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I Abstract

Memory processes have long been known to determine food choices(Rozin and Zellner,  1985) but

recognition memory of food and its cognitive,  homeostatic and neuroanatomical predictors are still

largely understudied.

60 healthy,  overweight,  non-restricted  eating  adults  (20 females)  took part  in  a  food wanting  and

subsequent  food  recognition  and  lure  discrimination  3T-fMRI  tasks  at  four  time  points  after  a

standardized  breakfast  shake.  With  advanced  tractography  of  diffusion-weighted  imaging  data,  we

investigated the influence of the uncinate fasciculus’ (UF) brain microstructure on the interplay of food

wanting and memory processes. The analysis was preregistered in detail and conducted with Bayesian

multilevel regression modeling.

Target  recognition  (d’)  and lure  discrimination  (LDI)  performance of  food was higher  than  of  art

images.  On  the  single  item  level  (but  not  per  wanting  category),  wanting  enhanced  recognition

accuracy. This enhancement by reward anticipation was most pronounced during memory encoding.

Subjective hunger level did not predict performance on the memory task. The microstructure of the UF

did neither evidently affect memory performance outcomes nor moderate the wanting enhancement of

the recognition accuracy. 

We  shed  light  on  a  to  date  understudied  process  in  food  decision-making:  reward  anticipation

influenced food recognition accuracy which in turn shapes food decisions. Due the undetected role of

brain  microstructure  in  food  decision  processes  in  our  study  population,  we  suggest  extending

investigation of this interplay to brain activity as well as to populations with eating behaviour disorders.

II Significance Statement
In times of pandemic overnutrition, disadvantageous food choices need to be understood to attenuate
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excessive  calorie  intake.  Memory  processes  influence food  choices  but food  recognition  memory

remains understudied. We shed light on the interplay of food memory and food wanting underpinned

by magnetic  resonance  imaging and advanced brain  tractography.  We discovered that  higher  food

wanting led to better recognition accuracy  revealing a to date  disregarded process in food decision-

making. However, we could not detect a moderating role of the white matter tract connecting reward

and memory brain areas. We are confident about the detected effects as we applied Bayesian statistics

with  low false  positives  rates.  We additionally  aimed  to  reduce  publication  bias  through  detailed

preregistration of our study and analysis.

III Introduction
In a world overloaded with food stimuli, cognitive processes contributing to food choices move into

focus, especially considering public health strategies to address the overnutrition pandemic(Berthoud,

2012).  The  complexity  of  food  choices  reflects  in  current  debates  around  food  desires  (wanting)

(García-García et  al.,  2020) and food memory(Seitz et  al.,  2021b).  Well-known memory processes

crucial for food choices represent previously learned preferences(Rozin and Zellner, 1985). Recently,

memory  of  eating(Higgs  and  Spetter,  2018;  Seitz  et  al.,  2021a),  working  memory  (Spetter  et  al.,

2020) and spatial food memory(de Vries et al., 2020) have been established as modifiers of food intake.

Largely understudied though is the role of recognition memory in food choices. Both, food recognition

memory  and  food  choices are  constantly  manipulated  by  the  daily  overload  of food  stimuli.

Additionally, metabolic hunger impacts food choices, namely food wanting(Berthoud, 2007), and food

memory(Morris and Dolan, 2001). We aim to shed light on how food wanting and hunger determine

food memory and how the underlying neural anatomy contributes to this interplay.

The importance of the hippocampus in memory(Wixted and Squire, 2010) and the regulation of human

food intake has been extensively studied, e.g. its inhibitory output to hypothalamic feeding centers(see
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review by Stevenson and Francis,  2017).  However,  modulation of food memory through cognitive

processes and associated neural pathways providing input to the hippocampus are mostly understudied.

Modulatory input to the hippocampus provides the amygdala—directly as well as indirectly through the

entorhinal cortex(Kensinger and Schacter, 2006; Roesler and McGaugh, 2022). The amygdala and the

orbito-frontal  cortex  (OFC) are  implicated  in  the  encoding  of  (food)  value(Canli  et  al.,  2000;

Richardson  et  al.,  2004;  Warlow  and  Berridge,  2021) and  in  hunger  enhanced  recognition

memory(Morris and Dolan, 2001). Nevertheless, the influence of subjective  food value, namely food

wanting, on recognition memory as well as the contribution of the underlying neural pathways remain

unclear. 

The neural  pathway connecting  the OFC with the  amygdala  and entorhinal  cortex  is  the  uncinate

fasciculus (UF)(Thiebaut de Schotten et al., 2012; Von Der Heide et al., 2013). The microstructural

coherence of  the  UF  correlates  with  emotional  memory(Yau  et  al.,  2009) and  emotion

management(Pisner et al., 2017) as well as with activation of the hippocampus during an emotional

memory task(Granger et al., 2021). As emotions and subjective value are processed in the same brain

areas (OFC(Gottfried et al., 2003) and amygdala(Murray, 2007)), we hypothesized a putative top-down

modulatory control by microstructural properties of the UF in memory processes which integrate food

wanting and hunger.

Besides recognition of food items, the ability to detect differences in visual details (lure discrimination)

form crucial parts of food memory and might influence food choices. Previous studies have revealed

effects of emotion on both recognition and lure discrimination performance(Kensinger, 2007; Chainay

et al., 2012; Leal et al., 2014) endorsing our assumption that parallelly processed reward reflected in

food  wanting  might  also  affect  food  memory.  To  study  the  influence  of  reward  on  memory,  we

contrasted  art  to  food  images  as  art  images  can  elicit  similar  desire  and  reward  patterns  in  the
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brain(Berridge and Kringelbach, 2008).

Based on previous findings and our assumptions, we formulated the following research questions: 

1. Is the recognition performance for food items better than for non-food (art) items? 

2. Does subjective hunger level modulate recognition performance for food items? 

3. Could the recognition performance for food items (or in general) be enhanced by wanting? 

4. Does the coherence of the UF influence food recognition performance or any of the above

mentioned  correlations  and modulations?  Might  only  the  coherence  of  a  sub-bundle  of  the

uncinate fasciculus be relevant for the information transmission?

5. Are these possible correlations and modulations comparable regarding discrimination of visual

details? 

To this end, we analyzed food wanting and memory performance, brain microstructure using diffusion-

weighted magnetic resonance imaging (MRI) and subjective hunger level assessed during  MRI in a

well-characterized adult sample following a detailed preregistration at https://osf.io/2z4dn.  
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IV Methodology

IV.1 Experimental Design and Participants

The over-arching study was designed  as  a  double-blind  randomized  controlled  cross-over  (within-

subject) intervention trial and preregistered at https://osf.io/f6qz5. The detailed analysis for the present

investigation  whether  wanting,  subjective  hunger  and  UF  microstructure  predict  recognition

performance and lure discrimination of food items was preregistered at  https://osf.io/2z4dn. For this

preregistered analysis, we evaluated data from all four time points cross-sectionally by controlling for

possible intervention effects, so that we were able to feed n=181 data sets into the behavioural analysis

and n=176 data sets into the neuroimaging analysis.

Each participant was invited four times to undergo extensive testing following identical procedures

each time: fasted overnight, blood sampling (i.a. fasted ghrelin), anthropometric measurements (body

mass index (BMI), fat mass (FM), Waist-to-Hip ratio (WHR)), standardized breakfast shake (10% of

gender-individual calorie need based on Harris and Benedict(1918)), MR scanning including two fMRI

tasks (with different picture sets for each visit), structural and diffusion-weighted imaging, and post-

MRI computer  tasks.  All  participants  were reimbursed for participation  and gave written informed

consent. The study was approved by the Research Ethics Committee of the University of Leipzig and

was conducted in accordance with the Declaration of Helsinki. Inclusion and exclusion criteria were

predefined  and  registered  at  https://clinicaltrials.gov/ct2/show/NCT03829189.  The study population

consisted of 60 healthy adults (20 females), aged 19 to 45 years, with a BMI of 25 to 30 kg/m² at

baseline  visits.  Female  participants  were  required  to  take  contraceptives  to  minimize  hormonal

variations  induced  by  the  menstrual  cycle.  Participants  were  excluded  if  they  suffered  from  a

neurological, psychiatric, or metabolic disorder or if they took any medication acting on the central

nervous system. Also, pregnancy or lactation and any type of dietary restrictions or antibiotic treatment
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in the last 3 months led to exclusion.  For more details see the  clinicaltrials.gov-preregistration. The

study population can be described as young, healthy and overweight. At the beginning of each testing

day, participants received a bioelectric impedance analysis to assess fat mass (FM) and their Waist-to-

Hip  ratio  (WHR)  was  measured.  In  addition,  we  assessed  participants’  eating  behaviour  with  the

German versions of the TFEQ(Pudel and Westenhöfer, 1989) and EDEQ(Hilbert et al., 2007), socio-

economic status(Lampert et al., 2013), personality traits with the NEO-Five-Factor-Inventory by Costa

and McCrae(Borkenau and Ostendorf, 2008) and attention network performance(Fan et al., 2002).

