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Incompatibility of Frequency Splitting and
Spatial Localization: A Quantitative
Analysis of Hegerfeldt’s Theorem

Felix Finster and Claudio F. Paganini

Abstract. We prove quantitative versions of the following statement: If
a solution of the 1 + 1-dimensional wave equation has spatially compact
support and consists mainly of positive frequencies, then it must have a
significant high-frequency component. Similar results are proven for the
3 + 1-dimensional wave equation.
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1. Introduction

The present paper provides a quantitative analysis of a problem that has been
studied by different communities in different contexts. On the one hand, in
quantum theory it is well known that spatial localization is incompatible with
the Hamiltonian (i.e., the generator of time translations) to be bounded from
below. This result, often referred to as Hegerfeldt’s theorem, means physically
that a quantum system either propagates with infinite speed (thus violating
causality), or else it must involve pair creation or annihilation processes as
described by wave functions involving arbitrarily large negative frequencies.1

Hegerfeldt’s theorem has far-reaching consequences for our understanding of
the interplay between locality and the distribution of energy in spacetime.
To give a simple example, it explains why the Feynman propagator GF(x, y)
(defined by the condition that “positive frequencies travel to the future” and
“negative frequencies travel to the past”) cannot be causal but instead must
have non-vanishing contributions for a large spacelike separation of x and y.

From the point of view of harmonic analysis, on the other hand,
Hegerfeldt’s theorem can be regarded as an application of a classic theorem by
F. and M. Riesz, a discussion of which can be found for example in [9, Sect. I.1].
It constitutes a special case of an annihilating pair of sets for the Fourier
transform as discussed in [10, Sect. 1.2.1]. For related problems in harmonic
analysis, see, for example, [21] but also [28], which contains a power-series
argument similar to the one we develop in the course of our work in Sect. 4.4.

The proof of Hegerfeldt’s theorem (see [11] or the concise review in
[5, Theorem 3 in Sect. 4]) uses complex continuation and the Schwarz reflec-
tion principle. This method is general and elegant, but unfortunately it does
not give quantitative information on the frequency splitting. The goal of the
present paper is to prove quantitative versions of Hegerfeldt’s theorem. In
order to make the paper accessible to a broader readership, we formulate the
problem and our results purely in the language of hyperbolic partial differen-
tial equations (PDEs). From this perspective, Hegerfeldt’s theorem states that
solutions of hyperbolic PDEs which have spatially compact support cannot
be composed purely of positive (or similarly negative) frequencies. (A clear

1In order to avoid confusion for readers with a more mathematical background, we note
that, here and throughout the paper, by frequency we always refer to oscillations in the time
variable. (In contrast, wave vectors in the spatial variables are referred to as momenta.)
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and detailed proof in the PDE language is given in [30, Sect. 1.8] or [4, Corol-
lary 3.6].) The quantification we have in mind is the following: Suppose that at
an initial time, a solution has compact support in a ball of radius r. What can
one infer on the possible frequency distributions of the solution? In particular,
how small can the component of negative (or similarly positive) frequency be?

Before making this question mathematically precise and stating our
results, we give an overview of the literature on localization in quantum the-
ory. The problem of localization in quantum theory has a long history (see,
e.g., [31] for an overview of the early literature). It was on that backdrop that
Hegerfeldt [11] proved in 1974 that a quantum mechanical system cannot be
localized, or, if initially localized, will spread instantly and thus violate strong
Einstein causality. Skagerstam [27] proved the same result with a different
method. In particular, he provides an independent proof in the Heisenberg
picture. A different attempt at localization using current density four vectors
was pursued in [7,8]. Hegerfeldt’s results were generalized by several authors
[12,16,23]. In a series of later articles [13–15], Hegerfeldt discussed these results
and their observational consequences in greater detail. Hegerfeldt’s theorem
has applications to quantum theory in the context of causal localizations (see,
e.g., [5,6] and the references therein for more recent developments). In [15],
Hegerfeldt addresses the question why the Dirac equation is not a counter
example: The original result is based on the assumption that the Hamiltonian
of the system is positive definite, which obviously is not the case for the Dirac
Hamiltonian. The fact that localized solutions to the Dirac equation always
contain contributions of positive and negative energy has been linked [14] to
the insight from the field-theoretic perspective that an effective particle corre-
sponds to a “dressed” state, i.e., that it is surrounded by a cloud of “virtual”
particle-antiparticle pairs. The appearance of contributions of both positive
and negative frequencies in a localized solution to the Dirac equation can be
thought of as the PDE counterpart to this phenomenon.

In the PDE literature, questions similar to those considered in the con-
text of localization in quantum theory were addressed in [19,20,25] in terms
of unique continuation theorems, i.e., statements of the type that if a solution
to a PDE of interest (namely the Schrödinger equation in [19] or the scalar
wave equation in [20]) vanishes in an open region, then it vanishes every-
where, provided that one requires the solution to be in a suitable regularity
class. Furthermore, see [2,3] for related results on a Riemannian manifold and
[25, Sect. 13] for a discussion of similar results for the Schrödinger equation
with a potential. It should be noted that, although these results are clearly
related, the formulation of the PDE problem does not immediately translate
to the formulation of the problem of localization in quantum mechanics. The
PDE problem assumes the vanishing of a function in a certain domain, while
the problem of localization in quantum mechanics assumes that the expecta-
tion value of a self-adjoint operator, which is associated with a certain spatial
region, vanishes.

We now specify the mathematical problem and state our main results.
For simplicity, we restrict attention throughout to the cases of the scalar wave
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equation in one and three spatial dimensions. But, as will become clear from
our analysis, our methods also apply to other dimensions as well as to the
Klein–Gordon equation. Moreover, our results immediately apply to the equa-
tions of higher spin (Maxwell, Dirac, Rarita–Schwinger, linearized gravity),
simply because in Minkowski space, each component of a solution to these
equations satisfies the scalar wave equation or Klein–Gordon equation.

In preparation, let us consider the following question:
(A) Assume that at some time t0, a wave φ(t, x) is spatially supported inside

a ball of radius r. Does this imply an a priori bound for the ratio
E(φ+)
E(φ−)

(1.1)

of the energies of the components of positive and negative frequency?
(For notational details, see Sect. 2.)

The answer to this question is no. Indeed, by making the absolute value of the
frequencies of φ sufficiently large, one can make quotient (1.1) arbitrarily large
or small (for more details see Sect. 3). But, turning this argument around,
one concludes that if quotient (1.1) is small, then the wave should have signif-
icant high-frequency contributions. The goal of this paper is to quantify this
statement by results of the following form:

Theorem 1.1. Let φ(t, x) be a solution of the scalar wave equation which at
some time t0 is supported inside a ball of radius r > 0,

suppφ(t0, .) ⊂ Br(0).

Assume that the inequality

E(φ−) ≤ ε2 E(φ)

holds for some ε ∈ (0, 1]. Then, there is an a priori estimate for the momentum
distribution of φ of the form

∣
∣k φ̂(k)

∣
∣+
∣
∣∂tφ̂(k)

∣
∣ ≤ R

(

ε, r |k|)
√

r E(φ). (1.2)

Here, φ̂ denotes the spatial Fourier transform (for details see again Sect. 2).
The dispersion relation for the wave equation yields that frequency and

momentum coincide up to a sign. Therefore, inequality (1.2) also tells us about
the frequency distribution. By direct computation or using a dimensional argu-
ment, one readily verifies that inequality (1.2) is scaling invariant. With this
in mind, we can always restrict attention to the case r = 1 of a unit ball. We
shall derive several closed expressions for the function R (see Theorems 4.10
and 4.13 and Corollary 4.25, where we always set ω = |k|). All these expres-
sions vanish in the limit ε ↘ 0,

lim
ε↘0

R
(

ε, |k|) = 0 for all k,

as needed for the correspondence to Hegerfeldt’s theorem. If ε is positive and
small, inequality (1.2) implies that φ̂(k) is small unless |k| is large. This can be
understood as a form of unique continuation, in the sense that, assuming the
Fourier transform to have relatively small L2 mass for negative frequencies, we
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show that the absolute value of the Fourier transform has to be small for small
positive frequencies. For partial differential equations, unique continuation the-
orems of a similar spirit can be found in [17,29]. There are also related unique
continuation results for the Hilbert transform as given for example in [1,26].
However, in contrast to these results, it is a specific feature of our method that
we aim at getting uniform estimates for all values of the two parameters ε and
k. It is one of our main goals to unravel the functional dependence on these
two parameters.

We begin with simple but rough bounds that give a good first understand-
ing of the underlying mechanism and might be sufficient for some applications.
In the subsequent, more technical parts of the paper we show that our estimate
of the series expansion of the Fourier transform is a solution of a Goursat prob-
lem, and employing stationary phase techniques will give rise to significantly
improved upper bounds.

In contrast to Hegerfeldt’s approach, our methods do not rely on complex
analysis. Instead, working with Legendre polynomials, we derive estimates for
each Taylor coefficient of the Fourier transform. From that, we infer explicit
upper bounds for the Fourier transform at low frequencies. Hegerfeldt’s result
is obtained in the present considerations by the fact that if we take the limiting
case when the compactly supported solution is supported only in the positive
frequencies, then the Fourier transform vanishes everywhere, and thus the
function itself is trivial.

We finally note that we expect that our methods and results apply in a
much more general setting. One possible extension is to higher dimensions, as
we here illustrate by deriving estimates for every angular momentum mode of
the wave equation in three spatial dimensions. Moreover, the assumption of
compact support could probably be replaced by suitable decay assumptions
of the initial data. Finally, our results should apply to massive equations, to
situations in the presence of external potentials and to equations in curved
spacetimes. Another possible extension would be to consider different decom-
positions of momentum space into two subsets which generalize the notions of
positive and negative frequencies. However, these extensions and generaliza-
tions go beyond the scope of the present paper.

The paper is structured as follows. In Sect. 2, we introduce the mathe-
matical setup and fix our notation. In Sect. 3, we discuss a simple example. The
main part of the paper is concerned with the one-dimensional wave equation
(Sect. 4). After recalling a simple pointwise estimate of the Fourier trans-
form (Sect. 4.1), we expand the Fourier transform in a power series (Sect. 4.2)
and derive simple estimates of the Taylor coefficients in terms of the energy
(Sect. 4.3). In order to derive refined estimates, we decompose the Fourier
series into a polynomial and the remainder. The coefficients of the polynomial
are bounded using L2-estimates together with properties of Legendre poly-
nomials (Sect. 4.4), whereas the remainder can be treated with the simple
estimates (Sect. 4.5). This gives improved estimates of all Taylor coefficients
(see Proposition 4.7) which give rise to estimate the energy distribution of the
initial data in terms of a series g(ε, ω) (see Proposition 4.8 in Sect. 4.6). We
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proceed with a few simple estimates of this series (Sects. 4.7 and 4.8), which
might be sufficient for future applications and are addressed more toward the
theoretical physics community.

The key for getting better estimates of this series is the observation that,
as a function of ε and ω, the series can be transformed to a solution of a char-
acteristic initial value problem (Goursat problem) for the 1 + 1-dimensional
Klein–Gordon equation (Sect. 4.9). After bringing the initial data into a more
explicit form (Sect. 4.10), we can solve the Goursat problem with the help of
the Klein–Gordon Green’s operator and its representation in momentum space
to obtain a contour integral (Sect. 4.11). This contour integral can be estimated
with a saddle-point approximation and rigorous error bounds (Sect. 4.12). It
remains to integrate over two parameters which came up in our constructions:
the spatial momentum k (Sect. 4.13) and the parameter s used for the con-
struction of the initial data (Sect. 4.14). We thus obtain the improved estimate
for g(ω) in Theorem 4.24. This section contains a number of interesting techni-
cal results and is addressed more at the mathematical community. Finally, in
Sect. 5 we extend the results to each angular mode of the (3 + 1)-dimensional
wave equation (see Theorem 5.8). Appendix provides an alternative derivation
of an integral representation of the solutions of the Goursat problem given in
Sect. 4.9.

2. Preliminaries

2.1. Fourier Transform

We recall a well-known result, which is an immediate consequence of the Paley–
Wiener theorem (see [32, Sect. VI.4] or [24, Theorem IX.11]).

Lemma 2.1. Let φ ∈ C∞
0 (B1(0)) be a smooth real- or complex-valued function

with compact support in the interval (−1, 1) ⊂ R. Then, its Fourier transform2

φ̂(k) =
∫

B1

φ(x) e−ikx dx (2.1)

can be represented as a power series

φ̂(k) =
∞∑

n=0

cn kn, (2.2)

with coefficients (cn)n∈N0 bounded by

|cn| ≤
√

2
n!

‖φ‖L2(B1) (2.3)

|cn| ≤
√

2
(n + 1)!

‖∂xφ‖L2(B1). (2.4)

2We define the Fourier transform with a factor of one and the inverse Fourier transform
with a factor of 1/(2π).



Incompatibility of Frequency Splitting

Proof. Differentiating (2.1), we obtain
∣
∣φ̂(n)(k)

∣
∣ ≤
∣
∣
∣
∣

∫

B1

(−ix)n φ(x) e−ikx dx

∣
∣
∣
∣
≤
∫

B1

∣
∣φ(x)

∣
∣ dx ≤

√
2 ‖φ‖L2(B1).

In particular, setting k = 0 we obtain
∣
∣cn

∣
∣ n! =

∣
∣φ̂(n)(0)

∣
∣ ≤

√
2 ‖φ‖L2(B1),

giving the desired bound (2.3). Moreover, we conclude that the Taylor series
converges absolutely.

In order to derive (2.4), we consider similarly the Fourier transform of
the derivative of φ(x) to obtain

ik φ̂(k) =
∞∑

n=1

dn kn with |dn| ≤
√

2
n!

‖∂xφ‖L2(B1).

Comparing the last equation with (2.2), one sees that cn = −idn+1, giv-
ing (2.4). �
This estimate shows in particular that φ̂(k) is real analytic.

2.2. Green’s Operators and the Causal Fundamental Solution

The proof of our main theorem is based on estimates of a solution of the Klein–
Gordon equation in 1 + 1 dimensions (for details see Sect. 4.9). We now recall
the basics on Green’s operators needed for this analysis. The Klein–Gordon
equation for a wave φ of mass m ≥ 0 reads

(

∂2
t − ∂2

x + m2
)

φ(t, x) = 0.

Green’s kernels are distributional solutions of this equation with a δ-
distribution as inhomogeneity. More precisely, they are defined by the equation

(

∂2
t − ∂2

x + m2
)

Sm2(t, x) = −δ(t) δ(x). (2.5)

The Green’s operator Sm2 is the corresponding integral operator defined by

(Sφ)(t, x) :=
∫

R2
Sm2(t − t′, x − x′) φ(t′, x′) dt′ dx′. (2.6)

We now compute the Green’s kernel with Fourier methods. Taking the
Fourier transform of the Green’s kernel,

Sm2(t, x) =
∫

R2

dω dk

(2π)2
Ŝm2(ω, k) e−iωt+ikx,

the differential equation (2.5) reduces to the algebraic equation

(ω2 − k2 − m2) Ŝ(ω, k) = 1.

