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Introduction 

Obesity: Causes, Consequences and Societal Perspectives 

Prevalence rates of obesity in developed and developing societies are rising at a fast pace 

(World Health Organization, 2018). Through its connections to a plethora of noncommunicable 

diseases, obesity considerably burdens individuals and society alike. 

“Obesity, also called corpulence or fatness, [is an] excessive accumulation of body fat, usually 

caused by the consumption of more calories than the body can use. The excess calories are 

then stored as fat, or adipose tissue. Overweight, if moderate, is not necessarily obesity, 

particularly in muscular or large-boned individuals.” (Encyclopaedia Britannica, 2019).  

People with obesity commonly suffer from comorbidities including metabolic syndrome, 

coronary heart disease, diabetes, liver disease, orthopaedic illnesses and affective disorders (A 

Wirth et al., 2013). Coincidental to obesity rates, Type-2 Diabetes prevalence rates have 

increased considerably (1980: 4.7%; 2014: 8.5%). Even in young children, higher obesity and 

diabetes prevalence have been reported (World Health Organization, 2014, 2018). These 

developments necessitate research into the current rise in obesity rates.  

Clinically, overweight and obesity are identified with the help of the body-mass-index 

(BMI) which is calculated as relative weight for squared height (DIMDI, 2020). A BMI of 

more than 25 kg/m2 and more than 30 kg/m2, respectively define overweight and obesity. 

Obesity, in turn, is categorized into three subdivisions: Class 1 (30 - 34.9 kg/m2), class 2 (35 - 
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39.9 kg/m2) and class 3 (more than 40 kg/m2), which represent the current clinical standard 

(Hauner, Bosy-Westphal, & Müller, 2013). 

𝐵𝑜𝑑푦 𝑚𝑎𝑠𝑠 𝑖𝑛𝑑𝑒𝑥 =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑘𝑔
ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑚  

Simply put, obesity is the result of an imbalance between energy intake and expenditure 

(Bischoff et al., 2017) (see Figure 1). Although the aetiology of obesity depends on a multitude 

of factors, there is a wide consensus on the most prominent causes: Environmental factors, 

including food consumption, physical activity and lifestyle, have changed dramatically in the 

past. In societies with a high gross domestic product (GDP), an energy-dense and affluent food-

environment (Bellisle, 2014; Gore, Foster, DiLillo, Kirk, & Smith West, 2003) often goes hand 

in hand with modern living conditions that promote a sedentary lifestyle (Hu, Li, Colditz, 

Willett, & Manson, 2003; Tucker & Bagwell, 1991; Tucker, Bagwell, & Friedman, 1989). 

Food composition has changed substantially and needs to be addressed in the form of food 

policy change (Slyper, 2018). Physically inactive forms of employment and free time activities, 

      

Figure 1 Transformation and storage of energy; translated schematic from Adipositas – 

Neue Forschungserkenntnisse und klinische Praxis (Bischoff et al., 2017) 
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as well as unhealthy sleeping patterns coinciding with an increased intake of processed foods 

and beverages are common promoters of obesity (Bischoff et al., 2017). Despite some advances 

in the past, profound policy changes regulating food producers’ impact on environments (e.g. 

marketing or distribution) have not been facilitated (Sonneville & Rodgers, 2019).  

Next to man-made environments, genetic predisposition is another well-researched risk factor 

for obesity. Even though known genetic parameters can only account for 5% of the obesity 

variation (Blüher et al., 2013), research consistently corroborates a heritability of obesity 

(Comuzzie & Allison, 1998; Hebebrand, Hinney, Knoll, Volckmar, & Scherag, 2013). Their 

limits as predictors for obesity are illustrated by the following facts: One being that its rates in 

 

Figure 2 Food availability and energy balance strategies in the USA, 1910-2006; 

reproduced from The global obesity pandemic: shaped by global drivers and local 

environments (Swinburn et al., 2011)  
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people with the same ethnic background vary strongly along the lines of migration (Misra & 

Ganda, 2007). Another reason against this view being that obesity rates have risen drastically 

during the last decades – a timeline that makes genetic factors alone a highly unlikely culprit 

(Bischoff et al., 2017). These developments coincide with changes in food availability, as can 

be seen from the example of the USA (Swinburn et al., 2011, see Figure 2). 

Integrating both approaches into one framework, environmental factors seem to be the 

strongest predictor for overweight and obesity, while interacting with other effects. When 

looking into specific societies, genetic factors can account for a large proportion of the obesity 

risk, identifying groups of individuals that might need specific preventative efforts to 

counteract their inherited risk for weight gain. It furthermore illustrates how genetic 

background needs to be considered when formulating the need for therapeutic interventions. 

Looking at this interaction from a different angle, George Bray states that  

“the genetic background loads the gun, but the environment pulls the trigger”  

(as cited in Swinburn et al., 2011).  

In a similar fashion, other risk factors for obesity might contribute to the aetiology of obesity 

through interaction with the environment. For example, understanding cognitive pathways that 

make individuals react to an unhealthy environment might facilitate targeted prevention 

strategies and potent therapies against the consumption of unhealthy foods. Reasoning from a 

population-based point of view: Political action for the improvement of a given food system 

requires knowledge about these pathways – a research field that lies at the heart of market 

research for large food manufacturers. When entering shops and malls, we are immediately 

confronted with smells and oversized depictions of palatable foods. The fact that these 

anthropogenic environments could presently coerce whole societies to stop listening to their 

bodily signals of hunger or satiety and instead eat as a function of external cues makes research 

into its mechanisms necessary. As executive functions influence eating-behaviour (Dempsey, 
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Dyehouse, & Schafer, 2011; Rangel, 2013) this dissertation focusses on the relationship 

between cognitive markers and weight.  

Cognitive Performance and Reward Learning in Overweight and Obesity  

Previous review articles have reported inconsistent findings on a possible relationship between 

BMI and executive functions (Boeka & Lokken, 2008; Dye, Boyle, Champ, & Lawton, 2017; 

Fitzpatrick, Gilbert, & Serpell, 2013; Gunstad, Lhotsky, Wendell, Ferrucci, & Zonderman, 

2010; van den Berg, Kloppenborg, Kessels, Kappelle, & Biessels, 2009). Fitzpatrick and 

colleagues conclude that, while lower performance in decision-making tasks seems to be 

evident, high BMI alone is unlikely to be the cause for these deficits (Fitzpatrick et al., 2013). 

It remains to be investigated, how a high BMI and cognitive capacity are connected. Several 

theories have been proposed, including structural differences in the brain (R. Zhang et al., 

2018) as well as BMI-dependent variation in relative tonic and phasic dopamine signalling 

(Horstmann, Fenske, & Hankir, 2015). 

Obesity-Related Structural Changes in the Brain 

Structural changes in the brain could account for a link between cognitive dissimilarities and 

obesity. A study with 1255 participants of a wide age range was able to show an indirect 

relationship between cognitive markers and higher BMI through lower structural connectivity 

in many bilateral regions of the brain (R. Zhang et al., 2018). Correspondingly, a recent meta-

analysis revealed a possible age-dependent relationship between nucleus accumbens (NAcc) 

volume and BMI (García-García, Morys, & Dagher, 2019). While larger NAcc volume in 

young age was positively associated with obesity measures, older age predicted a flip in this 

relationship. This could be due to the NAcc being a risk factor for overeating and resulting 
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weight gain, while persistent obesity over a lifetime might damage brain structure: Possible 

causes for this effect include neuroinflammation (Beilharz, Maniam, & Morris, 2016) or 

elevated blood pressure inflicting structural damage on the brain. Hypertension has been shown 

to reduce cognitive performance and impair brain structure especially in the elderly (Iadecola 

et al., 2016). Due to evidence of an association between obesity and cognitive deficits already 

at a young age, previous literature has concluded that the link between obesity and cognitive 

function cannot be explained by obesity-related cardiovascular change (Smith, Hay, Campbell, 

& Trollor, 2011). However, their assumption - that blood-pressure related brain-damage is 

unlikely in the young - has been recently invalidated by several studies showing that even 

young participants with subclinical blood pressure elevation show signs of brain injury, 

including differential white matter diffusivity as well as lower grey matter and whole brain 

volumes (Lane et al., 2019; Maillard et al., 2016; Schaare et al., 2019). Whether the association 

of hypertension and brain structure and the association of obesity and impaired executive 

function (Burger & Stice, 2011; Kroemer & Small, 2016) are interrelated, needs to be 

investigated further in future research.  

Obesity-Related Differences in Tonic vs. Phasic Dopamine Levels 

Another pathway has been proposed by Horstmann and colleagues (Horstmann, Fenske, et al., 

2015). They argue that seemingly conflicting data on dopamine (DA) receptor availability in 

obesity can be reinterpreted by way of divergent DA tone. Their theoretical framework 

proposes that weight-dependent DA binding potential follows an inverted u-shape with lower 

DA tone (i.e. higher binding potential) in people with overweight and higher dopaminergic 

tone (i.e. lower binding potential) in people with obesity compared to the healthy BMI range 

(see Figure 3). Transferring this notion into the cognitive domain, it predicts differential 

learning from reward and punishment: Changes in tonic DA levels can in- or decrease the 
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relative signal strength of phasic drops or rises during learning tasks. A clear picture of the 

underlying dynamics requires the inclusion of a wider BMI range, with continuous BMI 

measures comprising overweight.  

Cognitive Parameters in Obesity Research 

Weight-specific differences in cognitive functions like working memory (WM) or decision 

making have been scrutinized in several studies. WM describes the ability to retain relevant 

information until a decision making process has been completed (Gross, 2005). It has been 

shown to be impaired in people with overweight and obesity (Coppin, Nolan-Poupart, Jones-

Gotman, & Small, 2014; Stingl et al., 2012; van den Berg et al., 2009). A prominent theory 

regarding high BMI and maladaptive reward learning purports that, while reward anticipation 

 

Figure 3 Relationship between mean BMI of the obese group on the relative 

dopaminergic binding potential suggests divergent tonic dopamine levels; reproduced 

from Argument for a non-linear relationship between severity of human obesity and 

dopaminergic tone (Horstmann, Fenske et al., 2015). 
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gains increased behavioural relevance in people with obesity, reward receipt is less strongly 

signalled in the brain (Kroemer & Small, 2016). This could lead to a higher motivation to 

engage in food intake behaviours when palatability is high and a decreased ability to curb food 

intake behaviour when satiety is reached. Another aspect of this would be that, as reward and 

punishment are less strongly signalled in the brain, respective outcomes might exhibit an 

attenuated behavioural effectiveness. The effect of food as a natural reward can be studied with 

the help of reward and punishment learning paradigms. This approach allows insight into food 

intake as goal-directed, dynamic behaviour. However, the standardization of paradigms in 

terms of choosing reward and punishment stimuli is challenging. Possible rewards include 

positive outcomes as well as the omission of negative ones. Likewise, omission of positive 

outcomes can be used as punishment in much the same way as motivationally negative stimuli. 

This is illustrated when looking at their effect in terms of prediction errors (PEs): Sutton and 

Barto describe PEs in reward learning as  

“discrepancies between the expected and the received reward signal, being positive when the 

reward signal is greater than expected, and negative otherwise” (Sutton & Barto, 2018) 

 Schultz and colleagues pioneeringly showed that PEs can be seen in terms of dips and rises in 

dopamine signalling (Schultz et al., 1997, see Figure 4). Thus, neuroscientific research into 

differential reinforcement processing needs to consider how reward and punishment act as 

positive and negative reinforcers on the individual. This is further complicated when looking 

at different reward and punishment domains. In the food domain, there have been reports of 

both impaired learning from reward receipt (Janssen et al., 2017), as well as lower effectiveness 

of omission of reward (Horstmann, Dietrich, et al., 2015; Meyer, Risbrough, Liang, & Boutelle, 

2015) in people with obesity. When using monetary rewards, obesity has been connected with 

an attenuated effect of negative outcomes in learning tasks (Horstmann et al., 2011; Kube et 

al., 2017; Mathar et al., 2017). Many studies have shown less behavioural effectiveness of food 
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or monetary reinforcers in people with obesity (Coppin et al., 2014; Kube et al., 2017; Meyer 

et al., 2015; van den Akker, Schyns, & Jansen, 2017). A study utilizing monetary and social 

reinforcers showed that women with obesity showed blunted cardiac responses during social 

compared to monetary outcome phases (Kube et al., 2016). Furthermore, this effect was 

especially strong for social punishment: Obese women who reported previous stigma 

experience seemed to exhibit a decreased salience and affective response toward negative 

social stimuli, possibly reflecting a defensive attitude to social punishments that are deemed 

unfair.  

Reinforcement learning bears the potential to explain unhealthy eating in terms of maladaptive 

behaviour. An example of this is the reversal learning paradigm that has been used in various 

ways to test for behavioural adaption in the reinforcement context (Cools, Clark, Owen, & 

Robbins, 2002). Its application in obesity research has provided insight into possible reasons 

for inflexible eating patterns obstructing goal-directed health behaviours (van den Akker et al., 

2017; Z. Zhang, Manson, Schiller, & Levy, 2014).  

 

 

Figure 4 Relationship between the 

previous prediction of a reward and the 

firing rate of a dopaminergic neuron 

after a reward was presented and 

omitted respectively; reproduced from 

A Neural Substrate of Prediction and 

Reward (Schultz et al., 1997). 
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Research Questions 

The two included studies were designed to offer insight into the basic mechanism through 

which our environment impacts food choices. Significant differences between people with 

healthy weight compared to people with overweight or obesity would identify environmental 

forces, like e.g. food advertising, as a promising target for preventive policy, especially in rich 

societies with omnipresent cues for, and an overabundance of, palatable foods. 

Study 1 – Active and Passive Reward Learning in Obesity 

In order to investigate how our environment shapes eating behaviour, study 1 was aimed at 

finding the proposed link between BMI and bias formation between visual cues and positive 

food outcomes. Previous research has shown that implicit visual cues in our environment can 

impact portion size and food composition (Berridge, 2009; Brignell, Griffiths, Bradley, & 

Mogg, 2009). As Boyd A. Swinburn says:  

“The obvious possible drivers of the epidemic are in the food system: The increased supply of 

cheap, palatable, energy-dense foods; improved distribution systems to make food much more 

accessible and convenient; and more persuasive and pervasive food marketing”  

(Swinburn et al., 2011).  

How the affective load – in terms of reward or punishment during the training phase – and 

motivational value of these cues are learned and how they are flexibly redefined when 

associations change, was the subject of a paper by Zhang and colleagues that garnered some 

media attention. Their study showed that particularly women with obesity struggle with 

behavioural adjustment to previously rewarded food cues when rewards are omitted (Z. Zhang 

et al., 2014). However, their paper proposed that this was due to an inability to correctly 

integrate new knowledge in the presence of distracting food cues (Z. Zhang et al., 2014) – an 
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interpretation that cannot be completely absolved from the suspicion of prejudice. Thus, in 

order to further investigate the reported interaction between obesity status and sex in basic 

association learning, we decided to replicate their paradigm. In addition to comparing people 

with and without obesity, we also included people in the range of overweight. Previous research 

has even indicated more distinctive behaviour in people with overweight than in obese 

populations – compared to people within the healthy range (Coppin et al., 2014; Davis, 

Strachan, & Berkson, 2004; Dietrich, Federbusch, Grellmann, Villringer, & Horstmann, 2014). 

As in Zhang et al., we aimed to compare learning from monetary and food rewards, which were 

additionally scaled to be of similar value for each participant. This was meant to achieve equal 

motivation to obtain both rewards. 