IV.2 Imaging data collection

Magnetic  resonance  imaging  (MRI)  was  conducted  at  a  3  Tesla  Prisma  Fit  Magnetom (Siemens,

Erlangen, Germany). Anatomical MRI was acquired using a T1-weighted MPRAGE sequence using

the ADNI protocol with the following parameters: TR = 2300ms; TE = 2.98ms; flip angle = 9°; FOV:

(256 mm)2;  voxel size: (1.0mm)3;  176 slices. Diffusion-weighted MRI data was acquired using the

following parameters:  TR = 5200ms; TE = 75ms; flip angle = 90°;  FOV: (220 mm) 2;  voxel size:

(1.7mm)3;  88  slices;  max.  b=1000  s/mm2 in  60  diffusion  directions  (+  7  b0-images);  partial

Fourier=7/8; GRAPPA-factor = 2; interpolation = OFF. Ap/pa-encoded b0-images were acquired for

distortion correction.

DWI data were preprocessed following a high standard pipeline which includes denoising, removal of

Gibbs-ringing artefact to increase image quality(Thieleking et al., 2021), correction for susceptibility

distortions as well as correction for head motion and eddy currents. Quality control led to exclusion of

four  data  sets  as  can  be  followed up on in  the  preregistration  (https://osf.io/2z4dn).  After  quality

assurance, we used model-free fiber reconstruction based on generalized q-sampling (GQI)(Yeh et al.,

2010) to create in-vivo whole-brain normalized quantitative anisotropy (nQA) maps. This model-free
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method,  in  comparison  to  a  tensor-based  approach,  calculates  spin  distribution  functions  which

presumably improve the modeling of crossing fibers and resolve partial volume effects and thereby

result in more accurate deterministic tractography(Yeh et al., 2013). Next, we conducted deterministic

diffusion  tractography with  DSI  Studio  (version  2022.01.11)(Yeh,  2021) and  extracted  mean

normalized quantitative anisotropy values (nQA) of the UF as well as of a sub-bundle. Normalization

of QA was performed by scaling the subject-wise maximum QA value to 1. All (pre)processing steps,

tractography  settings  and  regions  of  interest  can  be  accessed  in  detail  via  GitLab

(https://gitlab.gwdg.de/gut_brain_study/analysis_dsistudio_tractography).

IV.3 Behavioural assessment

Participants took part in a food wanting and subsequent food memory task. In both tasks, food was

contrasted to art images. Food pictures, including nutrient values such as calorie content, were taken

from  the  food-pics  database(Blechert  et  al.,  2014;  Medawar  et  al.,  2022),  and  the  art.pics

database(Thieleking et al., 2020) served as source for the art images. The wanting task included 80

food (20 per  calorie  quartile)  and 80 art  images  (10 per  art  style).  Food and art  served as image

category in the analysis. Participants indicated food and art wanting on an 8-point-Lickert scale (see

Fig. 1) and, in order to stimulate reward anticipation, they received the highest-rated food item to eat

and art image as print-out after  scanning. For the statistical  analysis, images were categorized into

“unwanted”,  “neutral”  and  “wanted”  images  based  on  the  participants’  ratings.  The  wanting  task

represented the memory encoding phase and was followed by the memory task after a break of about

20mins with structural scans. The memory task also consisted of 80 food and 80 art images with 30 old

(targets), 30 similar (lures) and 20 new images (novels) in each image category. The memory task was

a  combined  recognition  and  lure  discrimination  task  with  corrected  target  recognition  d’, lure

discrimination index LDI and response accuracy as outcome measures.  Participants had to indicate as
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quickly as possible if they had seen the presented food or art image in the previous task (“old”), if they

had not seen it before (“new”) or if it was similar to a previously seen image (“similar”) (see Fig. 1).

No feedback on performance was provided. Wanting ratings for new and similar images were obtained

after the MRI scan, meaning not during memory encoding. Nevertheless, wanting attribution occurred

before the reward hand-out and was therefore similarly reward-anticipatory as for the old images.

Detailed  calculation  of  the  memory outcome measures  d’  and LDI as  well  as  the  creation  of  the

wanting  categories  can  be  followed  up  in  the  ReadMe  under

https://gitlab.gwdg.de/gut_brain_study/analysis_r_memo  ry  .

Before and after each of the fMRI tasks, participants were asked to indicate their hunger level on an 8-

point-Lickert scale (‘How hungry are you right now?’ - 'not at all’ to ‘extremely hungry’). After the

MR scanning,  participants  filled  out  an  8-point  visual  analogue  scale  to  indicate  their  well-being

regarding  anxiety,  nausea,  exhaustion  by  and  difficulty  of  the  tasks.  At  the  end  of  the study,

participants additionally indicated liking ratings on all images that had been presented during the fMRI

tasks. In order to assess general preference and not wanting, participants did not receive rewards after

completion of the liking task.
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Figure 1: Wanting task and subsequent Memory task. Left: Memory Encoding during Wanting Task: Participants were

asked to indicate on an 8-point-Lickert scale how much they want to have the depicted food or art image. They were

previously told that they would be rewarded with the highest rated food and art image after the MRI scan.  Right: Memory

task including target recognition and lure discrimination: Participants had to indicate as quickly as possible if they had

seen the presented food or art image in the previous task (“old”), if they had not  seen it before (“new”) or if it was

similar to a previously seen image (also “new”). Depicted are two exemplary similar (bot not identical) food

and art stimuli.

IV.4 Statistical Analysis

We applied Bayesian multilevel  regression modeling  as test  statistic  with R (version 4.1.1(R Core

Team,  2021)).  To assess  the predictive  accuracy of  a  Bayesian regression  model  (BRM),  Vehtari,
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Gelman, and Gabry proposed the expected log pointwise predictive density (elpd)(Vehtari et al., 2017)

which can be estimated by leave-one-out (loo) cross-validation. The higher the predictive accuracy of a

model, the higher is its elpd. We previously tested for random intercepts and random slopes present in

the data, set up full models with these random effects and subsequently defined null models to test for

fixed effects(van Doorn et al., 2021). As Bayesian inference testing is more conservative than classical

comparison  procedures  that  are  based  on Type  I  error,  there  is  no  need  for  multiple  comparison

testing(Gelman and Tuerlinckx, 2000).

In  the  result  section,  I  present  which  Bayesian  multilevel  regression  models  (BRMs)  predict  the

collected  data  most  accurately  and  which  effects  we  can  therefore  assume  to  exist  in  our  study

population. During Bayesian regression modeling, posterior distributions of the predictor variables are

calculated. The mean estimate or the odds ratio and their 95%-credible interval (CI) of the posterior

distributions result from this modeling. If the credible interval does not include Zero, we can infer that

the effect is probably present in the study population. Through comparison of the predictive accuracy

(elpd) of the full and null models, we can additionally find out which model predicts the data best. To

follow-up on the  model estimates  of  the  predictors  and random effects,  tables  were linked to  the

respective figures. 

IV.5 Code accessibility

We version-controlled  and  published  the  tractography  of  white  matter  and  the  statistical  analysis

including details on software, functions and options via GitLab (REF). Regarding the tractography, all

(pre)processing  steps,  settings  and  regions  of  interest  can  be  accessed  in  detail  here:

(https://gitlab.gwdg.de/gut_brain_study/analysis_dsistudio_tractography).  The  code  for  the  statistical

analysis  and  all  model  results  can  be  accessed  here:
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https://gitlab.gwdg.de/gut_brain_study/analysis_r_memory. 

The code was checked for validity by a researcher who is independent of the study and the group and

who has experience in using R.
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V Results

V.1 Is the recognition performance for food items better than for non-food (art) 

items?