When solving this equation, one must treat the zeros of the function ω2 −k2 −
m2 with a suitable deformation in the complex plane. For our purposes, it is
useful to choose

Ŝ∨
m2(ω, k) = lim

ε↘0

1
ω2 − k2 − m2 − iεω

Ŝ∧
m2(ω, k) = lim

ε↘0

1
ω2 − k2 − m2 + iεω

(2.7)
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where the limit ε ↘ 0 is taken in the distributional sense. The resulting Fourier
transform can be computed explicitly with residues. Indeed, carrying out the
ω-integral by closing the contour in the upper (lower) half plane if t < 0
(respectively, t > 0), we get

S∧
m2(t, x) = lim

ε↘0

∫

R2

dω dk

(2π)2
1

ω2 − k2 − m2 + iεω
e−iωt+ikx

= lim
ε↘0

∫

R2

dω dk

(2π)2

(
1

ω − √
k2 + m2 + iε

− 1
ω +

√
k2 + m2 + iε

)
e−iωt+ikx

2
√

k2 + m2

= Θ(t)
(−2πi)
(2π)2

∫ ∞

−∞

dk

2
√

k2 + m2

(

e−i
√

k2+m2 t − ei
√

k2+m2 t
)

eikx

= −Θ(t)
1
π

∫ ∞

0

dk√
k2 + m2

sin
(√

k2 + m2 t
)

cos(kx)

=

{
ω2 = k2 + m2

dk

ω
=

dω

k

}

= −Θ(t)
1
π

∫ ∞

m

dω√
ω2 − m2

sin
(

ωt
)

cos
(√

ω2 − m2 x
)

where Θ is the Heaviside function. The obtained integral is well defined as an
improper Riemann integral. In order to compute it, it is most convenient to
make use of Lorentz invariance, making it possible to restrict attention to the
case x = 0. In this case, the Fourier integral can be carried out using Bessel
functions (see [22, Eq. 10.9.12])

∫ ∞

m

dω√
ω2 − m2

sin
(

ωt
)

=
∫ ∞

1

dσ√
σ2 − 1

sin
(

σ (mt)
)

=
π

2
J0(mt),

giving the explicit formula

S∧
m2(t, x) = −1

2
Θ(t) Θ

(

t2 − x2
)

J0

(

m
√

t2 − x2
)

. (2.8)

This Green’s kernel vanishes unless the point (t, x) lies in future light cone
centered at the origin. As a consequence, in the Green’s operator (2.6) the
function φ enters only inside the past light cone centered at (t, x). This is the
reason why S∧

m2 is referred to as the retarded Green’s operator. Similarly, the
Green’s kernel S∨

m2(t, x) is computed by

S∨
m2(t, x) = −1

2
Θ(−t) Θ

(

t2 − x2
)

J0

(

m
√

t2 − x2
)

, (2.9)

giving rise to the advanced Green’s operator S∨
m2 .

We finally introduce the fundamental solution Km2 by

Km2(t, x) :=
1

2πi

(

S∨
m2 − S∧

m2

)

(t, x)

= − i

4π
ε(t) Θ

(

t2 − x2
)

J0

(

m
√

t2 − x2
) (2.10)

where ε is the sign function. Being composed of the difference of the advanced
and retarded Green’s kernels, the kernel of the fundamental solution satisfies
the homogeneous Klein–Gordon equation,

(

∂2
t − ∂2

x + m2
)

Km2(t, x) = 0. (2.11)
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For this reason, the fundamental solution can be used to construct solutions of
the Klein–Gordon and wave equations. The causal fundamental solution has
the Fourier representation

Km2(t, x) =
∫

R2

dω dk

(2π)2
δ
(

ω2 − k2 − m2
)

ε(ω) e−iωt+ikx. (2.12)

Here, the fact that the integrand is supported on the mass shell ω2 + k2 = m2

can be understood immediately from the fact that Km2 satisfies the Klein–
Gordon Eq. (2.11). The detailed form of this integrand can be derived
from (2.10) and (2.7) by using the distributional relation

lim
ε↘0

(
1

x − iε
− 1

x + iε

)

= 2πi δ(x)

to obtain

S∨
m2(ω, k) − S∧

m2(ω, k) = lim
ε↘0

[
1

ω2 − k2 − m2 − iεω
− 1

ω2 − k2 − m2 + iεω

]

= lim
ε↘0

[
1

ω2 − k2 − m2 − iε
− 1

ω2 − k2 − m2 + iε

]

ε(ω)

= 2πi δ(ω2 − k2 − m2) ε(q0).

Alternatively, this relation can also be derived by direct computation of the
Fourier integral in (2.12).

In the massless case m = 0, we obtain the corresponding Green’s kernels
and the fundamental solution of the wave equations. Using that J0(0) = 1, we
get the simple formulas

S∧
0 (t, x) = −1

2
Θ(t) Θ

(

t2 − x2
)

(2.13)

S∨
0 (t, x) = −1

2
Θ(−t) Θ

(

t2 − x2
)

(2.14)

K0(t, x) = − i

4π
ε(t) Θ

(

t2 − x2
)

(2.15)

where ε is again the sign function.

3. A Simple Example

The following example is intended to give the reader a first idea of the problem
analyzed in this paper. In particular, the simple arguments presented in this
section explain why the answer to the naive question (A) on page 3 is no.

Let f ∈ C∞
0 (M, C) be a compactly supported test function in 1 + 1-

dimensional Minkowski spacetime M. For notational clarity, we denote points
of Minkowski space in boldface, i.e., x = (x0,x1) = (t, x) and p = (p0,p1 = k).
We again let K0 be the causal fundamental solution (2.15). Then, the function

φ(x) := (K0f)(x) =
∫

M
K0(x,y) f(y) d2y (3.1)
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is a solution of the scalar wave equation which is smooth and has spatially com-
pact support. Taking the Fourier transform in space and time, the convolution
in (3.1) becomes a multiplication in momentum space, i.e.,

φ(x) =
∫

R2

d2p
(2π)2

K̂0(p) f̂(p) e−i 〈p,x〉 (3.2)

where 〈., .〉 is the Minkowski inner product. Using (2.12), the distribution K̂0

is given by

K̂0(p) = δ
(

(p0)2 − (p1)2
)

ε
(

p0
)

.

We decompose the solution into the components of positive and negative fre-
quencies by setting

φ±(x) =
∫

R2

d2p

(2π)2
Θ(±p0) K̂0(p) f̂(p) e−i 〈p,x〉 (3.3)

and denote their energies by

E
(

φ±
)

:=
1
2

∫ ∞

−∞

(∣
∣∂tφ±(t, x)

∣
∣
2 +
∣
∣∂xφ±(t, x)

∣
∣
2
)

dx.

Clearly, these energies are time independent due to energy conservation.
We now answer question (A) on page 3:

Proposition 3.1. For any ε > 0, there is a smooth solution φ(x) with spatially
compact support of the wave equation in (1 + 1)-dimensional Minkowski space
with the property that

E(φ−)
E(φ+)

≤ ε2.

Proof. Given f ∈ C∞
0 (M), in (3.1) we consider the family of test functions

fζ(x) := f(x) exp
(− iζ (x0 + x1)

)

,

where ζ is a positive parameter. For convenience, the test function f is chosen
such that maxR2(f̂) = f̂(0, 0). Taking the Fourier transform, the multiplication
by a plane wave translates into a shift of the argument, i.e.,

f̂ζ(p) = f̂
(

p0 − ζ,p1 + ζ
)

.

We now consider the corresponding family of solutions φζ in (3.2).
By increasing ζ, the function f̂ζ is shifted parallel to the light cone toward

higher positive frequencies (Fig. 1) with maxR2 f̂ζ = f̂(ζ,−ζ). As a conse-
quence, the energy E(φζ,+) of the positive-frequency contribution is bounded
from below. Furthermore, since f(x) is smooth, its Fourier transform f̂ decays
rapidly. As a consequence, φ̂ζ,− as well as its energy E(φζ,−) tend to zero
rapidly in ζ. Hence,

lim
ζ→∞

E(φζ,−)
E(φζ,+)

= 0,

concluding the proof. �
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p1

p0

f̂

f̂ζ

Figure 1. Shifting f̂ζ in momentum space. The shaded
region indicates the neighborhood around the maximum of
f̂ζ , outside of which f̂ζ decays rapidly

This example can be made more quantitative. In order to get a good
example for testing our estimates, we want to choose a compactly supported
function of one variable whose Fourier transform decays as fast as possible
near infinity. As proven in [18, Theorem in Sect. 1.5], there is a non-trivial,
compactly supported function g whose Fourier transform is bounded by

|ĝ(k)| ≤ exp
(

− |k|
1 + log2 |p|

)

. (3.4)

This “almost exponential” decay near infinity is optimal in the sense that there
is no compactly supported function g with (see [18, Theorem in Sect. 1.1])

|ĝ(k)| ≤ exp
(

− |k|
1 + log |p|

)

.

We choose

f(x) = g
(

x0
)

g
(

x1
)

with g satisfying (3.4). For this choice of g, we can compute the energies of the
corresponding solutions φζ in (3.2) and (3.3) as well as their spatial Fourier
transforms (2.1) explicitly. A straightforward calculation yields

∣
∣k φ̂ζ,+(k)

∣
∣ ≤ |k| exp

(

−
∣
∣ζ − |k|∣∣

1 + log2
∣
∣ζ − |k|∣∣

)

(3.5)

∣
∣k φ̂ζ,−(k)

∣
∣ ≤ |k| exp

(

− ζ + |k|
1 + log2

∣
∣ζ + |k|∣∣

)

(3.6)

E(φζ) ∼ ζ2 (3.7)

E
(

φζ,−
)

�
∫ ∞

0

ω2 exp
(

− 2 (ζ + ω)
1 + log2(ω + ζ)

)

dω
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�
(

1 + log2 ζ)3 exp
(

− 2ζ

1 + log2 ζ

)

. (3.8)

Hence,

ε :=

√

E
(

φζ,−
)

E(φζ)
� (1 + log2 ζ)

3
2

ζ
exp
(

− ζ

1 + log2 ζ

)

. (3.9)

Combining the above inequalities, one sees that for fixed k and small ε (i.e.,
for large ζ), in the above example the function R in (1.2) tends to zero in ε

slightly faster than linearly. Such a bound of φ̂±(k) in terms of ε holds as long
as the exponential in (3.5) is small, i.e., as long as |k| � ζ. Inverting (3.9)
asymptotically for large ζ, one finds that ζ ∼ − log ε. Therefore, the interval
for |k| on which our improved estimate applies grows logarithmically in ε.

These qualitative findings will be reproduced by our estimates. Indeed, we
shall see that for small k and ε, the function R in (1.2) scales like R ∼ ε

2
3 (see

Proposition 4.8), which is consistent with the slightly faster than linear decay
in ε in the above example. Moreover, the logarithmic growth in ε of the inter-
val |k| ∈ [0, ζ] also appears in our refined estimates (see, e.g., Proposition 4.21,
where the region (A) is determined by inequality (4.68) with k =

√
2b and λ,

a and b as defined by (4.44) and (4.28) with s = 1).
Although the methods used in this example give a good first understand-

ing, it seems impossible to use them for proving Theorem 1.1. One reason is
that the methods for analyzing the decay of Fourier transforms of compactly
supported functions (see [18] for a good survey) do not give precise estimates.
Another reason is that in (3.2) the function f̂ζ is multiplied by a distribution
supported on the mass cone. As a consequence, results on the decay of two-
dimensional Fourier transforms do not seem suitable for analyzing solutions of
the wave equation.

4. The 1 + 1-Dimensional Case

In this section, we give a detailed analysis of the properties of solutions to the
wave equation with spatially compact support in 1+1-dimensional Minkowski
space in the limiting case when the quotient E(φ−)/E(φ+) is small. In particu-
lar, we shall derive an upper bound for the Fourier transform of such solutions
for small frequencies.

We consider the Cauchy problem for the scalar wave equation with
smooth initial data supported inside the unit ball B1 = (−1, 1),

{
(∂2

t − ∂2
x)φ(t, �x) = 0

φ|t=0 = φ0 ∈ C∞
0 (B1), ∂tφ|t=0 = φ1 ∈ C∞

0 (B1).
(4.1)

We denote the energy of the solution by

E(φ) :=
1
2

∫

B1

(∣
∣∂tφ(0, x)

∣
∣
2 +
∣
∣∂xφ(0, x)

∣
∣
2
)

dx. (4.2)
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It is useful to take the Fourier transform of the spatial variable, again using
the notation and conventions in (2.1). A direct computation yields

φ̂(t, k) = φ̂+(t, k) + φ̂−(t, k)

with

φ̂±(t, k) :=
1
2

e∓iωt
(

φ̂0(k) ± i

ω
φ̂1(k)

)

, (4.3)

where ω ≥ 0 denotes the absolute value of the frequency, i.e.,

ω = ω(k) := |k|. (4.4)

The solutions φ± can be understood as the components of positive and negative
frequency, respectively. This splitting is analogous to the splitting into plus-
and minus-functions in [10, p. 16]. Using Plancherel’s theorem, energy (4.2)
can also be expressed as an integral in momentum space.

Lemma 4.1. Energy (4.2) can be written as

E(φ) = E(φ+) + E(φ−) with E(φ±) :=
∫ ∞

−∞

dk

2π
ω2
∣
∣φ̂±(k)

∣
∣
2
.

(4.5)

Proof. A direct computation using Plancherel’s theorem yields

E(φ) =
1
2

∫ ∞

−∞

dk

2π

(

ω2
∣
∣φ̂0(k)

∣
∣
2 +
∣
∣φ̂1(k)

∣
∣
2
)

=
∫ ∞

−∞

dk

2π
ω2
(∣
∣φ̂+(t, k)

∣
∣
2 +
∣
∣φ̂−(t, k)

∣
∣
2
)

,

giving the result. �

We now enter the proof of Theorem 1.1 in different versions (see
Lemma 4.2, Theorems 4.10 and 4.13, and Corollary 4.25). Our strategy is
as follows: We begin with a pointwise bound of the Fourier transform. In order
to improve on this result for small frequencies, we expand the Fourier trans-
form in a Taylor series about the origin. For technical reasons, we consider the
contributions of even and odd parity separately. We successively derive more
and more refined estimates for the Taylor coefficients. In the final step, we
prove several bounds for the Taylor series in closed form. Our estimates will
be presented in increasing level of refinement and, accordingly, in increasing
complexity of the proofs.

4.1. A Pointwise Bound of the Fourier Transform

We begin with a simple and well-known pointwise bound for the Fourier trans-
form. It will serve as a reference for the improved bounds for small frequencies
to be derived later on. For our estimates, it is useful to introduce the functions

ĥ±(k) := ω φ̂±(0, k)

with ω as in (4.4), where for convenience we evaluated at time t = 0. According
to Lemma 4.1, the energy E(φ±) simply is a multiple of the L2-norm of ĥ±(k)
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squared. The following estimates apply similarly to both ĥ+ and ĥ−. We begin
with a pointwise bound.

Lemma 4.2. For all k ∈ R,
∣
∣ĥ±(k)

∣
∣ ≤
√

2E(φ).

Proof. According to (4.3),
∣
∣ĥ±(k)

∣
∣ = |k φ̂±(k)| ≤ 1

2

(

|k φ̂0(k)| + |φ̂1(k)|
)

≤ 1√
2

(

|k φ̂0(k)|2 + |φ̂1(k)|2
) 1

2
.

The obtained Fourier transforms can be estimated pointwise by
∣
∣k φ̂0(k)

∣
∣ ≤
∣
∣
∣
∣

∫

B1

∂xφ0(x) e−ikx dx

∣
∣
∣
∣
≤
∫

B1

∣
∣∂xφ0(x)

∣
∣ dx ≤

√
2 ‖∂xφ0‖L2(B1)

∣
∣φ̂1(k)

∣
∣ ≤
∣
∣
∣
∣

∫

B1

φ1(x) e−ikx dx

∣
∣
∣
∣
≤
∫

B1

∣
∣φ1(x)

∣
∣ dx ≤

√
2 ‖φ1‖L2(B1).

Comparing with (4.2) evaluated at time t = 0 gives the result. �

The goal of the following sections is to improve this estimate of |ĥ±(k)| for
small k.