Study 2 – Pavlovian-to-Instrumental Transfer in Obesity 

Identifying the pathway of implicit environmental bias on eating behaviour was the aim of the 

second study. This was done following the reasoning that pervasive food marketing could drive 

eating behaviour with an effectiveness that is nearing homeostatic need. A stronger bias of 

rewarding cues on free choices in people with obesity would indicate that an affluent food 

environment might impact their eating behaviour more directly than people in the normal BMI 

range. Accordingly, we tested whether appetitive food cues have the potential to bias choices 

between two stimuli in a free-choice task. To this end, we modified a previously used 

Pavlovian-to-Instrumental Transfer (PIT) paradigm by Prévost and colleagues (Prévost, 

Liljeholm, Tyszka, & O’Doherty, 2012). PIT is measured as two different components: Specific 

PIT describes the ability of a pavlovian cue to bias behaviour in a way that an individual 

performs instrumental actions that can earn the same reward as the presented cue. General PIT, 

on the other hand, describes how pavlovian cues – that are positively associated – can bias an 

individual to perform instrumental actions that also earn positive rewards. Both effects could 
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be theorized as mechanisms of environmentally biased food-seeking behaviour. We adapted 

the previously used PIT paradigm by including direct food rewards with the help of a 

gustometer: Rewards consisted of fruit juices which were placed on the participants’ tongues 

in a direct temporal relationship with the paradigm on screen. 
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Experimental Work 

 

Study 1 – Active and Passive Reward Learning in Obesity 
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A R T I C L E I N F O

Keywords:
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Reward type
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A B S T R A C T

Goal-directed behaviour depends on successful association of environmental cues with reward or punishment.
Obesity has been linked to diminished learning success in this domain. In contrast, here we demonstrate superior
learning in obese participants independent of reward type. We tested association learning in 85 participants with
a wide body-mass-index (BMI) range (lean to obese) in four probabilistic reversal-learning experiments.
Experiments differed regarding learning mode (active and passive) and reward stimulus (pictures of snack food
and money). Food and monetary rewards were adjusted regarding their motivational value in order to allow a
direct comparison of related learning characteristics. Our results reveal enhanced associative learning in obese
compared to normal-weight participants – reward-independently for expectancy updating and specifically for
food-rewards for initial acquisition. When comparing the influence of continuous BMI in active and passive
learning, food reward was associated with opposite effects of BMI on performance. Our data indicate general-
ized, weight-dependent differences in essential reward-learning, though particularly for food reward. We
thereby argue that flexible updating of reward-related information may in fact be enhanced in people with
obesity – and, thus, possibly promote unhealthy food choices in modern society.

1. Introduction

Obesity is a multi-faceted condition that is connected with various
factors such as lifestyle, genetics and food intake (Choquet & Meyre,
2011; Hankinson et al., 2010; Tucker & Bagwell, 1991; Tucker,
Bagwell, & Friedman, 1989). Contributing factors to development and
maintenance of human obesity include over-consumption of highly
rewarding food.

Affected individuals often struggle to behaviourally adhere to their
dietary goals. Converging evidence implies that this decreased goal-
directedness is caused by impairments in behavioural adaptation. For
instance, obese women were found to prefer salient immediate mone-
tary rewards despite negative long-term consequences (Horstmann
et al., 2011). Similarly, in a food context, people with obesity have
repeatedly been shown to be less sensitive to reward devaluation
(Horstmann, Dietrich, et al., 2015; Janssen et al., 2017).

Diminished behavioural adaptation has been linked to impairments
in reinforcement learning, irrespective of reward type (Coppin, Nolan-
Poupart, Jones-Gotman, & Small, 2014; Kube et al., 2017; Meyer,

Risbrough, Liang, & Boutelle, 2015; van den Akker, Schyns, & Jansen,
2017). For instance, Coppin and colleagues (Coppin et al., 2014) found
that obesity predicted a diminished preference for rewarded over ne-
gatively associated patterns in two cue-conditioning paradigms using
monetary and food reinforcement. This finding has recently been re-
plicated in differential appetitive conditioning using chocolate as re-
inforcement (van den Akker et al., 2017). Other studies further high-
light that obesity may be characterized by a failure to learn from
negative action outcomes in monetary (Kube et al., 2017; Mathar,
Neumann, Villringer, & Horstmann, 2017) as well as food reinforce-
ment learning tasks (Meyer et al., 2015). Interestingly, people with
obesity exhibited increased conditioned responses during acquisition –
indicating that a reduced bias extinction cannot be solely explained by
generally reduced association learning (Meyer et al., 2015). Im-
portantly, other factors such as diminished working memory capacity
most likely contribute to this alteration in reinforcement-based learning
in individuals with obesity (Coppin et al., 2014).

In sum, these studies suggest generalized, obesity-related alterations
in reinforcement-based learning across different types of reinforcers.

https://doi.org/10.1016/j.appet.2018.08.029
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However, recent research questions this generalized effect. Using an
observational reversal learning task with one rewarded and one un-
rewarded visual stimulus, Zhang and colleagues (Zhang, Manson,
Schiller, & Levy, 2014) showed that female obese participants exhibited
impaired association learning from rewards exclusively in the food
condition. However, it should be noted that their food and monetary
stimuli strongly differed regarding objective monetary value. Further,
participants learned to attribute reward by passive observation, similar
to paradigms used in fear-conditioning studies (Schiller, Levy, Niv,
LeDoux, & Phelps, 2008), while most studies in the field have employed
task designs requiring active choice behaviour (Coppin et al., 2014;
Horstmann et al., 2011; Kube et al., 2017). This suggests additional
mechanisms that could account for seemingly contradictory findings.

One important difference between active and passive learning is the
amount of positive and negative prediction errors (PE) following con-
tingency changes. A negative PE is the response to unexpected punish-
ment or reward omission after a conditioned stimulus (CS), while a po-
sitive PE describes the response to unexpected punishment omission or
reward. Observational paradigms signal reversals by positive PEs, as
participants obtain unexpected reward after the new CS+ (the previous
CS−). Reward presentation in active learning tasks depends on the par-
ticipants' choice. They are unlikely to deviate from previously successful
behaviour – and thus discover the contingency change – until they be-
come cognizant of the lack of reward after the CS−. Thus, active learning
paradigms arguably rely more on learning from negative PEs. There is a
fair amount of research on the influence of dopamine in reversal learning
(Cools et al., 2009; Cools, Altamirano, & D'Esposito, 2006; Smittenaar
et al., 2012). Current research suggests dopaminergic signalling as a
possible mechanism for behavioural alterations in obesity (Horstmann,
Fenske, & Hankir, 2015). Notably, learning from negative PEs is argued
to be more vulnerable in this context (Mathar, Neumann, et al., 2017).
Here, we aim to compare the influence of weight-status on learning
performance across different learning modes (active, passive) and re-
inforcement stimuli (food, money) using a within-subject design. Thus,
we aim to bridge the gap between seemingly contradictory findings on
association learning success in obesity.

Specifically, we tested association learning in four reversal learning
experiments manipulating learning mode and reward category. First,
we investigated the domain-specificity of learning alterations in obe-
sity. To this end, we compared participants with and without obesity in
passive learning tasks adapted from Zhang and colleagues (Zhang et al.,
2014). Secondly, we analysed the combined influence of body-mass-
index (BMI), learning mode and reinforcement stimuli by comparing
performance in all four tasks. Further, due to their likely impact on
learning success (Coppin et al., 2014; Zhang et al., 2014), we in-
vestigated the effect of working memory capacity and individual dif-
ferences in impulsivity and disinhibited eating. In addition to com-
paring participants with and without obesity, we included individuals
with overweight, as their learning characteristics seem to be more
distinct from lean populations than those found in obesity (Coppin
et al., 2014; Davis, Strachan, & Berkson, 2004; Dietrich, Federbusch,
Grellmann, Villringer, & Horstmann, 2014; Lehner, Balsters, Bürgler,
Hare, & Wenderoth, 2017). We hypothesize overweight and obese
participants to exhibit impaired reward-based learning compared to
lean participants. Since possible dopaminergic changes in obesity
would impair learning from negative PEs, which arguably promote
active learning tasks, we expect pronounced group differences there.
Given that we ensured comparable value of monetary and food rewards
to the participants, we predict learning performance to be similar across
reward types.

2. Methods

2.1. Participants

97 healthy, young participants (44 women) with a wide BMI range

(19.23–51.1 kg/m2), matching in age and education, were recruited
from a local participant database. An initial telephone screening eval-
uated inclusion and exclusion criteria (see Supplementary Information
for details). The final sample of 85 participants included all individuals
who completed at least one reversal in the behavioural test.

In addition to the main experiments, all participants completed a
digit span (DS) working memory task from the Wechsler Memory Scale
– Revised (WMS-R; Härting et al., 2000) as well as several ques-
tionnaires to evaluate personality, clinical, and eating behaviour char-
acteristics, encompassing the German versions of the UPPS Impulsive
Behaviour Scale (Schmidt, Gay, D'Acremont, & Van der Linden, 2008),
Barrat Impulsiveness Scale – Short Form (BIS-15; Meule, Vögele, &
Kübler, 2011), the Behavioural Inhibition System and Behavioural Ac-
tivation System Scales (BIS/BAS; Strobel, Beauducel, Debener, &
Brocke, 2001), the Three Factor Eating Questionnaire (TFEQ; Pudel &
Westenhöfer, 1989), Yale Food Addiction Scale (YFAS; Meule, Vögele,
& Kübler, 2012), as well as the Beck Depression Inventory (BDI;
Hautzinger, 2006). Details are presented in Table 1.

All participants gave written informed consent prior to their parti-
cipation and received a fixed reimbursement of 7€/hour with an
average study duration of 2 h as well as an additional snack and
monetary bonus depending on task performance. The study was carried
out in accordance with the Declaration of Helsinki and was approved by
the local ethics committee of the University of Leipzig.

2.2. Willingness-to-pay task

To align subjective values of food and monetary rewards used in the
learning tasks, participants completed a willingness-to-pay auction
immediately before the learning experiments. Here, they bid money on
the opportunity to eat snack food items (See Supplementary
Information for details). The food pictures with the highest average bid
and its rounded monetary equivalent were subsequently used as task
rewards. This resulted in individualized monetary and food rewards per
participant with comparable incentive value.

2.3. Reversal learning paradigms

All participants performed four versions of a probabilistic reversal
learning task in a within-subject design. The tasks were presented in
pseudorandomized order and varied in response type (active, passive)
and reward category (snack food, money). Trial structures and timings
are displayed in Fig. 1.

In each task, participants were presented with a red and a blue
square, the position of which was counterbalanced throughout the task.
One colour was associated with a reward in 50% of the trials (CS+),
while the other was never followed by reward (CS−). This reward
schedule was chosen so that participants would be rewarded suffi-
ciently often to ensure stable contingencies for CS+ as well as CS−.
Repeatedly during the task, the stimulus-reward contingencies re-
versed: The former CS− was now rewarded (new CS+), while the
previous CS+ was no longer followed by reward (new CS−).
Participants were instructed that one stimulus would occasionally result
in reward, while the other stimulus would never be rewarded and that
these associations would change sporadically throughout the experi-
ment. Thus, if participants recognized this rule change, they should
adjust their responses accordingly. Rule changes were not signalled and
occurred after the participant had responded correctly in four to six
consecutive trials (pseudorandomized learning criterion). Each task
continued until the participant achieved 11 successful rule changes
(reversals) or after 40 consecutive trials without any reversals.

Two response types were employed: In the passive learning tasks,
participants made predictions about stimulus-reward associations.
Specifically, each trial required the participant to estimate the like-
lihood that one preselected coloured square would lead to a reward on a
9-point Likert scale ranging from −4 (very unlikely) to 0 (don't know)
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to +4 (very likely). Thereafter, either reward was presented or a
fixation cross signalled no reward in the current trial. Participants were
explicitly instructed that reward presentations depended solely on the
highlighted stimulus and were independent of performance. Reversals
occurred after the learning criterion was reached, that is, participants
stably gave positive reward predictions for the current CS+ and nega-
tive predictions for the current CS−. Following each reversal, the new
CS+ was deterministically highlighted in the first trial and resulted in
reward to facilitate reversal detection.

In the active choice learning tasks, participants were instructed to
actively select the coloured square that was associated with a reward
(CS+). After choice of one colour, either reward was presented or a
fixation cross signalled no reward in the current trial. Reversals oc-
curred after stable choice of the CS+ for four to six trials (pseudor-
andomized learning criterion). The first selection of the new CS+ after a
reversal was always rewarded to facilitate reversal detection.

Participants played each task twice – employing pictures of either
food or the corresponding monetary rewards respectively. Before the
start of the experiment, they performed 20 practice trials per response
mode to familiarize with trial structure and probabilistic nature of the
task. In order to keep participants motivated throughout the experi-
ment, they were informed that they would receive a bonus payment at
the end of the experiment depending on task accuracy (For more de-
tails, see Supplementary Information).

2.4. Learning indices

In a first step, we attempted to replicate findings of food-specific

learning deficits in individuals with obesity reported by Zhang et al.
(Zhang et al., 2014). Leaning on their proposed indices, we derived two
learning measures from the reward expectancy ratings of the passive
learning tasks for participants from the lean and obese groups only
(n= 59):

ACQ (acquisition score) signals the difference between the mean CS+

and CS− reward expectancy ratings during the initial acquisition phase.
Thus, positive values indicate that participants correctly expressed
higher reward expectancy ratings for the CS+ than CS−, while zero or
negative ACQ values suggest that participants had learned no or wrong
stimulus-reward-associations, respectively.

= −+ −ACQ CS CSAcq Acq

ΔRating measures the average difference in reward expectancy rat-
ings between phases in which a stimulus was CS+ to phases in which
the same stimulus served as CS−. Consequently, positive values indicate
higher reward expectancy towards CS+ than CS− and thus, a better
learning performance:= −+ −∆Rating CS CS

Please note that for these indices, we included all trials of the initial
acquisition (ACQ) and the first five reversal stages (ΔRating), while
Zhang et al. (Zhang et al., 2014) focused on the late trials during ac-
quisition and one reversal stage, only. This was done to ensure a suf-
ficient reliability of learning indices while excluding over-training in
the last reversal stages.

While these indices summarized the evaluation of CS+ and CS−

over subsequent trials, we further derived an index that is more directly

Table 1
Sample characteristics.