The corrected target recognition d’ and the lure discrimination LDI are both higher for food compared

to  art  (non-food =  NF)  images.  The  difference  in  memory  indices  between  image  categories  was

evident as the posterior distributions of the estimates revealed (Fig. 2). The comparison of the full

models (Table 1, Eq. 1) with the null models (Table 1, Eq. 2) regarding predictive accuracy (expected

log  pointwise predictive density =  elpd) is not conclusive though, due to larger standard errors than

difference in predictive accuracy (Δelpd). Nevertheless, the certainty of the estimates, reflected in the

credible intervals which do not include Zero, assures the difference in memory performance between

image categories. Estimates of all predictors and covariates can be followed up in (Fig. 2-1, Tables 2-1

& 2-2).

Figure 2: Memory performance per Image Category. A) The target recognition d’ and B) the lure discrimination LDI of

food (F) items  (yellow)  is better than of non-food (NF)/art items (blue). Violin plots present the distribution of the two

indices over the color-coded single subjects per image category. The estimate’s CI did not include 0 which indicated an
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evident difference between image categories regarding d’ and LDI. Estimates of all predictors and covariates are listed in

Fig. 2-1 and Tables 2-1 & 2-2.

Table 1: Model equations of full and null models and the difference in predictive accuracy.

V.1.a Does the complexity of the single images influence response accuracy? (exploratory)

The complexity of the food (F) and art (NF) images might partly explain the higher response accuracy

for food items as the complexity of the food images is in general lower than of the art images (Fig. 3 A)

whereas other image characteristics were not different (arousal, recognizability and valence). However,

the effect of higher response accuracy due to lower complexity might be restricted to food images

reflected in the evident interaction effect (Fig.  3 B & Fig.  3-1). Nonetheless, the model comparison

(model equations see Table 1, Eq. 3-5) does not allow for conclusions (Table 3-1) and no inference can
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be drawn on the general role of complexity for response accuracy.

Figure 3: Normed complexity of food and art images. A) Normed Complexity values are not equally distributed over the

two image categories. Non-Food (art) images have on average a higher normed complexity than food images. B) Response

accuracy depending on normed complexity of the images.  Image complexity might predict  response accuracy of food

items. The estimate of the interaction of the full model (Table 1, Eq.  3) indicated that the response accuracy of the two

image categories was differently affected by normed complexity, namely food stronger than art images. Odds ratios of all

predictors and covariates are listed in Fig. 3-1 and Table 3-1.

V.2 Does subjective hunger level moderate recognition or lure discrimination 

performance for food items?

The mean subjective hunger level averaged across MRI session did not influence food recognition (Fig.

4 A) nor lure discrimination performance (Fig. 4 B). Subjective hunger level neither had an effect on

art (NF) memory performance (Fig. 4 B) nor independently of image category (Fig. 4-1). The lack of

an effect of subjective hunger could also be inferred from the model comparison as the null model 2

without subjective hunger as predictor evidently showed the highest predictive accuracy for d’ and LDI

(Table 1, Eq. 6-8;  Tables 4-1 & 4-2). The irrelevance of subjective hunger is also visualized in the

posterior  distributions  of  the  mean  estimates  (Fig.  4-2).  As  preregistered,  we investigated  if  task-
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specific subjective hunger level, i.e. during the wanting or memory task respectively, predicted (food)

memory performance  measures  (Fig.  4-3).  None of  these task-specific  hunger  levels  did influence

target recognition or lure discrimination performance. 

Figure  4: Memory performance depending on subjective hunger per image category.  Actual and predicted A) target

recognition d’ and B) lure discrimination LDI depending on subjective hunger level per image category. Points show the

actual  data and lines  with 95%-CI depict  predictions based on full  model.  Neither d’  nor LDI were affected  by the

subjective hunger level. The estimates of the interaction of the full model (Table 1, Eq. 6, Tables 4-1 & 4-2) indicated that

the image categories were not differently influenced by hunger and the estimates of the main effect of the null model (Table

1, Eq.  7, Fig. 4-1, Tables 4-1 & 4-2)) suggested that the subjective hunger level did not affect memory performance in

general. Neither task-specific hunger level (Fig. 4-3) nor ghrelin serum levels as a proxy for objective hunger (Fig. 4-4,

Tables 4-3 & 4-4) predicted memory performance.

We additionally evaluated if fasted ghrelin serum levels as metabolic measure of hunger might predict

target recognition or lure discrimination.  However, neither food recognition nor lure discrimination

performance were influenced by ghrelin levels nor did we detect an influence independent of image

category (exploratory analysis, Fig. 4-4). Estimates of the predictors and random effects of all models

in the model comparison are listed in the supplementary material (Tables 4-3 & 4-4).
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V.3 Could the memory performance for food items (or in general) be enhanced by 

wanting?

Wanting defined as categories “unwanted”, “neutral” and “wanted” did neither influence recognition or

lure  discrimination  performance in  general  (Fig.  5)  nor  food memory in specific  (see non-evident

interaction in Fig. 5-1). Even though the model comparison only allows for certainty regarding the lack

of prediction of LDI (but not d’ due to large standard error) by wanting categories (Table 1, Eq. 9-11),

the model estimates do not support a predictive effect of the wanting categories on d’ either (Fig. 5-2 &

Tables 5-1 & 5-2) .

Figure  5: Memory  performance  depending on  wanting  and image  category.  A)  Target  recognition  d’  and B)  lure

discrimination LDI depending on wanting and image category. Depicted are mean d’ (LDI) ± standard error. Predictions

by the full  model are depicted in Fig. 5-1.  Neither d’ nor LDI were predicted by wanting category. Estimates of  all

predictors and covariates are listed in Fig. 5-2 and Tables 5-1 & 5-2.

V.3.a Does single item wanting influence response accuracy? (exploratory)

Wanting ratings of the single images predicted response accuracy. This evident enhancement by higher

wanting  is  visually  slightly  stronger  for  art  compared  to  food  images  (Fig.  6).  Even  though  the

19



predictive accuracy of the full  model (Table 1, Eq. 12) was evidently higher compared to the null

models (Table 1, Eq. 13 & 14), the estimate of the interaction effect of image category and wanting

does not allow for confident inferences as the credible interval of the interaction effect includes Zero

(for  all  model  estimates  see  Table  6-1).  Therefore,  we conducted  post-hoc  analyses  in  which  we

detected wanting enhancement for food and art separately (model estimates see Table 6-2 & Table 6-3).

In sum, the wanting main effect’s mean estimate (Fig. 6) as well as its odds ratio in the full model (Fig.

6-1A) and the null model without interaction (Fig. 6-1B) confirm a general enhancement of response

accuracy by single item wanting.

Figure 6: Predicted response accuracy by single image wanting rating per image category. Predictions are based on full

model (Table 1, Eq. 12). The estimate of the interaction suggests that the two image categories are slightly but not evidently

differently influenced by the wanting rating. Higher wanting enhances response accuracy as the estimate of the main effect

of the full model reveals but wanting might play a more important role for the art/non-food (NF) images. Odds ratios  of all

predictors and covariates are listed in  Fig. 6-1 and Table 6-1. Odds ratios of the wanting effect per image category are

listed separately in Tables 6-2 & 6-3. 
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V.3.b Is the effect of single item wanting on response accuracy stronger during memory 

encoding? (exploratory)

The enhancement of response accuracy by higher single item wanting was strongest for the old images

across food and art images, i.e. during memory encoding (Table 7-1). Response accuracy for new and

similar images was not modulated by wanting. Independent of wanting, the response accuracy for new

images was clearly higher than for old images and lowest for similar images (Fig. 7). Similar images

were evidently worse discriminated among the art images compared to the food images (Fig. 7-1,). 

Figure  7: Predicted  response accuracy by single image wanting rating for old, similar and new images  respectively.

Predictions are based on full model (Table 1, Eq. 15). The estimates of the interactions endorsed the visually evident effect

that the wanting enhancement of the response accuracy is strongest for the old images, namely during memory encoding.

Response accuracy for new images was higher than for old images and lowest  for similar images.  Odds ratios of  all

predictors and covariates are listed in Fig. 7-1 and Table 7-1. 
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V.4 Does the coherence of the entire uncinate fasciculus (UF) or a sub-bundle of the

UF influence food memory performance?

