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A B S T R A C T   

Memory processes have long been known to determine food choices (Rozin & Zellner, 1985) but recognition 
memory of food and its cognitive, homeostatic and neuroanatomical predictors are still largely understudied. 

60 healthy, overweight, non-restrictive eating adults (20 females) took part in a food wanting and subsequent 
food recognition and lure discrimination task at four time points after a standardized breakfast shake. With 
advanced tractography of 3 T diffusion-weighted imaging data, we investigated the influence of the uncinate 
fasciculus’ (UF) brain microstructure on the interplay of food wanting and memory processes. The analysis was 
preregistered in detail and conducted with Bayesian multilevel regression modeling. 

Target recognition (d’) and lure discrimination (LDI) performance of food tended to be higher than of art 
images while single image food memory accuracy evidently dominated art memory. On this single item level, 
wanting enhanced recognition accuracy and caloric content enhanced food memory accuracy. The enhancement 
by reward anticipation was most pronounced during memory encoding. Subjective hunger level did not predict 
performance on the memory task. The microstructure of the UF did neither evidently affect memory performance 
outcomes nor moderate the wanting enhancement of the recognition accuracy. Interestingly, female participants 
outperformed males on the memory task, and individuals with stronger neuroticism showed poorer memory 
performance. 

We shed light on to date understudied processes in food decision-making: reward anticipation influenced 
recognition accuracy and food memory was enhanced by higher caloric content, both effects might shape food 
decisions. Our findings indicate that brain microstructure does not affect food decision processes in adult pop-
ulations with overweight. We suggest extending investigation of this interplay to brain activity as well as to 
populations with eating behaviour disorders.   

1. Introduction 

In a world overloaded with food stimuli, cognitive processes 
contributing to food choices move into focus, especially considering 
public health strategies to address the overnutrition pandemic (Ber-
thoud, 2012). The complexity of food choices reflects in current debates 
around food desires (wanting) (García-García et al., 2020) and food 
memory (Seitz et al., 2021). Well-known memory processes crucial for 
food choices represent previously learned preferences (Rozin & Zellner, 
1985). Recently, memory of eating (Higgs & Spetter, 2018; Seitz, 
Blaisdell, & Tomiyama, 2021;, working memory (Spetter et al., 2020) 

and spatial food memory (de Vries et al., 2020) have been established as 
modifiers of food intake. Largely understudied though is the role of 
recognition memory in food choices. Both, food recognition memory 
and food choices are constantly manipulated by the daily overload of 
food stimuli. Additionally, metabolic hunger impacts food choices, 
namely food wanting (Berthoud, 2007), and food memory (Morris & 
Dolan, 2001). We aim to shed light on how food wanting and hunger 
determine food memory and how the underlying neural anatomy con-
tributes to this interplay. 

The importance of the hippocampus in memory (Wixted & Squire, 
2010) and the regulation of human food intake has been extensively 
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studied, e.g. its inhibitory output to hypothalamic feeding centers (see 
review by Stevenson & Francis, 2017). However, modulation of food 
memory through cognitive processes and associated neural pathways 
providing input to the hippocampus are mostly understudied. This 
modulation of memory and the respective input to the hippocampus is 
provided by the amygdala, directly as well as indirectly through the 
entorhinal cortex (Kensinger & Schacter, 2006; Roesler & McGaugh, 
2022). The amygdala and the orbito-frontal cortex (OFC) are implicated 
in the encoding of (food) value (Canli et al., 2000; Richardson et al., 
2004; Warlow & Berridge, 2021) and in hunger enhanced recognition 
memory (Morris & Dolan, 2001). Nevertheless, the influence of sub-
jective food value, namely food wanting, on recognition memory as well 
as the contribution of the underlying neural pathways remain unclear. 

The neural pathway connecting the OFC with the amygdala and 
entorhinal cortex is the uncinate fasciculus (UF) (Thiebaut de Schotten 
et al., 2012; Von Der Heide et al., 2013). The microstructural coherence 
of the UF correlates with emotional memory (Yau et al., 2009) and 
emotion management (Pisner et al., 2017) as well as with activation of 
the hippocampus during an emotional memory task (Granger et al., 
2021). As emotions and subjective value are processed in the same brain 
areas (OFC (Gottfried et al., 2003) and amygdala (Murray, 2007)), we 
hypothesized a putative top-down modulatory control by microstruc-
tural properties of the UF in memory processes which integrate food 
wanting and hunger. 

Besides recognition of food items, the ability to detect differences in 
visual details (lure discrimination) form crucial parts of food memory 
and might influence food choices. Previous studies have revealed effects 
of emotion on both recognition and lure discrimination performance 
(Kensinger, 2007; Chainay et al., 2012; Leal et al., 2014) endorsing our 
assumption that parallelly processed reward reflected in food wanting 
might also affect food memory. To study the influence of reward on 
memory, we contrasted art to food images as art images can elicit similar 
desire and reward patterns in the brain (Berridge & Kringelbach, 2008). 

Based on previous findings and our assumptions, we formulated and 
preregistered in more detail the following hypotheses:  

1. We hypothesize that recognition performance for food items would 
be better than for non-food (art) items.  

2. We believe that subjective hunger level might modulate recognition 
performance for food items.  

3. We suppose that recognition performance for food items (or in 
general) could be enhanced by subjective incentive value (wanting).  

4. We suggest that the coherence of the UF could influence food 
recognition performance as well as the above mentioned correlations 
and modulations by subjective hunger or wanting. We find it also 
possible that only the coherence of a sub-bundle of the uncinate 
fasciculus might be relevant for the information transmission.  

5. We think that discrimination of visual details is also better for food 
than non-food but could be be differentially affected by subjective 
hunger level, wanting or the UF’s microstructure. 

To this end, we analyzed food wanting and memory performance, 
brain microstructure using diffusion-weighted magnetic resonance im-
aging (MRI), and subjective hunger level assessed during MRI in a well- 
characterized adult sample following a detailed preregistration at 
https://osf.io/2z4dn. 

2. Methodology 

2.1. Experimental design and participants 

The over-arching study was designed as a double-blind randomized 
controlled cross-over (within-subject) intervention trial and preregis-
tered at https://osf.io/f6qz5. The detailed analysis for the present 
investigation on whether wanting, subjective hunger and UF micro-
structure predict recognition performance and lure discrimination of 

food items was preregistered at https://osf.io/2z4dn. For this preregis-
tered analysis, we evaluated data from all four time points cross- 
sectionally by controlling for possible intervention effects, so that we 
were able to feed n = 181 data sets into the behavioural analysis and n =
176 data sets into the neuroimaging analysis. 

Each participant was invited four times to undergo extensive testing 
following identical procedures each time: fasted overnight, blood sam-
pling (i.a. fasted ghrelin), anthropometric measurements (body mass 
index (BMI), percentage fat mass (%FM), Waist-to-Hip ratio (WHR)), 
standardized breakfast shake (10% of gender-individual calorie need 
based on Harris & Benedict, 1918), MR scanning including two fMRI 
tasks (with different picture sets for each visit), structural and diffusion- 
weighted imaging, and post-MRI computer tasks. All participants were 
reimbursed for participation and gave written informed consent. The 
study was approved by the Research Ethics Committee of the University 
of Leipzig and was conducted in accordance with the Declaration of 
Helsinki. Inclusion and exclusion criteria were predefined and registered 
at https://clinicaltrials.gov/ct2/show/NCT03829189. The study popu-
lation consisted of 60 healthy adults (20 females), aged 19 to 45 years, 
with a BMI of 25 to 30 kg/m2 at baseline visits. Female participants were 
required to take contraceptives to minimize hormonal variations 
induced by the menstrual cycle. Participants were excluded if they suf-
fered from a neurological, psychiatric, or metabolic disorder or if they 
took any medication acting on the central nervous system. Deviating 
from the preregistration, we additionally had to exclude one participant 
who was diagnosed with diabetes. Also, pregnancy or lactation and any 
type of dietary restrictions or antibiotic treatment in the last 3 months 
led to exclusion. For more details see the clinicaltrials. 
gov-preregistration. The study population can be described as young, 
healthy and overweight. At the beginning of each testing day, partici-
pants’ BMI and WHR were measured and with bioelectric impedance 
analysis, we assessed their percentage fat mass (%FM). In addition, we 
evaluated participants’ eating behaviour with the German versions of 
the TFEQ (Pudel & Westenhöfer, 1989) and EDEQ (Hilbert et al., 2007), 
socio-economic status (Lampert et al., 2013), personality traits with the 
NEO-Five-Factor-Inventory by Costa and McCrae (Borkenau & Osten-
dorf, 2008) and attention network performance (Fan et al., 2002). 