Sample characteristics

Variable Lean Overweight Obese

Female Male Female Male Female Male

N 15 14a 14 14 15a 15
Age1 24.07 ± 3.35 26.00 ± 3.72 27.14 ± 4.35 26.43 ± 3.03 25.93 ± 3.85 27.40 ± 3.72
Years of education 12.36 ± 0.84 12.43 ± 0.65 12.50 ± 0.52 12.29 ± 0.91 12.00 ± 1.36 12.80 ± 0.94
Anthropometrics
BMI2 22.74 ± 1.72 22.83 ± 1.65 26.85 ± 1.14 26.79 ± 0.96 36.04 ± 6.66 33.73 ± 4.20
WHR2,3 0.76 ± 0.19 0.90 ± 0.42 0.82 ± 0.53 0.91 ± 0.33 0.90 ± 0.26 0.95 ± 0.05

Working Memory
DS Forward 9.93 ± 2.28 9.86 ± 2.48 10.14 ± 2.32 10.21 ± 2.05 10.27 ± 1.98 10.73 ± 2.09
DS Backward 8.33 ± 1.80 7.43 ± 2.31 8.14 ± 2.41 7.64 ± 1.55 7.53 ± 1.60 7.80 ± 2.81

Individual Characteristics
BISBAS BIS4 20.07 ± 3.58 18.50 ± 3.67 21.71 ± 3.07 18.36 ± 3.18 20.40 ± 3.48 17.40 ± 2.77

BAS4 42.87 ± 4.66 39.79 ± 3.87 41.21 ± 4.02 41.43 ± 4.20 41.87 ± 3.27 39.33 ± 4.67
BIS15 non-plan 12.80 ± 1.21 13.43 ± 1.56 13.36 ± 1.34 13.14 ± 1.46 13.13 ± 1.36 13.47 ± 1.85

motor 12.00 ± 2.10 11.93 ± 1.59 12.14 ± 2.03 11.64 ± 1.95 12.60 ± 2.03 11.33 ± 2.44
attention1 10.40 ± 1.24 10.00 ± 2.18 10.57 ± 2.59 9.86 ± 1.61 11.33 ± 2.55 10.80 ± 1.66

TFEQ Dis4,5 6.80 ± 1.86 3.93 ± 2.37 8.93 ± 3.45 4.43 ± 1.28 6.87 ± 3.29 6.53 ± 3.29
Restraint1 7.73 ± 4.70 4.14 ± 3.01 6.29 ± 5.01 5.71 ± 4.30 8.67 ± 5.55 7.87 ± 3.74
Hunger 6.13 ± 3.38 6.07 ± 3.08 6.00 ± 2.94 5.29 ± 3.36 5.40 ± 3.56 5.93 ± 4.04

BDI 5.00 ± 4.05 4.29 ± 3.91 4.57 ± 4.57 4.50 ± 4.90 5.07 ± 4.38 5.13 ± 5.44
Hunger Levels 2.87 ± 1.73 4.07 ± 1.94 3.93 ± 2.34 4.07 ± 1.98 3.67 ± 2.23 4.07 ± 1.87
Willingness-to-pay
Monetary value 4.48 ± 1.11 4.20 ± 1.40 4.47 ± 0.75 4.61 ± 0.82 4.64 ± 1.01 4.55 ± 1.04
Sweet food item 9 13 13 11 10 11

Years of education= years of school education, BMI=body mass index in kg/m2, WHR=waist-to-hip-ratio, DS= digit span, BIS/BAS = Behavioural Inhibition/
Behavioural Activation Scale, BIS = Subscale Behavioural Inhibition, BAS = Subscale Behavioural Activation, BIS-15=Barrat Impulsiveness Scale – Short Form,
non-plan= Subscale non-planning, motor= Subscale motor impulsivity, attention= Subscale Attentional Impulsivity, TFEQ=Three Factor Eating Questionnaire,
Dis= Subscale Disinhibition, Restraint= Subscale Restraint, Hunger= Subscale Hunger, BDI = Beck Depression Inventory, Sweet food item=# of participants
who showed the highest willingness-to-pay for a sweet food item.1 Showed significant positive correlations with BMI across all participants. 2 A univariate ANOVA
revealed a significant main effect of BMI group.3 A univariate ANOVA revealed significantly higher scores in male than female participants.4 A univariate ANOVA
revealed significantly higher scores in female than male participants.5 A univariate ANOVA revealed a significant interaction of BMI group (lean, obese) and Sex,
suggesting significantly higher TFEQ Disinhibition scores in obese than lean males, but not significant differences between obese and lean females.

a Please note, that one additional participant from this group was excluded from the analysis of active vs. passive learning paradigms due to no reversals in an
active learning task. Values represent mean ± SD. Significant effects are defined as p < .05.
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related to reversal learning:
Rev_rating expresses the difference in mean reward expectancy rat-

ings between CS+ and CS− during the second post-reversal trial.
Deterministically, the previous trial presented the new CS+ followed by
reward. Consequently, behaviour in the second post-reversal trial re-
flects immediate learning from positive PEs, while ΔRating represents
an average over a whole phase of the experiment. Positive values in-
dicate higher reward expectancy towards the new CS+ than the new
CS− after reversal and thus reflect better learning.= −+ −rev rating CS CS_ _ _rev rating rev rating

This index was calculated for a sub-sample of 41 participants (25
obese), for which both CS+ and CS− ratings were available from second
post-reversal trials. Due to the pseudorandomized trial order, all other
participants saw only CS+ or CS− in the second post-reversal trials
across the experiment.

In addition, we derived measures to directly compare active and
passive learning in all 85 participants during the acquisition and first
five reversal stages. Specifically, we evaluated:

Accuracy as the percentage of correct responses, i.e. trials in which
participants chose the current CS+ (active) or gave correct reward ex-
pectancy ratings for the current CS+ and CS− (passive).

Trials-to-reversal as the average number of trials needed to reach the
learning criterion and initiate a reversal (active and passive).

Reversal errors as the average number of trials after reversals until
participants chose the new CS+ for the first time (active) or gave cor-
rect reward expectancy ratings for the new CS+ and the new CS−

(passive, See Supplementary Information for details).

2.5. Data availability

The datasets generated during and/or analysed during the current
study are available from the corresponding author on reasonable re-
quest.

3. Results

3.1. Willingness-to-pay

Lean and obese participants did not significantly differ in preferred
food items and corresponding monetary values, as indicated by the
results of the willingness-to-pay auction. Similarly, across all

participants there was no significant influence of continuous BMI on
chosen food items and willingness-to-pay (see Supplementary
Information for details).

3.2. Passive reversal learning

We first aimed to replicate findings of compromised learning per-
formance for food, but not monetary rewards in women with obesity
(Zhang et al., 2014). For this purpose, we focused on the passive
learning experiments that measure the capacity to acquire and adapt
reward expectations from observation.

ACQ and ΔRating were included in a repeated-measures MANCOVA
employing the within-subject factor Reward Category (food, money)
and the between-subject factors BMI group (lean, obese), Sex (female,
male), and Age. We found a main effect of BMI group [Pillai's trace:
V= .179, F(2,53)= 5.785, p= .005] that originated from significantly
altered flexible updating scores [ACQ: F(1,54)= 1.717, p= .196,
ηp2= 0.031, ΔRating: F(1,54)= 11.639, p= .001, ηp2= 0.177]. A
Reward Category× BMI group interaction [V=0.119, F
(2,53)= 3.594, p= .034, Fig. 2] was present in both univariate follow-
up analyses for ACQ [F(1,54)= 5.119, p= .028, ηp2= 0.087] and
ΔRating [F(1,54)= 4.346, p= .033, ηp2= 0.082]. In contrast to Zhang
et al. (Zhang et al., 2014), for ACQ, individuals with obesity showed a
higher performance than lean participants in the food [p= .024], but
not monetary condition [p= .644]. For ΔRating, individuals with obe-
sity showed a reward-independent, higher performance than lean par-
ticipants [food: p < .001, money: p= .014]. The interaction was thus
most likely driven by the fact that obese participants had a numerically
higher performance in the food [M=2.99, SD=1.73] than monetary
condition [M=2.66, SD=1.96, p= .151], while lean participants
exhibited the reversed pattern [food: M=1.08, SD=2.54; money:
M=1.45, SD=2.27, p= .099]. We found no evidence for a modula-
tion of learning performance by Sex [main effect of Sex: V=0.049, F
(2,53)= 0.496, p= .611; interaction of Sex× BMI group: V=0.049, F
(2,53)= 1.374, p= .262; interaction of Sex× BMI group× Reward
Category: V=0.019, F(2,53)= 0.507, p= .605]. This suggests that
obesity-related differences in learning are independent of sex.

For a graph of performance in the passive learning tasks including
overweight participants see Supplementary Information
(Supplementary Fig. 1).

To examine immediate reward-related learning performance after
reversal, we evaluated immediate reversal ratings using a repeated

Fig. 1. Task description. Trial structure and timing of the active and passive reversal learning tasks. Two separate versions of each type were administered that either
employed pictures of monetary or food rewards.
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measures ANOVA with the same factors employed in the previous
analysis. We found a significant main effect of BMI group [F
(1,36)= 8.267, p= .007, ηp2= 0.187, Fig. 3], showing a stronger
differentiation in reward expectancy ratings towards CS+ vs. CS− in
individuals with obesity. However, there was no evidence for differ-
ential effects of reward [main effect of Reward Category: V=0.005, F
(1,36)= 0.171, p= .682; interaction of Reward Category× BMI
group: V=0.001, F(1,36)= 0.041, p= .842]. This suggests a generally

higher immediate reversal learning performance in obese compared to
lean participants. Again, performance was not modulated by Sex [main
effect of Sex: F(1,36)= 0.087, p= .769; interaction of Sex× BMI
group: F(1,36)= 0.285, p= .596; interaction of Sex× BMI
group× Reward Category: V=0.010, F(1,36)= 0.348, p= .559].

3.3. Active vs. passive reversal learning

The analysis of learning behaviour in the passive learning tasks
served to compare results with previous studies. In addition, we aimed
to investigate weight-related influences on learning performance across
different response types (active vs. passive) and a wider range of BMI
(including overweight).

We thus subjected accuracy, trials-to-reversal as well as reversal errors
in the active and passive learning tasks to a repeated measures
MANCOVA including the within-subject factors Response Type (active,
passive) and Reward Category (food, money), the between-subject
factor Sex as well as the mean-centred covariates BMI and Age. We
found a multivariate interaction of BMI× Response Type× Reward
Category [Pillai's trace: V=0.198, F(3,78)= 6.416, p= .001,
ηp2= 0.198]. The follow-up inspection of the univariate effects re-
vealed that this was driven by accuracy [F(1,81)= 17.864, p < .001].
To further disentangle the interaction, we split our analysis by BMI
group (lean, overweight, obese) and separately evaluated the influence
of Response Type (active, passive), Reward Category (food, money),
and Age on accuracy in these groups. We found a significant interaction
effect of Response Type× Reward Category in lean [F(1,25)= 4.531,
p= .043, ηp2= 0.153] as well as obese individuals [F(1,26)= 5.606,
p= .026, ηp2= 0.177]. Participants with obesity exhibited a higher
accuracy in the passive than active food learning task [p < .001],
while lean participants showed the reversed pattern [p= .020, Fig. 4].
Neither group exhibited differences in the monetary learning tasks.

Additional analysis of Response Times (RT) revealed significantly
faster responses in obese than lean participants in the passive learning

Fig. 2. Contingency acquisition and update. Comparison of learning performance
between individuals with obesity and lean control participants in the passive
reversal learning tasks. In the passive food task, individuals with obesity
compared to lean control participants exhibited a higher differentiation in re-
ward expectancy for CS+ compared to CS− during initial acquisition
(Acquisition). This was not present in the passive monetary task. Furthermore,
they showed stronger differences in reward expectancy between phases in
which a stimulus served as CS+ and phases in which the same stimulus served
as CS− (Flexible Update) in both tasks. Error bars represent the standard error of
the mean. *p < .05; **p < .001.

Fig. 3. Immediate expectancy update. Comparison of lean and obese participants' reward expectancies towards CS+ and CS− around the time of reversal in the passive
reversal learning tasks. In both the monetary and food tasks, individuals with obesity showed a significantly stronger dynamic adaptation of reward expectancy
ratings towards CS+ than CS− after a reversal than lean control participants. A plot including all five reversal stages separately can be found in the Supplementary
Information (Supplementary Fig. 2). Error bars represent the standard error of the mean.
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tasks. Learning performance was not modulated by personality and
working memory (see Supplementary Information).

Please note that our data were not normally distributed. As common
transformations did not improve skew and our large sample was equally
distributed throughout the BMI range, we decided to continue working
with the original values (see Supplementary Information for details).

4. Discussion

Here, we systematically investigated the influence of learning mode
(passive, active) and offered reward (snack food, money) on association
learning in the obesity setting. In contrast to previous reports of less
efficacious learning from food rewards in people with obesity – parti-
cularly women – we do not find evidence supporting this hypothesis.
Contrarily, our study indicates more successful learning from observa-
tion in participants with obesity – Even pronouncedly so when food
rewards were presented. Furthermore, we found no sex differences or
influences of impulsivity, reward- and punishment sensitivity or self-
reported eating behaviour. Moreover, all participants successfully ac-
quired and updated stimulus-reward associations independent of re-
ward type.

Previous studies have mainly shown reduced reinforcement-based
learning performance in obesity for both food and monetary reward
(Coppin et al., 2014; Kube et al., 2017) and thus seemingly conflict with
the current results. Recently, van den Akker and colleagues (van den
Akker et al., 2017) found improved observational extinction learning in
women with obesity. They suspected this to result from impaired initial
acquisition. However, recruitment for the obese group was part of a
weight-loss program, which may have led to socially conformed un-
derreporting. Contrarily, in our study, obesity predicted both better
acquisition learning and more flexible updating of contingencies com-
pared to lean individuals.

However, when integrating our findings into previous research in
the field, there are several factors to consider. First of all, most studies
employed active trial-and-error learning, while our results mainly stem
from a variation of the passive tasks that have been used less frequently
(van den Akker et al., 2017; Zhang et al., 2014). The main difference
between active and passive learning paradigms arguably lies in the
directness of feedback. Agency drives active learning. Although prob-
abilistically, each feedback represents the correctness of the partici-
pant's choice, while feedback in passive trials represents the correctness
of a random, computer-generated choice – which might require more
cognitive effort by separating reward delivery from instrumental action.
This could explain our three-way interaction of better learning from the
passive food tasks in people with obesity: Possibly, higher salience of
food rewards led to improved focus on presented outcomes and con-
sequently to superior learning by participants with obesity. Due to our
highly-controlled reward selection, this learning advantage cannot be
explained by way of differential values of food and monetary rewards
between lean and obese participants. Salience, on the other hand, might

be affected by weight status (Hendrikse et al., 2015) and was not
controlled in our study. It might thus be speculated that participants
with obesity show enhanced focus on food reward, not because of
higher subjective value but because food outcomes are more attention-
grabbing to them (Castellanos et al., 2009; Hendrikse et al., 2015).

Previous reports of lower learning performance in obesity were
mainly based on more complex cue-outcome contingencies (Coppin
et al., 2014; Kube et al., 2017; Mathar, Neumann, et al., 2017). At each
time point, multiple stimuli predicted reward and punishment with
variable probabilities. Such complex tasks might divert focus from
salient outcomes toward highly ambiguous predictors whose effects
need to be disentangled. Highly flexible behaviour of participants with
obesity as observed in the current study may be detrimental in these
tasks, which require immunity to distractors and stable choice beha-
viour. This effect might even be enhanced by the fact that participants
were explicitly instructed that reward was exclusive to one variable at a
time. Thus, learning of reward-associations was most likely driven by
learning from the CS+.

Notably, we found an opposing pattern of accuracy in the passive
compared to active food learning tasks in obese and lean participants,
but no differences in the overweight group. This emphasizes the im-
portance of including participants with overweight, who have been
rarely investigated in the past. Importantly, they might exhibit specific
behavioural traits, for example through modulated dopaminergic re-
sponse to rewards (Coppin et al., 2014; Dietrich, de Wit, & Horstmann,
2016; Horstmann, Fenske, et al., 2015). One previous study in-
vestigated differential responding to food and monetary rewards in a
sample spanning from lean to obese body weight (Verdejo-Roman,
Vilar-Lopez, Navas, Soriano-Mas, & Verdejo-Garcia, 2017). Results
suggest that participants with higher weight value plain food less than
lean participants and respond slower to neutral outcomes in a monetary
incentive delay task. Importantly, their study did not find weight-re-
lated differences in reaction to salient rewards. Taken together, these
studies suggest behaviour of participants with overweight not as a
simple continuum between lean and obese, but as possibly influenced
by mechanistic differences, like dopamine signalling (Horstmann,
Fenske, et al., 2015).

Furthermore, to our knowledge, active and passive tasks have not
been compared directly in reversal learning. Supplementary analysis of
our data showed faster initiation of reversals in the passive condition. A
key difference between active and passive learning might be feedback
timing. In the former case, the contingency change is indicated de-
terministically by a presentation of the new CS+ and reward (positive
PE). We chose this approach to keep conditions as close as possible to
previous passive paradigms in the field (van den Akker et al., 2017;
Zhang et al., 2014). In the active condition, on the other hand, parti-
cipants had to detect absence of expected reward (negative PE). Data
from participants with and without Parkinsonism suggest that patients
learn more efficiently from reward under observational conditions
compared to trial-and-error learning (Kobza et al., 2012). Another study

Fig. 4. Interaction effect of BMI, response type and re-
ward. Percentage of correct responses in the active
compared to passive learning tasks for food and
monetary rewards in lean, overweight, and obese
participants. The obese group exhibited higher ac-
curacy in the passive compared to active food
learning task, while lean control participants showed
the reversed pattern. No differences were found in
the overweight group. Error bars represent the
standard error of the mean. *p < .05.

M.T. Meemken et al. $SSHWLWH���������������²���

���



from our lab showed that patients with Parkinson's disease on compared
to off L-DOPA medication are impaired in learning from negative PEs
(Mathar, Wilkinson, et al., 2017). As overweight and obesity are argued
to be associated with chronic changes in dopamine levels (Horstmann,
Fenske, et al., 2015), we had speculated that obesity-related learning
impairments are more likely in the active learning tasks. However,
since we did not find such an interaction effect of BMI and response
mode, this theory is not supported by our data. Nevertheless, we did not
monitor dopamine levels in our participants. Combined observation of
dopamine levels and response mode dependent reversal learning thus
poses an interesting target for future research.