We derived the tracts of the UF from deterministic tractography. The microstructural coherence of the

UF reflects in the average normalized quantitative anisotropy (nQA) of the whole tract. The nQA of the

entire UF was higher compared to the nQA of the sub-bundle of the UF which we traced as a proxy for

a direct communication pathway from OFC to MTL  (Table 3). nQA values of the UF  ranged from

about 0.21 to 0.33 and were comparable for both hemispheres (paired Bayesian ttest: BF = 0.09). nQA

values  of  the  sub-bundle  ranged  from  about  0.10  to  0.26  and  were  evidently  different  between

hemispheres (paired Bayesian ttest: BF = 52852.47).  The magnitude of nQA values of the UF  was

comparable to whole brain nQA. Figure 8 displays exemplary fiber tracts of the entire UF and its sub-

bundle. We tested for the role of the microstructural properties of the UF and its sub-bundle in (food)

memory processes but our hypotheses were not hemisphere-specific. Therefore, we used the average

nQA value of the UF and the sub-bundle of the UF per participant per session for statistical analyses.

Microstructural  coherence of the UF did  not predict  neither  food nor art  target recognition or lure

discrimination  performance (Fig.  9  A&B)  nor independently  of  image  category  (Fig.  9-1  A&B).

Neither did the sub-bundle of the UF predict category-specific memory performance (Fig. 9 C&D) nor

independently of image category (Fig. 9-1 C&D). In both cases,  the full-null model comparisons did

not  lead  to  conclusive  predictive  accuracies  (Table  1,  Eq.  19-23 and Table  2,  Eq.  24-28)  but  the

posterior  distributions  of  the  main  effects  of  nQA  emphasize  a  lack  of  a  confident  effect  of

microstructural coherence (Fig. 9-2). The interaction additionally showed that neither the UF nor its

sub-bundle moderated the evident effect of image category (Fig. 9-2 & 9-3). Estimates of all models in

the  comparison  are  listed  in  the  supplementary  material  (Tables  9-1  &  9-2).  Due  to  the  evident

difference between left and right sub-bundles of the UF, we reran the models for left and right sub-
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bundles respectively. However, these exploratory analyses did not reveal a hemisphere-specific role of

the sub-bundle of the UF in memory processes (Fig. 9-4)

Table 2: Model equations of full and null models and the difference in predictive accuracy.

Table  3:  Mean,  standard deviation  and range of  normalized quantitative  anisotropy  values  (nQA) of  the  uncinate

fasciculus (UF) and its sub-bundle as well as the whole brain

nQA left UF right UF average UF left sub-

bundle of UF

right sub-

bundle of UF

average sub-

bundle of UF

whole brain

Mean(SD) .271 (.021) .271 (.023) .271 (.022) .183 (.024) .171 (.028) .177 (.023) .274 (.021)

Range .211 - .0318 .208 - .326 .213 - .320 .111 - .243 .100 - .264 .105 - .234 .209 - .329
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Figure  8: Exemplary tracing results of in-vivo uncinate fasciculi (UF) and sub-bundles of the UF. A: right UF with

ROIs,  B:  left  UF,  C:  right  sub-bundle  with  ROIs,  D:  left  sub-bundle.  Fiber  tracts are  derived  from  deterministic

tractography conducted in DSI studio (version 2022.01.11)  overlaid on a subject’s whole brain normalized quantitative

anisotropy map. A) Regions-of-interest for tractography of the entire UF, exemplary for the right hemisphere: red: UF seed

region from John Hopkins university (JHU) labels atlas (1mm), merged end region (green) consisting of Brodman Areas 11

and 47 identical to Granger et al.(2021) and Brodman area 10 from Brodman atlas (within DSI studio). C)  Regions-of-

interest for tractography of sub-bundle of the UF, exemplary for the right hemisphere: yellow: seed orbitofrontal cortex

regions from the AAL2 atlas (within DSI studio), pink amygdala from the FreeSurferDKT subcortical atlas and violet: the

entorhinal cortex from the FreeSurferDKT cortical atlas. Orientations: A: anterior, P: posterior.

24



Figure 9: Memory performance depending on microstructural coherence of UF and its sub-bundle per category. Actual

and  predicted  A+C)  target  recognition  d’  and  B+D)  lure  discrimination  LDI  depending  on  normalized  quantitative

anisotropy (nQA) of the uncinate fasciculus (UF, A&B) and its sub-bundle (C&D). Points show the actual data and lines

with 95%-CI depict predictions based on full models (Table 1, Eq. 19 & Table 2, Eq. 24). Neither d’ nor LDI were affected

by the microstructural coherence of the UF, reflected in nQA, or by its sub-bundle. The estimates of the interaction of the

full model indicated that the image categories were not differently influenced by the UF’s microstructural coherence. The

estimates of the main effect neither support an effect of microstructural coherence on memory performance (Fig. 9-1).

Estimates of all predictors and covariates are visualized in Fig. 9-2 & 9-3 and listed in Tables 9-1, 9-2, 9-3 & 9-4. A

hemisphere-specific role of the sub-bundle of the UF could not be confirmed (Fig. 9-4).

V.4.a Is the compactness of the individuals white matter relevant when investigating 

microstructural effects? (exploratory)

In order to exclude an influence of inter-individual differences in whole brain white matter density, we

re-ran  all  models,  addressing  the  effect  of  microstructural  coherence  on  memory  performance
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measures, taking whole brain nQA values into account. We corrected the nQA(UF) and nQA(sub-UF)

for  global  white  matter  density.  Thereto,  we  calculated  relative  nQA  values  by  division  through

nQA(whole brain).  We could not find an evident effect of these relative microstructural coherence

measures on target recognition or lure discrimination performance – neither by relative nQA(UF) nor

by relative nQA(sub-UF).

V.4.b Is the detected positive wanting effect on response accuracy moderated by the 

microstructural coherence of the UF? (exploratory)

We hypothesized that the UF might have a modulatory role on the interplay of wanting and memory.

As  the  wanting  categories  did not  evidently  differ  regarding memory  performance  measures,  we

extended  the  analysis  to  a  possible  moderation of  single  item  wanting  enhancement  of  response

accuracy by microstructural properties of the UF. However, we did not detect a moderation neither for

all images nor for old images, for which the wanting enhancement was most pronounced. The mean

estimates  (Fig.  10)  and  median  odds  ratios  (Fig.  10-1)  of  the  posterior  distributions  of  the

nQA(UF)*wanting interaction supported this lack of modulatory top-down control. Odds ratios of the

predictors  and random effects  of all  models  in  the model  comparison are listed  in  Table  10-1.  In

summary,  the  positive  wanting  effect  on  response  accuracy  was  not  evidently  moderated  by  the

microstructural coherence of the UF. 
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Figure 10: Predicted response accuracy by wanting depending on the microstructural integrity of the UF.  Predictions

are based on the full model (Table 2, Eq. 29) A) for all images and B) for old images only. The estimates of the interactions

endorsed  the  visually  evident  lack  of  a  moderation  effect  of  nQA(UF)  on  the  wanting  enhancement  of  the  response

accuracy. Odds ratios of all predictors and covariates are visualized in Fig. 10-1 and listed in Table 10-1.

V.5 Further behavioural analyses

In  order  to  discuss  the  enhanced  response  accuracy  by  wanting  during  memory  encoding,  we

additionally considered the effects  of general preference (i.e. liking).  The enhancement  by wanting

compared  to  liking  during  memory encoding is  slightly  stronger which  is  supported  by  the  slight

difference in mean estimates of the main effects (Fig.  11 A & B). The estimate of the  interaction of

liking with image category suggested that enhancement during memory encoding by liking is similar

for food and art images (Fig 11 A, Table 11-1). The same can be concluded for the enhancement by

wanting (Fig 11 B, Table 11-2). Even though the model comparison (Table 2, Eq. 33-35) did not allow

for a confident exclusion of the liking-image category interaction effect, the comparison supported the

enhanced response accuracy through liking.
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Figure 11: Recognition accuracy of old images predicted by A) liking and B) wanting. Depicted are predictions and their

95%-CI based on full model (Table 2, Eq. 33). The estimates of the interaction of the full model indicate that wanting and

liking affect both image categories similarly. The enhancement by wanting during memory encoding is slightly stronger

than by general liking. Odds ratios of the corresponding models are listed in Tables 11-1 & 11-2.

As preregistered,  we investigated if body composition measures,  namely BMI, gender-standardized

waist-to-hip ratio and gender-standardized fat mass, affect food memory performance. Neither target

recognition nor lure discrimination were predicted by body composition measures nor did we find

differences between food and art memory performance. We investigated if possible effects of nausea,

anxiety, difficulty of the tasks or exhaustion by the tasks affected memory performance. None of these

well-being  measures  influenced  the  participants’  performance  on  the  memory  task  (see  GitLab

repository).