2.2. Imaging data collection 

Magnetic resonance imaging (MRI) was conducted at a 3 Tesla 
Prisma Fit Magnetom (Siemens, Erlangen, Germany). Anatomical MRI 
was acquired using a T1-weighted MPRAGE sequence using the ADNI 
protocol with the following parameters: TR = 2300 ms; TE = 2.98 ms; 
flip angle = 9◦; FOV: (256 mm)2; voxel size: (1.0 mm)3; 176 slices. 
Diffusion-weighted MRI data was acquired using the following param-
eters: TR = 5200 ms; TE = 75 ms; flip angle = 90◦; FOV: (220 mm)2; 
voxel size: (1.7 mm)3; 88 slices; max. b = 1000 s/mm2 in 60 diffusion 
directions (+7 b0-images); partial Fourier = 7/8; GRAPPA-factor = 2; 
interpolation = OFF. Ap/pa-encoded b0-images were acquired for 
distortion correction. 

DWI data were preprocessed following a high standard pipeline 
which includes denoising, removal of Gibbs-ringing artefact to increase 
image quality (Thieleking et al., 2021), correction for susceptibility 
distortions as well as correction for head motion and eddy currents. 
Quality control led to exclusion of four data sets as can be followed up on 
in the preregistration (https://osf.io/2z4dn). After quality assurance, we 
used model-free fiber reconstruction based on generalized q-sampling 
(GQI) (Yeh et al., 2010) to create in-vivo whole-brain normalized 
quantitative anisotropy (nQA) maps. This model-free method, in com-
parison to a tensor-based approach, calculates spin distribution func-
tions which presumably improve the modeling of crossing fibers and 
resolve partial volume effects and thereby result in more accurate 
deterministic tractography (Yeh et al., 2013). Next, we conducted 
deterministic diffusion tractography with DSI Studio (version 
2022.01.11) (Yeh, 2021) and extracted mean normalized quantitative 

R. Thieleking et al.                                                                                                                                                                                                                              

https://osf.io/2z4dn
https://osf.io/f6qz5
https://osf.io/2z4dn
https://clinicaltrials.gov/ct2/show/NCT03829189
https://clinicaltrials.gov/ct2/show/NCT03829189
https://clinicaltrials.gov/ct2/show/NCT03829189
https://osf.io/2z4dn


Neurobiology of Learning and Memory 205 (2023) 107813

3

anisotropy values (nQA) of the UF as well as of a sub-bundle. Normali-
zation of QA was performed by scaling the subject-wise maximum QA 
value to 1. All (pre)processing steps, tractography settings and regions of 
interest can be accessed in detail via GitLab (https://gitlab.gwdg. 
de/gut_brain_study/analysis_dsistudio_tractography). 

2.3. Behavioural assessment 

Participants took part in a food wanting and subsequent food 
memory task. In both tasks, food was contrasted to art images. Food 
pictures, including nutrient values such as calorie content, were taken 
from the food-pics database (Blechert et al., 2014; Medawar et al., 
2022); the art.pics database (Thieleking et al., 2020) served as source for 
the art images. The wanting task included 80 food (20 per calorie 
quartile) and 80 art images (12 animals, 56 objects and 12 plants). Food 
and art served as image category in the analysis. Participants indicated 
food and art wanting on an 8-point-Likert scale (see Fig. 1) and, in order 
to stimulate reward anticipation, they received the highest-rated food 
item to eat and the highest-rated art image as print-out after scanning. 
For the statistical analysis, images were categorized into “unwanted”, 
“neutral” and “wanted” images based on the participants’ ratings. The 
wanting task represented the memory encoding phase and was followed 
by the memory task after a break of about 20mins with structural scans. 
The memory task also consisted of 80 food and 80 art images with 30 old 
(targets), 30 similar (lures) and 20 new images (novels) in each image 
category. The memory task was a combined recognition and lure 
discrimination task with corrected target recognition d’, lure discrimi-
nation index LDI and response accuracy as outcome measures. This task 
was adapted from the mnemonic similarity task (MST) originally 
developed in the Stark Lab (Kirwan & Stark, 2007; Stark Lab;) and has 

been continuously refined by Stark, Yassa and colleagues (Bakker et al., 
2008; Yassa et al., 2010, 2011; Stark et al., 2015). In parallel to the 
previously published version of the emotional MST by Leal, Granger and 
colleagues (Leal et al., 2014; Granger et al., 2021), we included the two- 
choice version of the MST and replaced emotional with desire ratings 
during the encoding phase. In the recognition phase, participants had to 
indicate as quickly as possible if they had seen the presented food or art 
image in the previous task (“old”) or if they had not seen it before 
(“new”) which also included similar images (see Fig. 1). No feedback on 
performance was provided. Wanting ratings for new and similar images 
were obtained after the MRI scan, meaning not during memory encod-
ing. Nevertheless, wanting attribution occurred before the reward hand- 
out and was therefore similarly reward-anticipatory as for the old im-
ages. In accordance with the two-choice version of the MST, we 
measured target recognition d’ as the difference of correct recognition of 
targets and false recognition of lures and novels, and lure discrimination 
LDI as rate of correct attribution of “new” to lures compared to targets. 
Detailed calculation of the memory outcome measures d’, LDI and 
response accuracy as well as the creation of the wanting categories in 
accordance with emotional categories from previous tasks (Leal et al., 
2014; Granger et al., 2021) can be followed up in the ReadMe under 
https://gitlab.gwdg.de/gut_brain_study/analysis_r_memory. 

Before and after each of the fMRI tasks, participants were asked to 
indicate their hunger level on an 8-point-Likert scale (‘How hungry are 
you right now?’ - ’not at all’ to ‘extremely hungry’). After the MR 
scanning, participants filled out an 8-point visual analogue scale to 
indicate their well-being regarding anxiety, nausea, exhaustion by and 
difficulty of the tasks. At the end of the study, participants additionally 
indicated liking ratings on all images that had been presented during the 
fMRI tasks. In order to assess general preference and not wanting, 

Fig. 1. Wanting task and subsequent Memory task. Left: Memory Encoding during Wanting Task: Participants were asked to indicate on an 8-point-Likert scale 
how much they want to have the depicted food or art image. They were previously told that they would be rewarded with the highest-rated food and art image after 
the MRI scan. Right: Memory task including target recognition and lure discrimination: Participants had to indicate as quickly as possible if they had seen the 
presented food or art image in the previous task (“old”) or if they had not seen it before (“new”) which also included similar images. Depicted are two exemplary 
similar (bot not identical) food (pizza) and art (hot-air balloon) stimuli. 
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participants did not receive rewards after completion of the liking task. 

2.4. Statistical analysis 

We applied Bayesian multilevel regression modeling as test statistic 
with R (version 4.1.1 (R Core Team, 2021)). To assess the predictive 
accuracy of a Bayesian regression model (BRM), Vehtari, Gelman, and 
Gabry proposed the expected log pointwise predictive density (elpd) 
(Vehtari et al., 2017) which can be estimated by leave-one-out (loo) 
cross-validation. The higher the predictive accuracy of a model, the 
higher is its elpd. We previously tested for random intercepts and 
random slopes present in the data, set up full models with these random 
effects and subsequently defined null models to test for fixed effects (van 
Doorn et al., 2021). As Bayesian inference testing is more conservative 
than classical comparison procedures that are based on Type I error, 
there is no need for multiple comparison testing (Gelman & Tuerlinckx, 
2000). 

In the result section, I present which Bayesian multilevel regression 
models (BRMs) predict the collected data most accurately and which 
effects we can therefore assume to exist in our study population. During 
Bayesian regression modeling, posterior distributions of the predictor 
variables are calculated. The mean estimate or the odds ratio and their 
95%-credible interval (CI) of the posterior distributions result from this 
modeling. If the credible interval does not include Zero, we can infer 
that the effect is probably present in the study population. Through 
comparison of the predictive accuracy (elpd) of the full and null models, 
we can additionally find out which model predicts the data best. To 
follow-up on the model estimates of the predictors and random effects, 
tables were linked to the respective figures. 

2.5. Code accessibility 

We version-controlled and published the tractography of white 
matter and the statistical analysis including details on software, func-
tions and options via GitLab. Regarding the tractography, all (pre)pro-
cessing steps, settings and regions of interest can be accessed in detail 
here: (https://gitlab.gwdg.de/gut_brain_study/analysis_dsistudio_tract 
ography). The code for the statistical analysis and all model results 
can be accessed here: https://gitlab.gwdg.de/gut_brain_study/analysis 
_r_memory. 

The code was checked for validity by a researcher who is indepen-
dent of the study and the group and who has experience in using R. 

3. Results 

3.1. Is the recognition performance for food items better than for non-food 
(art) items? 

The corrected target recognition d’ and the lure discrimination LDI 
are both higher for food compared to art (non-food = NF) images. The 
difference in memory indices between image categories (food = yellow, 
non-food = blue) is highly probable as the posterior distributions of the 
estimates revealed; the credible intervals do not include Zero (Fig. 2). 
Even though the difference in predictive accuracy (expected log point-
wise predictive density = Δelpd) in the model comparison (Table 1, Eq. 
1 & 2) is inconclusive, due to the large standard errors, the superiority of 
food over art memory accuracy seemed to be evident. The estimates in 
the d’ and LDI models as well as the model comparison regarding 
response accuracy of single images (Table 1, Eq. 3 & 4) support the 
superiority of food over art memory accuracy. Response accuracy of a 
single image equaled 1 when an old image was correctly recognized as 
“old” (hit) and a new or similar image was correctly dismissed as “new” 
(correct rejection); otherwise response accuracy for incorrect categori-
zation was 0. Estimates of all predictors and covariates can be followed 
up in (Fig. 2-1, Fig. 2-2, Tables 2-1, 2-2 & 2-3). 