4.2. Taylor Expansion in Momentum Space

Our first step is to expand the initial data φ̂0/1 as well as the corresponding
solutions φ± of positive and negative frequency in Taylor series about the
momentum k = 0. Since the initial data is compactly supported, its Fourier
transform is real analytic (for a proof of this statement see Lemma 2.1). There-
fore, we may expand the initial data in Taylor series,

φ̂0(k) =
∞∑

n=0

φ̂
(n)
0 (0)
n!

kn and φ̂1(k) =
∞∑

n=0

φ̂
(n)
1 (0)
n!

kn. (4.6)

Using these formulas in (4.3), we obtain corresponding series expansions for
the solutions φ̂± (we evaluate at t = 0 and leave out the argument t),

φ̂±(k) =
1
2

(

φ̂0(k) ± i

ω
φ̂1(k)

)

=
1
2

∞∑

n=0

(
φ̂
(n)
0 (0)
n!

± i

ω

φ̂
(n)
1 (0)
n!

)

kn.

According to Lemma 4.1, the energy is the L2-norm of ω φ̂±(k). Therefore, we
multiply by ω. Using that ω = |k|, we obtain

ĥ±(k) = ω φ̂±(k) =
1
2

∞∑

n=0

(

ω
φ̂
(n)
0 (0)
n!

± i
φ̂
(n)
1 (0)
n!

)

kn

=
1
2

∞∑

n=0

(

ε(k)
φ̂
(n)
0 (0)
n!

kn+1 ± i
φ̂
(n)
1 (0)
n!

kn

)

, (4.7)

where ε(k) is again the sign function. This sign function is crucial for what
follows. Its significance becomes clear from the fact that it is responsible
for Hegerfeldt’s theorem to hold: Assume that φ̂− vanishes. Then, the series
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in (4.7) must vanish for all k ∈ R. Hence, the coefficient of every power in |k|
must be zero, i.e.,

φ̂
(0)
0 (0) = 0 and ε(k)

φ̂
(n−1)
0 (0)
(n − 1)!

+ i
φ̂
(n)
1 (0)
n!

= 0 for all n ≥ 1.

This equation must hold for both signs of k, i.e.,

φ̂
(n−1)
0 (0)
(n − 1)!

+ i
φ̂
(n)
1 (0)
n!

= 0 for k > 0

− φ̂
(n−1)
0 (0)
(n − 1)!

+ i
φ̂
(n)
1 (0)
n!

= 0 for k < 0.

As a consequence, all the summands in (4.7) must be zero, implying that the
initial data vanishes identically. This simple argument even makes it possible to
quantify Hegerfeldt’s theorem. Indeed, if φ̂− is small, then all its Taylor coeffi-
cients are small, implying that also the initial data must be small. Clearly, our
task is to specify what “small” means and to derive corresponding estimates.

In preparation of this analysis, we now express the energy of φ± in terms
of the initial data. It is useful to decompose the solution with respect to parity,
i.e., the symmetry under spatial reflections at the origin. Thus, for a func-
tion φ(t, x) we introduce the parity decomposition by

φ(t, x) = φeven(t, x) + φodd(t, x),

where

φeven(t, x) :=
1
2

(

φ(t, x)+φ(t,−x)
)

and φodd(t, x) :=
1
2

(

φ(t, x) − φ(t,−x)
)

.

Since the Fourier transform preserves parity, we obtain similar decompositions
in momentum space, namely

φ̂even(k) =
1
2

(

φ̂(k) + φ̂(−k)
)

and φ̂odd(k) =
1
2

(

φ̂(k) − φ̂(−k)
)

.

Having fixed the parity, it clearly suffices to analyze φ̂even/odd for positive k,
implying that k = |k| = ω. Therefore, it is unnecessary to distinguish between k
and ω. Comparing with (4.7), we obtain

ĥeven
± (ω) =

∞∑

n=0

aeven
n ωn and ĥodd

± (ω) =
∞∑

n=1

aodd
n ωn, (4.8)

where the series coefficients of even and odd parity are given by

aeven
2� = ± i

2
φ̂
(2�)
1 (0)
(2)!

, aeven
2�+1 =

1
2

φ̂
(2�)
0 (0)
(2)!

(4.9)

aodd
2�+2 =

1
2

φ̂
(2�+1)
0 (0)
(2 + 1)!

, aodd
2�+1 = ± i

2
φ̂
(2�+1)
1 (0)
(2 + 1)!

. (4.10)

Lemma 4.3. The energy of the positive- and negative-frequency components
of φ as given in Lemma 4.1 can be written as

E(φ±) = E(φeven
± ) + E(φodd

± )
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with

E
(

φeven
±
)

=
1
π

∫ ∞

0

∣
∣
∣
∣

∞∑

n=0

aeven
n ωn

∣
∣
∣
∣

2

dω

E
(

φodd
±
)

=
1
π

∫ ∞

0

∣
∣
∣
∣

∞∑

n=1

aodd
n ωn

∣
∣
∣
∣

2

dω.

(4.11)

Proof. Using (4.5), we obtain

E(φ±) =
∫ ∞

−∞

dk

2π

∣
∣ĥ±(k)

∣
∣
2 =

∫ ∞

0

dω

2π

(∣
∣ĥ±(ω)

∣
∣
2 +
∣
∣ĥ±(−ω)

∣
∣
2
)

=
1
4π

∫ ∞

0

(∣
∣ĥ±(ω) + ĥ±(−ω)

∣
∣
2 +
∣
∣ĥ±(ω) − ĥ±(−ω)

∣
∣
2
)

dω.

The two summands in the integrand are the even and odd parity components,
respectively. Computing them using (4.8) gives the result. �

4.3. Simple Estimates of the Taylor Coefficients

The following estimates apply to both series in (4.11) in the same way. For
notational convenience, the superscript • stands for either “even” or “odd.”
Thus, we write the series in (4.11) as

ĥ•
±(ω) :=

∞∑

n=0

a•
n ωn : R

+ → C, (4.12)

where we set aodd
0 = 0. Our goal is to estimate the functions ĥ•

±(ω) for low
frequencies. Before entering this analysis, we point out that, according to (4.9)
and (4.10), the coefficients a•

n differ in the cases + and − only by signs. There-
fore, whenever we estimate the absolute values of these coefficients, the dis-
tinction between the cases + and − becomes irrelevant. Moreover, from (4.9)
and (4.10) one sees that the series involving the absolute values of the coeffi-
cients bounds the initial data in the sense that

2
∣
∣ĥ•

±(k)
∣
∣ ≤ ∣∣k φ̂•

0(k)
∣
∣+
∣
∣φ̂•

1(k)
∣
∣ ≤

∞∑

n=0

∣
∣a•

n

∣
∣ωn.

These inequalities will be crucial for the following estimates.
We begin with a simple estimate of each coefficient of the series expansion,

which is based on Lemma 2.1.

Proposition 4.4. The coefficients in the power series (4.12) are bounded by

|a•
n| ≤

√

E(φ•)
n!

.

Proof. Using the result of Lemma 2.1 in (4.9) and (4.10), one finds that the
coefficients a•

n are bounded by
∣
∣aeven

2�

∣
∣ ≤ 1√

2

1

(2�)!
‖φeven

1 ‖L2(B1),
∣
∣aeven

2�+1

∣
∣ ≤ 1√

2

1

(2� + 1)!
‖∂xφeven

0 ‖L2(B1)

∣
∣bodd2�+2

∣
∣ ≤ 1√

2

1

(2� + 2)!
‖∂xφodd

0 ‖L2(B1),
∣
∣bodd2�+1

∣
∣ ≤ 1√

2

1

(2� + 1)!
‖φodd

1 ‖L2(B1).
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We thus obtain the simple bound in terms of the energy

|a•
n| ≤ 1

n!
1√
2

max
{

‖∂xφ•
0‖L2(B1), ‖φ•

1‖L2(B1)

}

≤ 1
n!

1√
2

√

‖∂xφ•
0‖2L2(B1)

+ ‖φ•
1‖2L2(B1)

=

√

E(φ•)
n!

.

This concludes the proof. �

4.4. Estimates of the Highest Coefficient of a Polynomial

In Proposition 4.4, the Taylor coefficients were estimated in terms of the total
energy E(φ•) of the wave. However, it was not taken into account that the
corresponding Taylor series describes the component of positive or negative
frequency only (see (4.8)). More specifically, we consider the situation when
the energy of the negative-frequency component is much smaller than the total
energy,

E(φ•
−)  E(φ•).

Choosing the plus sign in (4.8), we are interested in upper bounds of the
Taylor coefficients in (4.12), which tend to zero if E(φ•

−) tends to zero for
fixed E(φ•). In order to derive these refined estimates, we use the following
strategy, which is similar to that used by Tao to prove a version of Hardy’s
uncertainty principle in [28, Sect. 2.6.2., p. 360]. We decompose the Taylor
series into a Taylor polynomial of degree N and the remainder term,

ĥ•
± = ĥ•

N + R•
N with ĥ•

N (ω) :=
N∑

n=0

a•
n ωn, R•

N (ω) :=
∞∑

n=N+1

a•
n ωn.

(4.13)

We first show that if the Taylor polynomial has small L2-norm on an inter-
val [0, ω1], then its highest coefficient must also be small. This statement is
quantified in the following lemma using properties of the Legendre polynomi-
als. Combining this statement with an L2-estimate of the remainder term (see
Lemma 4.6 in the next section), we shall obtain the refined estimates of each
Taylor coefficient in Proposition 4.7.

Lemma 4.5. Let P(ω) be a real polynomial of degree at most N with N ∈ N0,

P(ω) = a0 + a1 ω + · · · + aN ωN .

Then, for any ω1 > 0, the highest coefficient of P satisfies the following inequal-
ities:

|aN | ≤ 1√
ω1

√

2
π

(
4
ω1

)N

‖P‖L2([0,ω1])

(

1 + O
( 1

N

))

(4.14)

≤ 1√
ω1

(
4
ω1

)N

‖P‖L2([0,ω1]). (4.15)
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Proof. For notational simplicity, we arrange by a rescaling that ‖P‖L2([0,ω1]) =
1. We make use of the fact that the Legendre polynomials Pn are orthogonal
in L2([−1, 1]). More precisely, for all n, n′ ∈ N0 (see [22, Table 18.3.1])

∫ 1

−1

Pn(x) Pn′(x) =
2

2n + 1
δn,n′ .

Combining this orthogonality with the fact that the Legendre polynomi-
als P0, . . . , PN−1 are a basis of the polynomials of degree at most N − 1, we
conclude that the Legendre polynomial PN is orthogonal to all polynomials of
degree smaller than N . It follows that

∫ ω1

0

P(ω) PN

(2ω

ω1
− 1
)

dω =
∫ ω1

0

aN ωN PN

(2ω

ω1
− 1
)

dω.

This makes it possible to compute the coefficient aN by

aN =
1

cN

∫ ω1

0

P(ω) PN

(2ω

ω1
− 1
)

dω with cN :=

∫ ω1

0

ωN PN

(2ω

ω1
− 1
)

dω.

(4.16)

The first integral can be estimated with the help of the Schwarz inequality by
∣
∣
∣
∣

∫ ω1

0

P(ω) PN

(2ω

ω1
− 1
)

dω

∣
∣
∣
∣
≤ ‖P‖L2([0,ω1],dω)

(∫ ω1

0

∣
∣
∣PN

(2ω

ω1
− 1
)∣
∣
∣

2

dω

) 1
2

≤
√

ω1

2
‖PN‖L2([−1,1]) =

√
ω1

2

√
2√

2N + 1
=

√
ω1√

2N + 1
. (4.17)

The second integral in (4.16), on the other hand, can be computed explic-
itly. First, introducing the integration variable x = 2ω/ω1 − 1, we find that

cN =
ω1

2

∫ 1

−1

(ω1 (x + 1)
2

)N

PN (x) dx =
(ω1

2

)N+1
∫ 1

−1

(x + 1)N PN (x) dx

=
(ω1

2

)N+1
∫ 1

−1

xN PN (x) dx =
(ω1

2

)N+1

2
∫ 1

0

xN PN (x) dx,

where in the last line we again used that PN is orthogonal to all polynomials of
degree smaller than N . We now employ the relations (see [22, Eqs. 18.17.38 and
18.17.39]) together with the Stirling formula (see [22, Eq. 5.11.3 with leading
term]),
∫ 1

0

P2n (x) x2ndx =
∫ 1

0

P2n (x) xz−1dx
∣
∣
∣
z=2n+1

=
(−1)n

(
1
2 − 1

2z
)

n

2
(
1
2z
)

n+1

∣
∣
∣
z=2n+1

=
(−1)n(−n)n

2
(

n + 1
2

)

n+1

=
n!

2 (n + 1
2 )(n + 3

2 ) · · · (2n + 1
2 )

=
n! 2n (2n − 1)!!

(4n + 1)!!

=
√

π

2
1√

2n 22n

(

1 + O
( 1

n

))

∫ 1

0

P2n+1 (x) x2n+1dx =
∫ 1

0

P2n+1 (x)xz−1dx
∣
∣
∣
z=2n+2
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=
(−1)n

(

1 − 1
2z
)

n

2
(
1
2 + 1

2z
)

n+1

∣
∣
∣
z=2n+2

=
(−1)n(−n)n

2
(

n + 3
2

)

n+1

=
n!

2 (n + 3
2 )(n + 5

2 ) · · · (2n + 3
2 )

=
n! 2n (2n + 1)!!

(4n + 3)!!

=
√

π

2
1√

2n + 1 22n+1

(

1 + O
( 1

n

))

.

We thus obtain the estimate

cN =
√

π
(ω1

2

)N+1 1√
N 2N

(

1 + O
( 1

N

))

.

Employing the above estimates in (4.16) gives (4.14).
Clearly, relation (4.14) implies that (4.15) holds for large N . In order

to also verify (4.15) for small N , one can estimate the above combinatorial
factors directly to obtain

∫ 1

0

P2n (x) x2ndx ≥ 1
√

2 (2n) + 1 22n

∫ 1

0

P2n+1 (x) x2n+1dx ≥ 1
√

2 (2n + 1) + 1 22n+1
.

As a consequence,

cN ≥
(ω1

2

)N+1 1√
N + 1 2N

.

Using this estimate together with (4.17) in (4.16) gives (4.15). �

4.5. Smallness of the Taylor Coefficients

We next estimate the L2-norm of the remainder term in (4.13) on an inter-
val [0, ω1].

Lemma 4.6. Given ε ∈ [0, 1] and N ∈ N0, we choose

ω1 =
(

ε2 (N + 1)!2 (2N + 3)
) 1

2N+3
. (4.18)

Then, the remainder term in (4.13) is bounded on [0, ω1] by

‖R•
N (ω)‖L2([0,ω1]) ≤ 4ε

√

E(φ•).

Proof. Applying Proposition 4.4, we can estimate the remainder by

|R•
N (ω)| ≤

∞∑

n=N+1

ωn

n!

√

E(φ•)

=
ωN+1

(N + 1)!

(

1 +
ω

N + 2
+

ω2

(N + 2)(N + 3)
+ · · ·

)√

E(φ•)

≤ c(ω)
ωN+1

(N + 1)!

√

E(φ•) with c(ω) :=
∞∑

n=0

( ω

N + 2

)n

.

(4.19)
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Choosing ω1 according to (4.18), we know that for all ω ∈ [0, ω1],

ω

N + 2
≤ ω1

N + 2
≤
(

(N + 1)!2 (2N + 3)
) 1

2N+3

N + 2
≤ 3

4
,

where the last inequality is verified by direct inspection and using the Stirling
formula. Therefore, the geometric series in (4.19) converges and is bounded by
four,

|R•
N (ω)| ≤ 4

ωN+1

(N + 1)!