Calorie content did not influence response accuracy of the food images evidently.  Neither the model

comparison (Table 2, Eq. 36-38) nor the estimates of the main effects (Fig. 12, Fig. 12-1 A) did allow

for  confident  inference  about  the  role  of  calorie  content  for  food memory  accuracy.  The wanting

enhancement of response accuracy did not depend on calorie content of the depicted food (Table 2, Eq.

36, Fig. 12-1B, Table 12-1). 
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Figure 12: Response accuracy predicted by calorie content of the food items. Predictions are based on the null model 1

(Table 2, Eq. 37). Mean predictions and their 95%-CI are depicted. Calorie content does not evidently influence response

accuracy of the food images. Odds ratios of all predictors and covariates are visualized in Fig. 12-1 and listed in Table 12-

1.

Female  participants  (n=20)  outperformed  male  participants  (n=40)  in  the  memory  task.  Target

recognition, lure discrimination and memory accuracy were predicted by gender which was included as

covariate in all Bayesian regression models (see  Fig. 13). With additional  exploratory analyses, we

aimed to  understand this gender difference. The analyses included interactions of gender with socio-

economic status, attention network performance, personality traits and eating behaviour traits, as well

as  their  main  effects.  Gender  interaction  effects  on  target  recognition  or lure  discrimination

performance could not  be confirmed.  However,  the personality  trait  “neuroticism” predicted  target

recognition and lure discrimination performance. We found that the more neurotic the participants the

worse  their  memory  performance  (Fig.  14).  This  effect  was  independent  of  their  gender  and age
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(Tables 14-1 & 14-2).

Figure 13: Memory performance per gender group. A) The target recognition d’ and B) the lure discrimination LDI of

female (F) participants (bordeaux) is better than of male participants (M) (orange). Violin plots present the distribution of

the  two  indices  per  gender.  The  estimate’s  CI  did not  include  0  which  indicated  an  evident  difference  in  memory

performance between gender groups.

Figure 14: Memory performance depending on personality trait neuroticism. Actual and predicted A) target recognition

d’ and B) lure discrimination LDI depending on neuroticism assessed with the NEO-FFI. Points show the actual data and

lines with 95%-CI depict predictions based on null model 2 (Table 2, Eq.  41). d’ and LDI were evidently predicted by

neuroticism.  The more neurotic the participants, the worse their memory performance.  Estimates of the corresponding

models are listed in Tables 14-1 & 14-2.
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V.6 Further DWI analyses

Microstructural coherence of the UF was neither decreased by age (Fig. 15 A) nor evidently different

between females and males (Fig. 15 B). The model comparison (Table 2, Eq. 43-47) did not allow for

confident inferences about  possible  effects on UF microstructure.  Nevertheless, the model estimates

indicated a lack of an age and/or gender effect (see Table 15-1). An impact of the individuals' body

composition reflected in BMI, WHR (gender-standardized) and FM (gender-standardized) was equally

undetectable. In summary, neither the microstructural coherence of the UF nor of the whole brain (Fig.

15-1) was affected by gender, age or body composition.

Figure  15:  Microstructural  coherence  of  UF  depending  on  age  and  gender.  Actual  and  predicted  microstructural

coherence of the UF, reflected in its nQA value, A) by age and B) by gender. Points show actual data of the color-coded

subjects. A) Prediction line with 95%-CI is based on null model 2 (Table 2, Eq.  45).  B) Violin and boxplots present the

distribution of the nQA values over both genders. Neither age nor gender predicted the microstructural coherence of the

UF. Odds ratios of the corresponding models are listed in Tables 15-1. The effects of age and gender on the whole brain’s

microstructural coherence is shown in Fig. 15-1.
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VI Discussion

In this preregistered study combining in-depth behavioural, physiological and advanced neuroimaging

data from 60 adults (20 females) of up to 4 time points, we find that desire to eat (i.e. food wanting)

predicted recognition of food items, and that food was better memorized than art images. In contrast,

we could not detect  a moderating  effect  of microstructural  measures of the uncinate  fasciculus  on

memory performance, extracted from diffusion imaging, in this homogeneous cohort of 20 to 41 year

old  adults.  Exploratory  results  indicated  effects  of  gender  and  personality  traits  on  memory

performance. 

Food images were better recognized and discriminated than art images. Evolutionary seen, the ability to

recognize and discriminate visual details of food items has been important to differentiate between

edible and potentially toxic food items, e.g. berries or mushrooms. This bias of greater attention to food

stimuli(Kumar  et  al.,  2016) might  explain  increased  recognition  and  discrimination

performance(Humphreys et al., 2010).  In our study, we confirmed that food is better recognized and

discriminated than art  images.  Nevertheless,  complexity of the art  images was higher which could

partly explain their lower recognition and discrimination. However, the influence of image complexity

is  highly individual(Marin  and Leder,  2013) and still  controversial(Chai  et  al.,  2010;  Nguyen and

McDaniel,  2015; Gomez et al.,  2020).  Therefore,  the higher evolutionary and hedonic relevance of

food compared to art might be determining food memory performance.

Subjective  hunger  level  varied largely but did not  predict  memory performance in our population.

Several previous studies(Morris and Dolan, 2001; Talmi et al., 2013; Montagrin et al., 2021) found an

enhancing effect of  hunger on food memory performance when hunger was contrasted to satiety. In

our  study  though,  participants  received  a  standardized  breakfast-shake.  Thus,  the  difference  in
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perceived  hunger  states  might  not  have  been  large  enough  to  explain  variance  in  food  memory

performance. Additionally, fasted ghrelin serum levels, as a proxy for “physiological hunger”, neither

predicted  subsequent  memory  performance.  However,  ghrelin  serum  levels  were  not  measured

immediately before the task which may explain a lack of correlation with food memory compared to

previous studies(Carlini et al., 2010). 

The  stronger  the  wanting  to  eat  a  certain  food  during  memory  encoding  the  better  was  the  food

recognition accuracy in the subsequent task in our study. This finding suggests that not only wanting

alone determines if a certain food is chosen to eat but that food choices might also be influenced by

recognition  memory  which  is reinforced  by  previous  rewarding  experiences.  Hereby,  we  add  on

previous studies showing that  food choices were influenced by memories of past experiences(Higgs,

2016). Outside of the experimental context, food wanting is constantly manipulated by an overload of

food stimuli  in our environment. This often repetitious exposure to food stimuli  might enhance the

desire to eat especially high-caloric food(Duraisingam et al., 2021) as well as its recognition(Stang,

1975). On top of that manipulation, the displayed food items often have a high energy density(Powell

et al., 2007) and might therefore fortify overnutrition by their over-representation in the environment.

Recently,  de  Vries  and  colleagues(2022) have  shown that  humans’  spatial  recognition memory  is

biased towards high-caloric compared to low-caloric food items independent of desire to eat. However

meaningful for our ancestors, this calorie bias in recognition memory in combination with an increased

desire to eat high-caloric food which in turn enhances recognition might be nowadays detrimental for a

healthy, intuitive food decision-making. In our study, this calorie bias in recognition memory accuracy

was not evident, possibly due to the grouping into calorie quartiles. Besides the enhancement of food

recognition accuracy through food wanting, this wanting enhancement could also be detected for the art

images. Hence, recognition of single items in general seems to be fortified through desire. 
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Considering the close link of reward and emotion(Baxter et al.,  2000; Murray, 2007) and previous

studies showing effects of emotion on target recognition d’ and lure discrimination LDI(Kensinger et

al., 2006; Leal et al., 2014; Szőllősi and Racsmány, 2020), we hypothesized an effect of wanting on

these memory  indices. However, we could not confirm this effect, possibly due to power reduction

after  categorizing  into “unwanted”, “neutral” and “wanted” images. We suppose that individualized

picture sets  of more intensely desired or despised food images could elicit food wanting effects on

different memory sub-processes.

As  wanting  is  distinct  to  liking(Berridge  et  al.,  2009),  we compared the effect  of  wanting  during

memory encoding to the participants’ general liking of these encoded images. The enhancement by

liking was also evident but weaker than by wanting. This finding confirms the previously claimed

enhanced recognition  accuracy by preference(Brooks and Watkins,  1989;  Wang and Chang,  2004;

Newell and Shanks, 2007) and furthers the field by adding a slightly stronger memory enhancement

through  wanting.  Unclear  is  though,  if  liking  and  wanting  determine  recognition  accuracy  or  if

recognition  enhances  liking  and  wanting  through  the  mere  exposure  effect.  The  direction  of  this

relation has been previously questioned(Brooks and Watkins, 1989; Wang and Chang, 2004). In the

case of a “cross-talk”  between wanting and memory, the danger of a vicious cycle regarding food-

decision making could arise. While speculative,  this vicious cycle could consist of food choices of

high-caloric, highly wanted food items and an increased recognition memory of these, which then in

turn leads to a more frequent choice of these food items due to the remembered desire and positive

experience.