3.1.1. Do image characteristics interfere with single image response 
accuracy? (exploratory) 

The normed complexity of the food (F) images (yellow) was lower 
compared to art (NF) images (blue; Fig. 3 A) while object size was not 
different between food and art images (Fig. 3 B). The subjective char-
acteristics arousal, recognizability and valence were z-scored as food 
and art images were evaluated by two independent populations and on 
different rating scales. The model comparison regarding normed 
complexity (Table 1, Eq. 5–7) was inconclusive (Δelpd < se), however, 
we detected an evident interaction effect with image category (Fig. 3 C 
& Fig. 3-1). Therefore, we conducted post-hoc tests on the role of 
normed complexity on food and art memory accuracy separately. These 
post-hoc tests confirmed what can be inferred from Fig. 3 C, namely, that 
normed complexity predicts response accuracy of food images (Fig. 3-2 
A) but not of art images (Fig. 3-2 B). Odds ratios of predictors and 
covariates of all models are listed in Tables 3-1, 3-2 and 3-3. The effect of 
object size on food and art memory accuracy was also differential (Fig. 3 
D) and, again, post-hoc tests revealed that object size evidently pre-
dicted food (Fig. 3-3 A, Table 3-4) but not art response accuracy (Fig. 3-3 
B, Table 3-5). The subjective arousal (violet) and valence (orange) did 

Fig. 2. Memory performance per Image Category. A) The target recognition d’ and B) the lure discrimination LDI of food (F) items (yellow) is probably 
better than of non-food (NF)/art items (blue). Violin plots present the distribution of the two memory indices per image category (F/NF) over the color-coded 
single subjects’ performance in the respective category. The estimate’s CI did not include 0 which indicated an evident difference between image categories 
regarding d’ and LDI but the model including image category as predictor did not present an evidently higher predictive accuracy than the null model (Table 1, Eq. 1 
& 2). Estimates of all predictors and covariates are listed in Fig. 2-1 and Tables 2-1 & 2-2. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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Table 1 
Model equations of full and null models and the difference in predictive 
accuracy with standard errors (Δelpd ± se). Each model comparison delivers 
either evident, highly probable or inconclusive results that one of the models 
predicts the memory performance (d’, LDI or response accuracy) better than the 
other models. A model predicts memory performance evidently better than the 
other models if Δelpd > se. If Δelpd < se but the predictors’ posterior distri-
butions show an evident effect, we can assume that the predictive effect is highly 
probable. The comparison is inconclusive if Δelpd < se and the predictors’ 
posterior distributions do not show an evident effect. The evidently highest elpds 
/ best models are marked with * and the models with highly probable predictive 
effects are marked with (*).  

Eq. 
No. 

Model Title Model 
type 

Model Equation 
dependent variable ~ 
predictors & covariates 
(without random effects 
for visual clarity) 

Difference in 
Predictive 
Accuracy 
(Δelpd ± se) 

1 Category full 
model 
(*) 

d’ / LDI ~ Image Category +
Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

d’: probably 
highest elpd;  
LDI: probably 

highest elpd 
2 Category null 

model 
d’ / LDI ~ Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

d’: − 0.2 ±
0.5;  
LDI: − 0.5 ±
0.5 

3 Category full 
model * 

Response accuracy ~ Image 
Category + normed 
Complexity + Wanting +
Image Status + Gender +
Age + Intervention +
Timepoint +
Intervention*Timepoint 

response 
accuracy: * 
evidently 
highest elpd 

4 Category null 
model 

Response accuracy ~ 
normed Complexity +
Wanting + Image Status +
Gender + Age +
Intervention + Timepoint +
Intervention*Timepoint 

response 
accuracy: 
− 2.9 ± 2.5 

5 Complexity full 
model 
(*) 

Response accuracy ~ Image 
Category + normed 
Complexity + Image 
Category*normed 
Complexity + Wanting +
Image Status + Gender +
Age + Intervention +
Timepoint +
Intervention*Timepoint 

response 
accuracy: 
− 0.5 ± 1.1 

6 Complexity null 
model 

Response accuracy ~ Image 
Category + normed 
Complexity + Wanting +
Image Status + Gender +
Age + Intervention +
Timepoint +
Intervention*Timepoint 

response 
accuracy: 
reference elpd 

7 Complexity null 
model 2 

Response accuracy ~ Image 
Category + Wanting +
Image Status + Gender +
Age + Intervention +
Timepoint +
Intervention*Timepoint 

response 
accuracy: 
− 1.2 ± 1.3 

8 Hunger full 
model 

d’ / LDI ~ Image Category +
Subj Hunger Level + Image 
Category*Subj Hunger Level 
+ Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

d’: − 1.6 ± 0.6 
LDI: − 1.2 ±
0.5 

9 Hunger null 
model 1 

d’ / LDI ~ Image Category +
Subj Hunger Level + Age +
Gender + Intervention +
Timepoint +
Intervention*Timepoint 

d’: − 1.4 ± 0.5 
LDI: − 0.3 ±
0.4 

10 Hunger null 
model 2 
* 

d’ / LDI ~ Image Category +
Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

d’: * evidently 
highest elpd;  
LDI: probably 

highest elpd  

Table 1 (continued ) 

Eq. 
No. 

Model Title Model 
type 

Model Equation 
dependent variable ~ 
predictors & covariates 
(without random effects 
for visual clarity) 

Difference in 
Predictive 
Accuracy 
(Δelpd ± se) 

11 Wanting full 
model 

d’ / LDI ~ Image Category +
Wanting Category + Image 
Category*Wanting Category 
+ Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

d’: − 0.4 ±
1.2;  
LDI: − 2.0 ±
1.5 

12 Wanting null 
model 1 

d’ / LDI ~ Image Category +
Wanting Category + Age +
Gender + Intervention +
Timepoint +
Intervention*Timepoint 

d’: reference 
elpd;  
LDI: − 1.4 ±
0.9 

13 Wanting null 
model 2 
* 

d’ / LDI ~ Image Category +
Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

d’: − 0.8 ±
2.1;  
LDI: * 

evidently 
highest elpd 

14 Single item 
wanting 

full 
model 

Response accuracy ~ Image 
Category + Wanting +
Image Category*Wanting +
Image Status + normed 
Complexity + Age + Gender 
+ Intervention + Timepoint 
+ Intervention*Timepoint 

response 
accuracy: 
reference elpd 

15 Single item 
wanting 

null 
model 1 
(*) 

Response accuracy ~ Image 
Category + Wanting +
Image Status + normed 
Complexity + Age + Gender 
+ Intervention + Timepoint 
+ Intervention*Timepoint 

response 
accuracy: 
− 1.4 ± 1.9 

16 Single item 
wanting 

null 
model 2 

Response accuracy ~ Image 
Category + Image Status +
normed Complexity + Age 
+ Gender + Intervention +
Timepoint +
Intervention*Timepoint 

response 
accuracy: 
− 6.8 ± 3.8 

17 Image 
Status 

full 
model 
(*) 

Response accuracy ~ Image 
Category + Wanting +
Image Status + Image 
Category*Wanting + Image 
Status*Wanting + Image 
Status*Image Category +
normed Complexity + Age 
+ Gender + Intervention +
Timepoint +
Intervention*Timepoint 

response 
accuracy: 
probably 
highest elpd 

18 Image 
Status 

null 
model 1 

Response accuracy ~ Image 
Category + Wanting +
Image Status + Image 
Category*Wanting + Image 
Status*Wanting + normed 
Complexity + Age + Gender 
+ Intervention + Timepoint 
+ Intervention*Timepoint 

response 
accuracy: 
− 0.8 ± 1.5 

19 Image 
Status 

null 
model 2 

Response accuracy ~ Image 
Category + Wanting +
Image Status + Image 
Category*Wanting +
normed Complexity + Age 
+ Gender + Intervention +
Timepoint +
Intervention*Timepoint 

response 
accuracy: 
− 9.4 ± 4.5 

20 Image 
Status 

null 
model 3 

Response accuracy ~ Image 
Category + Wanting +
Image Status + normed 
Complexity + Age + Gender 
+ Intervention + Timepoint 
+ Intervention*Timepoint 

response 
accuracy: 
− 10.7 ± 4.9 

21 UF full 
model 

d’ / LDI ~ Image Category +
Wanting Category + Subj 
Hunger Level + nQA(UF) +
Image Category*nQA(UF) +
Wanting Category*nQA(UF) 

d’: − 2.5 ±
2.7;  
LDI: − 4.3 ±
2.0 

(continued on next page) 
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not predict response accuracy (Fig. 4 A & B), the perceived 

recognizability (red) of the food (yellow) and art (blue) images, though, 
seemed to negatively influence response accuracy independent of image 
category (Fig. 4 C & D). Odds ratios of predictors and covariates of all 
models are listed in Tables 4-1, 4-2 and 4-3. 