One additional sign of behavioural flexibility might be speeded re-
actions – Better learning might lead to less insecurity when choosing
responses. Our data show a correlation between BMI and RTs, parti-
cularly in the passive tasks. This was significant even after controlling
for age and self-reported motor impulsivity, raising the question as to
whether higher accuracy in people with obesity and lower RTs might be
related. Post-hoc analysis of our data revealed an inverted U-shaped
association between RTs and accuracy in the passive learning tasks (see
Supplementary Information for details). This highlights that fast RTs
may reflect both excellent learning and hasty response behaviour.

One factor impacting generalizability of our findings is that the
sample mainly comprised of highly educated, young people.
Furthermore, age positively correlated with BMI and was consequently
used as a covariate in all analyses.

Another factor to consider when interpreting our results, is the
number and pace of reversal occurrences. The comparatively short re-
versal stages allow us to interpret our results as reflecting behavioural
flexibility. Longer-term behaviour, however, would probably be better
assessed with the help of longer learning phases with fewer reversals, as
used in other studies (van den Akker et al., 2017; Zhang et al., 2014).
Furthermore, while one reversal allows for unexpected contingency
change, this is necessarily impossible with repeated reversals. There-
fore, reversal updating scores are less comparable between paradigms
with one or several reversals, respectively. Here, we look at flexible
learning that stems from environmental awareness. The close instruc-
tion of our participants was aimed at allowing a strong focus on basic
contingency learning and subsequent reversal detection in light of the
complex nature and high pace of the task. Another difference to pre-
vious passive designs is that participants were aware of the exclusivity
of reward to one of the stimuli, making a generalisation of reward-ex-
pectancy from the CS+ to the CS− very unlikely. This might partly
explain the strong contrast to e.g. Zhang et al. (2014) findings. Further,
it would be interesting to investigate behavioural flexibility while fo-
cusing on underlying attentional processes, e.g. with the help of eye-
tracking. This would allow us to further disentangle possible influences
of reward salience on learning success.

An additional limitation arguably lies in performing four similar
tasks, which might have led to a training effect. However, task order
was randomly assigned per participant, thus rendering within-subject
training effects unlikely to impact our results.

5. Conclusions

This study sheds light onto an ongoing debate about efficacy of food
reward in obesity research. At the same time, inclusion of overweight
participants offers a more comprehensive picture of weight-related
differences. As we controlled for individual reward preferences and
minimized error variance with a within-subject design, we believe that
previous reports of a BMI× Reward Type interaction in association
learning might partly be due to methodological issues. It is compelling
to argue that individuals with obesity are not impaired in their re-
inforcement-based learning performance per se, but instead show in-
creased flexibility in reward-approach behaviour – A behaviour that
arguably allowed adaptation to changing food-environments in the past
but may nowadays facilitate unhealthy food choices in the constant

presence of highly palatable foods. How this difference in association
learning affects eating behaviour still has to be determined.
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Abstract: Altered eating behavior due to modern, food-enriched environments has a share in
the recent obesity upsurge, though the exact mechanisms remain unclear. This study aims to
assess whether higher weight or weight gain are related to stronger e↵ects of external cues
on motivation-driven behavior. 51 people with and without obesity completed an appetitive
Pavlovian-to-Instrumental Transfer (PIT) paradigm. During training, button presses as well as
presentation of fractal images resulted in three palatable and one neutral taste outcome. In the
subsequent test phase, outcome-specific and general behavioral bias of the positively associated
fractal images on deliberate button press were tested under extinction. While all participants showed
signs of specific transfer, general transfer was not elicited. Contrary to our expectations, there was no
main e↵ect of weight group on PIT magnitude. Participants with obesity exhibited higher scores
in the Three-Factor Eating Questionnaire Disinhibition scale, replicating a very robust e↵ect from
previous literature. Individual Restraint scores were able to predict body-mass index (BMI) change
after a three-year period. Our data indicate that PIT is an important player in how our environment
influences the initiation of food intake, but its e↵ects alone cannot explain di↵erences in—or future
development of—individual weight.

Keywords: Pavlovian-to-Instrumental Transfer; PIT; obesity; food reward; human

1. Introduction

The prevalence of weight-related conditions has continuously risen, with 52% of adults and
18% of children worldwide being classified as overweight or obese as of 2019 [1]. This coincides
with environmental changes concerning increased availability of high-caloric foods and lower energy
expenditure [2–4]. While maladaptive reward-learning has been linked to over-eating in our modern,
food-cue-enriched environment, the interactions are not well understood. One possibility is that
basic cognitive traits such as appetitive conditioning and habit-formation guide individual behavior
in everyday food intake. A thorough understanding of the mechanisms underlying the influence
of environmental cues on food intake may lead to e↵ective preventive e↵orts or constitute future
treatment targets in disordered eating.

Eating in response to appetitive cues such as pictures of food—external eating—is related to
increased awareness of food-cues [5], which can gain more behavioral relevance than homeostatic
drive [6]. This attention bias to food-cues is more prominent in children from obese backgrounds [7].
Obesity has further been linked to lower homeostatic control over attention to food-cues [8] and eating
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behavior per se [9], as opposed to hedonic control. The strict dichotomy between homeostatic and
hedonic behavioral control is currently under debate [10]. Furthermore, increased automatic approach
toward food cues [11,12] and impaired reversal learning after food-reward devaluation [13] were
shown in people with obesity, while higher body-mass index (BMI) predicted stronger interference of
high-palatability food words in a Stroop task [14]. Together, these studies imply a strong susceptibility
to food cues in obesity, making behavior less deliberate and more reliant on impulsive behavior.

These findings might be discussed in the light of habits, which is a highly controversial topic
with mixed results in human samples. The introduction of inflexible behavioral biases through
over-training [15,16] has not been replicated in a study including five attempts of habit-induction [17].
Though studies showing successful habit induction mainly stem from animal research, e.g., [18],
theoretical models of overtrained, habit-like behavior in humans do exist [19]. In the context of food,
devalued food-cues can nevertheless evoke acquired responses in human participants [20], which
increases with higher caloric content of the depicted food [21]. This leads to the interpretation that
especially palatable food can lead to unhealthy eating styles that become progressively more insensitive
to bodily needs.

Behaviorally, eating in the absence of hunger can be seen as a result of bias-vulnerability, i.e.
diminished internal homeostatic control over eating, in favor of external drivers. A widely used
bias-vulnerability test is Pavlovian-to-Instrumental Transfer (PIT) [20,22–24], which measures the
influence of task-irrelevant cues on behavior. Past research has resulted in mixed findings concerning
food-related PIT and body weight [25–28]. Given the uncertain link between automatic behaviors,
vulnerability to food-related environmental cues and weight development, we aimed to further
investigate this issue. The current study tested the applicability of a previously used PIT paradigm [23]
to human participants with appetitive food rewards, namely fruit juices that were delivered via
a gustometer.

In addition, we obtained questionnaire scores for eating behavior, reward-drive, and behavioral
inhibition [29–31] in order to relate these constructs to our participants’ outcomes in the behavioral task.
We were particularly interested in two subscales of the Three Factor Eating Questionnaire (TFEQ) [31]:
Disinhibition measures loss of control during food intake, and Cognitive Restraint measures active
cognitive e↵ort to reduce food-intake. These subscales may capture the strength of bottom-up control
of food cues and have been studied in lean and obese weight groups with varying outcomes [8,32].
It has been argued that the subscales are interconnected and bear the potential to describe eating
behavior more intricately when combined [30]. However, Cognitive Restraint by itself can predict
future weight gain [33], possibly through emotional eating following perceived underachievement
of strict dieting goals. Thus, we were interested in investigating a possible link between Cognitive
Restraint, the strength of PIT and weight change.

In this study, we wanted to assess obesity-related di↵erences in the magnitude of PIT. Assuming
that a substantial part of weight variation can be explained by unhealthy eating styles, we expected
participants with obesity to exhibit stronger PIT than normal-weight controls. Moreover, we
hypothesized that PIT e↵ects would positively correlate with the TFEQ Cognitive Restraint and
Disinhibition subscales as well as a questionnaire measure of Impulsivity (UPPS Urgency, [34]). In
order to investigate whether extended training is involved causally, we invited half of our participants
for further cue- and action-outcome learning before the test phase. Support for our hypotheses would
strengthen the notion that greater action control of incidental food cues, and inflexibility of over-trained,
automatic action-tendencies, can impair cognitive control over food intake [9,16,19].

2. Materials and Methods

2.1. Participants

We performed a cross-sectional study investigating group-specific PIT strength in people with and
without obesity. The experiments were conducted at the Max-Planck-Institute for Human Cognitive
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and Brain Sciences in Leipzig, Germany. We invited 64 healthy, non-smoking participants between 18
and 35 years of age, from a local database, who took part in this study after a telephone screening.
Inclusion criteria were: No acute or chronic psychological or physical illnesses, no allergies and no
medication besides oral contraceptives. Participants were not actively dieting or undergoing any other
change in eating behavior. Furthermore, pregnancy or breastfeeding led to exclusion from the study.
Participants were asked to abstain from eating or drinking anything other than water for two hours
prior to the appointment. All participants were introduced to the set-up and signed informed written
consent before participation. Thirteen data sets were excluded from the final analyses (3 obese/8 female;
5 for low pleasantness ratings of the taste rewards, as explained below, 6 for missing data, 1 due to
indication of depressive symptoms (BDI > 18) and 1 for significantly increased reaction times (z-scored
RT > 2.5) compared to sample mean). The remaining 51 participants (27 females) were composed of
four groups depending on sex and body-mass index (BMI). Obesity was defined as a BMI higher than
or equal to 30.0 kg/m2, while normal-weight participants displayed a BMI of higher than 18.5 kg/m2

and lower than or equal to 25.5 kg/m2. Demographic data can be found in Table 1. The study was
carried out in accordance with the Declaration of Helsinki and approved by the Ethics Committee of
the University of Leipzig, Germany.

Table 1. Sample Characteristics.

Lean Obese

Variable Female Male Female Male

n 14 12 13 12
Age 24.21 ± 3.07 24.67 ± 3.06 25.50 ± 2.98 26.42 ± 5.87
BMI 21.90 ± 1.96 22.16 ± 2.19 38.37 ± 5.80 35.34 ± 3.55
Self-Report Characteristics
BIS/BAS BIS 1 21.43 ± 2.82 19.17 ± 2.98 19.23 ± 2.95 16.00 ± 2.22

BAS 2 17.29 ± 1.44 16.00 ± 1.76 16.38 ± 2.02 15.33 ± 1.44
UPPS Urgency 26.93 ± 7.13 26.58 ± 4.98 29.31 ± 7.35 27.08 ± 3.09
TFEQ Dis 3 5.79 ± 2.67 5.08 ± 2.35 8.38 ± 3.12 6.50 ± 3.50

Restraint 6.07 ± 3.22 5.08 ± 3.12 8.15 ± 5.52 5.75 ± 5.52
BDI 4.57 ± 4.33 3.42 ± 2.81 4.92 ± 3.48 5.83 ± 4.02
Hunger Levels 4.25 ± 2.02 4.21 ± 2.12 3.42 ± 1.78 4.04 ± 2.34

1 A univariate ANOVA revealed significantly higher scores for lean than obese participants as well as higher scores
for female than male participants. 2 A univariate ANOVA revealed significantly higher scores for female than male
participants. 3 A univariate ANOVA revealed significantly higher scores for obese than lean participants. BMI =
body mass index in kg/m2, BIS BAS/BAS Drive = Behavioral Inhibition/Behavioral Activation Scale: Subscale Drive,
UPPS Urgency = Urgency/Premeditation/Perseverance/Sensation Seeking: Subscale Urgency, TFEQ Dis = Three
Factor Eating Questionnaire: Subscale Disinhibition, TFEQ Restraint = Three Factor Eating Questionnaire: Subscale
Cognitive Restraint of Eating, BDI = Beck Depression Inventory, Hunger Levels =Mean of hunger ratings pre and
post paradigm.

2.2. Questionnaires

During two questionnaire sessions (one before and one after the behavioral paradigm) participants
were asked to fill in questionnaires concerning general health (BDI, [35]), stress exposure (TICS, [36]),
reward and/or punishment sensitivity (BIS/BAS, [37]), impulsivity (UPPS, [38]) and eating behavior
(TFEQ, [31,39]) in a fixed order. After 3 years, participants were again contacted to fill in the TFEQ for
a second time.

2.3. Selection of Taste Rewards

Participants were asked to rate subjective hunger on a 10-point Likert scale from 1 (not hungry) to
10 (extremely hungry). Each subject chose four out of the following juices as taste rewards, which were
subsequently used in the following rating procedure: Strawberry, Mango, Apple, Coconut-Pineapple,
Cherry, Banana, Blackcurrant, Orange, or Grape. Per trial, 5 ml of juice was delivered centrally onto
the participant’s tongue via polyethylene and silicone tubes by an in-house built gustometer that
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was controlled via Presentation®software (Version 16.5, Neurobehavioral Systems, Inc., Berkeley, CA,
USA, www.neurobs.com). Maximum trial duration was 12 seconds or until logging via button press.
Each juice was presented six times (24 trials in total). Juices were initially rated on a Likert scale from
1 (frowning face) to 9 (smiling face). A positive mean rating (>4.5) and comparable pleasantness
for three of the four juices qualified these as taste rewards for use in the paradigm. If all four juices
were perceived as pleasant, the three juices with the closest mean ratings were used. Each juice was
then assigned to a button and visual stimulus. Furthermore, a neutral taste solution, as described
elsewhere [40], was used as a fourth taste stimulus and one visual stimulus was associated with this
cue exclusively.

2.4. Pavlovian-to-Instrumental Transfer

In PIT, participants learn to associate neutral cues with a↵ective outcomes such as reward or
punishment. Bias vulnerability is tested by introducing these task-irrelevant cues into a free choice
task. Two transfer types can be studied: Specific transfer describes the bias strength of a specific cue in
a free choice between two rewarded actions. General transfer measures the bias strength an a↵ective
cue has on instrumental behavior in comparison to behavior after a neutral cue.

The task was administered with Presentation®software. A 4-button response box was placed in
front of the participants who were asked to press the 3 task buttons with the fingers that were most
convenient for them. After reading the standardized instructions, participants completed seven test
trials including randomly selected taste feedback to make them familiar with general timing and setup
of the task (following [23]; max. two test runs when required) and were allowed to ask questions
if necessary.

An instrumental trial (Figure 1A) entailed a 6s display of two buttons, constituting a free choice
between two trained taste rewards. Participants were instructed to deliberately press one or more of
the depicted buttons during that time in order to earn taste rewards (action–outcome). The reward
criterion required 5–15 button presses (BPs) per trial for reward delivery. Before each trial, the criterion
was randomly drawn from a flat distribution between 5 and 15. Multiples of this minimum resulted
in multiple reward deliveries per trial. The partial reinforcement schedule was intended to make
responding more robust to reward extinction in the transfer phase. This has previously been shown
to be e↵ective by Cartoni and colleagues [41]. Participants were furthermore instructed that there
was no correct choice and that each button was stably associated with one of the three juices. Online
visual feedback about BPs was provided during trials. This consisted of a short on-screen color-change
of the pressed button. The instrumental phase consisted of 30 trials (10 per button pair). During
Pavlovian trials (Figure 1B), participants were presented with a fractal picture for 6s (randomized
order). Three of the four fractal images were stably accompanied by one of the three taste rewards (CS+;
stimulus–outcome) while one image was accompanied by the neutral taste (CS-). Taste presentation
was probabilistically determined with 60 percent of trials being rewarded. The inter-trial-interval
(ITI, black screen with white fixation) was presented for 2–6 s (randomized) during which neutral
taste was used to rinse the tongue in case the previous trial was rewarded. The Pavlovian phase
consisted of 40 trials (10 per fractal image). Transfer trials (Figure 1C) consisted of simultaneous fractal
picture presentation, similar to the Pavlovian phase, and button choice between two buttons, similar
to the instrumental phase. This was intended to test whether the previous training with positive
reinforcement created a measurable behavioral bias on free choices between these stimuli. Participants
were instructed to view the fractal cue pictures while responding as in previous instrumental trials.
They were specifically instructed that there were no right or wrong button choices, no rules, and they
should respond according to their impulses. Picture presentation, response window duration, and
visual feedback on registered BPs was given as in previous phases. Without prior instruction, transfer
trials were conducted under extinction, meaning that rewards were withheld in this part of the task.
The transfer phase entailed 90 trials: 30 trials testing for specific PIT with one of the o↵ered two buttons
being associated with the same reward as the presented cue picture; 30 trials testing for a general
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positive bias with both buttons and the cue picture being associated with di↵erent positive rewards
during training; and 30 trials testing responding after presentation of the neutral cue picture.
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Figure 1. Example trials of the instrumental (A), Pavlovian (B) and transfer (C) phases with
respective reward probabilities. Each button and visual cue was stably associated with one taste. The
inter-trial-interval (ITI) had a pseudorandomized duration between 2-6s in all three phases.