√

E(φ•).

Using this pointwise bound, the L2-norm can be estimated by

‖R•
N (ω)‖2L2([0,ω1]

≤ 16 E(φ•)
∫ ω1

0

ω2N+2

(N + 1)!2
dω ≤ 16 E(φ•)

(N + 1)!2 (2N + 3)
ω2N+3
1 ,

giving the result. �

Proposition 4.7. Assume that

E(φ•
−) ≤ ε2 E(φ•).

Then, the Taylor coefficients in (4.12) are bounded for all n ∈ N0 by

|a•
n| ≤ 6√

2n + 1
4n

n!
ε

2
2n+3

√

E(φ•).

Proof. Given N ∈ N0, we choose ω1 as in (4.18). Then, the L2-norm of the
remainder is bounded according to Lemma 4.6. Combining this fact with
Lemma 4.3, we obtain

‖ĥ•
N (ω)‖L2([0,ω1]) =

∥
∥ĥ•

± − R•
N

∥
∥

L2([0,ω1])
≤ ∥∥ĥ•

±
∥
∥

L2([0,ω1])
+
∥
∥R•

N

∥
∥

L2([0,ω1])

≤ ∥∥ĥ•
±
∥
∥

L2([0,∞))
+
∥
∥R•

N

∥
∥

L2([0,ω1])

≤
√

π E(φ•−) + ‖R•
N‖L2([0,ω1])

≤ ε
√

π E(φ•) + 4ε
√

E(φ•) ≤ 6ε
√

E(φ•).

Applying Lemma 4.5 to the polynomial ĥ•
N gives the bound

|a•
N | ≤ 1√

ω1

( 4
ω1

)N

6ε
√

E(φ•)

= ε
2

2N+3 4N (N + 1)!−
2N+1
2N+3 (2N + 3)− 2N+1

4N+6 6
√

E(φ•).

The result follows asymptotically from the Stirling formula and for small values
of n directly by numerical evaluation. �

4.6. Smallness of the Initial Data

In Proposition 4.7, we estimated all the Taylor coefficients a•
n. According

to (4.9) and (4.10), this also gives control of all the Taylor coefficients of the
initial data φ̂0 and φ̂1. We thus obtain the following result.
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Proposition 4.8. Assume that the energy of the negative-frequency component
is bounded in terms of the total energy by

E(φ•
−) ≤ ε2 E(φ•).

Then, the even and odd components of the initial data in momentum space are
bounded pointwise for all ω ∈ R

+ by

2
∣
∣ĥ•

±(ω)
∣
∣ ≤ ∣∣ω φ̂•

0(ω)
∣
∣+
∣
∣φ̂•

1(ω)
∣
∣ ≤ 12

√

E(φ•)
(

4ω
)− 3

2 g
(

ω, ε
)

,

where g is the series

g(ω, ε) :=
∞∑

n=0

1√
2n + 1

(4ω)n+ 3
2

n!
ε

2
2n+3 (4.20)

Proof. According to (4.6),

∣
∣k φ̂•

0(k)
∣
∣+
∣
∣φ̂•

1(k)
∣
∣ ≤

∞∑

n=0

( |(φ̂•
0)

(n)(0)|
n!

|k|n+1 +
|(φ̂•

1)
(n)(0)|
n!

|k|n
)

.

Using (4.9) and (4.10), one verifies for both the even and odd components
that

∣
∣k φ̂•

0(k)
∣
∣+
∣
∣φ̂•

1(k)
∣
∣ ≤ 2

∞∑

n=0

|a•
n| |k|n.

Applying the estimate of Proposition 4.7 gives the result. �
Before studying series (4.20) in detail and deriving bounds in closed form,
we explain how to derive corresponding estimates for both parity components
together (i.e., without decomposing into even and odd components).

Theorem 4.9. Assume that the energy of the negative-frequency component is
bounded in terms of the total energy by

E(φ−) ≤ ε2 E(φ).

Then, we have the pointwise bound
∣
∣ĥ±(k)

∣
∣ ≤ 12

√

E(φ) (4ω)− 3
2 g(ω, ε).

Proof. Clearly, we may assume that both E(φodd) and E(φeven) are nonzero,
because otherwise the result follows immediately from Proposition 4.8. Since g
is monotone increasing in ε, we may assume that

E(φ−) = ε2 E(φ). (4.21)

Setting δ = E(φodd)/E(φ) ∈ (0, 1) and using Lemmas 4.3 and 4.1, we find
that

E(φodd) = δ E(φ), E(φeven) = (1 − δ) E(φ). (4.22)

Moreover, we introduce parameters ε• ≥ 0 such that

E(φodd
− ) = ε2odd E(φodd), E(φeven

− ) = ε2even E(φeven). (4.23)

It follows that

ε2E(φ) = E(φ−) = E(φodd
− ) + E(φeven

− )
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= ε2odd E(φodd) + ε2even E(φeven) =
(

ε2odd δ + ε2even (1 − δ)
)

E(φ).

Solving for εeven gives

εeven =

√

ε2 − ε2odd δ

1 − δ
.

This relation shows that εodd ≥ ε implies εeven ≤ ε and vice versa. There-
fore, we may assume without loss of generality that εeven ≤ ε and εodd ≥ ε.
(Otherwise, we repeat the following argument with odd and even components
interchanged).

Next, it is straightforward to see that

|ĥ±(k)|2 =
(|ĥodd

± (k) + ĥeven
± (k)|)2 ≤ (|ĥodd

± (k)| + |ĥeven
± (k)|)2

≤ 2
(|ĥodd

± (k)|2 + |ĥeven
± (k)|2).

Applying Proposition 4.8, we obtain
∣
∣ĥ±(k)

∣
∣
2 ≤ 288

(4ω)3
(

δ g2(ω, εodd) + (1 − δ) g2(ω, εeven)
)

E(φ).

Since g is monotone increasing in the argument ε, we may replace εeven by ε.
Moreover, combining (4.21) with (4.22) and (4.23), one sees that δ ≤ ε2/ε2odd.
We thus obtain

∣
∣ĥ±(k)

∣
∣
2 ≤ 288

(4ω)3

(

g2(ω, εodd)
ε2

ε2odd
+ g2 (ω, ε)

)

E(φ). (4.24)

Finally, the computation

∂

∂εodd

(

g2(ω, εodd)
ε2

ε2odd

)

=
2ε2

ε3odd
g(ω, εodd)

(

εodd
∂g(ω, εodd)

∂εodd
− g(ω, εodd)

)

=
2ε2

ε3odd
g(ω, εodd)

( ∞∑

n=0

1√
2n + 1

(4ω)n+ 3
2

n!
ε

2
2n+3
odd

( 2
2n + 3

− 1
))

< 0

allows us to set εodd = ε in (4.24). This gives the result. �

4.7. A First Version of the Main Theorem

The remaining task is to estimate the series g(ω, ε) in (4.20), which we also
write as

R(ω, ε) := (4ω)− 3
2 g(ω, ε) =

∞∑

n=0

1√
2n + 1

(4ω)n

n!
ε

2
2n+3 (4.25)

We now prove the first version of our main result.

Theorem 4.10. Assume that the energy of the negative-frequency component is
bounded in terms of the total energy by

E(φ•
−) < ε2 E(φ•).
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Then, the even and odd components of the initial data in momentum space are
bounded pointwise for all k ∈ R by

2
∣
∣ĥ•

±(k)
∣
∣ ≤ ∣∣k φ̂•

0(k)
∣
∣+
∣
∣φ̂•

1(k)
∣
∣ ≤ 6

3
2

√

E(φ•)
√

2e | log ε| e4ω. (4.26)

Proof. We estimate the series in (4.25) by
∞∑

n=0

1√
2n + 1

(4ω)n

n!
ε

2
2n+3 ≤

√

3
2

∞∑

n=0

√

2
2n + 3

(4ω)n

n!
ε

2
2n+3

≤
√

3
2

max
n∈[0,∞)

[√

2
2n + 3

ε
2

2n+3

] ∞∑

n=0

(4ω)n

n!
≤
√

3
2

sup
x∈R+

[

x ex2 log ε
]

e4ω,

where in the last step we set x =
√

2/(2n + 3). In order to estimate the last
supremum, we set y =

√− log εx,

sup
x∈R+

[

x ex2 log ε
]

=
1√− log ε

sup
y∈R+

y e−y2
=

1
√

2e | log ε| ,

where we used that the function ye−y2
attains its maximum at y =

√
2. Com-

bining this estimate with the result from Proposition 4.8 gives the result. �

Note that the above estimate is an improvement over Lemma 4.2 as long as

6
3
2 e4ω

√

4e | log ε| ≤ 1.

A straightforward calculation gives the following corollary:

Corollary 4.11. Assume that the energy of the negative-frequency component
is bounded in terms of the total energy by

E(φ•
−) ≤ ε2 E(φ•).

Then, the L1- and L2-norms of the even and odd components of the initial
data are bounded in momentum space for small frequencies

ω ≤ ωmax(ε) :=
1
4

log

(√

2e | log ε|
6

3
2

)

(4.27)

by
∥
∥ĥ•

±(k)
∥
∥

L1([0,ωmax(ε)])
≤ 1

8

√

E(φ•) and
∥
∥ĥ•

±(k)
∥
∥
2

L2([0,ωmax(ε)])
≤ 1

32
E(φ•).

From Lemma 4.1, we know that the L2-norm of ĥ•
± on the whole interval [0,∞)

gives a multiple of the total energy. We thus obtain
∑

±

∫ ∞

ωmax(ε)

dk

2π
ω2
∣
∣φ•

±(k)
∣
∣
2 ≥

(

1 − 1
32π

)

E(φ•).

This inequality quantifies that the wave must have a significant high-energy
contribution. Even more, as the function ωmax(ε) is monotone decreasing in
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ε ∈ (0, 1] and tends to infinity as ε ↘ 0, we see that in this limiting case, the
wave must have large contributions of higher and higher frequency.

We now give a less quantitative version of this result, which might be
interesting in the context of a Littlewood–Paley decomposition.

Corollary 4.12. For every compact frequency range [ω0, ω1] ⊂ R, every
time t0 ∈ R and every radius r, there is a constant C < 1 such that the a
priori estimate

E(π[ω0,ω1]φ) ≤ CE(φ)

holds for every smooth solution to the 1 + 1-dimensional wave equation with

suppφ(t0, .) ⊂ Br.

Here, π[ω0,ω1]φ is the projection of the solution onto the compact frequency
range.

Proof. By making the interval larger and arguing for positive and negative
frequencies separately, it suffices to consider the case ω0 = 0 and ω1 > 0.
Then, by choosing C sufficiently close to one, we can arrange that ω < ωmax

with ωmax as in (4.27) with ε2 = 1 − C. Then, Corollary 4.11 gives the result.
�

We presented a first straightforward estimate of the series and showed
that it already allows us to derive interesting conclusions on the properties of
solutions to the 1+1-dimensional wave equation in the regime E(φ−)  E(φ).
In the following, we will demonstrate that the bound on the series g(ω, ε) can be
improved substantially. The conclusion on the qualitative level, however, will
remain the same. Therefore, these improvements of the bounds are addressed
more to technically-oriented readers.

4.8. A First Improvement of the Estimate

In this section, we give a first improvement of the estimate in Theorem 4.10
by performing a more careful analysis of series (4.25). These estimates are a
preparation for the more advanced method for getting estimates, which will
be introduced in Sect. 4.9.

For ease in notation we set

a(ω) =
log(4ω)

2
and b(ε) = 2 | log ε|. (4.28)

Then, series (4.20) can be written as

g(a, b) :=
∞∑

n=0

1
n!

1√
2n + 1

e(2n+3) a− b
2n+3 . (4.29)

Note that the last series converges absolutely and defines g as a smooth func-
tion on R

2.
Here is the main result of this section:
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Theorem 4.13. Let φ be the solution of the Cauchy problem (4.1). Assume that

E(φ•
−) ≤ ε2 E(φ•).

Then, the initial data is small for small momenta in the sense that for all ω ≥
0,

2
∣
∣ĥ•

±(ω)
∣
∣ ≤ ∣∣ωφ̂•

0(±ω)
∣
∣+

∣
∣φ̂•

1(±ω)
∣
∣

≤ 12 e4ω
√

E(φ) max
{

exp
(

− 1
14

| log ε|√
ω

)

, e exp
(

−
√

| log ε|
)}

.

(4.30)

Proof. In view of Proposition 4.8 and (4.28), (4.29), our task is to prove the
following estimate,

g(a, b) ≤ 2 e3a exp
(

e2a
)

max
{

exp
(

− b

14
e−a
)

, exp
(

1 −
√

b

2

)}

.

We begin with series (4.29), leaving out the factor 1/
√

2n + 1,

g(a, b) ≤
∞∑

n=0

1
n!

e(2n+3) a− b
2n+3 .

We decompose this series into the sum over the first N summands and the
remainder. Estimating these two parts separately, we obtain

g(a, b) ≤
N∑

n=0

1
n!

e(2n+3) a− b
2n+3 +

∞∑

n=N+1

1
n!

e(2n+3) a− b
2n+3

≤ e− b
2N+3

N∑

n=0

1
n!

e(2n+3) a +
∞∑

p=1

1
(p + N)!

e(2p+2N+3) a− b
2p+2N+3

≤ e− b
2N+3 e3a exp

(

e2a
)

+ e− b
2N+3

e(2N+3) a

N !

∞∑

p=1

N !
(p + N)!

e2pa− b
2p+2N+3+

b
2N+3

(∗)
≤ e− b

2N+3 e3a exp
(

e2a
)
[

1 +
∞∑

p=1

N !
(p + N)!

e2pa+ 2bp
(2p+2N+3)(2N+3)

]

≤ e− b
2N+3 e3a exp

(

e2a
)
[

1 +
∞∑

p=1

(
1

N + 1
e
2a+ 2b

(2N+3)2

)p]

,

where in (∗) we used that

e2Na

N !
≤

∞∑

n=0

e2na

n!
= exp

(

e2a
)

.

Choosing N so large that
1

N + 1
e
2a+ 2b

(2N+3)2 ≤ 1
2
, (4.31)
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we can compute the geometric series to obtain the estimate

g(a, b) ≤ 2 e− b
2N+3 e3a exp

(

e2a
)

.

In order to satisfy condition (4.31), we first choose

2N + 3 ≥
√

2b,

which gives rise to the inequality

e
2b

(2N+3)2 ≤ e.

Moreover, choosing

N + 1 ≥ 2 e2a+1,

we conclude that
1

N + 1
e
2a+ b

(2N+3)2 ≤ 1
N + 1

e2a+1 ≤ 1
2
,

implying that (4.31) holds. This leads us to choosing N as the integer in the
range

N < max

{

2 e2a+1,

√

b

2
− 1

2

}

≤ N + 1.

We thus obtain the estimates

2N + 3 ≤ max
{

4 e2a+1 + 3,
√

2b + 2
}

g(a, b) ≤ 2 e3a exp
(

e2a
)

e− b
2N+3

≤ 2 e3a exp
(

e2a
)

exp
(

− b

max
{

4 ea+1 + 3,
√

2b + 2
}

)

= 2 e3a exp
(

e2a
)

max
{

exp
(

− b

4 ea+1 + 3

)

, exp
(

− b√
2b + 2

)}

.

Employing the inequalities

1
4 ea+1 + 3

≥ 1
14

e−a and
b√

2b + 2
≥
√

b

2
− 1

gives the result. �

We conclude this section with a comment on the parameter domains
where the different estimates are better. We first evaluate the point where
the two arguments of the maximum coincide. For simplicity disregarding the
prefactor e, we obtain

1
14

| log ε|√
ω

=
√

| log ε| ⇐⇒ ω =
| log ε|
196

.