3.2. Does subjective hunger level moderate recognition or lure 
discrimination performance for food items? 

The mean subjective hunger level averaged per MRI session did not 
influence food recognition (Fig. 5 A, yellow) nor lure discrimination 
performance (Fig. 5 B, yellow). Subjective hunger level neither had an 
effect on art (NF) memory performance (Fig. 5, blue) nor independently 
of image category (Fig. 5-1). The lack of an effect of subjective hunger 
could also be inferred from the model comparison as the null model 2 
without subjective hunger as predictor showed the highest predictive 
accuracy for d’ and LDI (Table 1, Eq. 8–10; Tables 5-1 & 5-2). The 
irrelevance of subjective hunger is also visualized in the posterior dis-
tributions of the mean estimates (Fig. 5-2). As preregistered, we inves-
tigated if task-specific subjective hunger level, i.e. during the wanting or 
memory task respectively, predicted (food) memory performance mea-
sures (Fig. 5-3). None of these task-specific hunger levels did influence 
target recognition or lure discrimination performance. 

We additionally evaluated if fasted ghrelin serum levels as metabolic 
measure of hunger might predict target recognition or lure discrimina-
tion. However, neither food recognition nor lure discrimination per-
formance were influenced by ghrelin levels nor did we detect an 
influence independent of image category (exploratory analysis, Fig. 5- 
4). Estimates of the predictors and random effects of all models in the 

Table 1 (continued ) 

Eq. 
No. 

Model Title Model 
type 

Model Equation 
dependent variable ~ 
predictors & covariates 
(without random effects 
for visual clarity) 

Difference in 
Predictive 
Accuracy 
(Δelpd ± se) 

+ Subj Hunger Level*nQA 
(UF) + Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

22 UF null 
model 7 

d’ / LDI ~ Image Category +
Wanting Category + Subj 
Hunger Level + nQA(UF) +
Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

d’: − 1.3 ±
0.5;  
LDI: − 3.1 ±
1.1 

23 UF null 
model 
11 

d’ / LDI ~ Image Category +
nQA(UF) + Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

d’: − 2.3 ±
2.1;  
LDI: − 1.2 ±
0.6 

24 UF null 
model 
13 

d’ / LDI ~ Image Category +
Wanting Category + Age +
Gender + Intervention +
Timepoint +
Intervention*Timepoint 

d’: reference 
elpd;  
LDI: − 1.6 ±
1.0 

25 UF null 
model 
14 (*) 

d’ / LDI ~ Image Category +
Age + Gender +
Intervention + Timepoint +
Intervention*Timepoint 

d’: − 1.3 ±
2.1;  
LDI: probably 

highest elpd  

Fig. 3. Normed complexity and object size of visual stimuli. A) The distribution of normed complexity values differs between the two image categories. Non- 
Food (art) images have on average a higher normed complexity than food images. B) The object size of the centrally depicted food and non-food items does not differ 
between the image categories. C) Predicted response accuracy depending on normed complexity of the images. Points show the actual data and lines with 95%-CI 
depict predictions based on full model. Image complexity might predict response accuracy of food items. The interaction estimate of the full model (Table 1, Eq. 
5) indicated that response accuracy of the two image categories was differently affected by normed complexity. Post-hoc tests confirmed that higher normed 
complexity predicted lower food memory accuracy while art memory accuracy was not affected. D) Predicted response accuracy depending on object size of 
the items. Points show the actual data and lines with 95%-CI depict predictions based on full model. Object size affected food and art memory accuracy 
differently. Post-hoc tests confirmed that larger object size predicted lower food memory accuracy while art memory accuracy was not affected. 
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model comparison are listed in the supplementary material (Tables 5-3 
& 5-4). 

3.3. Could the memory performance for food items (or in general) be 
enhanced by wanting? 

Wanting defined as categories “unwanted” (red), “neutral” (blue) 
and “wanted” (green) did not influence neither recognition nor lure 
discrimination performance in general (Fig. 6) nor food memory in 
specific (see predictions in Fig. 6-1). Both, the model comparison 

(Table 1, Eq. 11–13) and model estimates, emphasized that wanting 
categories did not predict neither d’ nor LDI (Fig. 6-2; Tables 6-1 & 6-2). 

3.3.1. Does single item wanting influence response accuracy? (exploratory) 
Wanting ratings of the single images predicted response accuracy. In 

addition to the pre-registered hypotheses regarding the wanting 
enhancement of the memory indices d’ and LDI, we exploratorily 
investigated the wanting rating of every image as opposed to catego-
rized wanting ratings. We found an evident enhancement by higher 
wanting which is slightly stronger for art (Fig. 7, blue) compared to food 

Fig. 4. Predicted and actual response accuracy depending on subjective arousal, valence and recognizability of visual stimuli. Points show averaged 
response accuracy of each image against their z-scored characteristic and lines with 95%-CI depict predictions based on null (A, B, D) or full (C) model. A) Arousal 
and B) valence did not evidently influence response accuracy neither of food nor of art images. C&D) Recognizability, however, seemed to evidently predict lower 
response accuracy of food and art images. 

Fig. 5. Memory performance depending on subjective hunger per image category. Actual and predicted A) target recognition d’ and B) lure discrimination LDI 
depending on subjective hunger level per image category. Points show the actual data and lines with 95%-CI depict predictions based on full model. Neither d’ nor 
LDI were affected by the subjective hunger level. The estimates of the interaction of the full model (Table 1, Eq. 8, Tables 5-1 & 5-2) indicated that the image 
categories were not differently influenced by hunger and the estimates of the main effect of the null model (Table 1, Eq. 9, Fig. 5-1, Tables 5-1 & 5-2)) suggested that 
the subjective hunger level did not affect memory performance in general. Neither task-specific hunger level (Fig. 5-3) nor ghrelin serum levels as a proxy for 
objective hunger (Fig. 5-4, Tables 5-3 & 5-4) predicted memory performance. 
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images (Fig. 7, yellow). Even though the predictive accuracy of the full 
model (Table 1, Eq. 14) was supposedly higher compared to the null 
models (Table 1, Eq. 15 & 16), the estimate of the interaction effect of 
image category and wanting did not support evident differences be-
tween the wanting effect on food and art as the credible interval 
included Zero (for all model estimates see Table 7-1). Therefore, we 
conducted post-hoc analyses in which we detected wanting enhance-
ment for food and art separately (model estimates see Tables 7-1 & 7-2). 
Notably, neither normed image complexity nor depicted object size did 
influence the wanting enhancement of the response accuracy. In sum, 
the wanting main effect’s mean estimate (Fig. 7) as well as its odds ratio 
in the full model (Fig. 7-1A) and the null model without interaction 
(Fig. 7-1B) confirm a general enhancement of response accuracy by 
single item wanting. 

3.3.2. Is the effect of single item wanting on response accuracy stronger 
during memory encoding? (exploratory) 

The enhancement of response accuracy by higher single item 
wanting was strongest for the old images (dark-blue) across food and art 
images, i.e. during memory encoding, while the enhancement was less 
for new images (red) and irrelevant for similar images (light-violet; 
Fig. 8; also see predictions in Fig. 8-1). The main effects of image status 
also suggest that the response accuracy for new images was clearly 
higher than for old images and lowest for similar images (Fig. 8). Similar 
images were evidently worse discriminated among the art images 
compared to the food images (Fig. 8-2; also see predictions in Fig. 8-3). 

All results were independent of normed image complexity. Odds ratios 
of predictors and covariates of all models in the comparison (Table 1, Eq. 
17–20) are listed in Table 8-1. 

3.4. Does the coherence of the entire uncinate fasciculus (UF) or a sub- 
bundle of the UF influence food memory performance? 

We derived the tracts of the UF from deterministic tractography. The 
microstructural coherence of the UF reflects in the average normalized 
quantitative anisotropy (nQA) of the whole tract. The nQA of the entire 
UF was higher compared to the nQA of the sub-bundle of the UF which 
we traced as a proxy for a direct communication pathway from OFC to 
MTL (Table 3). nQA values of the UF ranged from about 0.21 to 0.33 and 
were comparable for both hemispheres (paired Bayesian ttest: BF =
0.09). nQA values of the sub-bundle ranged from about 0.10 to 0.23 and 
were evidently different between hemispheres (paired Bayesian ttest: 
BF > 5*104). The magnitude of nQA values of the UF was comparable to 
whole brain nQA. Fig. 9 displays exemplary fiber tracts of the entire UF 
and its sub-bundle. We tested for the role of the microstructural prop-
erties of the UF and its sub-bundle in (food) memory processes but our 
hypotheses were not hemisphere-specific. Therefore, we used the 
average nQA value of the UF and the sub-bundle of the UF per partici-
pant per session for statistical analyses. Microstructural coherence of the 
UF did not predict neither food (yellow) nor art (blue) target recognition 
or lure discrimination performance (Fig. 10 A&B) nor independently of 
image category (Fig. 10-1 A&B). Neither did the sub-bundle of the UF 

Fig. 6. Memory performance depending on wanting and image category. A) Target recognition d’ and B) lure discrimination LDI depending on wanting and 
image category. Depicted are mean d’ (LDI) ± standard error. Predictions by the full model are depicted in Fig. 6-1. Neither d’ nor LDI were predicted by wanting 
category. Estimates of all predictors and covariates are listed in Fig. 6-2 and Tables 6-1 & 6-2. 