After completion of the paradigm, participants finally provided a second subjective hunger
rating and filled in the remaining questionnaires. In order to test for conditioned reward association,
43 of the 51 participants also performed a paired comparison between the four visual stimuli after
completing the paradigm. They were instructed to compare, pairwise, each picture with each of the
others regarding subjective pleasantness. They indicated by “ < />/ = ” whether they preferred one
fractal image to each of the other three images. A picture received a score of 1 if it was preferred, a 0 if
it was less favorable and a 0.5, if both were rated as equally pleasant. Scores for all comparisons per
picture were subsequently added, averaged over juice-related pictures and compared via t-test to the
score obtained by the picture trained with the neutral taste.

In order to gain more insight into learning dynamics and to test for previously reported training
e↵ects [42], 50% of the participants were invited for two training sessions. Those participants only
completed the instrumental and Pavlovian phases during session 1 and the complete paradigm during
session 2, which was identical to the paradigm that the no-training group completed. Session 2 was
scheduled within one week after session 1.

2.5. Data Analysis

Data were analyzed using MATLAB and Statistics Toolbox Version 8 (Release 2012b,
The MathWorks, Inc., Natick, MA, USA) and SPSS Statistics Version 22.0 (Release 2013, IBM Corp.,
Armonk, NY, USA). Significant results were followed up by post-hoc least square di↵erence tests.

2.6. Assessment of Data Quality and Preparatory Steps

In addition to confirming association learning and investigating possible group-related di↵erences
by univariate ANOVA, Pavlovian conditioning was tested by using a paired t-test on scored pairwise
picture comparisons. We compared the mean score of juice-related pictures with the score for the
neutral taste-related picture. This information was only collected for a subgroup (n = 43).

Pleasantness of taste rewards was examined for all but one subject, whose reward-button
assignments could not be reconstructed. First, mean subjective pleasantness ratings of the rewards
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were compared to a rating of 4.5 (a↵ectively neutral) using an independent sample t-test. A repeated
measures analysis of variance (rmANOVA; within-factor juice) was used to further test for di↵erences
in pleasantness between the juices assigned to buttons 1, 2, and 3 as well as di↵erences between
participant groups in order to rule out any influence of unequal pleasantness on button press behavior.
For some participants (n = 24), reward pleasantness was assessed before and after the paradigm in
order to test for changes in pleasantness over time. For this, another rmANOVA with factors juice and
time was used to ascertain that juices did fulfil their purpose as reward until the end of the paradigm.

Subjective hunger ratings before and after the paradigm were compared using an rmANOVA
(within-subject factor time, between-subject fixed factors weight group and sex) and change in hunger
was tested for correlation to the initial hunger level. All other analyses contained mean-centered hunger
as a covariate of no interest in order to rule out hunger-related di↵erences between our experimental
groups. Mean-centered age was always included in order to compensate for possible e↵ects of age
on learning.

As dependent measures, response rates (RR; in z-scored number of BPs) and response times (RT;
in tenths of milliseconds) were observed. Reaction time was defined as the time between stimulus
onset and onset of first button response. A within-subject z-score standardization of trial-based RR
was applied to compensate for between-subject disparities in baseline responding. Furthermore, RTs
were examined on a trial and subject level. Z-scores of within-subject RTs and z-scores of mean RTs per
subject were computed and unusually high values (z-score > 2.5) were excluded in order to minimize
e↵ects of inattentiveness or unspontaneous responding.

Variation of button pressing (RR and RT) during rewarded training and unrewarded transfer
(factor experimental phase) for the di↵erent buttons (factor button) was tested using rmANOVA.
This was done in order to investigate the e↵ect of extinction on response behavior.

2.7. Hypothesis Testing

In order to interpret behavioral di↵erences between groups in a meaningful manner, questionnaire
scores were analyzed in univariate analyses of variance (ANOVA) with sex and weight group entered
as fixed factors. Results can be seen in Table 1. As hypotheses were formed only for the Disinhibition
and Restraint scales of the Three Factor Eating Questionnaire (TFEQ) and the Urgency scale of the
UPPS, only these scale scores were entered as dependent variables in the main analysis. As both BIS
and BAS-scores of the BIS/BAS questionnaire exhibited significant main e↵ects, a post-hoc analysis
with these scales was set up in addition to the a priori tests.

Specific PIT was defined as the di↵erence in instrumental response rates between cued and
uncued outcomes (i.e. congruent versus incongruent). General PIT was calculated as the di↵erence in
instrumental response rate between positive, but non-associated, and neutral cue pictures. Presence of
transfer was tested using a paired TTEST for both specific and general PIT.

Specific PIT =mean(RRcued CS+) �mean(RRuncued CS+) (1)

General PIT =mean(RRuncued CS+) �mean(RRCS+/-) (2)

To rule out the possibility that group di↵erences in the likelihood to choose the neutral stimulus
masked possible general transfer e↵ects, we conducted a univariate ANOVA on that variable, with
between factors sex and weight group.

To test our main hypothesis, specific transfer was then investigated in a 2⇥2 ANOVA with sex
and weight group as fixed factors. Mean-centered TFEQ Disinhibition and Restraint as well as UPPS
Urgency scores were entered as covariates. Because of a non-normal distribution, general PIT was
analyzed in a nonparametric Mann–Whitney-Test, including Weight group as a grouping factor.

As the transfer phase consisted of 90 unrewarded trials, continuity of response behavior was
tested as a function of time during transfer. For this, a rmANOVA was set up. RR was defined as the
dependent variable and time (time bins 1–5) and transfer type (specific or general PIT) were defined
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as within-subject factors. Magnitude of transfer e↵ects (gPIT, sPIT) was compared between training
groups via MANOVA. The influence of the BIS and BAS subscales of the BIS/BAS questionnaire on
transfer was analyzed separately in an exploratory ANOVA model on specific PIT, including sex and
weight group as fixed factors.

Finally, we contacted participants for a follow-up report of their BMI after 3 years (mean = 1097
days, range = 972:1229 days). Of all 31 responders, only 19 participants were available for on-site BMI
measurement and therefore we first ran a correlation analysis between observed and reported BMI
at both time points to determine the validity of reported BMI (i.e. a high correlation of more than r
= 0.9). We set up a multivariate regression model on change of self-reported weight at follow-up as
dependent variable. As independent variables, we included sex and age, specific PIT, the restraint
scale of the TFEQ, as it has been connected to weight gain in the past, and BMI at time point 1. This
was done in order to test the predictive power of these factors with regard to weight development.

3. Results

Participants correctly identified juice-button and juice-cue associations in 96% of cases. This did
not di↵er between sexes (F45,1 = 0.40, p = 0.53, ⌘p

2 = 0.09) or weight groups (F45,1 = 0.04, p = 0.84,
⌘p

2 = 0.01 interaction: F45,1 = 2.24., p = 0.14, ⌘p
2 = 0.05). CS+ pictures were preferred over the CS- (t42

= 9.32, p < 0.001). Taste ratings before the paradigm were positive (test value = 4.5, button1: mean =
7.0, SD = 1.0, t49(B1) = 16.81, p < 0.001, button2: mean = 7.1, SD = 1.0, t49(B2) = 18.63, p < 0.001, button3:
mean = 6.8, SD = 0.9, t49(B3) = 18.49, p < 0.001) and did not significantly di↵er by juice (F47,2 = 3.08,
p = 0.06, ⌘p

2 = 0.12) or weight group (interaction juice*weight group: F47,2 = 0.08, p = 0.93, ⌘p
2 = 0.00).

Repeated measures ANOVA testing for preferences between the three button-taste pairs yielded a
trend (F46,2 = 3.18, p = 0.05, ⌘p

2 = 0.12) towards preference for button 2 compared to button 3. Repeated
Measures ANOVA of juice liking over time revealed no significant increase or decrease of preference
for the taste rewards over time (F21,1 = 0.00, p = 1.00, ⌘p

2 = 0.00). The interaction of time and juice was
evaluated by Greenhouse–Geisser corrected output due to violations of sphericity (Mauchly’s W =
0.56, p < 0.05) and showed no significant e↵ect over time and juices (F29.2,1.4 = 1.33, p = 0.27, ⌘p

2 = 0.06).
Because this data was derived from a small subsample, we did not test for group di↵erences in this
context. Hunger before the paradigm averaged at a rating of 3.6 (SD = 2.0) and after the paradigm at
4.3 (SD = 2.3). Repeated measures ANOVA indicated a significant di↵erence between the time points
(time: F46,1 = 12.54, p = 0.001, ⌘p

2 = 0.21). This was not a↵ected by weight group (F46,1 = 2.38, p = 0.13,
⌘p

2 = 0.05) or sex (F46,1 = 1.98, p = 0.17, ⌘p
2 = 0.04; interaction: F46,1 = 2.10, p = 0.16, ⌘p

2 = 0.04). This
analysis was performed without including mean-centered hunger ratings as a covariate. Initial hunger
and change in hunger were not correlated (r = �0.15, p = 0.31).

As some reaction times were unusually high, we excluded outlier trials subject-wise (z > 2.5).
We had to exclude 2.27 trials on average (SD = 0.9) from all but one participants’ 90 transfer trials.
We furthermore excluded one complete dataset which exhibited a mean reaction time of more than
2.5 seconds per trial (z = 3.3), as we suspected noncompliance in the form of inattentiveness to the task.

Repeated Measures ANOVA testing for extinction e↵ects revealed a significantly di↵erent button
press behavior between the training and transfer phases (F47,2 = 19.39, p < 0.001, ⌘p

2 = 0.45). Specifically,
participants responded more frequently and slowly during the transfer phase than during training (RR:
F48,1 = 9.33, p < 0.01, ⌘p

2 = 0.16; RT: F48,1 = 18.72, p < 0.001, ⌘p
2 = 0.28) with a significant univariate

interaction e↵ect on RR, as responding with button 1 and 2 as opposed to button 3 was specifically
increased during transfer (F96,2 = 4.31, p = 0.02, ⌘p

2 = 0.08). It stands to reason that this is likely due to
participants choosing the right ring finger for operating button 3, which is less practiced than the index
and middle finger. Another reason might be a preference of tastes 1 and 2 over taste 3, although only
the preference of taste 2 over 3 was statistically significant, as reported above.

MANOVA of questionnaire results testing for e↵ects of sex and weight group revealed a significant
multivariate e↵ect of BMI on questionnaire results (F43,4 = 4.97, p = 0.01, ⌘p

2 = 0.26). This e↵ect
was driven by a univariate main e↵ect of BMI on TFEQ Disinhibition score (F45,1 = 14.70, p < 0.001,
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⌘p
2 = 0.25) with higher values in the obese than in the control group (TFEQ Restraint: F45,1 = 2.12,

p = 0.15, ⌘p
2 = 0.05; UPPS Urgency: F45,1 = 1.30, p = 0.26, ⌘p

2 = 0.03). There was no main multivariate
e↵ect of sex (F43,4 = 1.39, p = 0.26, ⌘p

2 = 0.09) and no interaction e↵ect (F43,3 = 0.42, p = 0.74, ⌘p
2 = 0.03).

Specific transfer was observable in our sample (t50 = 10.88, p < 0.001, Figure 2A) while general
transfer was not expressed significantly (t50 = 0.19, p = 0.85). E↵ects of sex and weight group on
specific PIT were tested using a 2⇥2 ANOVA with mean-centered hunger, age and TFEQ Disinhibition
score entered as covariates. There were no significant main (weight group: F44,1 = 1.71, p = 0.20,
⌘p

2 = 0.04; sex: F44,1 = 0.00, p = 1, ⌘p
2 = 0.00, Figure 2B) or interaction e↵ects (weight group*sex: F44,1

= 0.02, p = 0.88, ⌘p
2 = 0.00). Nonparametric comparison between general transfer in lean and obese

participants resulted in acceptance of the null hypothesis (U = 288, p = 0.49). As a follow up to this, we
nonparametrically analyzed response rates solely after presentation of the neutral stimulus. There was
no significant di↵erence in response strength between lean and obese participants (U = 277, p = 0.37).
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Figure 2. (A) While specific Pavlovian-to-Instrumental Transfer (PIT) could be significantly elicited
in our sample, general PIT was not observed. (B) Despite a visible trend toward less specific PIT in
the obese group, we did not observe a significant main e↵ect of weight group or sex on button press
behavior. (plotted with ggplot for R (R Core Team, 2015; Wickham, 2016)).

Repeated measures ANOVA of responses over five bins of transfer trials showed significant
violations to the assumption of sphericity for the di↵erent time bins (Mauchly’s W = 0.65, p = 0.03).
We therefore used the Greenhouse–Geisser corrected F values and found no main e↵ect of time (F147.3,1
= 2.09, p = 0.1, ⌘p

2 = 0.04). Response rates were significantly di↵erent between transfer types (F48,1 =

78.96, p < 0.001, ⌘p
2 = 0.62) with participants responding more to specific PIT trials (p < 0.001) as well

as an interaction e↵ect of both (F192,4 = 3.8, p < 0.01, ⌘p
2 = 0.07). Participants decreased the amount

of specific transfer between time bin 1 and 5, while the lack of general transfer was stable over time.
Di↵erent numbers of training trials did not significantly a↵ect PIT strength (F46,2 = 1.63, p = 0.21, ⌘p

2 =

0.07). The exploratory general linear model testing for e↵ects of BIS and BAS scores on specific transfer
did not yield any significant main or interaction e↵ects (BIS: F45,1 = 0.693, p = 0.41, ⌘p

2 = 0.02; BAS:
F45,1 = 0.05, p = 0.82, ⌘p

2 = 0.01).
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Finally, Pearson product–moment correlations were run to determine the relationship between
observed and reported BMI at both time points. Neither at time point 1 (r = 0.997, n = 51, p < 0.001) nor
at time point 2 (r = 0.996, n = 19, p < 0.001) did BMI measurements di↵er significantly. We therefore
used reported BMI in the following analysis.

A multiple regression was run to predict BMI change from time point 1 to time point 2. Predictors
were specific PIT, TFEQ restraint and BMI at time point 1, sex and age (Figure 3).
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Figure 3. Three Factor Eating Questionnaire (TFEQ) Restraint scores significantly predicted BMI change
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Statistically, this model significantly predicted BMI (F5,30 = 3.05, p = 0.03, R2 = 0.38). Of the five
variables, only Restraint scores (t = 3.54, p = 0.002) predicted BMI change with higher weight at time
point 2 in people with higher Restraint scores.

4. Discussion

Acknowledging that obesity is the consequence of a multitude of underlying processes and
predispositions, we aimed at investigating whether vulnerability toward incidental priming, with
appetitive stimuli, can be seen as a contributor underlying obesity. We successfully trained participants
to associate previously unknown and neutral pictures with positive tastes in order to prime their
subsequent instrumental behavior. Evidence of an e↵ective environmental bias would be an increase in
response behavior after exposure to positively associated cues. Of particular interest would be e↵ects
of weight group on the magnitude of general and specific PIT. Our hypothesis was that higher BMI
would predict stronger transfer e↵ects.