We thus obtain the estimate

∣
∣ĥ•

±(ω)
∣
∣ ≤ 24 e e4ω

√

E(φ)

⎧

⎪⎨

⎪⎩

exp
(

− 1
14

| log ε|√
ω

)

if ω >
| log ε|
196

exp
(

−
√

| log ε|
)

if ω ≤ | log ε|
196

.
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For any given ω, one finds that |ĥ•
±(ω)| � exp(−√| log ε|) asymptotically

as ε ↘ 0. This is a faster decay than the asymptotics |ĥ•
±(ω)| � 1/

√| log ε|
as obtained in Theorem 4.10. On the other hand, fixing ε and considering the
asymptotics ω → ∞, the estimate of Theorem 4.10 is slightly better than that
of Theorem 4.13 because of the factor | log ε|− 1

2 in (4.26). However, in this
limiting regime, both theorems are not useful, because the estimates are worse
than the simple pointwise bound of Lemma 4.2. With this in mind, the above
theorems are useful only for ω in a finite interval and for small ε.

We now turn to substantially more sophisticated techniques to obtain the
best estimate in this paper (see Corollary 4.25).

4.9. Formulation as a Goursat Problem for the Klein–Gordon Equation

We now develop another method for estimating the series g in (4.20). This
method is based on the observation that g is a solution of a partial differential
equation in ε and ω. As we shall see, this PDE is indeed the Klein–Gordon
equation (see (4.32)), and the above series is obtained as the solution of a
characteristic initial value problem (usually referred to as Goursat problem;
see Proposition 4.14 below). This observation makes it possible to analyze the
series in (4.20) with familiar methods of hyperbolic PDEs, as will be worked
out in Sects. 4.11–4.12. Before entering the constructions, we remark that there
seems no direct relation between the original wave equation and the PDE in ε
and ω. To our knowledge, it is not even clear why g satisfies a PDE, and why
this PDE is hyperbolic.

We again work with the parameters a and b as introduced in (4.28).
Differentiating the function g(a, b) in (4.29) with respect to a and b gives

∂ag(a, b) =
∞∑

n=0

1
n!

1√
2n + 1

(2n + 3) e(2n+3) a− b
2n+3

∂b∂ag(a, b) =
∞∑

n=0

1
n!

1√
2n + 1

(

− 2n + 3
2n + 3

)

e(2n+3) a− b
2n+3 = −g(a, b).

Hence, g is a solution of the PDE

(∂a∂b + 1) g = 0. (4.32)

This is the (1 + 1)-dimensional Klein–Gordon equation of mass one in light
cone coordinates. Introducing the coordinates

T = a + b, X = a − b

∂T =
1
2
(

∂a + ∂b

)

, ∂X =
1
2
(

∂a − ∂b

)

,

the equation takes the more familiar form
(

∂2
T − ∂2

X + 1
)

g = 0.

This PDE comes with initial conditions at b = 0 given by the series

g0(a) := g(a, 0) =
∞∑

n=0

1
n!

1√
2n + 1

e(2n+3) a. (4.33)
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Moreover, Lebesgue’s monotone convergence theorem implies that

lim
b→∞

g(a, b) = lim
a→−∞ g(a, b) = 0. (4.34)

The above PDE and the initial conditions determine the function g uniquely:

Proposition 4.14. The Goursat problem
(

∂a∂b + 1
)

g(a, b) = 0, g(a, 0) = g0(a) (4.35)

together with the decay conditions (4.34) has a unique solution in the half
space

(a, b) ∈ R × R
+
0 .

It has the integral representation

g(a, b) =
∫ a

−∞
J0

(

2
√

(a − τ) b
)

g′
0(τ) dτ. (4.36)

Proof. The appearance of the Bessel function in (4.36) can be understood
directly from the form of the Green’s kernels of the Klein–Gordon equation
as given in (2.8) and (2.9). Indeed, choosing the spacetime coordinates (T,X)
and setting the mass to one, the causal fundamental solution (2.10) takes the
form

K1(T,X) = − i

4π
ε(T ) Θ

(

T 2 − X2
)

J0

(√

T 2 − X2
)

where ε is again the sign function. Hence, in light cone coordinates,

K1(T,X) = K[a, b] := − i

4π
Θ(ab) ε(b) J0

(

2
√

ab
)

(4.37)

(note that T 2 − X2 = (a + b)2 − (a − b)2 = 4ab). It is a solution of the
homogeneous Klein–Gordon equation. Hence, also the convolution integral

h(a, b) := 4πi

∫ ∞

−∞
K[a − τ, b] g′

0(τ) dτ

satisfies the Klein–Gordon equation. Using the explicit form of K1 in (4.37),
one sees that the function h coincides with the function g in (4.36).

Let us verify that the function h has the desired boundary values at b = 0.
Using that J0(0) = 1, we obtain

lim
b↘0

h(a, b) = lim
b↘0

∫ a

−∞
J0

(

2
√

(a − τ) b
)

g′
0(τ) dτ

=
∫ a

−∞
g′
0(τ) dτ = g0(a),

where we made use of the fact that g0(τ) vanishes as τ → −∞.
It remains to show uniqueness. Let g̃ be another solution of the Klein–

Gordon equation with the same boundary values at b = 0. Then, the differ-
ence φ := g − g̃ is a solution which vanishes at b = 0. Our task is to prove that
φ vanishes identically. This result can be understood intuitively from the fact
that, being massive, a Klein–Gordon wave propagates with subluminal speed,
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implying that if it were nonzero, it would intersect the null line b = 0. In order
to prove this result, we consider the Fourier representation of φ,

φ(T,X) =
∫ ∞

−∞

(

φ̂+(k) e−iω(k)T + φ̂−(k) eiω(k)T
)

eikX ,

where ω(k) :=
√

k1 + 1. The fact that φ vanishes on the line b = 0 implies
that

0 = φ(a, a) =
∫ ∞

−∞

(

φ̂+(k) e−iω(k) a + φ̂−(k) eiω(k) a
)

eika.

Multiplying by eipa and integrating over a, we obtain zero for any value of p.
Since the mappings

R �→ R
±, k �→ k ± ω(k)

are both injective, it follows that the functions φ̂± are both zero. Hence, φ
vanishes identically. �

We remark that identity (4.36) can also be derived without referring
to hyperbolic PDEs simply by manipulating the power series; for details, see
Appendix A.

4.10. Arranging Initial Data in Closed Form

The initial data as given by series (4.33) has the disadvantage that it is not
a simple explicit function. In view of the fact that the integral representa-
tion (4.36) involves the derivative of g0 and that the Bessel function has an
oscillatory behavior, it is not obvious how an estimate of the initial data
translates into a corresponding estimate of the solution. For this reason, it
is preferable to estimate the solution in terms of new solutions of the Goursat
problem (4.35) for initial data given in closed form.

Lemma 4.15. The solution of the Goursat problem (4.35) with initial data
(4.33) satisfies the inequality

∣
∣g(a, b)

∣
∣ ≤
√

g(1)(a, b) g(2)(a, b),

where the functions g(1) and g(2) are solutions of the Goursat problem (4.35)
corresponding to the initial data

g
(1)
0 (a) = e3a exp

(

e2a
)

and g
(2)
0 (a) = e3a

∫ 1

0

exp
(

s2 e2a
)

ds,(4.38)

respectively.

Proof. Since all summands in series (4.29) are non-negative, the Schwarz
inequality gives

g(a, b) =
∞∑

n=0

(
1
n!

e(2n+3) a− b
2n+3

) 1
2
(

1
n!

1
2n + 1

e(2n+3) a− b
2n+3

) 1
2

≤
( ∞∑

n=0

1
n!

e(2n+3) a− b
2n+3

) 1
2
( ∞∑

n=0

1
n!

1
2n + 1

e(2n+3) a− b
2n+3

) 1
2

.
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By direct inspection, one sees that each bracket is a solution of the Goursat
problem (4.35) corresponding to the initial data

g
(1)
0 (a) =

∞∑

n=0

1
n!

e(2n+3) a = e3a
∞∑

n=0

1
n!
(

e2a
)n = e3a exp

(

e2a
)

and

g
(2)
0 (a) =

∞∑

n=0

1
n!

1
2n + 1

e(2n+3) a = e3a
∞∑

n=0

1
n!

1
2n + 1

(

ea
)2n

= e3a

∫ 1

0

( ∞∑

n=0

1
n!

s2n
(

ea
)2n
)

ds = e3a

∫ 1

0

exp
(

s2 e2a
)

ds,

respectively. This concludes the proof. �

4.11. Reformulation as a Contour Integral

In this section, we rewrite the integral representation (4.36) in Proposition 4.14
as a contour integral. We make use of the fact that the Bessel function in (4.36)
also arises in the causal fundamental solution (4.37), which in turn can be
represented in momentum space by a distribution supported on the mass shell.
Our starting point is formula (4.36). Introducing the integration variable

q := 2
√

(a − τ) b,

we obtain

a − τ =
q2

4b
, dτ =

1
2b

q dq

and thus

g(a, b) =
1
2b

∫ ∞

0

J0(q) g′
0

(

a − q2

4b

)

q dq.

Since both functions J0 and g′
0 are even in t, we can write this integral as

g(a, b) =
1
4b

∫ ∞

−∞

(

J0(q) ε(q)
) (

g′
0

(

a − q2

4b

)

q
)

dq. (4.39)

Using Plancherel’s theorem, we can also compute this inner product in
momentum space. In preparation, we compute the Fourier transform of the
Bessel function:

Lemma 4.16. For any p ∈ R,
∫ ∞

−∞
J0(q) ε(q) eipq dq = 2i

ε(p)
√

p2 − 1
χR\[−1,1](p)

where χ denotes the characteristic function and ε is again the sign function.

Proof. According to (4.37) and (2.12), for any q ∈ R,

J0(q) ε(q) = 4πiK1

(

T = q,X = 0
)

= 4πi

∫
dω dk

(2π)2
δ
(

ω2 − k2 − 1
)

ε(ω) e−iωq

=
i

π

∫ ∞

−∞
dω ε(ω) e−iωq

∫ ∞

−∞
δ
(

ω2 − k2 − 1
)

dk



Incompatibility of Frequency Splitting

=
i

π

∫

R\[−1,1]

ε(ω)√
ω2 − 1

e−iωq dω.

We now apply Plancherel’s theorem. �

Proposition 4.17. The function g(a, b) in (4.39) can be written as

g(a, b) =
1
π

∫ ∞
√
2b

k√
k2 − 2b

ĝ(a, k) dk (4.40)

with

ĝ(a, k) :=
∫ ∞

−∞
g0

(

a − y2

2

)

eiky dy. (4.41)

Proof. Applying Plancherel’s theorem to (4.39) gives

g(a, b) =
1
4b

∫ ∞

−∞

dp

2π
Ĵ(−p) ĥ±(p), (4.42)

where

Ĵ(p) :=
∫ ∞

−∞
J0(q) ε(q) eipq dq

ĥ±(p) :=
∫ ∞

−∞
g′
0

(

a − q2

4b

)

q eipq dq.

(This relation is verified most easily by substituting the last two equations
into (4.42) and using that

∫∞
−∞ eiprdp = 2πδ(r).) The first Fourier integral was

computed in Lemma 4.16. The second Fourier integral can be simplified using
integration by parts,

ĥ±(p) = −2b

∫ ∞

−∞
eipq d

dq
g0

(

a − q2

4b

)

dq = ip 2b

∫ ∞

−∞
g0

(

a − q2

4b

)

eipq dq.

Introducing the new integration variable y = q/
√

2b gives

ĥ±(p) =
√

8 ip b
3
2

∫ ∞

−∞
g0

(

a − y2

2

)

eip̃y dy with p̃ :=
√

2b p

=
√

8 ip b
3
2 ĝ
(

a,
√

2b p
)

,

where in the last step we used notation (4.41).
Combining the above formulas, we obtain

g(a, b) =
1
4b

∫

R\[−1,1]

dp

2π
(−2i)

ε(p)
√

p2 − 1

√
8 ip b

3
2 ĝ
(

a,
√

2b p
)

=

√
2b

2π

∫

R\[−1,1]

|p|
√

p2 − 1
ĝ
(

a,
√

2b p
)

dp

=

√
2b

π

∫ ∞

1

p
√

p2 − 1
ĝ
(

a,
√

2b p
)

dp =
1
π

∫ ∞
√
2b

k√
k2 − 2b

ĝ(a, k) dk,

where in the last line we used that the integrand is even. �
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4.12. Estimates of the Contour Integral

Our next goal is to estimate the contour integral in (4.41). In view of the
estimate of Lemma 4.15, for the function g0 it suffices to consider the explicit
functions g

(1)
0 and g

(2)
0 in (4.38). In order to treat these two functions together,

for a given parameter s ∈ [0, 1] we choose

g0(a) = e3a exp
(

s2 e2a
)

. (4.43)

Clearly, setting s = 1 gives the function g
(1)
0 . In order to treat the function g

(2)
0 ,

we will later integrate over the parameter s ∈ [0, 1] (see Sect. 4.14). Thus, we
turn our attention to estimating the integral

ĝ(a, k) =
∫ ∞

−∞
g0

(

a − y2

2

)

eiky dy

for the function g0 as given by (4.43). In order to simplify the notation, we
set

λ = s2 e2a. (4.44)

Then, the transformation

exp
(

s2 e2
(

a− y2
2

))

= exp
(

λ e−y2)

allows us to rewrite the above integral as

ĝ(a, k) = e3a

∫ ∞

−∞
exp
(

− 3
2

y2 + λ e−y2
+ iky

)

dy. (4.45)

We also write this integral as

ĝ(a, k) = e3a

∫ ∞

−∞
eχ(y) dy with (4.46)

χ(y) := −3
2

y2 + λ e−y2
+ iky. (4.47)

We want to apply a saddle-point argument. To this end, we first compute
the critical points of the function χ. In fact, a straightforward computation
shows that there is only one critical point, which lies on the imaginary axis at

y = iβ,

where β is defined implicitly by the equation

k = 3β + 2λβ eβ2
. (4.48)

Our strategy is to deform the integration contour such that it goes through this
critical point. For simplicity, we choose the integration contour as a straight
line parallel to the real axis,

y = γ(t) := t + iβ.

We thus obtain

χ(y) = λ e−t2+β2−2iβt − 2λ eβ2
β2 − 3

2
β2 − 3

2
t2

+ 2i λ eβ2
β t,
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and thus

eχ(y) = A exp
{

C e−t2 e−2iβt

}

B(t),

where we used (4.48) in order to express k in terms of β and set

A = exp
(

− 2λ eβ2
β2 − 3

2
β2
)

(4.49)

B(t) = e2i λ eβ2
β t exp

(

− 3
2

t2
)

(4.50)

C = λ eβ2
. (4.51)

Using this formula in (4.46), we can decompose the integral as

ĝ(a, k) = e3a AJ with (4.52)

J :=
∫ ∞

−∞
exp
{

C e−t2 e−2iβt
}

B(t) dt. (4.53)

In order to estimate this integral, we first take the absolute value of the inte-
grand

|J | ≤
∫ ∞

−∞

∣
∣
∣
∣
exp
{

C e−t2 e−2iβt
}
∣
∣
∣
∣
e− 3

2 t2 dt

=
∫ ∞

−∞
exp
{

C e−t2 Re e−2iβt
}

e− 3
2 t2 dt ≤

∫ ∞

−∞
exp
{

C e−t2
}

e− 3
2 t2 dt.

(4.54)

The obtained integral is estimated further in the next lemma.