Fig. 7. Predicted response accuracy by single 
image wanting rating per image category. Points 
show averaged response accuracy and averaged 
wanting of each image and predictions are based on 
full model (Table 1, Eq. 14). The estimate of the 
interaction suggests that the two image categories are 
slightly but not evidently differently influenced by 
wanting rating. Higher wanting enhances response 
accuracy as the estimate of the main effect of the full 
model reveals but wanting might play a more impor-
tant role for the art/non-food (NF) images. Odds ra-
tios of all predictors and covariates are listed in Fig. 7- 
1 and Table 7-1. Odds ratios of the wanting effect per 
image category (F/NF) are listed separately in Ta-
bles 7-2 & 7-3.   
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predict category-specific memory performance (Fig. 10 C&D) nor 
independently of image category (Fig. 10-1 C&D). In both cases, the full- 
null model comparisons (Table 1, Eq. 21–25 and Table 2, Eq. 26–30) as 
well as the posterior distributions of the main effects of nQA emphasized 
a lack of memory accuracy modulation by microstructural coherence. 
Based on the interaction estimates, we could additionally infer that 
neither the UF nor its sub-bundle moderated the evident effect of image 
category (Figs. 10-2 & 10-3). Estimates of all models in the comparison 
are listed in the supplementary material (Tables 10-1 to 10-4). Due to 
the evident difference in average nQA between left and right sub- 
bundles of the UF, we reran the models for left and right sub-bundles 
respectively. However, these exploratory analyses did not reveal a 
hemisphere-specific role of the sub-bundle of the UF in memory pro-
cesses (Fig. 10-4). 

3.4.1. Is the compactness of the individuals white matter relevant when 
investigating microstructural effects? (exploratory) 

In order to exclude an influence of inter-individual differences in 
whole brain white matter density, we re-ran all models, addressing the 
effect of microstructural coherence on memory performance measures, 
taking whole brain nQA values into account. We corrected the nQA(UF) 
and nQA(sub-UF) for global white matter density. Thereto, we calcu-
lated relative nQA values by division through nQA(whole brain). We 
could not find an evident effect of these relative microstructural 
coherence measures on target recognition or lure discrimination per-
formance – neither by relative nQA(UF) nor by relative nQA(sub-UF) 
(Fig. 10-5). 

3.4.2. Is the detected positive wanting effect on response accuracy 
moderated by the microstructural coherence of the UF? (exploratory) 

We hypothesized that the UF might have a modulatory role on the 
interplay of wanting and memory. As the wanting categories did not 
evidently differ regarding memory performance measures, we extended 
the analysis to a possible moderation of single item wanting enhance-
ment of response accuracy by microstructural properties of the UF. 
However, we did not detect a moderation neither for all images (Fig. 11 
A) nor for old images (Fig. 11 B), for which the wanting enhancement 
was most pronounced. The mean estimates (Fig. 11) and median odds 
ratios (Fig. 11-1) of the posterior distributions of the nQA(UF)*wanting 
interaction supported this lack of modulatory top-down control. Odds 
ratios of the predictors and random effects of all models in the model 

comparison are listed in Table 11-1. In summary, the positive wanting 
effect on response accuracy was not evidently moderated by the 
microstructural coherence of the UF. 

3.5. Further behavioural analyses 

In order to discuss the enhanced response accuracy by wanting 
during memory encoding, we additionally considered the effects of 
general preference (i.e. liking). The enhancement by wanting compared 
to liking during memory encoding is slightly stronger which is supported 
by the slight difference in mean estimates of the main effects (Fig. 12 A & 
B). The estimate of the interaction of liking with image category sug-
gested that enhancement during memory encoding by liking is similar 
for food (yellow) and art (blue) images (Fig. 12 A, Table 12-1). The same 
can be concluded for the enhancement by wanting (Fig. 12 B, Table 12- 
2). Even though the model comparison (Table 2, Eq. 35–37) supported 
the enhanced response accuracy through liking. 

As preregistered, we investigated if body composition measures, 
namely BMI, gender-standardized waist-to-hip ratio and gender- 
standardized fat mass, affect food memory performance. Neither 
target recognition nor lure discrimination were predicted by body 
composition measures nor did we find differences between food and art 
memory performance. We investigated if possible effects of nausea, 
anxiety, difficulty of the tasks or exhaustion by the tasks affected 
memory performance. None of these well-being measures influenced the 
participants’ performance on the memory task (see GitLab repository). 

Higher calorie content of the food images was related to higher 
response accuracy. The estimates of the main effects (Fig. 13, Fig. 13-1 
A) showed that food memory accuracy was evidently better in the 
highest calorie quartile compared to the lowest calorie quartile. The 
model comparison (Table 2, Eq. 38–40) additionally showed that the 
wanting enhancement of response accuracy did not depend on calorie 
content of the depicted food (Fig. 13-1 B, Table 13-1). 

Female participants (n = 20; dark-red) outperformed male partici-
pants (n = 40, dark-yellow) in the memory task. Target recognition, lure 
discrimination and memory accuracy were predicted by gender which 
was included as covariate in all Bayesian regression models (see Fig. 14). 
With additional exploratory analyses, we aimed to understand this 
gender difference. The analyses included interactions of gender with 
socio-economic status, attention network performance, personality 
traits and eating behaviour traits, as well as their main effects. Gender 

Fig. 8. Predicted response accuracy by single 
image wanting rating for old (dark-blue), similar 
(light-violet) and new (red) images respectively. 
Points show averaged response accuracy and aver-
aged wanting of each image and predictions are 
based on full model (Table 1, Eq. 17). The estimates 
of the interactions endorse the visually evident effect 
that the wanting enhancement of the response 
accuracy was strongest for the old images, namely 
during memory encoding. Response accuracy for 
new images was higher than for old images and 
lowest for similar images. Odds ratios of all pre-
dictors and covariates are listed in Fig. 8-2 and 
Table 8-1. (For interpretation of the references to 
color in this figure legend, the reader is referred to 
the web version of this article.)   
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Table 2 
Model equations of full and null models and the difference in predictive 
accuracy with standard errors (Δelpd ± se). Each model comparison delivers 
either evident, highly probable or inconclusive results that one of the models 
predicts the memory performance (d’, LDI or response accuracy) better than the 
other models. A model predicts memory performance evidently better than the 
other models if Δelpd > se. If Δelpd < se but the predictors’ posterior distri-
butions show an evident effect, we can assume that the predictive effect is highly 
probable. The comparison is inconclusive if Δelpd < se and the predictors’ 
posterior distributions do not show an evident effect. The evidently highest elpds 
/ best models are marked with * and the models with highly probable predictive 
effects are marked with (*).  

Eq. 
No. 

Model Title Model 
type 

Model Equation 
dependent variable ~ 
predictors & covariates 
(without random effects 
for visual clarity) 

Difference 
in 
Predictive 
Accuracy 
(Δelpd ± 
se) 

26 sub-UF full 
model 

d’ / LDI ~ Image 
Category + Wanting 
Category + Subj Hunger 
Level + nQA(sub-UF) +
Image Category*nQA(sub- 
UF) + Wanting 
Category*nQA(sub-UF) +
Subj Hunger Level*nQA 
(sub-UF) + Age + Gender 
+ Intervention +
Timepoint +
Intervention*Timepoint 

d’: − 4.1 ±
1.6;  
LDI: − 4.8 ±
2.1 

27 sub-UF null 
model 
7 

d’ / LDI ~ Image 
Category + Wanting 
Category + Subj Hunger 
Level + nQA(sub-UF) +
Age + Gender +
Intervention + Timepoint 
+ Intervention*Timepoint 

d’: − 1.6 ±
0.5;  
LDI: − 2.5 ±
1.0 

28 sub-UF null 
model 
11 

d’ / LDI ~ Image 
Category + nQA(sub-UF) 
+ Age + Gender +
Intervention + Timepoint 
+ Intervention*Timepoint 

d’: − 2.0 ±
2.0;  
LDI: − 1.0 ±
0.4 

29 sub-UF null 
model 
13 

d’ / LDI ~ Image 
Category + Wanting 
Category + Age + Gender 
+ Intervention +
Timepoint +
Intervention*Timepoint 

d’: reference 
elpd;  
LDI: − 1.4 ±
1.0 

30 sub-UF null 
model 
14 * 

d’ / LDI ~ Image 
Category + Age + Gender 
+ Intervention +
Timepoint +
Intervention*Timepoint 

d’: − 1.1 ±
2.0; LDI: * 
evidently 
highest elpd 

31 Wanting/UF full 
model 

Response accuracy ~ 
Image Category + Subj 
Hunger Level + Wanting 
+ nQA(UF) + Image 
Category*nQA(UF) + Subj 
Hunger Level*nQA(UF) +
Wanting*nQA(UF) + Age 
+ Gender + Intervention 
+ Timepoint +
Intervention*Timepoint 

response 
accuracy: 
− 3.6 ± 1.1 

32 Wanting/UF null 
model 
2 * 

Response accuracy ~ 
Image Category + Subj 
Hunger Level + Wanting 
+ nQA(UF) + Image 
Category*nQA(UF) + Age 
+ Gender + Intervention 
+ Timepoint +
Intervention*Timepoint 

response 
accuracy: * 
evidently 
highest elpd 

33 Wanting/UF null 
model 
3 

Response accuracy ~ 
Image Category + Subj 
Hunger Level + Wanting 
+ nQA(UF) + Age +
Gender + Intervention +

response 
accuracy: 
− 0.8 ± 0.5  

Table 2 (continued ) 

Eq. 
No. 