Replicating previous studies [23,43–51], we found evidence for specific PIT in our sample.
Conditioning with immediate taste rewards was successful. Participants preferred rewarded cues to
the neutrally associated picture when explicitly asked to rate them according to their subjective feeling
toward them. This preference cannot be explained by aesthetic preference, as pictorial stimuli were
randomized per subject. The fact that these pictures were also able to direct behavior in the subsequent
transfer task implies that humans can be guided toward a response after overtly stating their freedom
to choose by preference and also when reward was omitted. This points toward a mechanism that
initiates reward seeking that is not solely controlled by homeostatic drive but also modulated by
the environment. In the present study, transfer was prompted using appetitive food stimuli. This
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allows for the interpretation that specific PIT might be involved in altered eating behavior in modern,
food-cue enriched environments. However, we should not forget about other possible sources of
weight development that we did not measure in this study (e.g. energy expenditure). This might be
why we did not detect an impact of weight group on specific transfer. The data even implies a trend
for less specific transfer in the obese group than in the controls, which might be masked by the high
variability of the data. Further support for this incidental finding would stand in contrast to our initial
hypothesis of transfer e↵ects contributing to diet-induced obesity.

Our null-result may, of course, indicate something di↵erent. Incidental food priming might a↵ect
everyone equally and thus, might not predict the development of overweight and obesity. Previous
studies to date have produced mixed results concerning a direct relationship between BMI and strength
of food PIT. While a study of Lehner et al. showed no di↵erence in PIT strength between lean and
obese participants, people with overweight showed stronger susceptibility to food PIT [26]. Watson et
al. did not find di↵erences in PIT strength per se in people with and without obesity [25]. However,
low as opposed to high caloric content foods did not elicit PIT in the obese group, exclusively. In
addiction research, PIT was not associated with dependence severity [46–51] and did not di↵er between
participants with and without an addiction [45]. In addition, we might only be able to see these
e↵ects in larger samples than ours. Furthermore, PIT tasks always carry the di�culty of instructing
participants to follow their instincts, even though a lab environment arguably stands in the way of
natural and automatic behavior. Looking at the results from the angle of measurement choice, although
weight status allows for simple analysis and comprehensible results, it is not a very direct way for
understanding individual eating styles. Di↵erent bodies process incoming energy in vastly di↵erent
manners. Consequently, weight groups were intended to give a first impression of possible e↵ects,
which we did not find in this study. Connecting attentional processes and PIT to energy intake per se
would be a very direct way of determining the environmental validity of PIT in the context of food and
should be looked at in the future. On the other hand, energy intake is di�cult to measure and requires
participants with very high levels of diligence and perseverance. Consequently, BMI should not be
dismissed lightly. Apart from its very strong standing as a population measure, it is helpful as an
indirect measure for individual health-behaviors. Finding a link between obesity and PIT might require
a finer resolution of the predictor, like continuous BMI, including the less studied BMI range from
26 to 29 kg/m2. A further approach would be longitudinal studies measuring weight development
in relation to transfer strength. Toward that end we followed up on the link between personality
traits and obesity, obtaining self-reported weight after three years. We were thus able to analyze the
predictive power of transfer strength as well as replicate the finding of van Strien et al. [33] concerning
the association between weight development and the restraint scale of the TFEQ. Despite the relatively
small case number, our data indicate a strong influence of restraint on BMI development, while specific
transfer did not significantly contribute to the model. It would be interesting to replicate this in a
larger sample in order to include disinhibition scores. Theoretically, people with high disinhibition
tendencies and low restraint could be more susceptible to incidental food priming, while people with
high restraint scores and low disinhibition might be better protected from this e↵ect [30].

In a 2011 study, exposure to remote food stimuli (i.e. sight and smell of pizza) primed individuals
toward larger prospective portion sizes [27]. This e↵ect was independent of weight group, while
salivation and motivation to eat was significantly increased for overweight individuals compared to
normal-weight participants. Therefore, considering this relationship between automatic, appetitive
responses and weight group, it might be worthwhile to retest our hypothesis including measures of
visual attention and arousal in future studies.

Another factor requiring attention when looking at our results is reward type. This study used
juices as immediate taste rewards. That is a valid approach, as fruit juices are generally perceived as
positive and come in diverse flavors. There are, on the other hand, indications that gustatory as well as
sensory properties or caloric content di↵erentially a↵ect pleasantness and taste as well as influence
intake in lean and obese populations [52].
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An interesting approach would be to reproduce this study with the additional factor of hunger
and satiety. As has been shown previously, weight group significantly modulated the influence of
homeostatic state on attentional bias to food cues [9]. Unlike the control group, participants with
overweight and obesity did not exhibit a decreased attentional bias to food cues when sated. In the
current study, all participants performed under conditions of relative satiation, meaning that they had
not eaten in the two hours prior to the experiment. Furthermore, hunger ratings increased during
the task, potentially increasing the influence of this factor. A standardized meal before participation
might pronounce di↵erences between weight-groups in future studies and lead to a more thorough
understanding of external drivers of appetitive responses.

Unfortunately, we did not elicit general transfer in our sample, which might be a more viable
measure of transfer in the food context. General and specific PIT constitute separate behavioral pathways
for environmentally driven behaviors. While specific transfer is a measure of the circumstantial bias
towards a certain incentive, general transfer describes an externally elicited bias towards reward (i.e.
food) in general. In humans, automatic behavior and PIT have been connected via blood-oxygenation
level dependent (BOLD) signal changes in the human brain [23,24,43,53]. In rats, the nucleus accumbens
(NAc), has been closely linked to PIT. Lesions of the NAc shell a↵ected only specific transfer, while
general transfer was eliminated by lesions to the NAc core [26], underlining the double dissociation
between specific and general PIT. As our theoretical approach to this study centers on a universal
appetitive response in the face of ubiquitous food supply and pervasive food-related environmental
cues, the concept of general transfer was driving hypothesis formation. Future studies in this field might
center on general transfer, as we also believe that combined testing of both transfer types—especially
under extinction—might a↵ect outcome quality negatively. The current setup might drive participants
to explicitly test picture-button combinations in order to trigger reward delivery, rather than respond
naturally. Participant reports after paradigm completion, as well as our data, corroborate this notion.
The number of button presses was at its highest in the beginning of the transfer phase, when participants
fully expected a reward. Congruent button presses, meaning specific PIT, were executed significantly
more often in the first trials of the transfer phase. Button presses that were identified as markers
of general PIT, on the other hand, were almost absent during the transfer phase. Several other
studies [20,54,55] have focused instrumental training on two outcomes, while the paradigm included
three Pavlovian outcome pairings. This way, the general PIT e↵ect could be measured in a much
clearer fashion, as both the CS+ and the neutral CS are not paired with an instrumental response,
thus avoiding confusion. According to participant feedback, di↵erent strategic approaches were tried,
presumably until cessation of reward delivery expectation. The exclusivity of increased BPs for buttons
1 and 2 can be explained by the fact that most participants decided to use the index and middle fingers
of their right hand for the first two buttons, while they operated the third with their ring finger. This
decision could have led to a relative unwillingness to press button 3 for reasons of convenience.

In order to test general PIT e↵ects under ecologically valid conditions, future studies should
consider omitting extinction during the transfer phase or introducing it gradually to avoid confusion.
This has been done in other studies [46,54–57]. As our study included extinction during transfer, this
might be an explanation for the absence of general transfer e↵ects. Absence of conditioned rewards
has previously been shown to substantially reduce transfer e↵ects [58]. However, as suggested by the
authors, a more sensitive measure might be the choice in itself, in contrast to the amount of button
presses. The present study calculated PIT as the di↵erence in response rate after priming. However,
priming e↵ects might be visible when looking at the pure button choice in itself. Another reason
for absent general PIT might be a relative over-representation of choices for the neutral cue, as was
observed by Yin, Zhuang, and Balleine [59] in a PIT task in dopamine transporter knockdown mice.
We therefore checked our data set for similar influences, but did not find any evidence for this e↵ect.

Hypothesizing that a higher amount of training may lead to more involuntary responses to
the Pavlovian stimulus, we tested whether doubling operant and Pavlovian learning increased PIT
strength. Contrary to our hypothesis, training had no e↵ect on transfer magnitude in our sample.
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Holmes and colleagues [42] argued that increased training of associations might lead to a competition
between instrumental and Pavlovian tendencies in rats. Following their line of argument, this e↵ect
should be investigated with a specific increase of Pavlovian training. While the amount of overtraining
found in rats will be di�cult to replicate in human participants, this specificity might circumvent
competition abolishing the transfer e↵ects.

Obesity, indisputably, is a very heterogeneous condition. Most probably, metabolic di↵erences and
eating behavior are the primary contributors to the development of a chronic homeostatic imbalance
leading to excess weight. Looking at personality and behavioral traits might prove a valuable approach
to disentangling these influences on eating style from homeostatic and attentional sources. While
some individuals might have a tendency toward eating in response to personal circumstances like
stress, others may respond to environmental cues, or to a combination of both, like following external
cues during emotionally challenging situations. In our sample, obesity status predicted di↵erences in
self-reported eating behavior. Participants with obesity showed higher levels of disinhibition, meaning
that food intake was more likely to become uncontrolled and excessive. This, taken together with the
fact that all participants were vulnerable to PIT, implies graver consequences from reacting to external
cues when, at the same time, the intake amount is less restricted. This theoretical role of PIT in an
interaction model of attentional bias and disinhibited eating is corroborated by a study in adolescents
by Shank and colleagues [60]. Though our study did not find a connection between personality traits
and PIT, it thus might still be an interesting target for further inquiry.

Garofalo and colleagues [61] recently confirmed the existence of goal- and sign-tracking subtypes
in humans with a monetarily reinforced PIT. Sign-tracking participants focused on the CS+ before
engaging in reward-seeking, while goal-trackers instantly oriented towards the predicted outcome
signals. Garofalo and colleagues found that sign-tracking individuals were particularly susceptible to
PIT in comparison to goal-trackers and that this e↵ect increased with probability of reward delivery.
This is especially interesting, as we found improved flexibility in people with obesity in a reversal
learning task [62]. We argued that people with obesity exhibited an improved focus on the outcomes
of each trial and were thus superior in keeping track of contingency changes. It has further been
implied by animal data [63] that sign-trackers might be especially responsive for discrete cues while
goal-trackers can be influenced by contextual cues. Thus, eye-tracking data during PIT studies
might explain inter-individual di↵erences in transfer magnitude and help in determining whether an
individual might benefit from therapeutic interventions targeting susceptibility to external food cues.
Additionally, the data from Garofalo and colleagues directs attention toward the concept of partial
reinforcement and transfer under extinction, which might decisively a↵ect transfer strength in a subset
of participants.

In addition to capturing orientation toward rewarding cues, reactivity to those cues might
pose as a valuable target for treatment. It has previously been shown that neuronal reactivity to
food and sexual depictions predicts future weight gain and sexual behavior respectively [64]. In
obesity, reactivity to a↵ective cues seems to be more pronounced than in lean control participants [65],
highlighting the importance of including cue reactivity in modern treatment programs. Retraining of
automatic approach behavior toward food cues has been shown to be a promising target for cognitive
training [11,12]. As recently implied in a paper from Verhoeven et al. [54], in addition to overriding the
e↵ect of health warnings, PIT also bears positive potential. Linking and thus supporting wholesome
food intake with these health warnings, instead of competing for attention with convenience foods,
might direct behavior toward healthy outcomes—bearing the potential to use already well-established
advertising practices of the food industry to our benefit.

5. Conclusions

Over-eating in the presence of pervasive food-related cues can result from overtrained reward
seeking behavior and subsequent translation into automatic response patterns. This study provides
additional evidence for Pavlovian-to-Instrumental Transfer of appetitive cues to reward seeking
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behavior. Consequently, a stricter regulation of advertising strategies might contribute to a healthier
lifestyle in the general population, particularly in times when children are especially targeted by
food marketing. Furthermore, this finding supports therapeutic interventions targeting attentional
bias towards food cues as a means to curb externally driven appetitive responses or build positive
associations with healthy foods. Individual weight development was not predicted by PIT, while
self-reported TFEQ-restraint scores were related inversely to weight change and explained ca. 30%
thereof over three years. Further studies might focus on connecting PIT e↵ects to the interplay of
eating styles and disposition towards sign-tracking, ideally including more fine-grained measures of
obesity. Another interesting addition would be the inclusion of longer-term weight development in
the context of transfer strength.
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Discussion 

The aim of this thesis was to investigate whether overweight and obesity are related to changes 

in reward driven association learning or vulnerability to incidental reward cues.  

Keen Association Learning in the Food Context: Advantage or Disadvantage? 

In our first study, we focussed on mechanisms impacting explicit reward learning. We were 

able to show that successful acquisition and reversal of reward expectancy is not dependent on 

weight-group. People with and without obesity were able to correctly track reward associations 

irrespective of reward type. This finding should have implications for all research on reward-

driven behaviour and obesity, as negative findings have been reported previously (van den 

Akker et al., 2017; Z. Zhang et al., 2014). Our data show a clear difference in learning success 

between reliance on active stimulus choice in comparison to a passive outcome observation. 

This is also reflected in a significant interaction between BMI, reward and response type. While 

people in the healthy BMI-spectrum exhibit relatively lower accuracy in passive compared to 

active trials, people with obesity seem to profit in the passive condition. When looking at the 

passive tasks exclusively, we find more flexible associations between incidental cues and 

reward outcomes in people with obesity. Combined with our finding of faster reaction times in 

people with obesity, we infer improved explicit learning from highly salient food rewards to 

be the driver of this interaction. The idea that obesity might be the result of a behavioural 

adaptation (Chaput, Doucet, & Tremblay, 2012) – with disadvantages as well as advantages – 

rather than an illness per se, offers intriguing room for interpretation. 
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The second study was aimed at testing the possible influence which reward-related cues 

might have on subsequent food-choice behaviour. While we did not find group differences 

between people with and without obesity, all participants showed signs of bias vulnerability. 

Thus, this study suggests a possible mechanism of overeating in environments that are rich in 

palatable food cues. Reportedly, food system policy can potentially correct the recent 

undesirable trend in promoted over-nourishment in some societies as well as undernourishment 

in large parts of the world (Swinburn et al., 2011). However, in a subset of participants who 

were contacted by us two years after initial participation in our study, we found no evidence 

for a relationship between this bias and weight gain. A limitation of this study is the small 

sample size. In order to retest this hypothesis and investigate the appearance of less specific 

PIT in people with obesity, our study should be replicated in a larger sample. Additionally, 

PIT, though helpful in the animal literature, is most likely not easily brought into a human 

setting. Arguably, PIT paradigms might not be suitable to instil habit-like behaviour in human 

participants (de Wit et al., 2018). As a way to circumvent this, usage of previously strongly 

trained cues like advertising material by large food manufacturers should be considered. 

Furthermore, while some measures of personality and eating behaviour were acquired in this 

study, cognitive parameters like WM could give a more complete picture on the pathways of 

cue-triggered eating behaviour. A recent paper by Garofalo and colleagues (Garofalo, 

Battaglia, & di Pellegrino, 2019) has shown that WM score was positively associated with the 

amount of congruent button presses in the specific PIT condition, while incongruent button 

presses were inversely correlated to WM score. As obesity and working memory capacity have 

been reported to be inversely related (Coppin et al., 2014; Stingl et al., 2012; van den Berg et 

al., 2009), combined testing of specific PIT, WM score and obesity would seem logical for a 

replication study. How these findings can be translated into individual behavioural differences 

in a natural food setting is not clear and needs to be addressed in field studies. 
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Evaluation of Study Findings: Checking Stereotypes 

When looking at the results of the included studies, negative biases in the interpretation of data 

from clinical populations need to be discussed. This applies to the first study’s finding of 

overweight and obesity predicting higher learning flexibility. Evaluating specific behaviour as 

either flexibility or unsteadiness is certainly a matter of debate. Seeing obesity as a biological 

adaptation, findings of higher flexibility might be interpreted as a pathway of evolutionarily 

positive behaviour that has become maladaptive in the modern world. It would be interesting 

to check these behavioural mechanisms in countries where food availability is low. Following 

this line of argument, a flexible assignment of learned associations between reward outcomes 

and instrumental cues from the environment could predict a higher BMI and, thus, better health. 