In  our  study,  we  could  not  find  an  association  between  food  recognition  or  lure  discrimination

performance and participants’  eating behaviour. This result endorsed our screening attempt  that the

participants  scored low on food restrictions and eating restraint. Therefore, populations with aberrant
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eating  traits  may  behave  differently.  Previous  studies  showed  that  restrained  eaters  present  more

extreme cravings than unrestrained eaters(Fedoroff et al., 2003). Besides higher cravings, higher calorie

content has been shown to enhance spatial memory of food items and memory of eating(Seitz et al.,

2021a). Therefore,  studying the influence of food wanting and calorie content  on food memory in

restrained eaters might be insightful regarding their food decision-making.

On the neuronal level,  we hypothesized a  putative top-down modulatory control by microstructural

properties  of  the uncinate  fasciculus  (UF) in  memory processes  which  integrate food  wanting and

hunger. The UF connects brain areas which process wanting(Lebreton et al., 2009), hunger(Morris and

Dolan, 2001), emotion(Gao et al., 2021) and memory(Bakker et al., 2008; Yassa and Stark, 2011) and

has been previously shown to play a role in emotional memory processes(Yau et al., 2009; Granger et

al., 2021). However, we could not transfer and confirm this role in wanting enhanced memory, neither

for the UF nor for a sub-bundle of the UF. This sub-bundle terminates in the MTL and might carry

relevant  information for wanting enhanced recognition.  Even though evidence is weak(Canli  et al.,

2000; Dolcos et al.,  2004), we tested if only left  hemispheric  OFC-MTL communication might be

relevant for wanting enhanced recognition nut could not confirm hemisphere-specific influence of the

UF’s sub-bundle. Another possible explanation for the lack of microstructural modulation might be that

in  this  relatively  young and  healthy  study  population,  white  matter  properties  might  not  (yet)  be

relevant in the interaction of cognitive functions. Previous studies showed that variations or changes in

white matter microstructure correlate with memory performance, but these correlations concern mainly

elderly populations(Cremers et al., 2016) and populations with neuropsychological disorders(Alves et

al., 2018; Subramaniam et al., 2018). 

Female  participants  in  our  study outperformed  male  participants  regarding target  recognition,  lure

discrimination and memory accuracy but none of the assessed anthropometric, cognitive or personality

35



measures  could  explain  this  gender  difference.  However,  we  detected  a  negative  influence  of

neuroticism on memory indices. Higher cognitive load due to neurotic behaviour might lead to reduced

memory  capacities.  This  assumption  is  supported  by  associations  of  neuroticism  with  reduced

retrospective memory(Buchanan, 2017) and working memory performance(Studer-Luethi et al., 2012).

Our gender-unbalanced study design does not allow for definite conclusions but in line with previous

studies(Levy et al., 2005; Wang, 2013), gender differences in memory performance might be evident.

Overall,  through conscientious  definition  of  our  study population,  advanced  tractography  of  white

matter  and  conservative  Bayesian  regression  modeling(Gelman  and  Tuerlinckx,  2000),  we  are

confident presented results are reliable and that the detected effects are not false positives.

In conclusion, we showed that food recognition memory is influenced by food desires. In contrast, the

microstructure  of  implicated  neural  pathways,  namely  the UF, was not  of importance  for  memory

performance  in  this  sample  of  healthy,  overweight  adults.  Other  factors  unrelated  to  white  matter

connectivity could be be of higher importance for memory performance. It cannot be excluded that in

populations with deteriorated white matter such as in elderly(Westlye et al., 2010) or obese(Zhang et

al., 2018), the microstructural coherence of the UF might actually determine cognitive functions related

to  food  memory.  Regarding  the  overnutrition  pandemic,  cognitive  behavioural  therapies  could  be

improved by strategies that connect food desires and subsequent food recognition. The interlacing of

food desires and food memory could also be considered in the development of public health campaigns

and regulations. 
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VIII Figure Legends
Figure  1: Wanting  task  and  subsequent  Memory  task.  Left:  Memory  Encoding  during  Wanting  Task:
Participants were asked to indicate on an 8-point-Lickert scale how much they want to have the depicted food or
art image. They were previously told that they would be rewarded with the highest rated food and art image
after the MRI scan. Right: Memory task including target recognition and lure discrimination: Participants
had to indicate as quickly as possible if they had seen the presented food or art image in the previous task
(“old”), if they had not seen it before (“new”) or if it was similar to a previously seen image (also “new”).
Depicted are two exemplary similar (bot not identical) food and art stimuli.

Figure  2:  Memory  performance  per  Image  Category.  A)  The  target  recognition  d’  and  B)  the  lure
discrimination LDI of food (F) items  (yellow)  is better than of non-food (NF)/art items (blue). Violin plots
present  the  distribution  of  the  two indices  over  the  colour-coded single  subjects  per  image  category.  The
estimate’s CI  did not include 0 which indicated an evident difference between image categories regarding d’
and LDI. Estimates of all predictors and covariates are listed in Fig. 2-1 and Tables 2-1 & 2-2. 

Figure 3: Normed complexity of food and art images. A) Normed Complexity values are not equally distributed
over the two image categories. Non-Food (art) images have on average a higher normed complexity than food
images. B) Response accuracy depending on normed complexity of the images. Image complexity might predict
response accuracy of food items. The estimate of the interaction of the full model (Table 1, Eq. 3) indicated that
the response accuracy of the two image categories was differently affected by normed complexity, namely food
stronger than art images. Odds ratios of all predictors and covariates are listed in Fig. 3-1 and Table 3-1.

Figure 4: Memory performance depending on subjective hunger per image category. Actual and predicted A)
target recognition d’ and B) lure discrimination LDI depending on subjective hunger level per image category.
Points show the actual data and lines with 95%-CI depict predictions based on full model. Neither d’ nor LDI
were affected by the subjective hunger level. The estimates of the interaction of the full model (Table 1, Eq. 6,
Tables  4-1  & 4-2)  indicated  that  the  image  categories  were  not  differently  influenced  by  hunger  and  the
estimates of the main effect of the null model (Table 1, Eq.  7, Fig. 4-1, Tables 4-1 & 4-2)) suggested that the
subjective hunger level did not affect memory performance in general. Neither task-specific hunger level (Fig. 4-
3) nor ghrelin serum levels as a proxy for objective hunger (Fig. 4-4, Tables 4-3 & 4-4) predicted memory
performance.

Figure 5: Memory performance depending on wanting and image category. A) Target recognition d’ and B)
lure discrimination LDI depending on wanting and image category. Depicted are mean d’ (LDI) ± standard
error. Predictions by the full model are depicted in Fig. 5-1.  Neither d’ nor LDI were predicted by wanting
category. Estimates of all predictors and covariates are listed in Fig. 5-2 and Tables 5-1 & 5-2.

Figure  6: Predicted  response accuracy by single image wanting rating per image category. Predictions are
based on full model (Table 1, Eq. 12). The estimate of the interaction suggests that the two image categories are
slightly  but  not  evidently  differently  influenced by the wanting rating.  Higher  wanting enhances response
accuracy as the estimate of the main effect of the full model reveals but wanting might play a more important
role for the art/non-food (NF) images. Odds ratios of all predictors and covariates are listed in  Fig. 6-1 and
Table 6-1. Odds ratios of the wanting effect per image categorie are listed seperately in Tables 6-2 & 6-3. 
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Figure  7:  Predicted  response accuracy by single  image wanting rating for  old,  similar  and new images
respectively. Predictions are based on full model (Table 1, Eq. 15). The estimates of the interactions endorsed
the visually evident effect that  the wanting enhancement of the response accuracy is strongest  for the old
images, namely during memory encoding. Response accuracy for new images was higher than for old images
and lowest for similar images. Odds ratios of all predictors and covariates are listed in Fig. 7-1 and Table 7-1. 