Model Title Model 
type 

Model Equation 
dependent variable ~ 
predictors & covariates 
(without random effects 
for visual clarity) 

Difference 
in 
Predictive 
Accuracy 
(Δelpd ± 
se) 

Timepoint +
Intervention*Timepoint 

34 Wanting/UF null 
model 
6 

Response accuracy ~ 
Image Category + Age +
Gender + Intervention +
Timepoint +
Intervention*Timepoint 

response 
accuracy: 
− 4.2 ± 3.0 

35 Single item 
liking 
(old images) 

full 
model 

Response accuracy ~ 
Image Category + Liking 
+ Image Category*Liking 
+ Age + Gender +
Intervention + Timepoint 
+ Intervention*Timepoint 

response 
accuracy: 
reference 
elpd 

36 Single item 
liking 
(old images) 

null 
model 
1 (*) 

Response accuracy ~ 
Image Category + Liking 
+ Age + Gender +
Intervention + Timepoint 
+ Intervention*Timepoint 

response 
accuracy: 
0.0 ± 0.8 

37 Single item 
liking 
(old images) 

null 
model 
2 

Response accuracy ~ 
Image Category + Age +
Gender + Intervention +
Timepoint +
Intervention*Timepoint 

response 
accuracy: 
− 2.9 ± 2.6 

38 Calorie content 
(food images) 

full 
model 

Response accuracy ~ 
Wanting + Calorie 
Content +
Wanting*Calorie Content 
+ Image Status + Age +
Gender + Timepoint +
Intervention +
Timepoint*Intervention 

response 
accuracy: 
− 1.9 ± 1.5 

39 Calorie content 
(food images) 

null 
model 
1 (*) 

Response accuracy ~ 
Wanting + Calorie 
Content + Image Status +
Age + Gender +
Timepoint + Intervention 
+ Timepoint*Intervention 

response 
accuracy: 
− 0.7 ± 1.2 

40 Calorie content 
(food images) 

null 
model 
2 

Response accuracy ~ 
Wanting + Image Status 
+ Age + Gender +
Timepoint + Intervention 
+ Timepoint*Intervention 

response 
accuracy: 
probably 
highest elpd 

41 Neuroticism full 
model 

d’ / LDI ~ Neuroticism +
Neuroticism * Gender +
Neuroticism * Age +
Gender + Age 

d’: − 1.6 ±
1.1;  
LDI: − 1.5 ±
0.7 

42 Neuroticism null 
model 
1 

d’ / LDI ~ Neuroticism +
Neuroticism * Gender +
Gender + Age 

d’: − 0.8 ±
1.1;  
LDI: − 0.7 ±
0.7 

43 Neuroticism null 
model 
2 (*) 

d’ / LDI ~ Neuroticism +
Gender + Age 

d’: probably 
highest elpd 
LDI: 
probably 
highest elpd 

44 Neuroticism null 
model 
3 

d’ / LDI ~ Gender + Age d’: − 2.1 ±
1.6;  
LDI: − 1.6 ±
1.5 

45 Microstructural 
coherence 

full 
model 

nQA(UF) ~ Gender + Age 
+ Gender*Age +
Timepoint*Intervention 
+ Timepoint +
Intervention 

nQA(UF): 
− 1.9 ± 2.5 

46 Microstructural 
coherence 

null 
model 
1 

nQA(UF) ~ Gender + Age 
+ Gender*Age +
Timepoint + Intervention 

nQA(UF): 
reference 
elpd 

47 Microstructural 
coherence 

null 
model 
2 

nQA(UF) ~ Gender + Age 
+ Timepoint +
Intervention 

nQA(UF): 
− 3.3 ± 3.4 

(continued on next page) 
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interaction effects on target recognition or lure discrimination 

performance could not be confirmed. However, the personality trait 
“neuroticism” predicted target recognition and lure discrimination 
performance. We found that the more neurotic the participants the 
worse their memory performance (Fig. 15). This effect was independent 
of their gender and age (Tables 15-1 & 15-2). 

3.6. Further DWI analyses 

Microstructural coherence of the UF was neither evidently decreased 
by age (Fig. 16 A) nor evidently different between females (dark-red) 
and males (dark-yellow; Fig. 16 B). The model comparison (Table 2, Eq. 
45–49) did not allow for confident inferences about possible effects on 
UF microstructure. Nevertheless, the model estimates indicated a lack of 
an age and/or gender effect (see Table 16-1). An impact of the in-
dividuals’ body composition reflected in BMI, WHR (gender- 

Table 2 (continued ) 

Eq. 
No. 

Model Title Model 
type 

Model Equation 
dependent variable ~ 
predictors & covariates 
(without random effects 
for visual clarity) 

Difference 
in 
Predictive 
Accuracy 
(Δelpd ± 
se) 

48 Microstructural 
coherence 

null 
model 
3 

nQA(UF) ~ Gender +
Timepoint + Intervention 

nQA(UF): 
− 1.9 ± 1.9 

49 Microstructural 
coherence 

null 
model 
4 

nQA(UF) ~ Timepoint +
Intervention 

nQA(UF): 
− 1.4 ± 2.1  

Table 3 
Mean, standard deviation and range of normalized quantitative anisotropy values (nQA) of the uncinate fasciculus (UF) and its sub-bundle as well as the whole brain.  

nQA left UF right UF average UF left sub-bundle of UF right sub-bundle of UF average sub-bundle of UF whole brain 

Mean(SD) 0.271 (0.021) 0.271 (0.023) 0.271 (0.022) 0.183 (0.024) 0.171 (0.028) 0.177 (0.022) 0.274 (0.021) 
Range 0.211 - 0.318 0.208 - 0.326 0.213 - 0.320 0.111 - 0.243 0.100 - 0.264 0.105 - 0.234 0.209 - 0.329  

Fig. 9. Exemplary tracing results of in-vivo uncinate fasciculi (UF) and sub-bundles of the UF. A: right UF with ROIs, B: left UF, C: right sub-bundle with ROIs, D: left 
sub-bundle. Fiber tracts are derived from deterministic tractography conducted in DSI studio (version 2022.01.11) overlaid on a subject’s whole brain normalized 
quantitative anisotropy map. A) Regions-of-interest for tractography of the entire UF, exemplary for the right hemisphere: red: UF seed region from John Hopkins 
university (JHU) labels atlas (1 mm), merged end region (green) consisting of Brodman Areas 11 and 47 identical to Granger et al. (2021) and Brodman area 10 from 
Brodman atlas (within DSI studio). C) Regions-of-interest for tractography of sub-bundle of the UF, exemplary for the right hemisphere: yellow: seed orbitofrontal 
cortex regions from the AAL2 atlas (within DSI studio), pink amygdala from the FreeSurferDKT subcortical atlas and violet: the entorhinal cortex from the Free-
SurferDKT cortical atlas. Orientations: A: anterior, P: posterior. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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standardized) and %FM (gender-standardized) was equally undetect-
able. In summary, neither the microstructural coherence of the UF 
(Fig. 16) nor of the whole brain (Fig. 16-1) was affected by gender, age 
or body composition. 

4. Discussion 

In this preregistered study combining in-depth behavioural, physi-
ological and advanced neuroimaging data from 60 adults (20 females) of 
up to four time points, we find that desire to eat (i.e. food wanting) 

predicted recognition of food items and desire to have (i.e. art wanting) 
predicted recognition of art prints. Additionally, food was better 
memorized than art images and high caloric content increased memo-
rability of food items. In contrast, we could not detect a moderating 
effect of microstructural measures of the uncinate fasciculus on memory 
performance, extracted from diffusion imaging, in this homogeneous 
cohort of 20 to 41 year old adults. Exploratory results indicated effects of 
gender and personality traits on memory performance. 

