is observed indefinitely in backward time as
the population is subject to the same stochastic environ-
mental process in the stationary phase. Note that from
equation (7),

l(t) p
X(t 1 1)
X(t)

p
kA(t)x(t)k
kx(t)k

p
X(t)kA(t)w(t)k
X(t)kw(t)k

p
kA(t)w(t)k
kw(t)k

p kA(t)w(t)k:

ðA22Þ
Hence, the time-specific growth rate can be seen as a func-
tion l(t) p f (Z(t),Z(t 2 1)) of the joint stationary se-
quence of population stage distributions and projection
matrices. Moreover, a sequence obtained from a (measur-
able) function of a stationary sequence is stationary as well
(Krengel 2011, chap. 1, proposition 4.1, corollary 4.2).
Therefore, the sequences fln l(t)gtp∞

tp2∞ and fl(t)gtp∞
tp2∞

are stationary. In fact, a shift in (Z(t),Z(t 2 1)) from t
to t 1 k with k an integer leads to an equal shift in l(t).
By virtue of stationarity, we can set the origin of the time
average in equation (A21) to t p k with k any integer and
not only to t p 0.

After these preliminary considerations, we address the
first problem, which is to show convergence of the series

h(t) p
X∞
jp1

jv⊤(t)wj(t), ðA23Þ

which appears twice on the right-hand side of equa-
tion (A10), as equation (A11) shows, once we set q p ∞.
Observe that h(t) can be written as a dot product

h(t) p v⊤(t)
X∞
jp1

jwj(t): ðA24Þ

For each vector w(t), we can define a norm kykw(t) pPn
ip1wi(t)jyij for vectors y in Rn, where n is the number

of stages in the life cycle (i.e., the number of dimensions
of the matrix model). That k ⋅ kw(t) is a norm follows from
the following facts: the vectors w(t) are component-wise
positive for all t, and the defined norm clearly is absolutely
homogeneous and obeys the triangle inequality. Since
equation (6) holds for all t by assumption and the vectors
v(t) are nonnegative, each of them is bounded in some
norm (i.e., k ⋅ kw(t)). Given the equivalence of norms in fi-
nite dimensions, the vectors v(t) are uniformly bounded in
t. Therefore, there exists a finite number

b p sup
i,t

fvi(t)g, ðA25Þ

where “sup” indicates the supremum, here taken over all
time points and components of v(t). Thus, we can form
a vector b p b[1, 1, ::: , 1]⊤ with n components so that

h(t) ≤ b⊤
X∞
jp1

jwj(t) p bk
X∞
jp1

jwj(t)k, ðA26Þ

where the expression is meaningful provided the involved
series are convergent. Thus, to study the convergence of
h(t), we can focus on the average age�j(t) in the population
at t, which is

�j(t) p
X∞
jp1

jkwj(t)k, ðA27Þ

where kwj(t)k is the population fraction of age j at t.
Note that if�j(t) is convergent, say to M, then using equa-
tion (A26) the homogeneity of norms and going from abso-
lute convergence to convergence of the series, we obtain
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bM p b
X∞
jp1

jkwj(t)k

p b
X∞
jp1

kjwj(t)k

≥ bk
X∞
jp1

jwj(t)k ≥ h(t),

ðA28Þ

so that h(t) is bounded and, therefore, convergent. To prove
convergence of �j(t) we use equations (14) and (A6) to write

wj(t) p

S(t 2 1) ::: S(t 2 j1 2)S(t 2 j1 1)F(t 2 j)w(t 2 j)
l(t 2 1) :::l(t 2 j1 2)l(t 2 j1 1)l(t 2 j)

:

ðA29Þ
Using this expression and equations (A8) and (A19), we
can bound the terms of the series in equation (A27) as
follows:

jkwj(t)k p jk S(t 2 1) ::: S(t 2 j1 1)F(t 2 j)w(t 2 j)
l(t 2 1) ::: l(t 2 j1 1)l(t 2 j) k

≤ jkS(t 2 1)k:::kS(t 2 j1 1)kkF(t 2 j)k   kw(t 2 j)k
l(t 2 1) :::l(t 2 j1 1)l(t 2 j)

p
jkS(t 2 1)k ::: kS(t 2 j1 1)k   kF(t 2 j)k

l(t 2 1) ::: l(t 2 j1 1)l(t 2 j)

≤ jpjp21m
l(t 2 1) :::l(t 2 j1 1)l(t 2 j)

:

ðA30Þ

From this bound, we define

r(t) p
X∞
jp1

jp jp21m
l(t 2 1) :::l(t 2 j1 1)l(t 2 j)

, ðA31Þ

so that

r(t) ≥ �j(t), ðA32Þ
where the expression is meaningful provided r(t) con-
verges. Consider then the following geometric series, which
by virtue of equation (A18) is convergent:

X∞
jp1

jp jp21m
lj

s

p p21m
X∞
jp1

j
� p
ls

�j

p
mls

(ls 2 p)2
: ðA33Þ

Since we can obtain from equation (A21) that, almost
surely,

lim
L→∞

QL21
yp0l(t)
lL

s

p 1, ðA34Þ

and we can use any starting point for the product in the
numerator, we have that equations (A31)–(A34) and the

(A30)
limit comparison test imply that r(t) is, almost surely, con-
vergent pointwise in t, and therefore by equations (A28)
and (A32) so is h(t). As a consequence, both series on
the right-hand side of equation (A10) are convergent.

Next, we consider the problem of convergence to zero
of the second term on the right-hand side of equation (A14)
as L → ∞whenwe setq p ∞ in the terms between paren-
theses in this equation. The proven pointwise convergence
of h(t) guarantees that each term of the sequence
fh(t)gtp∞

tp2∞ is finite. Moreover, r(t) is a function r(t) p
g(l(t 2 1), l(t 2 2), :::) of the stationary sequence
fl(t)gtp∞

tp2∞. In particular, a shift in the argument
(l(t 2 1), l(t 2 2), :::) of g from t to t 1 k with k an inte-
ger leads to an equal shift in r(t). Hence, the sequence
fr(t)gtp∞

tp2∞ is stationary, and so is the sequence
fbr(t)gtp∞

tp2∞. We can then use equations (A26), (A28),
and (A32) to bound the second term on the right-hand
side of equation (A14) as follows:

1
L

Xq
jp1

jv⊤(0)wj(0)2
Xq
jp1

jv⊤(L)wj(L)

 !

≤ b[r(0)1 r(L)]
L

,

ðA35Þ

where r(0) converges to a finite value almost surely.
Stationary sequences are Op(1) (Davidson 2013, p. 186),
that is, bounded in probability. Therefore, ft21br(t)gtp∞

tp0

is op(1) and

1
L

Xq
jp1

jv⊤(0)wj(0)2
Xq
jp1

jv⊤(L)wj(L)

 !
→ 0 ðA36Þ

in probability as L → ∞. This proves that the identity in
equation (A17) extends to the case of infinite ages (i.e.,
when q p ∞), provided that equation (A18) holds.
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