Comparing Protective and Risk Aspects of Higher Weight 

Elevated blood pressure is similarly accompanied by seemingly positive effects in some 

populations: Obesity (Chaput et al., 2012) as well as hypertension (Mendlowitz, 1982) have 

been discussed in terms of biological adaptation.  

Apart from reported risks due to comorbid diseases like Type-2 Diabetes or 

hypertension, positive health effects of overweight have been shown, including lower risk of 

osteoporosis or fractures and frailty in elderly populations (Chaput et al., 2012). The same 

review reports negative health effects of weight-loss, purporting that classification of obesity 

as an illness is debatable, since therapy is not necessarily positive for the body. Underweight 

and obesity have been connected to higher mortality rates, while overweight predicted lower 

mortality compared to the healthy weight group – an effect that did not change after 10 years 

of weight-stability (Flegal, Graubard, Williamson, & Gail, 2018). Besides these protective 

effects of higher weight, several risk aspects cannot be denied. As an example, at the age of 
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18, the lifetime risk of being diagnosed with Type-2 Diabetes is increased by as much as 37.2% 

for obese men and 37.5% for obese women (Narayan, Boyle, Thompson, Gregg, & 

Williamson, 2007). Notably, the increase for people with overweight is reported as 9.9% in 

men and 18.3% in women, showing two things: (1) how BMI classifications differ in terms of 

clinical applicability between the sexes. (2) The drastic increase in lifetime risk for Type-2 

Diabetes between overweight and obesity – in contrast to the much lower rate change between 

healthy weight and overweight – illustrates how the relationship between higher weight and 

risk of comorbid diseases is not well reflected in the weight classification system. 

Hypertension can be discussed in the same vein, while a causal relationship between 

hypertension and mortality rates has been stably established (Iadecola et al., 2016; World 

Health Organization, 2019). Although the consequential serious health decline makes 

prevention and therapeutic intervention necessary (The SPRINT Research Group, 2015), 

elevated blood pressure has also been related to better quality of life, better academic success 

and lower distress in young participants (Berendes, Meyer, Hulpke-Wette, & Herrmann-

Lingen, 2013; Hassoun et al., 2015). A strong dependence of mortality rates on diagnosis rather 

than presence of the disease (Jørgensen, Langhammer, Krokstad, & Forsmo, 2017) as well as 

negative effects of antihypertensive treatment in elderly patients (Douros et al., 2019) have also 

been shown. Possibly, higher blood pressure in young age can be discussed as an advantage in 

terms of physical performance while its detrimental long-term consequences become visible 

only after longer affliction. 

In sum, modest expressions of both obesity and hypertension seem to predict better 

quality of life, while negative clinical consequences grow with stronger manifestation. This 

needs to be considered in therapeutic settings. Most likely, psychological stress considerably 

accounts for reduced quality of life after diagnosis – especially in conditions like obesity that 

are perceived to be due to the individual’s behaviour (Kirk et al., 2014; Sikorski et al., 2011). 

While hypertension therapy is well-researched and medication is successful in most cases (The 
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SPRINT Research Group, 2015), bariatric surgery – thereby involving all the risk that is 

associated with surgeries in general – is considered to be the only effective method to date for 

people with extreme obesity (Hauner, Wirth, et al., 2013). 

The Obesity Stigma and its Relevance in Research and Therapy 

Causes and views on individual weight and eating behaviour have undergone drastic changes 

during the past centuries. In some developing countries, overweight and obesity are still 

generally accepted signs of health, prosperity and – especially when looking at women – 

fertility (Furnham, Moutafi, & Baguma, 2002; Mavoa & McCabe, 2008; Pollock, 1995). 

Current wide-spread stigmatization of overweight and obesity in most developed civilizations 

culminates in body-shaming practices that are based on assumptions of poor health and a low 

socioeconomic status (McLaren, 2007; van Leeuwen, Hunt, & Park, 2015). Seemingly simple 

body measurements like BMI or waist circumference can thus strongly affect participants’ 

mindsets – especially in people with obesity who report significantly more personal stigma 

experience than people with healthy weight, even in young childhood (Pont et al., 2017). 

Furthermore, inclusion and exclusion criteria or covariates like, e.g. comorbid physical or 

psychological illness, have the potential to distort effects of obesity on study outcomes greatly 

(Kube et al., 2016; Schrimpf, 2017) and need to be controlled closely. This line of argument 

culminates in the central difficulty of creating a considerate study environment and checking 

stereotypes when interpreting cognitive data from populations with stigma experience.  

Illustrating potential systematic effects of these implicit forces, people with obesity 

reportedly receive less time and attention from medical staff and, consequently, seek less 

medical help (Forhan & Salas, 2013). A higher obesity risk for some demographic groups (e.g. 

African Americans, Comuzzie & Allison, 1998) can therefore create a systematic healthcare 

bias.  
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BMI in Research and Medical Practice 

BMI definition is irrespective of body composition or sex and therefore only of limited use in 

individual diagnosis and therapy. Our findings rely strongly on grouped analyses. As obesity 

risk is determined not only by way of food intake, but also body composition, sex, basal 

metabolic rate, etc., grouped comparisons can only approximate an explanation of weight 

development. However, despite its poor resolution, BMI predicts cardiovascular risk with a 

grade of precision that is comparable to more sophisticated methods like skinfold measurement 

or X-ray absorptiometry (Steinberger et al., 2005). Another benefit of BMI as a clinical and 

research measure is the simplicity of its measurement – requiring only one height and weight 

measurement – and its comparability between different examiners (Steinberger et al., 2005). 

The UK Foresight programme classifies obesity as a “wicked problem” that needs to be 

addressed by reducing complexity – without resorting to oversimplification – in order to find 

solutions to the global and local obesity problem (Swinburn et al., 2011).  

Conclusion 

Our studies have indicated that implicit bias by way of food advertisement and omnipresence 

of palatable food cues offers a way of interpreting unhealthy food choices. They illustrate how 

higher BMI can be discussed in terms of an evolutionary adaptation. While we showed that 

people with obesity seem to update cue-reward associations more flexibly than people within 

the healthy weight range, implicit cue responsiveness by way of PIT was not systematically 

different between the weight groups. However, presence of specific PIT in both weight groups 

deems research into preventative efforts in form of food policy changes promising. Besides the 

facilitation of an active lifestyle, energy intake is therefore a promising target for population-

based interventions. 
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Obesity and its comorbidities are key public health concerns in western societies, with 

prevalence rates rising sharply over the last decades (Bischoff et al., 2017; World Health 

Organization, 2017). Contributing factors range from genetic predisposition to socioeconomic 

or environmental factors like eating style or exercise, as well as the cultural background 

(Bischoff et al., 2017). A strong disparity between intake and expenditure promotes obesity in 

high-income countries with an affluent food-environment and a sedentary lifestyle (Bellisle, 

2014; Gore et al., 2003; Hu et al., 2003; Tucker & Bagwell, 1991; Tucker et al., 1989). 

These factors indicate that pathways of environmentally driven food intake need to be 

scrutinized, leading to the following research questions: how do cognitive influences shape our 
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appetites or behaviours? How does the decision to pursue intake of a specific food in contrast 

to another depend on implicit biases from our surroundings? 

Previous research has connected executive functions and eating-behaviour (Dempsey et al., 

2011; Rangel, 2013). At the same time, the relationship between executive functions and 

obesity measures is not clear – though a negative impact of obesity on test outcomes seems 

undeniable (Boeka & Lokken, 2008; Dye et al., 2017; Fitzpatrick et al., 2013; Gunstad et al., 

2010; van den Berg et al., 2009). Several cognitive functions such as working memory capacity 

have been shown to differ between people with overweight and obesity, and people in the 

healthy weight range (Coppin et al., 2014; Stingl et al., 2012; van den Berg et al., 2009). 

Kroemer and Small propose a model by which obesity is accompanied by decreased goal 

directedness due to differential reward learning. They argue that exaggerated reward 

anticipation signals in the brain go hand in hand with blunted reward receipt signalling in 

obesity (Kroemer & Small, 2016), possibly resulting in attenuated behavioural goal-

directedness and less adherence to dietary goals. In line with this, food reward receipt (Janssen 

et al., 2017) and omission (Horstmann, Dietrich, et al., 2015; Meyer et al., 2015) as well as 

negative monetary outcomes (Horstmann et al., 2011; Kube et al., 2017; Mathar et al., 2017) 

have been shown to be less potent reinforcers in people with obesity. Additionally, other factors 

such as stigma or social exclusion experience (Kube et al., 2016) might be able to explain 

negative findings regarding cognitive functions in obesity, but are rarely accounted for.  

To cite an example for this, a study comparing learning success between people with 

and without obesity suggested inferior learning in women with obesity when learning from 

food rewards (Z. Zhang et al., 2014). In their study, coloured squares were associated with 

either monetary or food outcomes, the contingencies of which changed after initial acquisition. 

Next to other methodological concerns, their findings were based on strongly dissimilar 

monetary and food rewards, making interpretation of their results difficult. Their suggestion 

that women with obesity exhibited lower learning parameters due to difficulty to focus when 
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being confronted with salient food rewards thus seemed premature. This consideration was the 

starting point of my first study. 

Study 1 – In order to re-test this hypothesis and broaden its informative value, we 

replicated their study with the inclusion of the overweight BMI range (Meemken, Kube, 

Wickner, & Horstmann, 2018). With the help of four probabilistic reversal learning paradigms, 

we analysed data of 85 participants of both sexes between 18 and 35 years of age with a BMI 

range between 19 and 51 kg/m2. Through a willingness-to-pay paradigm we individually 

identified food and monetary rewards of comparable value.  

In addition to the replication of the two paradigms (one food, one monetary), 

participants performed two further learning tasks. The original paradigms relied on learning by 

observation, as participants passively viewed whether a certain stimulus was followed by a 

reward – reporting their associations through subsequent reward expectancy ratings. We 

additionally tested active learning: participants selected the stimulus that they believed would 

result in a reward – which is more often used in learning research (Coppin et al., 2014; 

Horstmann et al., 2011; Kube et al., 2017). When looking at the passive tasks specifically, 

people with obesity showed faster and more accurate learning for both food and monetary 

rewards (see figure S1). A comparison of active and passive tasks indicated that in the food 

tasks, people at the lower end of our BMI spectrum showed relatively better learning from the 

active than passive task. People with a high BMI, on the other hand, showed the opposite effect 

with higher accuracy measures in the passive than active tasks. Arguably, while feedback in 

the active tasks can be understood in terms of correct vs. incorrect choices, feedback in the 

passive tasks is more challenging. The participant is confronted with a random coloured 

stimulus and indicates whether they expect a reward or not. The actual feedback then confirms 

or rejects their reward expectation, adding one layer of complexity to the outcome phase. We 

therefore reasoned that the obesity-related flexibility in this context was due to improved focus 

on the outcome phase, possibly through higher salience of the food rewards. The fact that all 
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participants were able to correctly learn reward associations goes against the findings of Zhang 

et al. (2014).  

Study 2 – Following this, we were interested in the mechanisms through which these 

learned associations impact behaviour. It has been reported that so-called external eating is 

related to an attentional bias towards food cues (Brignell et al., 2009), which has been found 

in overweight and obesity (Hendrikse et al., 2015). In our second study, 51 male and female 

participants from two weight groups (healthy weight, obese) between the ages of 18 and 35 

completed a paradigm testing external bias on free-choice behaviour (Meemken & Horstmann, 

2019) – a Pavlovian-to-Instrumental Transfer (PIT) task (Prévost et al., 2012). The task was 

performed with food rewards (i.e. fruit juices) that were orally delivered through a gustometer 

and consisted of three phases. During the first two phases, each participant consolidated two 

associations per taste: one with a visual cue and one with a button press. During the final test 

phase, participants were confronted with the choice between two buttons and instructed to 

 

Figure S1 Main effect of BMI group during passive reversal learning. Error bars 

represent SEM. (Meemken, Kube, Wickner, & Horstmann, 2018) 
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choose freely based on gut instinct. Concurrently, however, one of the previously trained cue 

pictures was visible on screen. A PIT effect is calculated as relative response strength:  

Specific PIT – How often did the participant respond with the button press that was 

associated with the same reward as the incidentally visible cue picture? This is reported in 

relation to the amount of button presses that were not associated with the same outcome. 

General PIT – How often did the participant respond with a button press when the 

presented cue picture was previously paired with another, unrelated taste rather than a picture 

that was previously paired with a tasteless liquid?  

Our study showed that specific PIT affects all participants, irrespective of weight group (see 

figure 2). Even though this is not set in a realistic food environment, our study shows that 

irrelevant visual cues can have a behavioural effect. Retesting as part of a field study would be 

necessary to gain insight into the possible efficacy of food policy changes like bans for food 

advertisements that promote an unhealthy lifestyle. As a test of the predictive power of this 

behavioural trait, we furthermore conducted a regression analysis of several factors on weight 

 

Figure S2 Specific PIT was not associated with weight group or sex. (Meemken & 

Horstmann, 2019). 
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change after a follow-up period of three years. These included individual specific PIT, a 

subscale of the Three-Factor Eating Questionnaire (Stunkard & Messick, 1985), BMI, sex and 

age. Of these five factors, only the questionnaire score was able to predict BMI change.  

Taken together, our studies paint a different picture than hypothesized: while obesity 

predicted better performance in basic association learning in study 1, once formed, associations 

did not bias subsequent instrumental choices differentially in the two weight groups in study 

2. Apart from the fact that our findings need to be corroborated in replication studies, some 

methodological issues need to be addressed in order to continue this line of argument. Firstly, 

the four learning tasks in study 1 were highly similar, making training effects a concern. As 

the order of paradigm presentation was randomized individually, we do not believe that this 

influenced group effects. Furthermore, the PIT paradigm from study 2 is aimed at detecting 

implicit influences on highly habituated behaviour. Whether this behaviour can be elicited in 

human participants is currently under debate (de Wit et al., 2018). Finally, social influences 

like stigma experience often differ depending on weight group and have been shown to 

influence study outcomes in the reward learning context (Kube et al., 2016). Thus, we need to 

(1) consider social stigma experience as a hindrance during cognitive testing or (2) create an 

atmosphere that allows all participants to focus on the task at hand. Such factors are crucial for 

all future research in connection with this highly stigmatized participant group.  

In conclusion our studies underline that a societies immediate food environment can 

impact food choice and should be protected against unhealthy influences, though the 

connection to weight development is not clear.
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Appendix 

Telephone Screenings 

Datum:______________________  Interviewer:__________________  
Probanden-Code:________________ ggf. neuer Termin:_____________ 

 
Telefonscreening – ALE-OB-Studie 
Hallo Frau/Herr… Mein Name ist….und ich arbeite am Max Planck Institut für Kognitions- und 
Neurowissenschaften in Leipzig. Ich habe Ihre Daten in unserer Datenbank gefunden und wollte mich 
erkundigen, ob Sie Interesse hätten an einer Studie teilzunehmen.  

 
Informationen zur Studie 
In dieser Studie geht es um das Lernen von Zusammenhängen und darum, Vorhersagen zu treffen. Sie 
würden eine Aufgabe am PC bearbeiten, bei der Ihnen verschiedene Reize präsentiert werden, u. A. 
können Sie Geld oder Süßigkeiten gewinnen.  

Im Anschluss an dieses Experiment gäbe es dann noch einige Fragebögen zu beantworten, 
außerdem wiegen wir Sie und messen Ihre Größe. Insgesamt würde Ihre Teilnahme damit etwa 2 bis 3 
Stunden dauern. 

Hätten Sie Interesse an dieser Studie teilzunehmen? 
 

Wenn ja:  Bevor ich Sie zu einem Untersuchungstermin einladen kann, gibt es zunächst noch ein paar 
Dinge, die wichtig sind, damit wir Sie der richtigen Versuchsgruppe zuordnen können. Dazu möchte 
ich Ihnen im Folgenden einige Fragen stellen. Insgesamt würde unser Gespräch damit etwa 5 min. 
dauern.  