Food images tended to be better recognized and discriminated than 
art images. Evolutionary seen, the ability to recognize and discriminate 

Fig. 10. Memory performance depending on microstructural coherence of UF and its sub-bundle per category. Actual and predicted A + C) target recognition 
d’ and B + D) lure discrimination LDI depending on normalized quantitative anisotropy (nQA) of the uncinate fasciculus (UF, A&B) and its sub-bundle (C&D). Points 
show the actual data and lines with 95%-CI depict predictions based on full models (Table 1, Eq. 21 & Table 2, Eq. 26). Neither d’ nor LDI were affected by the 
microstructural coherence of the UF, reflected in nQA, or by its sub-bundle. The estimates of the interaction of the full model indicated that the image categories 
were not differently influenced by the UF’s microstructural coherence. The estimates of the main effect neither support an effect of microstructural coherence on 
memory performance (Fig. 10-1). Estimates of all predictors and covariates are visualized in Figs. 10-2 & 10-3 and listed in Tables 10-1 – 10-4. A hemisphere-specific 
role of the sub-bundle of the UF could not be confirmed (Fig. 10-4). 

Fig. 11. Predicted response accuracy by wanting depending on the microstructural integrity of the UF. Predictions are based on the full model (Table 2, Eq. 
31) A) for all images and B) for old images only. The estimates of the interactions endorsed the visually evident lack of a moderation effect of nQA(UF) on the wanting 
enhancement of the response accuracy. Odds ratios of all predictors and covariates are visualized in Fig. 10-1 and listed in Table 11-1. 
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visual details of food items has been important to differentiate between 
edible and potentially toxic food items, e.g. berries or mushrooms. This 
bias of greater attention to food stimuli (Kumar et al., 2016; Kirsten 

et al., 2019) might explain increased recognition and discrimination 
performance (Humphreys et al., 2010). In our study, we confirmed that 
food tended to be better recognized and discriminated than art images. 
Evidently, single image memory accuracy was better for food than art 
images. Despite differences in edge-based image complexity, the lower 
complexity of food images could not entirely explain the superiority of 
food memory accuracy. The visual stimuli were initially matched for 
composition/scene complexity which could have otherwise biased 
memory performance (Gomez et al., 2020). We reduced scene 
complexity of art images as we created the art.pics out of animal, object 
and plant photos by applying art styles with a deep learning algorithm 
(Thieleking et al., 2020). Therefore, the art.pics consist of centrally 
shown items which do not differ in object size from the food images. 
Differences in normed complexity, though, are inherent to the nature of 
food and art imaged as this measure reflects the amount of contrast 
edges per item size (e.g. low regarding single tomatoes or lemons; high 
considering images based on e.g. Klimt’s style or the Portuguese tile 
pattern (Azulejos)). We recommend for future experiments to addi-
tionally add, for example, uni-coloured shapes to the art images in order 
to match the food images with low complexity, and to reduce the ratio of 
highly complex art images. Even though food and art stimuli did not 
differ in object sizes, the size of the food items seemed to have negatively 
affected food memory accuracy. Despite the visual approximation of 
food and art memory accuracy with higher complexity and with 
increasing object size, however, the superiority of food over art memory 

Fig. 12. Recognition accuracy of old images predicted by A) liking and B) wanting. Depicted are points reflecting averaged response accuracy and averaged 
liking/wanting of each image as well as predictions and their 95%-CI based on full models (Table 2, Eq. 35). The estimates of the interaction of the full model indicate 
that wanting and liking affect both image categories similarly. The enhancement by wanting during memory encoding is slightly stronger than by general liking. 
Odds ratios of the corresponding models are listed in Tables 12-1 – 12-2. 

Fig. 13. Response accuracy predicted by calorie content of the food items. 
Predictions are based on the null model 1 (Table 2, Eq. 39). Mean predictions 
and their 95%-CI are depicted. Very high calorie content compared to very 
low calorie content evidently influenced response accuracy of the food 
images. Odds ratios of all predictors and covariates are visualized in Fig. 13-1 
and listed in Table 13-1. 

Fig. 14. Memory performance per gender group. A) The target recognition d’ and B) the lure discrimination LDI of female (F) participants (bordeaux) is 
better than of male participants (M) (orange). Violin plots present the distribution of the two indices per gender. The estimate’s CI did not include 0 which 
indicated an evident difference in memory performance between gender groups. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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accuracy remained statistically evident when accounting for complexity 
and object size. Marin and Leder (2013) have additionally shown that 
the influence of image complexity might relate to arousal and pleas-
antness. In our study, though, arousal and pleasantness (valence) did not 
affect memory performance. Unexpectedly, though, higher subjective 
recognizability was associated with lower memory accuracy but the 
superiority of food over art memory subsisted. Therefore, we conclude 
that the stronger evolutionary and hedonic relevance of food compared 
to art might be determining the superiority of food over art memory 
performance. 

Subjective hunger level varied largely but did not predict memory 
performance in our population. Several previous studies (Morris & 
Dolan, 2001; Talmi et al., 2013; Montagrin et al., 2021) found an 
enhancing effect of hunger on food memory performance when hunger 
was contrasted to satiety. In our study though, participants received a 
standardized breakfast-shake. Thus, the difference in perceived hunger 
states might not have been large enough to explain variance in food 
memory performance. Additionally, fasted ghrelin serum levels, as a 
proxy for “physiological hunger”, neither predicted subsequent memory 
performance. However, ghrelin serum levels were not measured 
immediately before the task which may explain a lack of correlation 
with food memory compared to previous studies (Carlini et al., 2010). 

The stronger the wanting to eat a certain food during memory 
encoding the better was the food recognition accuracy in the subsequent 
task in our study. This finding suggests that not only wanting alone de-
termines if a certain food is chosen to eat but that food choices might 

also be influenced by recognition memory which, in turn, is reinforced 
by previous rewarding experiences. Besides the enhancement of food 
recognition accuracy through food wanting, we also detected this 
wanting enhancement could for the art images. Hence, recognition of 
single items in general seems to be fortified through desire. Hereby, we 
add on previous studies showing that future food choices might be 
moderated by episodic memory of previous eating experiences (Higgs, 
2016; Higgs & Spetter, 2018). This study of Higgs and colleagues 
replicated the observations made much earlier with famous patient H.M. 
(Scoville & Milner, 1957; Hebben et al., 1985). Our study adds to the 
field that not only actual eating episodes modulate future food choices 
but that the anticipation of the reward through eating already enhances 
memory accuracy of the desired food. Outside of the experimental 
context, desire to eat and reward value of certain food is constantly 
manipulated by an overload of especially high-caloric and high-energy 
food stimuli in our environment (Powell et al., 2007; Duraisingam 
et al., 2021). This often repetitious exposure to high-caloric and high- 
energy food might additionally enhance their memorability (Stang, 
1975) and thereby fortify overnutrition. Overnutrition could also be 
mediated by a calorie bias in humans’ recognition memory. Recently, de 
Vries and colleagues (de Vries et al., 2022) have already shown that 
humans’ spatial recognition memory is biased towards high-caloric 
compared to low-caloric food items independent of desire to eat. In 
our study, this calorie bias in food recognition memory accuracy was 
also evident and independent of desire to eat. However meaningful for 
our ancestors, this calorie bias in recognition memory in combination 

Fig. 15. Memory performance depending on personality trait neuroticism. Actual and predicted A) target recognition d’ and B) lure discrimination LDI 
depending on neuroticism assessed with the NEO-FFI. Points show the actual data and lines with 95%-CI depict predictions based on null model 2 (Table 2, Eq. 43). d’ 
and LDI were evidently predicted by neuroticism. The more neurotic the participants, the worse their memory performance. Estimates of the corresponding 
models are listed in Tables 15-1 & 15-2. 

Fig. 16. Microstructural coherence of UF depending on age and gender. Actual and predicted microstructural coherence of the UF, reflected in its nQA value, A) 
by age and B) by gender. Points show actual data of the color-coded subjects. A) Prediction line with 95%-CI is based on null model 2 (Table 2, Eq. 47). B) Violin and 
boxplots present the distribution of the nQA values over both genders. Neither age nor gender predicted the microstructural coherence of the UF. Odds ratios of 
the corresponding models are listed in Table 16-1. The effects of age and gender on the whole brain’s microstructural coherence is shown in Fig. 16-1. 
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with an increased desire to eat high-caloric food which in turn enhances 
recognition might be nowadays detrimental for a healthy, intuitive food 
decision-making. 

Considering the close link of reward and emotion (Baxter et al., 
2000; Murray, 2007) and previous studies showing effects of emotion on 
target recognition d’ and lure discrimination LDI (Kensinger et al., 2006; 
Leal et al., 2014; Szőllősi & Racsmány, 2020), we hypothesized an effect 
of wanting on these memory indices. However, we could not confirm 
this effect, possibly due to power reduction after categorizing into 
“unwanted”, “neutral” and “wanted” images. We suppose that individ-
ualized picture sets of more intensely desired or despised food images 
could elicit food wanting effects on different memory sub-processes. 