Lemma 4.18. For any C ≥ 0,
∫ ∞

0

exp
{

C e−t2
}

e− 3
2 t2 dt ≤ 2

eC

√
1 + C

. (4.55)

Proof. For t ∈ [0, 1], we estimate the inner exponential by a polynomial,

e−t2 ≤ 1 − t2 +
t4

2
sup

ξ∈[0,1]

e−ξ2 ≤ 1 − t2 +
t4

2
≤ 1 − t2

2
.

This gives the estimate
∫ 1

0

exp
{

C e−t2
}

e− 3
2 t2 dt ≤

∫ 1

0

eC exp
{

− C

2
t2
}

e− 3
2 t2 dt ≤

√
π

2
eC

√
C + 3

.

(4.56)

In the remaining parameter range t ∈ [1,∞), we use that e−t2 < e−1 to
obtain

∫ ∞

1

exp
{

C e−t2
}

e− 3
2 t2 dt ≤ e

C
e

∫ ∞

0

e− 3
2 t2 dt =

√
π

6
e

C
e .

For large values of C, contribution (4.56) clearly dominates. Since this
contribution has no zeros and all contributions are bounded near C = 0, one
finds that (4.55) holds with some numerical constant on the right side. By
direct inspection, one sees that this constant can be chosen equal to two. �
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Combining the above estimates, we obtain the following result.

Lemma 4.19. Integral (4.45) can be estimated by

∣
∣ĝ(a, k)

∣
∣ ≤ c e3a

√
1 + λ eβ2

e−h(λ,k) with (4.57)

h(λ, k) :=
3
2

β2 − λ eβ2
(

1 − 2β2
)

, (4.58)

where c is a numerical constant, λ is defined by (4.44), and β is given implicitly
by (4.48).

Proof. We combine (4.54) with (4.55) and apply the resulting inequality
in (4.52). Using (4.51) gives the result. �

We finally collect a few properties of the function h in (4.58), which will
be needed in the next section.

Lemma 4.20. For any fixed λ,

h(λ, k) = −3
2
β2 − k

( 1
2β

− β
)

+
3
2

(4.59)

∂h(λ, k)
∂k

= β (4.60)

∂h(λ, k)
∂λ

= −eβ2
(4.61)

∂2h(λ, k)
∂λ2

> 0, (4.62)

where k is given via (4.48) in terms of λ and β. Moreover, for any k > k̃,

h(λ, k) ≥ h(λ, k̃) + β̃
(

k − k̃
)

. (4.63)

Proof. Relation (4.59) follows immediately from (4.58) and (4.48). Next, a
direct computation using again (4.58) and (4.48) yields

∂h

∂β
= 3β + 2λ β eβ2

+ 4λ β3 eβ2
(4.64)

∂k

∂β
= 3 + 2λ eβ2

+ 4λ β2 eβ2
. (4.65)

Combining these equations with the chain rule gives (4.60).
In order to compute the partial derivatives with respect to λ, we first

compute the total derivative of (4.48) for fixed k,

0 = dk = 2β eβ2
dλ +

(

3 + 2λeβ2
(1 + 2β2)

)

dβ.

Hence,

dβ

dλ
= − 2β eβ2

3 + 2λeβ2(1 + 2β2)
. (4.66)
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This formula shows in particular that, for fixed k, the function β is monotone
decreasing in λ. On the other hand, a direct computation using (4.59) and
again (4.48) gives

∂h

∂β
=

3 + 2λeβ2
(1 + 2β2)

2β
. (4.67)

(The partial derivative is again computed for fixed k.) Taking the product
of (4.66) and (4.67) gives (4.61). Differentiating once again and using that β
is monotone decreasing gives (4.62).

In order to derive (4.63), we first note that from (4.48) or (4.65) it follows
that, for fixed λ, the function β is monotone increasing in k. Therefore,

h(λ, k) − h(λ, k̃) =
∫ k

k̃

∂h(λ, k̂)

∂k̂
dk̂

(4.60)
=
∫ k

k̃

β̂ dk̂ ≥ β̃
(

k − k̃
)

.

This concludes the proof. �

4.13. Estimate of g(1)

The goal of this section is to estimate the solution of the Goursat prob-
lem g(a, b) in (4.35) with initial data g

(1)
0 as in (4.38). Our starting point

is the estimate of Lemma 4.19, where we set s = 1 (cf. (4.43) and (4.38)). Our
task is to estimate integral (4.40). To this end, we need to distinguish different
cases:

Case (A): 0 ≤ β < 1. In view of (4.48), this corresponds to the range for k

k < k0 := 3 + 2e λ. (4.68)

In this case, we can estimate β in terms of k by

k ≤ (3 + 2eλ)β, β ≥ k

3 + 2eλ
. (4.69)

Case (B): β ≥ 1. In view of (4.48), this corresponds to the range for k

k ≥ k0 = 3 + 2e λ.

In order to express β in terms of k, we distinguish two sub-cases. We set

Im y1 :=

⎧

⎪⎨

⎪⎩

√

− log
2λ

3
if λ <

3
2e

1 if λ ≥ 3
2e

.

(4.70)

Case (B1): 1 ≤ β < Im y1. Clearly, this case only occurs if Im y1 > 1, which
by (4.70) implies that

λ <
3
2e

.

Moreover,

λ eβ2 ≤ λ eIm
2 y1 =

3
2
.
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Using (4.48), we obtain

k < k1 := 3 Im y1 + 2λ Im y1 eIm
2 y1

=
√

− log(2λ/3)
(

3 + 2λ e− log(2λ/3)
)

= 6
√

− log(2λ/3) = 6 Im y1.

Therefore, we can estimate (4.48) from above and below by

k − 3β ≤ 3β (4.71)

3β ≤ k ≤ 6β,
k

6
≤ β ≤ k

3
. (4.72)

Case (B2): β ≥ max{1, Im y1}. In this case,

λ eβ2 ≥ λ eIm
2 y1 =

3
2
,

making it possible to estimate (4.48) by

k − 3β ≥ 3β (4.73)

k = 3β + 2λβ eβ2 ≤ 4λβ eβ2
. (4.74)

The resulting inequality can be estimated with the help of Lambert’s W -
function. Indeed, taking the square of the above inequality,

k2

8λ2
≤ 2β2 e2β2

,

one obtains (for details see [22, Eq. 4.13.1])

β2 ≥ 1
2

W
( k2

8λ2

)

.

In the region k ≥ k0 under consideration, the argument of the W -function is
larger than e2/2 ≈ 3.69, making it possible to use the inequalities

log x − log
(

log x
) ≤ W (x) ≤ log x if x ≥ e2

2
.

We thus obtain the estimate

2β2 ≥ log
( k2

8λ2

)

− log
(

log
( k2

8λ2

))

. (4.75)

The different cases are shown schematically in Fig. 2.
We now state the main result of this section. For notational convenience,

A � B stands for A ≤ c B

for a suitable numerical constant c > 0 (which does not depend on any param-
eters).

Proposition 4.21. The function g(a, b) in (4.40) is bounded by

|g(a, b)| � e3a e−h(
√
2b,λ) (4.76)

= e3a exp
(

3
2
β2 +

√
2b
( 1

2β
− β
))

, (4.77)
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(A)

k

λ

(B1)

(B2) k = k0 := 3 + 2e λ

k = k1 = 6 − log
2λ
3

1

10

Figure 2. Different cases in the kλ-plane

where h is the function (4.58) and β is determined implicitly by (4.48) for k =√
2b, i.e.,

√
2b = 3β + 2λβ eβ2

(4.78)

(and λ is given in terms of a by (4.44)). More explicitly, β is bounded from
below by

β ≥

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2b

3 + 2eλ
in case (A)

√
2b

6
in case (B1)

1√
2

√

log
( b

4λ2

)

− log
(

log
( b

4λ2

)

in case (B2),

(4.79)

with the cases as above with k =
√

2b and β given by (4.78).

We now enter the detailed estimates. The proof of this proposition will be
completed at the end of this section. Our strategy is to estimate the k-integral
in the different regions separately. To this end, we decompose the range of
integration as

(
√

2b,∞) = I(A)∪̇I(B1)∪̇I(B2)

with

IA =
(√

2b, k0
)

, IB1 =
[

max{
√

2b, k0}, k1
)

, IB2 =
[

max{
√

2b, k0, k1},∞).
We begin with an estimate in case (A).

Lemma 4.22. The following inequality holds,

gA :=
∫

IA

k√
k2 − 2b

∣
∣ĝ(a, k)

∣
∣ dk ≤ e3a exp

(√
2b
( 1

2β
− β
))

,

where β is chosen according to (4.78).
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Proof. Using the inequality 0 ≤ β < 1, we estimate (4.57) by

∣
∣ĝ(a, k)

∣
∣ � e3a

√
1 + λ

exp
(

λ eβ2
(

1 − 2β2
))

.

Setting x = β2, the last exponent involves the function

f(x) := ex (1 − 2x), (4.80)

whose first and second derivatives are negative,

f ′(x) = −ex
(

1 + 2x
)

< 0 and f ′′(x) = −ex
(

3 + 2x
)

< 0.

In particular, the function f is concave. Therefore, choosing x̃, for all x > x̃,

f(x) ≤ f
(

x̃
)

+ f ′(x̃) (x − x̃).

As a consequence,

∣
∣ĝ(a, k)

∣
∣ � e3a

√
1 + λ

exp
(

λ f
(

β̃2
)

+ λ f ′(β̃2
) (

β2 − β̃2
)
)

,

where we choose β̃ such that (4.78) holds. Applying (4.65) and (4.69), we
obtain the estimate

β2 − β̃2 =
∫ k

k̃

d
dk′ β

2 dk′ =
∫ k

k̃

2β

3 + 2λ eβ2 + 4λ β2 eβ2 dk′

≥ 2
(3 + 2eλ)(3 + 6eλ)

∫ k

k̃

k′ dk′ ≥ 1
(3 + 6eλ)2

(

k2 − 2b
)

,

where in the last line we also used that β < 1. We thus obtain the estimate

∣
∣ĝ(a, k)

∣
∣ � e3a+λf(β̃2)

√
1 + λ

exp
(

− λ |f ′(β̃2)|
(3 + 2eλ)2

(

k2 − 2b
)
)

.

Now, we can estimate the integral by

gA ≤
∫ k0

√
2b

k√
k2 − 2b

∣
∣ĝ(a, k)

∣
∣ dk =

{

z =
√

k2 − 2b
z dz = k dk

}

=
∫

√
k2
0−2b

0

∣
∣ĝ(a,

√

z2 + 2b)
∣
∣ dz

� e3a+λf(β̃2)

√
1 + λ

∫ ∞

0

exp
(

− λ |f ′(β̃2)|
(3 + 6eλ)2

z2
)

dz

� e3a+λf(β̃2)

√
1 + λ

3 + 6eλ
√

λ |f ′(β̃2)|
� e3a+λf(β̃2

0)

|f ′(β̃2)| � e3a+λf(β̃2),

where in the last line we computed the Gaussian integral and used that λ
and |f ′| are bounded from below. Applying (4.80) and using that β̃ < 1 give
the result (where for notational convenience, in the statement of the lemma
we omitted the tilde). �
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In order to estimate the integral in case (B), we consider a general integral

gB :=
∫ k2

k̂

k√
k2 − 2b

∣
∣ĝ(a, k)

∣
∣ dk (4.81)

with k̂ = max{k0,
√

2b} and k2 ≥ k̂. In this case, we write the estimate of
Lemma 4.19 using (4.63) as

∣
∣ĝ(a, k)

∣
∣ � e3a

√
1 + λ eβ2

e−h(λ,k̂) exp
(

− β̂
(

k − k̂
))

� e3a

√

1 + λ eβ̃2
e−h(λ,k̂) exp

(

− β̂
(

k − k̂
))

, (4.82)

where in the last step we again used that β is monotone increasing in k. In
this inequality, the k-dependence is given simply by a decaying exponential.
Therefore, we may replace the upper limit of integration k2 in (4.81) by ∞.
Thus, it remains to estimate the integral

∫ ∞

k̂

k√
k2 − 2b

e−β (k−k̂) dk.

In preparation, we shift the integration variable such as to obtain an integral
over the interval [

√
2b,∞),

∫ ∞

k̂

k√
k2 − 2b

e−β (k−k̂) dk =
{

k′ = k −  with  := k̂ −
√

2b ≥ 0
}

=
∫ ∞

√
2b

k′ + 
√

(k′ + )2 − 2b
e−β
(

k′−√
2b
)

dk′

≤
∫ ∞

√
2b

k′
√

k′2 − 2b
e−β
(

k′−√
2b
)

dk′, (4.83)

where in the last step we used that the integrand is monotone decreasing in .

Lemma 4.23. For any parameters b ≥ 0 and d > 0,
∫ ∞

√
2b

k√
k2 − 2b

e−d
(

k−√
2b
)

dk � b
1
4√
d

+
1
d
.

Proof. Introducing the variable z by

z(k) :=

√

k2

2b
− 1, k =

√
2b
√

z2 + 1, k dk = 2b z dz,

we obtain
∫ ∞

√
2b

k√
k2 − 2b

e−dk dk =
∫ ∞

0

1√
2b z

e−C
√

z2+1 2b z dz

=
√

2b

∫ ∞

0

e−C
√

z2+1 dz

with

C := d
√

2b ≥
√

2.

In order to estimate the integral further, we consider two cases:
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(a) 0 ≤ z ≤ 1: The inequalities

1 +
z2

3
≤
√

z2 + 1 ≤
√

2

give rise to the estimate
∫ 1

0

e−C
√

z2+1 dz ≤ e−C

∫ 1

0

e− C
3 z2

dz

≤ e−C

∫ ∞

0

e− C
3 z2

dz =
√

3π

2
e−C

√
C

.

(b) 1 ≤ z: In this case,

√
2 +

1√
2

(z − 1) ≤
√

z2 + 1 ≤
√

2 z,

and thus
∫ ∞

1

e−C
√

z2+1 dz ≤ e−C
√
2

∫ ∞

1

e
− C√

2
(z−1) dz = e−C

√
2

√
2

C
.

Collecting all the contributions gives the result. �

Proof of Proposition 4.21. Applying Lemma 4.23 in (4.81), (4.82) and using
(4.83), we obtain

|gB | � e3a

√

1 + λ eβ̂2
e−h(λ,k̂)

(
b

1
4

√

β̂

+
1

β̂

)

.

The terms in the denominator can be simplified because, using (4.48),

(

1 + λ eβ̂2)

β̂ � (3 + 2λ eβ̂2)

β̂ = k̂.

Applying (4.59), we obtain the estimate

|gB | ≤ e3a exp
(

3
2

β̂2 +
k̂

2 β̂
− β̂ k̂

) (
b

1
4

√

β̂

+ 1
)

, (4.84)

where we simplified the last summand inside the last brackets by using the
inequality β̂ ≥ 1. This concludes the estimates in case (B).

Next, we need to add the integrals in the different regions. Noting
that β < 1 in case (A), the estimate of Lemma 4.22 agrees with the estimate
in (4.84) if we choose k̂ =

√
2b. Noting that, in view of (4.60), the argument of

the exponent is decreasing in k̂, it suffices to consider the contribution in the
region corresponding to the case determined by k =

√
2b. This gives (4.76).

The lower bounds in (4.79) were derived in (4.69), (4.72), and (4.75). �
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4.14. Estimate of g(2)

We now come to the estimate of the solution of the Goursat problem g(a, b)
in (4.35) with initial data g

(2)
0 as in (4.38). Our task is to estimate the s-integral

in (4.38). In view of (4.44), this corresponds to integrating λ along a straight
line

λ = s2 λ0 with s ∈ [0, 1] and λ0 := e2a.