Bevor wir mit der Beantwortung der Fragen fortfahren, möchte ich Sie noch darauf hinweisen, 
dass selbstverständlich alle Informationen, die Sie uns geben, streng vertraulich behandelt werden. Sind 
Sie damit einverstanden? 

 
Allgemeiner Teil  
Wie alt sind Sie?  
Wie groß sind Sie?  
Wie viel wiegen Sie derzeit?  
BMI (kg/m2)  

Sind Sie derzeit Raucher oder 
Nichtraucher? 

Raucher                                  
Nichtraucher 
Gelegenheitsraucher 

Machen Sie derzeit eine Diät? Ja 
Nein 
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Leiden Sie unter irgendwelchen 
körperlichen Erkrankungen? 

 
 

Ja 
Nein 
Wenn ja, welche? 
____________________________________________ 
____________________________________________ 
Nicht erlaubt:  
a) Schilddrüsenerkrankungen (u.a. adipogene Erkrankungen)  
b) Diabetes 

Leiden Sie an Allergien? 

Ja 
Nein 
Wenn ja, welche? 
____________________________________________ 
____________________________________________ 
Alle Lebensmittelallergien ausschließen! 

Waren Sie schon jemals in 
psycholog., psychotherap. oder 
psychiatrischer Behandlung? 

Ja 
Nein 

Nehmen Sie regelmäßig 
Medikamente ein? 

Ja 
Nein 
Wenn ja, welche?: 
____________________________________________ 
____________________________________________ 
Nicht erlaubt sind: 
Psychopharmaka, Allergiemedikamente, Medik. mit Einfluss 
auf das auton. Nervensystem, Kortikosteroide 
Okay sind: Kontrazeptiva 

Mögen Sie Schokolade? Ja 
Nein 

Mögen Sie Gummibärchen? Ja 
Nein 

Bei Frauen: 
Sind Sie zurzeit schwanger? 

Ja 
Nein 

 
Wenn Ausschluss: 

Frau/ Herr…, da wir in unserer Studie sehr strenge Einschlusskriterien haben, muss ich Ihnen 
leider mitteilen, dass Sie dieser Studie nicht teilnehmen können. Wenn wir aber Probanden für andere 
Studien suchen, würden wir sehr gern wieder auf Sie zurückkommen. Vielen Dank noch einmal für Ihr 
Interesse und Ihre Zeit. 

 
So, wir sind am Ende angekommen. Vielen Dank für Ihre Unterstützung Herr/Frau… 

Soweit ich das anhand der Fragen beurteilen kann, sind Sie sehr gut für unsere Studie geeignet 
und ich würde Sie gern zu einem Termin einladen.  

Ich möchte Sie noch bitten, vor dem Termin x Stunden nichts mehr zu essen 
Ich werde Ihnen noch eine Bestätigungsemail mit unserer Anschrift und genauem Datum und 

Uhrzeit zuschicken.  
Falls sie den Termin kurzfristig doch absagen oder verschieben möchten, rufen Sie bitte Frau 

Menger unter der 0341 9940-2214 an, sie wird das dann an mich weiterleiten. 
Email:_________________________ 
Termin:________________________ 
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Datum:_________________________  Interviewer:___________________ 
Probanden-Code:________________  ggf. neuer Termin:_____________ 

 
 

Telefonscreening – OBPIT 
 

Hallo Frau/Herr… Mein Name ist….und ich arbeite am Max Planck Institut für Kognitions- 
und Neurowissenschaften in Leipzig. Ich habe Ihre Daten in unserer Datenbank gefunden und wollte 
mich erkundigen, ob Sie Interesse hätten an einer Studie teilzunehmen.  

Informationen zur Studie 
In dieser Studie geht es um das Lernen von Assoziationen zwischen Bildern, Tasten und 

Geschmackssorten bei normal- und übergewichtigen Probanden.  Die Studie besteht im Wesentlichen 
aus einer Aufgabe, die am Computer zu lösen ist, während verschiedene Geschmacksstoffe probiert 
werden. Die Aufgabe dauert in etwa 30 Minuten und wird an einem / zwei Tagen bearbeitet. Vorher 
werden einige Fragebögen beantwortet, außerdem messen wir Ihre Größe und ihr Gewicht. Insgesamt 
würde Ihre Teilnahme damit 2-3 Stunden (an zwei verschiedenen Tagen) dauern. Wir würden 
außerdem gerne eine kleine Blutprobe entnehmen, um den Einfluss unserer Gene und bestimmter 
Stoffwechselmarker auf unser Verhalten einschätzen zu können. Hätten Sie Interesse an dieser Studie 
teilzunehmen? 

Wenn ja:  Bevor ich Sie zu einem Untersuchungstermin einladen kann, gibt es zunächst noch 
ein paar Dinge, die wichtig sind, damit wir Sie der richtigen Versuchsgruppe zuordnen können. Dazu 
möchte ich gerne einige Fragen stellen. Insgesamt würde unser Gespräch etwa 5min dauern. Haben Sie 
dafür jetzt Zeit oder darf ich zu einem späteren Zeitpunkt noch einmal anrufen? 

Bevor wir mit der Beantwortung der Fragen fortfahren, möchte ich Sie noch darauf hinweisen, 
dass selbstverständlich alle Informationen, die Sie uns geben, streng vertraulich behandelt werden. Sind 
Sie damit einverstanden? 

 
Sind Sie derzeit Raucher oder 
Nichtraucher? 

 
wenn nein: früher? 

 

Raucher 
Nichtraucher 
 
Ja  Wann aufgehört? 
Nein              ________________ 

Machen Sie derzeit eine Diät? Ja 
Nein 

Wie groß sind Sie?  
Wie viel wiegen Sie derzeit? 

 
 

BMI (kg/m2) 
 

Später errechnen, nicht fragen 
Varianz in beiden Gruppen ähnlich halten 

Waren Sie schon jemals in 
psycholog., psychotherap. oder 
psychiatrischer Behandlung? 

Ja 
Nein 
 

Sind bei Ihnen neurolog. 
Erkrankungen aufgetreten? 
Schlaganfall, Schädel-Hirn-Trauma, 
Sonstige 

Ja 
Nein 
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Leiden Sie an Allergien? 
 

Ja 
Nein 
Zunächst alle Allergien ausschließen. 

Sind sie derzeit stark erkältet oder ist 
ihr Geschmackssinn anderweitig 
eingeschränkt? 

Ja 
Nein 
 

Nehmen Sie regelmäßig 
Medikamente ein? 

Ja 
Nein 
 
Wenn ja, welche?: 
_______________________________________ 
_______________________________________ 
 
Nicht erlaubt sind: 
Psychopharmaka, Allergiemedikamente, Medik. mit 
Einfluss auf das autonome Nervensystem 
Okay sind: Kontrazeptiva 

Bei Frauen:  
Haben Sie regelmäßige monatliche 
Regelblutungen? 

Ja 
Nein 
Wenn ja: 
Wann hat ihre letzte Regel angefangen? 

             ________________________ 
 

Wenn Ausschluss: 
Frau/ Herr…, da wir in unserer Studie sehr strenge Einschlusskriterien haben, muss ich Ihnen 

leider mitteilen, dass Sie dieser Studie nicht teilnehmen können. Wenn wir aber Probanden für andere 
Studien suchen, würden wir sehr gern wieder auf Sie zurückkommen. Vielen Dank noch einmal für Ihr 
Interesse und Ihre Zeit. 

 
So, wir sind am Ende angekommen. Vielen Dank für Ihre Unterstützung Herr/Frau… 

Soweit ich das anhand der Fragen beurteilen kann, sind Sie sehr gut für unsere Studie geeignet 
und ich würde Sie gern zu einem Termin einladen.  

Ich möchte Sie bitten ab etwa 1 Stunde vor dem Termin nichts mehr zu essen.  
Ich werde Ihnen noch eine Bestätigungsemail mit unserer Anschrift und genauem Datum und 

Uhrzeit zuschicken. Falls sie den Termin kurzfristig doch absagen oder verschieben möchten, rufen Sie 
bitte bei Frau Meemken (0341 9940-2431) oder bei Frau Menger (0341 9940-2214) an.  
 
Email:_________________________ 
Termin:________________________
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Participant Instructions 

Instruktion – Teil 1 
In diesem Teil geht es darum, einen Snack auszuwählen, um den Sie im nachfolgenden 
Experiment spielen. 
In jedem Durchgang wird Ihnen ein einzelner Snack präsentiert. Für jeden Durchgang haben 
Sie 6 Cent zur Verfügung. Ihre Aufgabe ist es, den Preis zu bieten (0, 2, 4 oder 6 Cent), den 
Ihnen ein einzelner Snack Wert ist, z.B. ein Stück Schokolade. Pro Snack haben Sie 4 Sekunden 
Zeit, um ein Gebot abzugeben. 

 

 
 

Das Ganze läuft wie eine Auktion ab, bei der nach einer bestimmten Regel die Snacks 
versteigert werden. Nach jedem Durchgang wird ein zufälliger Preis zwischen 2 und 6 Cent 
aus einer Urne gezogen und mit dem Preis verglichen, den Sie geboten haben. Wenn Ihr Gebot 
höher oder gleich dem aus der Urne gezogenen Preis ist, haben Sie den Snack erfolgreich 
ersteigert und zahlen dafür den gezogenen Preis. Ist Ihr Gebot niedriger als der gezogene Preis, 
erhalten Sie den Snack nicht und bezahlen auch nichts dafür. Als Feedback sehen Sie einen…  

 
 

 
 

      
…lachenden Smiley, wenn Sie 
einen Snack ersteigert haben 

 

oder …einen traurigen Smiley, wenn Sie 
keinen Snack ersteigert haben. 

Am Ende des Experiments wird aus all den Durchgängen, in denen Sie erfolgreich waren, 
ein zufälliger Durchgang ausgewählt und Sie erhalten den Snack für den gezogenen Preis. 
Das Restgeld mal 100 (max. 4 €) dürfen Sie behalten. 
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Die beste Strategie ist, möglichst immer den Preis zu bieten, den Ihnen der Snack Wert 
ist. Da der Preis, den Sie im Endeffekt zahlen, vom Ziehen aus der Urne abhängt, können Sie 
den Preis nicht durch Ihre Gebote beeinflussen. Würden Sie weniger bieten als der Snack Ihnen 
Wert ist, wäre es unwahrscheinlich, einen Snack zu ersteigern. Würden Sie mehr bieten als 
Ihnen der Snack Wert ist, besteht die Möglichkeit, am Ende zu viel für einen Snack zu 
bezahlen. 
Haben Sie noch Fragen? 
 
Teil 2 – Passiv – Instruktion 
In diesem Experiment geht es darum, den Zusammenhang zwischen einer Farbe und einem 
Gewinn herauszufinden. Dieser Zusammenhang soll erlernt werden, um eine richtige 
Vorhersage treffen zu können. Es handelt sich dabei um einen Lernprozess. 

In jedem Durchgang sehen Sie zwei Farben. Eine der Farben resultiert ab und zu in 
einem Gewinn – Die andere nicht. 

Ein weißer Rahmen markiert die Farbe, um die es im jeweiligen Durchgang geht. Ihre 
Aufgabe ist es, mittels einer Skala eine Vorhersage zu treffen, wie wahrscheinlich ein 
nachfolgender Gewinn ist. Mit Hilfe der Antworttasten können Sie den Cursor auf einer Skala 
zwischen -4 (nicht wahrscheinlich) über 0 (weiß nicht) bis +4 (sehr wahrscheinlich) bewegen. 

Ob ein Gewinn angezeigt wird, hängt davon ab, ob die weiß umrandete Farbe mit dem 
Gewinn zusammenhängt oder nicht (nicht von Ihrer Antwort). Ihre Aufgabe ist es, diesen 
Zusammenhang vorherzusagen. An Ihren Antworten sehen wir, ob Ihre Vorhersage richtig war. 

 

 
Je besser Ihre Vorhersagen sind, desto wahrscheinlicher ist es, einen zusätzlichen Bonus in 
Form eines Snacks oder in Form von Geld zu gewinnen. Dieser Bonus wird Ihnen im Anschluss 
an das Experiment ausgehändigt. 
Der Zusammenhang zwischen einer Farbe und dem Gewinn kann sich nach einiger Zeit 
verändern. 
Die Position der Farben spielt keine Rolle! 
Haben Sie noch Fragen? 
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Teil 2 – Aktiv – Instruktion 
In diesem Experiment geht es darum, den Zusammenhang zwischen einer Farbe und einer 
Belohnung zu beobachten. Dieser Zusammenhang soll erlernt werden, um eine richtige 
Entscheidung treffen zu können. Es handelt sich dabei um einen Lernprozess. 

In jedem Durchgang sehen Sie zwei Farben. Bei einer der Farben können Sie ab und 
zu eine Belohnung erhalten. Die andere Farbe wird nicht belohnt. Ihre Aufgabe ist es, mit Hilfe 
der Antworttasten eine Farbe auszuwählen, die Ihrer Meinung nach zu einer Belohnung führt. 
Ein weißer Rahmen markiert die Farbe, die Sie gewählt haben. 

 

 
 

Je besser Ihre Entscheidungen sind, desto wahrscheinlicher ist es, einen zusätzlichen Bonus in 
Form eines Snacks oder in Form von Geld zu gewinnen. Dieser Bonus wird Ihnen im Anschluss 
an das Experiment ausgehändigt. 
Der Zusammenhang zwischen einer Farbe und einer Belohnung kann sich nach einiger Zeit 
verändern. 
Die Position der Farben spielt keine Rolle! 
Haben Sie noch Fragen? 
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Instruktionen 
Die folgende Aufgabe besteht aus zwei Teilen. Insgesamt dauert die Bearbeitung der Aufgabe 

15 Minuten. Als Teil der Aufgabe werden Geschmacksstoffe über ein sogenanntes Gustometer 

ausgegeben. Es ist wichtig, dass diese Stoffe auf die Mitte der Zunge geleitet werden. Ihr Blick 

sollte sich auf das Zentrum des Bildschirms konzentrieren, um die Aufmerksamkeit auf die 

bearbeitete Aufgabe zu richten. Dazu gibt es als Stütze dort ein kleines Fixationskreuz. 

Heute werden lediglich zwei Aufgabenteile bearbeitet. Die Aufgabe wird beim zweiten Termin 

sehr ähnlich ablaufen. 

Im ersten der drei Teile soll nach freier Wahl eine von zwei 

möglichen Tasten gedrückt werden. Die Tasten bewirken die 

Ausschüttung eines Geschmacksstoffes. Wiederholter 

Tastendruck erhöht die Wahrscheinlichkeit und Menge dieser 

Ausschüttung. Es wird also nicht jeder Tastendruck belohnt. 

Ihre Aufgabe ist es, den Zusammenhang zwischen Taste und 

Geschmack zu lernen. Es werden 30 Aufgaben bearbeitet.  

Im zweiten Teil der Aufgabe werden verschiedene Bilder 

gezeigt. Die Bilder sind mit Geschmacksstoffen assoziiert und 

es werden mit einer gewissen Wahrscheinlichkeit kleinere 

Mengen des Geschmacksstoffes ausgeschüttet, wenn das 

dazugehörige Bild gezeigt wird. Es erfolgt nicht auf jedes Bild 

eine Belohnung. Ihre Aufgabe ist es, den Zusammenhang 

zwischen Bild und Geschmack zu lernen. Es werden 67 

Aufgaben bearbeitet. 

Nach jedem Aufgabenteil gibt es eine einminütige Pause, während derer Sie Ihre Augen 

schließen oder einen Schluck Wasser zu sich nehmen können. Bitte stehen Sie jedoch nicht 

vom Computer auf, um zu sichern, dass Sie zum Beginn der nächsten Aufgabe und zum Lesen 

einer kurzen Instruktion teilnahmefähig sind. 

Falls weitere Fragen bestehen, können Sie diese gerne dem Versuchsleiter stellen. 
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