Figure 8: Exemplary tracing results of in-vivo uncinate fasciculi (UF) and sub-bundles of the UF.  A: right
UF with ROIs, B: left UF, C: right sub-bundle with ROIs, D: left sub-bundle. Fiber tracts are derived from
deterministic tractography conducted in DSI studio (version 2022.01.11)  overlaid on a subject’s whole brain
normalized quantitative anisotropy map. A) Regions-of-interest for tractography of the entire UF, exemplary for
the right hemisphere: red: UF seed region from John Hopkins university (JHU) labels atlas (1mm), merged end
region (green) consisting of Brodman Areas 11 and 47 identical to Granger et al. (2021) and Brodman area 10
from  Brodman atlas (within DSI studio).  C)  Regions-of-interest  for tractography of  sub-bundle of the UF,
exemplary for the right hemisphere: yellow: seed orbitofrontal cortex regions from the AAL2 atlas (within DSI
studio), pink amygdala from the FreeSurferDKT subcortical atlas and violet: the entorhinal cortex from the
FreeSurferDKT cortical atlas. Orientations: A: anterior, P: posterior.

Figure  9:  Memory  performance  depending on microstructural  coherence  of  UF and its  sub-bundle  per
category.  Actual and predicted A+C) target recognition d’ and B+D) lure discrimination LDI depending on
normalized quantitative anisotropy (nQA) of  the  uncinate fasciculus (UF, A&B) and its  sub-bundle (C&D).
Points show the actual data and lines with 95%-CI depict predictions based on full models (Table 1, Eq. 19 &
Table 2, Eq. 24). Neither d’ nor LDI were affected by the microstructural coherence of the UF, reflected in
nQA, or by its sub-bundle. The estimates of the interaction of the full model indicated that the image categories
were not differently influenced by the UF’s microstructural coherence. The estimates of the main effect neither
support an effect of microstructural coherence on memory performance (Fig. 9-1). Estimates of all predictors
and covariates are visualised in Fig. 9-2 & 9-3 and listed in Tables 9-1, 9-2, 9-3 & 9-4. A hemisphere-specific
role of the sub-bundle of the UF could not be confirmed (Fig. 9-4).

Figure  10:  Predicted response accuracy by wanting depending on the microstructural integrity of the UF.
Predictions are based on the full model (Table  2, Eq. 29)  A) for all images and  B) for old images only. The
estimates  of  the  interactions  endorsed the visually  evident  lack of  a  moderation effect  of  nQA(UF)  on the
wanting enhancement of the response accuracy. Odds ratios of all predictors and covariates are visualised in
Fig. 10-1 and listed in Table 10-1.

Figure  11:  Recognition  accuracy  of  old  images  predicted  by  A)  liking  and  B)  wanting. Depicted  are
predictions and their 95%-CI based on full model (Table 2, Eq. 33). The estimates of the interaction of the full
model indicate that wanting and liking affect both image categories similarly. The enhancement by wanting
during memory encoding is slightly stronger than by general liking. Odds ratios of the corresponding models
are listed in Tables 11-1 & 11-2.

Figure 12: Response accuracy predicted by calorie content of the food items. Predictions are based on the null
model 1 (Table 2, Eq. 37). Mean predictions and their 95%-CI are depicted. Calorie content does not evidently
influence response accuracy of the food images. Odds ratios of all predictors and covariates are visualised in
Fig. 12-1 and listed in Table 12-1.
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Figure  13:  Memory  performance  per  gender  group.  A)  The  target  recognition  d’  and  B)  the  lure
discrimination LDI of  female (F)  participants (bordeaux)  is better than of  male participants  (M)  (orange).
Violin plots present the distribution of the two indices per  gender. The estimate’s CI  did not include 0 which
indicated an evident difference in memory performance between gender groups.

Figure 14: Memory performance depending on personality trait neuroticism. Actual and predicted A) target
recognition d’ and B) lure discrimination LDI depending on neuroticism assessed with the NEO-FFI. Points
show the actual data and lines with 95%-CI depict predictions based on null model 2 (Table 2, Eq. 41). d’ and
LDI were evidently predicted by neuroticism.  The more neurotic the participants, the worse their memory
performance. Estimates of the corresponding models are listed in Tables 14-1 & 14-2.

Figure  15:  Microstructural  coherence  of  UF  depending  on  age  and  gender.  Actual  and  predicted
microstructural coherence of the UF, reflected in its nQA value, A) by age and B) by gender. Points show actual
data of the colour-coded subjects. A) Prediction line with 95%-CI is based on null model 2 (Table 2, Eq. 45). B)
Violin and boxplots present the distribution of the nQA values over both genders.  Neither age nor gender
predicted the microstructural coherence of the UF.  Odds ratios of the corresponding models are listed in
Tables 15-1. The effects of age and gender on the whole brain’s microstructural coherence is shown in Fig. 15-
1.

IX Table Legends

Table 1: Model equations of full and null models and the difference in predictive accuracy.

Table 2: Model equations of full and null models and the difference in predictive accuracy.

Table 3:  Mean, standard deviation and range of normalized quantitative anisotropy values (nQA) of the
uncinate fasciculus (UF) and its sub-bundle as well as the whole brain

X Extended Data Legends

Figure 2-1: Model estimates of the full model for the effect of image category and covariates (Table 1, Eq. 1) on
d’ and LDI. Values indicate the positive (blue) or negative (red) mean estimate of the posterior distribution and
whiskers represent the 50% (thick, inner) and 95% (thin, outer) CI. The effect of image category (F>NF) and
Gender (M<F) on memory performance measures seems to be evident as their 95% CI do not include Zero. 

Table 2-1: Full and null Bayesian linear regression models for the effect of image category on d’.

Table 2-2: Full and null Bayesian linear regression models for the effect of image category on LDI.

Figure  3-1:  Model  estimates  of  the  full  model  for  the  effect  of  normed  complexity,  image  category  and
covariates (Table 1, Eq. 3) on response accuracy. Values indicate the positive (blue) or negative (red) median
odds ratio (exponentiated regression coefficients) and whiskers represent the 50% (thick, inner) and 95% (thin,
outer) CI. The interaction of image category with normed complexity as well as the effect of image category
(F>NF) and Gender (M<F) on response accuracy seem to be evident as their 95% CI did not include Zero. 
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Table 3-1: Full and null Bayesian linear regression models for the role of image complexity.

Figure 4-1: Memory performance depending on subjective hunger. Actual and predicted A) target recognition
d’ and B) lure discrimination LDI depending on subjective hunger level. Points show the actual data and lines
with 95%-CI depict predictions based on full model. Neither d’ nor LDI were affected by the subjective hunger
level.  The estimates of the main effect of the null model (Table  1, Eq. 7) suggested that the subjective hunger
level did not affect memory performance in general.

Table 4-1: Full and null Bayesian linear regression models for the effect of subjective hunger level on d’.

Table 4-2: Full and null Bayesian linear regression models for the effect of subjective hunger level on LDI.

Figure 4-2: Model estimates of the full model for the effect of subjective hunger level and covariates (Table 1,
Eq. 6) on d’ and LDI.  Values indicate the positive (blue) or negative (red) mean estimate of  the posterior
distribution and whiskers represent the 50% (thick, inner) and 95% (thin, outer) CI. The subjective hunger level
did not differently affect image categories nor did it affect memory performance.  Only the effect of Gender
(M<F) on memory indices seem to be evident as its 95% CI did not include Zero. 

Figure  4-3: Memory performance depending on subjective hunger level per  MRI task. Actual and predicted
A+B) target recognition d’ and C+D) lure discrimination LDI depending on subjective hunger level during
A+C)  Wanting  task  and  B+D)  Memory  task.  Points  show  the  actual  data  and  lines  with  95%-CI  depict
predictions based on full model. Neither d’ nor LDI were affected by the subjective hunger level during any of
the tasks. Predictions are based on the null model 1 (Table 1, Eq. 7).

Figure  4-3: Memory performance depending on subjective hunger level per  MRI task. Actual and predicted
A+B) target recognition d’ and C+D) lure discrimination LDI depending on subjective hunger level during
A+C)  Wanting  task  and  B+D)  Memory  task.  Points  show  the  actual  data  and  lines  with  95%-CI  depict
predictions based on full model. Neither d’ nor LDI were affected by the subjective hunger level during any of
the tasks. Predictions are based on the null model 1 (Table 1, Eq. 7).

Table 4-3: Full and null Bayesian linear regression models for the effect of serum ghrelin levels on d’.

Table 4-4: Full and null Bayesian linear regression models for the effect of serum ghrelin levels on LDI.