More precisely, our task is to estimate the integral
∫ 1

0

|g(a, b)|∣∣
λ=s2λ0

ds

with |g(a, b)| as estimated in (4.76) and β as given implicitly by (4.78).
According to (4.62), the function h(.,

√
2b) is convex. Hence,

h
(

λ,
√

2b) ≥ h
(

λ0,
√

2b
)

+
∂h
(

λ,
√

2b
)

∂λ

∣
∣
∣
∣
λ=λ0

(λ − λ0).

As a consequence,
∫ 1

0

|g(a, b)|
∣
∣
∣
λ=s2λ0

ds � e3a

∫ 1

0

e−h
(

s2λ0,
√
2b
)

ds

≤ e3a

∫ 1

0

e−h
(

λ0,
√
2b
)

−∂λh
(

λ0,
√
2b
)

λ0 (s2−1) ds

= e3a e−h
(

λ0,
√
2b
) ∫ 1

0

e−∂λh
(

λ0,
√
2b
)

λ0 (s2−1) ds

= e3a e−h
(

λ0,
√
2b
) √

π

2
e−ν

√
ν

Erfi(ν)

with

ν := −∂λh
(√

2b, λ0

)

λ0
(4.61)
= λ eβ2∣

∣
λ=λ0

,

where Erfi is the imaginary error function.
Using this result in the formula of Lemma 4.15, we obtain the following

result:

Proposition 4.24. The solution of the Goursat problem (4.35) with initial
data (4.33) is bounded by

|g(a, b)| � e3a exp
(

3
2
β2 +

√
2b
( 1

2β
− β
))
√

e−ν

√
ν

Erfi(ν),

where β and ν are given by
√

2b = 3β + 2e2a β eβ2

ν = e2a eβ2
.

We finally state our results in a way compatible with Theorem 1.1.
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Corollary 4.25. There is a numerical constant c > 0 such that the func-
tion R(ε, ω) in (1.2) can be chosen as

R(ε, ω) = c exp
(

3
2
β2 + 2

√

| log ε|
( 1

2β
− β
))
√

e−ν

√
ν

Erfi(ν) (4.85)

with β and ν as given implicitly by

2
√

| log ε| = 3β + 8ω β eβ2
(4.86)

ν = 4ω eβ2
. (4.87)

Proof. We use the result of Proposition 4.24 in Proposition 4.8 and apply
(4.28).

�
We conclude this section with a brief discussion of our final result. Clearly,

due to the implicit definition of β and ν via (4.86) and (4.87), the estimate of
Corollary 4.25 is rather involved. Its meaning can be revealed by considering
various limiting cases. For brevity, we here only consider a particular case
which explains why our last estimate goes beyond the previous estimates in
Theorems 4.10 and 4.13. To this end, we consider the limiting case

| log ε| � √
ω and ω → ∞. (4.88)

In this limiting case, the first exponential inside the curly brackets in (4.30)
is bounded from below, implying that the right side of (4.30) tends to infinity
as ω → ∞. Thus, Theorem 4.13 does not give any information on the limiting
case (4.88). On the other hand, relation (4.86) implies that β ∼ ω−3/4 → 0.
Consequently, (4.87) implies that ν ∼ ω, giving rise to an exponential decay
in (4.85). We conclude that Corollary 4.25 allows us to estimate R(ε, ω) in the
limiting case (4.88), although Theorem 4.13 fails.

5. The 3 + 1-Dimensional Case

Let B1 ⊂ R
3 be the unit ball. We consider the Cauchy problem for the scalar

wave equation with smooth, compactly supported initial data in B1,
{

(∂2
t − ΔR3)φ(t, �x) = 0

φ|t=0 = φ0 ∈ C∞
0 (B1), ∂tφ|t=0 = φ1 ∈ C∞

0 (B1).

We denote the energy of the solution by

E(φ) :=
1
2

∫

B1

(∣
∣∂tφ(0, �x)

∣
∣
2 +
∣
∣∇φ(0, �x)

∣
∣
2
)

d3x. (5.1)

In order to write the solution in an explicit form, it is useful to form the
spatial Fourier transform defined by

φ̂(t,�k) =
∫

B1

φ(t, �x) e−i�k�x d3x.

Indeed, as is verified by direct computation, we have

φ̂(t,�k) = φ̂+(t,�k) + φ̂−(t,�k)
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with

φ̂±(t,�k) :=
1
2

e−iωt
(

φ̂0(�k) ± i

ω
φ̂1(�k)

)

, (5.2)

where we set

ω = ω(�k) := |�k|.
The solutions φ± are the components of positive and negative frequency,
respectively. We again express the energy with the help of Plancherel’s theorem
as an integral in momentum space:

Lemma 5.1. Energy (5.1) can be written as

E(φ) = E(φ+) + E(φ−) with E±(φ) :=
∫

R3

d3k

(2π)3
ω2
∣
∣φ̂±(t,�k)

∣
∣
2
.

(5.3)

Proof. A direct computation using Plancherel’s theorem gives

E(φ) =
1
2

∫

R3

d3k

(2π)3
(

ω2
∣
∣φ̂0(�k)

∣
∣
2 +
∣
∣φ̂1(�k)

∣
∣
2
)

=
∫

R3

d3k

(2π)3
ω2
(∣
∣φ̂+(t,�k)

∣
∣
2 +
∣
∣φ̂−(t,�k)

∣
∣
2
)

,

concluding the proof. �

Due to spherical symmetry of the problem, we can expand the functions
in spherical harmonics, in both position and momentum space. For the initial
data, we obtain in polar coordinates (r, ϑ, ϕ) the representations

φa(�x) =
∞∑

l=0

l∑

m=−l

Ylm(ϑ, ϕ) φlm
a (r) with a ∈ {0, 1}.

Similarly, in momentum space we obtain the representations

φ̂a(�k) =
∞∑

l=0

l∑

m=−l

Ylm(ϑ, ϕ) φ̂lm
a (ω), (5.4)

now in polar coordinates (ω = |�k|, ϑ, ϕ) in momentum space. Since Fourier
transformation preserves angular momentum, it follows that the Fourier trans-
formation of Ylmφlm

a is Ylmφ̂lm
a . Moreover, being the Fourier transform of func-

tions supported in B1(0), the functions φ̂a are real analytic. Therefore, they
can be expanded in a Taylor series about �k = 0. We write the resulting expan-
sion as

φ̂a(�k) =
∞∑

l=0

l∑

m=−l

Ylm(ϑ, ϕ)
∞∑

p=0

clm
a,p ωl+2p.

In order to explain this formula, we note that the product Ylm(ϑ, ϕ) ωl is
a homogeneous polynomial in �k of degree l. Therefore, in order to have a
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smooth function also in ω, the remaining series expansion must involve only
even powers of ω. Using these expansions in (5.2), we obtain

ω φ̂±(t,�k) = e∓iωt
∞∑

l=0

l∑

m=−l

Ylm(ϑ, ϕ) ĥlm
± (ω) with (5.5)

ĥlm
± (ω) :=

∞∑

n=l

alm
n ωn, (5.6)

where the coefficients are given by

alm
l+2p = ± i

2
clm
1,p and alm

l+2p+1 =
1
2

clm
0,p. (5.7)

We point out that, in contrast to the 1 + 1-dimensional case, here a parity
splitting is not necessary because it is already contained in the expansion in
spherical harmonics. (Indeed, even l corresponds to even parity and odd l
corresponds to odd parity.)

In analogy to (4.11), the energies can be expressed in terms of the func-
tions ĥlm

± in (5.6):

Lemma 5.2. The energies of the positive- and negative-frequency components
of φ in (5.1) can be written as

E(φ±) =
∞∑

l=0

l∑

m=−l

Elm(φ±)

with

Elm(φ±) = E(Ylm φlm
± ) =

1
2π2

∫ ∞

0

∣
∣
∣
∣

∞∑

n=l

alm
n ωn

∣
∣
∣
∣

2

ω2 dω (5.8)

Proof. Using expansion (5.5) in (5.3) and using the orthonormality of the
spherical harmonics, we obtain

E±(φ) =
∫

R3

d3k

(2π)3
ω2
∣
∣φ̂±(t,�k)

∣
∣
2

=
∞∑

l=0

l∑

m=−l

4π

(2π)3

∫ ∞

0

∣
∣
∣
∣

∞∑

n=l

alm
n ωn

∣
∣
∣
∣

2

ω2 dω.

This concludes the proof. �

We point out that there are two major differences compared to the 1 + 1-
dimensional situation: First, the sum over n in (5.6) starts at n = l. This is
because the contributions of higher angular momentum vanish to higher order
at k = 0. Second and more importantly, the additional factor ω2 in (5.8) is a
result of the three-dimensional integration in polar coordinates in momentum
space.

The next lemma gives an estimate of each Taylor coefficient in momentum
space. It can be regarded as the 3 + 1-dimensional analog of Lemma 2.1.
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Lemma 5.3. Let φ ∈ C∞
0 (B1) with angular decomposition

φ(x) =
∞∑

l=0

l∑

m=−l

Ylm(ϑ, ϕ) φlm(r).

Then, its Fourier transform has a Taylor-series representation

φ̂(k) =
∞∑

l=0

l∑

m=−l

Ylm(ϑ, ϕ)
∞∑

p=0

clm
p ωl+2p

with coefficients bounded by

|clm
p | ≤

√

4π

2l + 1
l!

(2l − 1)!!
1

(l + 2p)!

√

μ(B1) ‖Ylm φlm‖L2(B1) (5.9)

|clm
p | ≤

√

4π

2l + 1
l!

(2l − 1)!!
1

(l + 2p + 1)!

√

μ(B1)
∥
∥∇(Ylm φlm

)∥
∥

L2(B1)
.

(5.10)

Proof. Since the Fourier transformation preserves angular momentum, it suf-
fices to prove the lemma for fixed l and m. Moreover, by rotational symme-
try it suffices to consider the case m = 0 (more precisely, the transforma-
tion of the m-modes under rotations is described by the Wigner D-matrix).
Hence, expressing the spherical harmonics in terms of Legendre polynomials
(see [22, Eq. 14.30.1]), we obtain

φ(x) = Yl0(ϑ, ϕ) φl0(r)

φ̂(k) = Yl0(ϑ)
∞∑

p=0

cl0
p ωl+2p =

√

2l + 1
4π

Pl(kz)
∞∑

p=0

cl0
p |�k|2p

where a factor ωl was absorbed into the Legendre polynomial. In order to
determine the coefficient cl0

p , we differentiate the last equation l + 2p times
with respect to kz and evaluate at k = 0,

(

∂l+2p
kz

φ̂
)

(0) =
(

l + 2p
l

) √

2l + 1
4π

P
(l)
l (0) cl0

p (2p)!.

In order to compute the lth derivative of the Legendre polynomial, we must
determine the coefficient of its highest power. This can be accomplished with
the help of the Rodrigues formula (see [22, Eq. 18.5.5])

Pl(x) =
1

2l l!
dl

dxl

(

(x2 − 1)l
)

=
1

2l l!
dl

dxl

(

x2l
)

+ O
(

xl−1
)

=
1

2l l!
(2l)!
l!

xl + O
(

xl−1
)

, (5.11)

and differentiating l times gives

P
(l)
l (0) =

(2l)!
2l l!

= (2l − 1)!!.
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We thus obtain
(

∂l+2p
kz

φ̂
)

(0) =

√

2l + 1
4π

(l + 2p)!
(2l − 1)!!

l!
cl0
p . (5.12)

The partial derivative on the left can be estimated by
∣
∣
(

∂l+2p
kz

φ̂
)

(0)
∣
∣ =
∣
∣
∣
∣

∫

B1

(−iz)l+2pφ(�x) e−i�k�x d3x

∣
∣
∣
∣

≤
∫

B1

|φ(�x)| d3x ≤
√

μ(B1) ‖φ‖L2(B1).

Using this estimate in (5.12) and solving for cl0
p give (5.9).

In order to derive (5.10), we again fix l and consider the case m = 0.
Differentiating φ in the z-direction, we obtain

̂
(

∂zφ
)

(k) = kz φ̂(k) = kz Yl0(ϑ)
∞∑

p=0

cl0
p ωl+2p =

√

2l + 1
4π

kz Pl(kz)
∞∑

p=0

cl0
p |�k|2p.

We now differentiate l+2p+1 times with respect to kz and evaluate at k = 0,

∂l+2p+1
kz

̂
(

∂zφ
)

(0) =
(

l + 2p + 1
l + 1

) √

2l + 1
4π

∂l+1
kz

(

kz Pl(kz)
)∣
∣
∣
kz=0

cl0
p (2p)!.

Again applying (5.11), we obtain

∂l+2p+1
kz

̂
(

∂zφ
)

(0) =
(

l + 2p + 1
l + 1

) √

2l + 1
4π

1
2l l!

(2l)!
l!

(l + 1)! cl0
p (2p)!

=

√

2l + 1
4π

(l + 2p + 1)!
(2l − 1)!!

l!
cl0
p . (5.13)

On the other hand, the partial derivative on the left can be estimated by
∣
∣
(

∂l+2p+1
kz

̂
(

∂zφ
)

(0)
∣
∣ =
∣
∣
∣
∣

∫

B1

(−iz)l+2p+1
(

∂zφ
)

(�x) e−i�k�x d3x

∣
∣
∣
∣

≤
∫

B1

|∇φ(�x)| d3x ≤
√

μ(B1) ‖∇φ‖L2(B1).

Combining this estimate with (5.13) gives (5.10). �

Similar to Proposition 4.4, this lemma allows us to estimate each coeffi-
cient of the power series in (5.6).

Proposition 5.4. The coefficients in the power series (5.6) are bounded by

|alm
n | ≤ dl

√

Elm(φ)
n!

with dl :=
4π

√

6 (2l + 1)
l!

(2l − 1)!!
. (5.14)

Proof. This follows immediately by applying Lemma 5.3 to series (5.4) and
using (5.7). More precisely, treating the cases of even and odd n separately,
we obtain
∣
∣alm

l+2p

∣
∣ =

1
2

∣
∣clm

1,p

∣
∣
(5.9)

≤ 1
2

√
6√
4π

dl

(l + 2p)!

√

μ(B1) ‖Ylm φlm
1 ‖L2(B1)
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=
dl

(l + 2p)!
1√
2

‖Ylm φlm
1 ‖L2(B1) ≤ dl

(l + 2p)!

√

Elm(φ)

∣
∣alm

l+2p+1

∣
∣ =

1
2

∣
∣clm

0,p

∣
∣
(5.10)

≤ 1
2

√
6√
4π

dl

(l + 2p + 1)!

√

μ(B1)
∥
∥∇(Ylm φlm

0

)∥
∥

L2(B1)

≤ dl

(l + 2p + 1)!
1√
2

∥
∥∇(Ylm φlm

0

)∥
∥

L2(B1)
≤ dl

(l + 2p)!

√

Elm(φ).

This concludes the proof. �

We now use the same strategy as in Sects. 4.4 and 4.5. We decompose
the series ĥlm

± in (5.6) into a polynomial of degree N and the remainder term,

ĥlm
± = ĥlm

N + Rlm
N (5.15)

with

ĥlm
N (ω) :=

N∑

n=l

alm
n ωn and Rlm

N (ω) :=
∞∑

n=N+1

alm
n ωn.

Similar to Lemma 4.6, we first show that the remainder term has small L2-
norm on the interval [0, ω1]. The main difference compared to Lemma 4.6 is
the additional factor ω2 in the integration measure.

Lemma 5.5. Given ε ∈ [0, 1] and N ∈ N0, we choose

ω1 =
(

ε2

d2l
(N + 1)!2 (2N + 5)

) 1
2N+5

. (5.16)

Then, the remainder term in (5.15) is bounded on [0, ω1] by

‖Rlm
± N (ω)‖L2([0,ω1], ω2dω) ≤ 4ε

√

Elm(φ).