As wanting is distinct to liking (Berridge, 2009), we compared the 
effect of wanting during memory encoding to the participants’ general 
liking of these encoded images. The enhancement by liking was also 
evident but weaker than by wanting. This finding confirms the previ-
ously claimed enhanced recognition accuracy by preference (Brooks & 
Watkins, 1989; Newell & Shanks, 2007; Wang & Chang, 2004) and 
furthers the field by adding a slightly stronger memory enhancement 
through wanting. Unclear is though, if liking and wanting determine 
recognition accuracy or if recognition enhances liking and wanting 
through the mere exposure effect. The direction of this relation has been 
previously questioned (Brooks & Watkins, 1989; Wang & Chang, 2004). 
In the case of a “cross-talk” between wanting and memory, the danger of 
a vicious cycle regarding food-decision making could arise. While 
speculative, this vicious cycle could consist of food choices of high- 
caloric, highly wanted food items and an increased recognition mem-
ory of these, which then in turn leads to a more frequent choice of these 
food items due to the remembered desire and positive experience. 

In our study, we could not find an association between food recog-
nition or lure discrimination performance and participants’ eating 
behaviour. This result endorsed our screening attempt that the partici-
pants scored low on food restrictions and eating restraint. Therefore, 
populations with aberrant eating traits may behave differently. Previous 
studies showed that restrained eaters present more extreme cravings 
than unrestrained eaters (Fedoroff et al., 2003). Besides higher cravings, 
higher calorie content has been shown to enhance spatial memory of 
food items and memory of eating (Seitz et al., 2021). Therefore, studying 
the influence of food wanting and calorie content on food memory in 
restrained eaters might be insightful regarding their food decision- 
making. 

On the neuronal level, we hypothesized a putative top-down 
modulatory control by microstructural properties of the uncinate 
fasciculus (UF) in memory processes which integrate (food) wanting and 
hunger. The UF connects brain areas which process wanting (Berridge, 
2009; Lebreton et al., 2009), hunger (Morris & Dolan, 2001; Malik et al., 
2008), emotion (Gao et al., 2021) and memory (Bakker et al., 2008; 
Yassa & Stark, 2011). In detail, the reward anticipation and evaluation 
of food and art activate, among others, neurons in the OFC (O’Doherty 
et al., 2001; Berridge, 2009; Sescousse et al., 2013) Even though viewing 
and evaluation of food pictures might activate parts of the OFC stronger 
than non-food/art pictures (van der Laan et al., 2011), value information 
should be transmitted for both stimulus types through the UF to amyg-
dala and hippocampus. These two brain areas are not only active during 
reward anticipation (Schott et al., 2008) as well as encoding and 
retrieval of emotional memories (Murty et al., 2010; Dolcos et al., 2012) 
but are also crucial in the regulation of food intake (Davidson et al., 
2009; Higgs, 2005; Izadi & Radahmadi, 2022; Zhang, Li, & Guo, 2011). 
Previously, the UF has already been shown to play a role in emotional 
memory processes (Yau et al., 2009; Granger et al., 2021). Due to the 
shared neuronal correlates of (food) reward and emotion processing, we 
expected a similar influence of the UF’s microstructure on reward 
enhanced memory processes, especially regarding food as a primary 
reward. However, we could not transfer and confirm the UF’s role in 
wanting enhanced (food) memory, neither for the UF nor for a sub- 
bundle of the UF. We selected this sub-bundle based on fibers which 

terminate in the MTL and might carry directly relevant information for 
wanting enhanced recognition. Alerted by differences in the average 
microstructural coherence of the right and left sub-bundle, we found 
some evidence in the literature for a possibly hemisphere-specific role of 
the UF’s sub-bundle in wanting enhanced recognition (Canli et al., 2000; 
Dolcos et al., 2004). However, we could not detect that neither left nor 
right hemispheric OFC-MTL communication, respectively, might be 
important for wanting enhanced recognition. Another possible expla-
nation for the lack of microstructural modulation of memory in general 
might be that in this relatively young and healthy study population, 
white matter properties might not (yet) be relevant in the interaction of 
cognitive functions. Previous studies showed that variations or changes 
in white matter microstructure correlate with memory performance, but 
these correlations concern mainly elderly populations (Cremers et al., 
2016) and populations with neuropsychological disorders (Alves et al., 
2018; Subramaniam et al., 2018). 

Female participants in our study outperformed male participants 
regarding target recognition, lure discrimination and memory accuracy 
but none of the assessed anthropometric, cognitive or personality mea-
sures could explain this gender difference. However, we detected a 
negative influence of neuroticism on memory indices. Higher cognitive 
load due to neurotic behaviour might lead to reduced memory capac-
ities. This assumption is supported by associations of neuroticism with 
reduced retrospective memory (Buchanan, 2017) and working memory 
performance (Studer-Luethi et al., 2012). Our gender-unbalanced study 
design does not allow for definite conclusions but in line with previous 
studies (Levy, Astur, & Frick, 2005; Wang, 2013), gender differences in 
memory performance might be evident. Overall, through conscientious 
definition of our study population, advanced tractography of white 
matter and conservative Bayesian regression modeling (Gelman & 
Tuerlinckx, 2000), we are confident presented results are reliable and 
that the detected effects are not false positives. 

In conclusion, we showed that food recognition memory is influ-
enced by food desires. In contrast, the microstructure of implicated 
neural pathways, namely the UF, was not of importance for memory 
performance in this sample of healthy, overweight adults. We suggest 
that transferring the memory encoding, namely the reward evaluation, 
as well as the recognition assessment into virtual reality (e.g. super-
market or cafeteria buffet) to increase ecological validity of the two 
tasks. Thereby, brain responses and relevant information transmission 
between implicated brain areas through the UF might be fortified. 
Furthermore, comparing vulnerable populations with potentially dete-
riorated white matter, such as elderly (Westlye et al., 2010) or obese 
(Zhang et al., 2018) individuals, with our relatively healthy study 
population could shed light on whether UF microstructural coherence 
indeed determines cognitive functions related to food memory. 
Regarding the overnutrition pandemic, cognitive behavioural therapies 
could be improved by strategies that connect food desires and subse-
quent food recognition. The interlacing of food desires and food memory 
could also be considered in the development of public health campaigns 
and regulations. 
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Alves, G. S., Knöchel, C., Paulitsch, M. A., Reinke, B., Carvalho, A. F., Feddern, R., … 
Oertel, V. (2018). White Matter Microstructural Changes and Episodic Memory 
Disturbances in Late-Onset Bipolar Disorder. Frontiers in Psychiatry, 9. https://doi. 
org/10.3389/fpsyt.2018.00480 

Bakker, A., Brock Kirwan, C., Miller, M., & Stark, C. E. L. (2008). Pattern Separation in 
the Human Hippocampal CA3 and Dentate Gyrus. Science, 319(5870), 1640–1642. 
https://doi.org/10.1126/science.1135801 

Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D., & Murray, E. A. (2000). 
Control of response selection by reinforcer value requires interaction of amygdala 
and orbital prefrontal cortex. Journal of Neuroscience, 20(11), 4311–4319. https:// 
doi.org/10.1523/jneurosci.20-11-04311.2000 

Berridge, K. C. (2009). ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in 
eating disorders. Physiology & Behavior, 97(5), 537–550. https://doi.org/10.1016/J. 
PHYSBEH.2009.02.044 

Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward 
in humans and animals. Psychopharmacology (Berl), 199(3), 457–480. https://doi. 
org/10.1007/s00213-008-1099-6 

Berthoud, H. R. (2007). Interactions between the “cognitive” and “metabolic” brain in 
the control of food intake. Physiology and Behavior, 91(5), 486–498. https://doi.org/ 
10.1016/j.physbeh.2006.12.016 

Berthoud, H. R. (2012). The neurobiology of food intake in an obesogenic environment. 
Proceedings of the Nutrition Society, 71(4), 478–487. https://doi.org/10.1017/ 
S0029665112000602 

Blechert, J., Meule, A., Busch, N. A., & Ohla, K. (2014). Food-pics: An image database for 
experimental research on eating and appetite. Frontiers in Psychology, 5, 617. https:// 
doi.org/10.3389/fpsyg.2014.00617 

Borkenau, P., & Ostendorf, F. (2008). NEO-Fünf-Faktoren-Inventar nach Costa und McCrae. 
Psychologie: Hogrefe, Verlag f.  

Brooks, J. O., & Watkins, M. J. (1989). Recognition Memory and the Mere Exposure 
Effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(5), 
968–976. https://doi.org/10.1037/0278-7393.15.5.968 

Buchanan, T. (2017). Self-assessments of memory correlate with neuroticism and 
conscientiousness, not memory span performance. Personality and Individual 
Differences, 105, 19–23. https://doi.org/10.1016/j.paid.2016.09.031 

Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. D., & Cahill, L. (2000). Event-related activation 
in the human amygdala associates with later memory for individual emotional 
experience. The Journal of Neuroscience : The Official Journal of the Society for 
Neuroscience, 20(19), 1–5. https://doi.org/10.1523/jneurosci.20-19-j0004.2000 
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