Figure 5-1: Predicted A) target recognition d’ and B) lure discrimination LDI depending on wanting category. 
Predictions based on full model (Table 1, Eq. 9) with 95% CI. Neither d’ nor LDI were predicted by wanting 
category. The estimates of the full model for the interaction indicated that the image categories were not 
differently influenced by wanting category. The estimates for the main effect suggested that the wanting category
did not affect memory performance indices in general.

Figure 5-2: Model estimates of the full model (Table 1, Eq. 9) for the effect of wanting category and covariates 
on d’ and LDI. Values indicate the positive (blue) or negative (red) mean estimate of the posterior distribution 
and whiskers represent the 50% (thick, inner) and 95% (thin, outer) CIs. Neither d’ nor LDI are evidently 
different between wanting categories. Only the effect of image category (F>NF) and Gender (M<F) on memory 
performance measures seem to be evident as their 95% CI do not include Zero.
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Table 5-1: Full and null Bayesian linear regression models for the effect of wanting categories on d’.

Table 5-2: Full and null Bayesian linear regression models for the effect of wanting categories on LDI.

Figure 6-1: Odds ratios for the effect of single item wanting, image category and covariates on response 
accuracy: A) full model (Table 1, Eq. 12), B) null model 1 (Table 1, Eq. 13). Values indicate the positive (blue) 
or negative (red) median odds ratio (exponentiated regression coefficients) and whiskers represent the 50% 
(thick, inner) and 95% (thin, outer) CI. A) The interaction of wanting with image category shows a tendency that
the response accuracy for NF (art) images might be more slightly enhanced by wanting but B) in general the 
main effect of single item wanting seems to be evidently enhancing response accuracy as its 95% CI does not 
include Zero.

Table 6-1: Full and null Bayesian linear regression models for the effect of single image wanting ratings on 
response accuracy.

Table 6-2: Full and null Bayesian linear regression models for the effect of food image wanting ratings on 
response accuracy.

Table 6-3: Full and null Bayesian linear regression models for the effect of art image wanting ratings on 
response accuracy. 

Figure 7-1: Predicted response accuracy for old, similar and new food and art (NF) images separately. 
Predictions based on the full model (Table 1, Eq. 15). Mean predictions and their 95% CI are depicted. The 
estimates of the main effect emphasize the visually clearly higher response accuracy for new images compared 
to old images. Response accuracy for similar images was lowest. The interaction of category with status 
(similar>old) suggests that discrimination accuracy of similar images was evidently lower for art than for food 
images.

Table 7-1: Full and null Bayesian linear regression models for the effect of single image wanting ratings of new,
old and similar images respectively on response accuracy.

Figure 9-1: Memory performance depending on microstructural coherence of UF and its sub-bundle. Actual 
and predicted A+C) target recognition d’ and B+D) lure discrimination LDI depending on normalized 
quantitative anisotropy (nQA) of the uncinate fasciculus (UF, A&B) and its sub-bundle (C&D). Points show the 
actual data and lines with 95%-CI depict predictions based on null models (Table 1, Eq. 20 & Table 2, Eq. 25). 
Neither d’ nor LDI were affected by the microstructural coherence of the UF, reflected in nQA, or by its sub-
bundle.

Figure 9-2: Model estimates of the full model (Table 1, Eq. 19) for the effect of microstructural properties of the
UF and covariates on d’ and LDI. Values indicate the positive (blue) or negative (red) mean estimate of the
posterior distribution and whiskers represent the 50% (thick, inner) and 95% (thin, outer) CIs. The UF neither
moderated effects  of  wanting category,  subj.  hunger level  or  image category on memory performance,  nor
predicted its  microstructural  coherence d’  or  LDI.  Only  the  effect  of  image category (F>NF) and Gender
(M<F) on memory performance measures seem to be evident as their 95% CI do not include Zero.
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Figure 9-3: Model estimates of the full model (Table 2, Eq. 24) for the effect of microstructural properties of the 
sub-bundle of the UF and covariates on d’ and LDI. Values indicate the positive (blue) or negative (red) mean 
estimate of the posterior distribution and whiskers represent the 50% (thick, inner) and 95% (thin, outer) CIs. 
The sub-bundle of the UF, which connects OFC and MTL, neither moderated effects of wanting category, subj. 
hunger level or image category on memory performance, nor predicted its microstructural coherence d’ or LDI. 
Only the effect of Gender (M<F) on memory performance measures seems to be evident as its 95% CI do not 
include Zero.

Table 9-1-1: Full and null (1-6) Bayesian linear regression models for the effect of microstructural coherence of
the UF on d’.

Table 9-1-2: Null (7-14) Bayesian linear regression models for the effect of microstructural coherence of the UF
on d’.

Table 9-2-1: Full and null (1-6) Bayesian linear regression models for the effect of microstructural coherence of
the UF on LDI.

Table 9-2-2: Null (7-14) Bayesian linear regression models for the effect of microstructural coherence of the UF
on LDI.

Table 9-3-1: Full and null (1-6) Bayesian linear regression models for the effect of microstructural coherence of
the sub-bundle of the UF on d’.

Table 9-3-2: Null (7-14) Bayesian linear regression models for the effect of microstructural coherence of the 
sub-bundle of the UF on d’.

Table 9-4-1: Full and null (1-6) Bayesian linear regression models for the effect of microstructural coherence of
the sub-bundle of the UF on LDI.

Table 9-4-2: Null (7-14)  Bayesian linear regression models for the effect of microstructural coherence of the 
sub-bundle of the UF on LDI.

Figure 9-4: Memory performance depending on microstructural coherence of left and right sub-bundle of UF. 
Actual and predicted A+B) target recognition d’ and C+D) lure discrimination LDI depending on normalized 
quantitative anisotropy (nQA) of the A+C) left and B+D) right sub-bundle of the UF. Points show the actual 
data and lines with 95%-CI depict predictions based on null models (cf. Table 2, Eq. 25). Neither d’ nor LDI 
were affected by the microstructural coherence of a hemisphere-specific sub-bundle of the UF.

Figure 10-1: Odds ratios of the full model (Table 2, Eq. 29) for the effect of microstructural properties of the UF
and covariates on response accuracy. Values indicate the positive (blue) or negative (red) mean estimate of the 
posterior distribution and whiskers represent the 50% (thick, inner) and 95% (thin, outer) CIs. The UF neither 
moderated effects of wanting category, subj. hunger level or image category on memory accuracy, nor predicted
its microstructural coherence memory accuracy. Only the effect of Gender (M<F) on memory accuracy seems to
be evident as its 95% CI do not include Zero.
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Table 10-1: Full and null Bayesian linear regression models for the moderation effect of the microstructural 
coherence of the UF on single image wanting regarding response accuracy.

Table 11-1: Full and null Bayesian linear regression models for the effect of single image liking ratings of 
previously encoded (old) images on response accuracy.

Table 11-2: Full and null Bayesian linear regression models for the effect of single image wanting ratings of 
previously encoded (old) images on response accuracy.

Figure 12-1: Odds ratios for the effect of calorie content of food images on response accuracy: A) null model 1 
(Table 2, Eq. 37), B) full model 1 (Table 2, Eq. 36). Values indicate the positive (blue) or negative (red) median 
odds ratio (exponentiated regression coefficients) and whiskers represent the 50% (thick, inner) and 95% (thin, 
outer) CI. A) Calorie content did not evidently predict food memory accuracy. B) Additionally, the wanting 
enhancement of memory accuracy was not different between calorie quartiles. Only the better memory accuracy 
for new images and the effect of gender seem to be evident as their 95% CI did not include Zero.

Table 12-1: Full and null Bayesian linear regression models for the effect of calorie content on food memory 
accuracy.

Table 14-1: Full and null Bayesian linear regression models for the effect of neuroticism on d’.

Table 14-2: Full and null Bayesian linear regression models for the effect of neuroticism on LDI.

Table 15-1: Full and null Bayesian linear regression models for the effect of age and gender on microstructural 
coherence of the UF.

Figure 15-1:  Microstructural coherence of whole brain depending on age and gender. Actual and predicted 
microstructural coherence of the whole brain, reflected in its nQA value, A) by age and B) by gender. Points 
show actual data of the colour-coded subjects. A) Prediction line with 95%-CI is based on null model 2 (Table 
2, Eq. 45). B) Violin and boxplots present the distribution of the nQA values over both genders. Neither age nor 
gender predicted the microstructural coherence of the UF.
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