Proof. Applying Proposition 5.4, we can estimate the remainder similar
to (4.19) by

|Rlm
N (ω)| ≤ dl

∞∑

n=N+1

ωn

n!

√

Elm(φ•)

≤ dl c(ω)
ωN+1

(N + 1)!

√

Elm(φ) with c(ω) :=
∞∑

n=0

( ω

N + 2

)n

.

(5.17)

Choosing ω1 according to (4.18), we know that for ε < 1 for all ω ∈ [0, ω1],

ω

N + 2
≤ ω1

N + 2
≤
(

(N + 1)!2 (2N + 5)
) 1

2N+5

N + 2
≤ 3

4
,

where the last inequality is verified by direct inspection and using the Stirling
formula. Therefore, the geometric series in (5.17) converges and is bounded by
four,

|Rlm
N (ω)| ≤ 4dl

ωN+1

(N + 1)!

√

Elm(φ).
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Using this pointwise bound, the L2-norm can be estimated by

‖Rlm
± N (ω)‖2L2([0,ω1], ω2dω) ≤ 16 d2l Elm(φ)

∫ ω1

0

ω2N+4

(N + 1)!2
dω

≤ 16 d2l Elm(φ)
(N + 1)!2 (2N + 5)

ω2N+5
1 ,

giving the result. �

Now, we can estimate each Taylor coefficient by using the method in
Lemma 4.5. The following result is the analog of Proposition 4.7.

Proposition 5.6. Assume that for any given l ∈ N0, m ∈ {−l, . . . , l} and ε ∈
(0, 1],

Elm(φ−) ≤ ε2 Elm(φ).

Then, the series coefficients in (5.6) are bounded by

|alm
n | ≤ 25 max

(

dl, d
2l+3
2l+5
l

) 1√
2n + 1

4n

n!
ε

2
2n+5

√

Elm(φ).

Proof. Given N ∈ N0, we choose ω1 as in (5.16). Decomposing the function ĥlm
−

according to (5.15), the L2-norm of the remainder is bounded according to
Lemma 5.5. Combining this fact with Lemma 5.2, we obtain

‖ĥlm
N (ω)‖L2([0,ω1], ω2dω) =

∥
∥ĥlm

− − Rlm
N

∥
∥

L2([0,ω1], ω2dω)

≤ ∥∥ĥlm
−
∥
∥

L2([0,ω1], ω2dω)
+
∥
∥Rlm

− N

∥
∥

L2([0,ω1], ω2dω)

≤
√

2π2 Elm(φ−) + ‖Rlm
− N‖L2([0,ω1])

≤ ε
√

2π2 Elm(φ) + 4ε
√

Elm(φ) ≤ 9ε
√

Elm(φ).

Applying Lemma 4.5 to the polynomial P(ω) := ω ĥlm
N (ω) gives the bound

|alm
N | ≤ 1√

ω1

(
4
ω1

)N+1

‖P‖L2([0,ω1],dω)

=
1√
ω1

(
4
ω1

)N+1

‖ĥlm
N (ω)‖L2([0,ω1], ω2dω)

≤ 4N+1 ω
−N− 3

2
1 6ε

√

Elm(φ)

≤ 9 · 4N+1 d
2N+3
2N+5
l ε

2
2N+5 (N + 1)!−

2N+3
2N+5 (2N + 5)− 2N+3

4N+10

√

Elm(φ).

The result follows asymptotically from the Stirling formula and for small values
of n directly by numerical evaluation. �

Now, we are ready to extend Proposition 4.8 to the 3 + 1-dimensional
setting.
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Proposition 5.7. Assume that for any given l ∈ N0, m ∈ {−l, . . . , l} and ε ∈
(0, 1], the energy of the negative-frequency component is bounded in terms of
the total energy by

Elm(φ−) ≤ ε2 Elm(φ).

Then, the initial data in momentum space is bounded pointwise for all ω ∈ R
+

by
∣
∣ĥlm(ω)

∣
∣ ≤ 25 max

(

dl, d
2l+3
2l+5
l

)√

Elm(φ)
(

4ω
)− 3

2 gl

(

ω, ε
)

,

where gl is the series

gl(ω, ε) :=
∞∑

n=l

1√
2n + 1

(4ω)n+ 3
2

n!
ε

2
2n+5 .

The series gl in (4.20) differ from the corresponding series g in (4.20) in
two points: The sum begins at n = l (which makes the series smaller) and
the power of ε is 2/(2n + 5) instead of 2/(2n + 3) (which makes the series
larger). The different power comes about as a consequence of the factor ω2 in
the integration measure in (5.8).

The remaining task is to estimate the series gl. All the methods developed
in the 1 + 1-dimensional setting can be adapted to the new series in (4.20). A
simple method for getting the connection is to estimate gl by

gl(ω, ε) =
∞∑

n=l

1√
2n + 1

(4ω)n+ 3
2

n!
(

ε
2n+3
2n+5

) 2
2n+3

≤
∞∑

n=0

1√
2n + 1

(4ω)n+ 3
2

n!
(

ε
2l+3
2l+5
) 2

2n+3 = g
(

ω, ε
2l+3
2l+5
)

. (5.18)

This method is not quite optimal but seems sufficient for most applications. For
more refined estimates, one needs to reconsider the constructions in Sects. 4.9–
4.14 with modified exponents. For brevity, we do not enter the details here.

We conclude this section with two theorems. We begin with an estimate
for each angular momentum mode, obtained by combining Proposition 5.7
with estimate (5.18) and Proposition 4.24.

Theorem 5.8. Let φ(t, x) be a solution of the 3 + 1-dimensional scalar wave
equation which at some time t0 is supported inside a ball of radius r > 0,

suppφ(t0, .) ∈ Br(0).

Assume that for any given l ∈ N0, m ∈ {−l, . . . , l} and ε ∈ (0, 1], the energy of
the negative-frequency component is bounded in terms of the total energy by

Elm(φ) ≤ ε2 Elm(φ).

Then, there is an a priori estimate for the momentum distribution of φ of the
form

∣
∣k φ̂lm(k)

∣
∣+
∣
∣∂tφ̂

lm(k)
∣
∣ ≤ Rl

(

ε, r |k|)
√

r3 Elm(φ),
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where the function Rl is given by

Rl(ε, ω) = c max
(

dl, d
2l+3
2l+5
l

)

exp
(

3
2
β2 +

√
2b
( 1

2β
− β
))
√

e−ν

√
ν

Erfi(ν).

Here, c is a numerical constant (which is independent of l), dl are the constants
in (5.14), and β and ν are given implicitly by

2

√

2l + 3
2l + 5

| log ε| = 3β + 8ω β eβ2

ν = 4ω eβ2
.

Finally, by combining the estimates for each angular mode and summing
over the modes, we derive an estimate for a general solution to the 3 + 1-
dimensional wave equation.

Theorem 5.9. Assume that for ε ∈ (0, 1], the energy of the negative-frequency
component is bounded in terms of the total energy by

E(φ−) ≤ ε2 E(φ).

Then, the L2-norm of the spatial Fourier transform on a sphere of radius ω is
bounded for all ω ∈ R

+ by
∫

S2

∣
∣ω φ̂(ϑ, φ, ω)

∣
∣
2 dμ2

S(ϑ, ϕ) ≤ 625 d
10
3
0 C E(φ)

(

4ω
)− 6

2 g20
(

ω, ε
)

,

where C is the constant

C :=
∞∑

l=0

(2l + 1) d
4l+6
2l+5
l < ∞

(and the dl are again given by (5.14)).

Proof. In order to simplify the calculations, we observe that dl > 1 only for
l = {0, 1, 2, 3} and thus

max
(

dl, d
2l+3
2l+5
l

)

≤ d
5
3
0 d

2l+3
2l+5
l for all l ∈ N0.

Using this estimate in the statement of Proposition 5.7, where we choose
parameters εlm such that Elm(φ−) = ε2lm Elm(φ), we obtain

∫

S2

∣
∣ω φ̂(ϑ, ϕ, ω)

∣
∣
2 dμS2 =

∞∑

l=0

l∑

m=−l

∣
∣ĥlm(ω)

∣
∣
2

≤ 625 d
10
3
0

∞∑

l=0

l∑

m=−l

d
4l+6
2l+5
l Elm(φ)

(

4ω
)− 6

2 g2l
(

ω, εlm

)

.

Along the lines of the proof of Theorem 4.9, we use that the relations

Elm(φ) = δlm E(φ) and Elm(φ−) = ε2lm Elm(φ)
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imply that for all l,m with εlm > ε, the inequality δlm ≤ ε2

ε2
lm

holds. We thus
obtain
∫

S2

∣
∣ω φ̂(ϑ, ϕ, ω)

∣
∣2 dμS2 ≤ 625 d

10
3
0 E(φ)

∞∑

l=0

l∑

m=−l

d
4l+6
2l+5
l δlm

(

4ω
)− 6

2 g2
l

(

ω, εlm

)

≤ 625 d
10
3
0 E(φ)

⎛

⎝
∑

εlm≤ε

d
4l+6
2l+5
l

(

4ω
)− 6

2 g2
l

(

ω, ε
)

+
∑

εlm>ε

d
4l+6
2l+5
l

(

4ω
)− 6

2 g2
l

(

ω, εlm

) ε2

ε2lm

⎞

⎠ .

For all the modes with εlm ≤ ε, we used that in this case, gl(ω, εlm) < gl(ω, ε)
for all l,m and that δlm ≤ 1 due to Lemma 5.2. With the same argument

as in the proof of Theorem 4.9, it follows that ∂
∂εlm

(

g2l (ω, εlm) ε2

ε2
lm

)

< 0 for

ε ∈ [0, 1) and thus

g2l (ω, εlm)
ε2

ε2lm
≤ g2l (ω, ε) for all l,m,

giving rise to the estimate
∫

S2

∣
∣ω φ̂(ϑ, ϕ, ω)

∣
∣
2 dμS2 ≤ 625 d

10
3
0 E(φ)

∞∑

l=0

l∑

m=−l

d
4l+6
2l+5
l

(

4ω
)− 6

2 g2l
(

ω, ε
)

≤ 625 d
10
3
0 E(φ)

(

4ω
)− 6

2 g20
(

ω, ε
)

∞∑

l=0

l∑

m=−l

d
4l+6
2l+5
l ,

where in the last step we used that gl(ω, ε) ≤ g0(ω, ε) for all l ∈ N. Carrying
out the sum over m, we obtain the series

∞∑

l=0

(2l + 1) d
4l+6
2l+5
l .

Using (5.14) and applying Stirling’s formula to each term of the resulting series

∞∑

l=0

(2l + 1)
2

2l+5

(
8π2

3

( l!
(2l − 1)!!

)2
) 2l+3

2l+5

,

one sees that this series converges absolutely. This completes the proof. �
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Appendix A. Alternative Derivation of the Integral
Representation

In this appendix, we give an alternative derivation of the integral representa-
tion of the solutions of the Goursat problem (4.36). The method is by direct
computation using the series representation of the Bessel function J0.

Lemma 5.10. Let g(a) be a power series of the form

g(a) =
∞∑

n=0

cn e(2n+3)a.

Then, for all a, b > 0,
∞∑

n=0

cn e(2n+3)a− b
2n+3 =

∫ a

−∞
J0

(

2
√

(a − τ) b
)

g′(τ) dτ. (A.1)

Proof. The Bessel function J0 has the power expansion (see [22, Eq. 10.2.2])

J0(z) =
∞∑

�=0

(−1)�

(!)2
(z2

4

)�

.

Denoting the right side of (A.1) by T (a, b), we obtain

T (a, b) :=
∫ a

−∞
J0

(

2
√

(a − τ) b
)

g′(τ) dτ

=
∫ a

−∞

∞∑

�,n=0

(−1)�

(!)2
(

(a − τ) b
)� (2n + 3) cn e(2n+3) τ dτ.

Introducing the new integration variable ξ = (2n + 3)(a − τ) gives

T (a, b) =
∫ ∞

0

∞∑

�,n=0

(−1)�

(!)2
( b

2n + 3
ξ
)�

(2n + 3) cn e−ξ+(2n+3) a dξ

2n + 3
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=
∞∑

�,n=0

(−1)�

(!)2
( b

2n + 3

)�

cn e(2n+3) a

∫ ∞

0

ξ� e−ξ dξ

=
∞∑

�,n=0

(−1)�

!

( b

2n + 3

)�

cn e(2n+3) a

=
∞∑

n=0

exp
(

− b

2n + 3

)

cn e(2n+3) a,

where in the last step we carried out the -series to obtain an exponential. �

References

[1] Alaifari, R., Pierce, L.B., Steinerberger, S.: Lower bounds for the truncated
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2024 (2019). arXiv:1708.04285 [math.AP]

[27] Skagerstam, B.K.: Some remarks concerning the question of localization of ele-
mentary particles. Int. J. Theor. Phys. 15(3), 213–230 (1976)

[28] Tao, T.: An Epsilon of Room, I: Real Analysis. Graduate Studies in Mathe-
matics, vol. 117. American Mathematical Society, Providence, RI (2010). (Pages
from year three of a mathematical blog)

[29] Tataru, D.: Unique continuation problems for partial differential equations. In:
Croke, C.B., Vogelius, M.S., Uhlmann, G., Lasiecka, I. (eds.) Geometric Methods
in Inverse Problems and PDE Control, pp. 239–255. Springer, New York, NY
(2004)

[30] Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer-
Verlag, Berlin (1992)

[31] Wightman, A.S., Schweber, S.S.: Configuration space methods in relativistic
quantum field theory I. Phys. Rev. 98(3), 812 (1955)

[32] Yosida, K.: Functional Analysis. Grundlehren der Mathematischen Wis-
senschaften, vol. 123, 6th edn. Springer-Verlag, Berlin (1980)

http://arxiv.org/abs/quant-ph/0109044
http://dlmf.nist.gov/
http://arxiv.org/abs/1708.04285


Incompatibility of Frequency Splitting

Felix Finster and Claudio F. Paganini
Fakultät für Mathematik
Universität Regensburg
93040 Regensburg
Germany
e-mail: finster@ur.de

Claudio F. Paganini
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Am Mühlenberg 1
14476 Potsdam
Germany
e-mail: claudio.paganini@ur.de

Communicated by Mihalis Dafermos.

Received: July 21, 2020.

Accepted: June 18, 2022.


	Incompatibility of Frequency Splitting and Spatial Localization: A Quantitative Analysis of Hegerfeldt's Theorem
	Abstract
	1. Introduction
	2. Preliminaries
	2.1. Fourier Transform
	2.2. Green's Operators and the Causal Fundamental Solution

	3. A Simple Example
	4. The 1+1-Dimensional Case
	4.1. A Pointwise Bound of the Fourier Transform
	4.2. Taylor Expansion in Momentum Space
	4.3. Simple Estimates of the Taylor Coefficients
	4.4. Estimates of the Highest Coefficient of a Polynomial
	4.5. Smallness of the Taylor Coefficients
	4.6. Smallness of the Initial Data
	4.7. A First Version of the Main Theorem
	4.8. A First Improvement of the Estimate
	4.9. Formulation as a Goursat Problem for the Klein–Gordon Equation
	4.10. Arranging Initial Data in Closed Form
	4.11. Reformulation as a Contour Integral
	4.12. Estimates of the Contour Integral
	4.13. Estimate of g(1)
	4.14. Estimate of g(2)

	5. The 3+1-Dimensional Case
	Acknowledgements
	Appendix A. Alternative Derivation of the Integral Representation
	References




