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PSEUDO-SYMMETRIC PAIRS FOR KAC-MOODY ALGEBRAS

VIDAS REGELSKIS AND BART VLAAR

To Jasper Stokman on the occasion of his 50th birthday

Abstract. Lie algebra involutions and their fixed-point subalgebras give rise to symmetric spaces
and real forms of complex Lie algebras, and are well-studied in the context of symmetrizable Kac-
Moody algebras. In this paper we propose a generalization. Namely, we introduce the concept of a
pseudo-involution, an automorphism which is only required to act involutively on a stable Cartan
subalgebra, and the concept of a pseudo-fixed-point subalgebra, a natural substitute for the fixed-
point subalgebra. In the symmetrizable Kac-Moody setting, we give a comprehensive discussion
of pseudo-involutions of the second kind, the associated pseudo-fixed-point subalgebras, restricted
root systems and Weyl groups, in terms of generalizations of Satake diagrams.
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1. Introduction

Given a set, possibly with additional structure, its involutive automorphisms and corresponding
fixed-point subsets are natural objects of interest. In the case of a Lie algebra1 g, an involutive
automorphism θ : g → g and its fixed-point subalgebra gθ give rise to the notion of a symmetric
pair (g, gθ) and a linear decomposition of g in terms of ±1-eigenspaces: g = gθ ⊕ g−θ. These have
been extensively studied for semisimple finite-dimensional Lie algebras, see e.g. [Sa60, Ar62, He12],
for instance as part of the investigation of the associated symmetric space G/Gθ or the real form of
g defined in terms of the semi-involution associated to θ; key tools for this study are the restricted
root system and the restricted Weyl group associated to θ. In these works the involutions are
described combinatorially in terms of Satake diagrams, which are particular decorations of the
Dynkin diagram associated to g (there are also other descriptions in terms of so-called Kac or
Vogan diagrams, see e.g. [Ka69, OV94, CH04, CZ17]).

Kac-Moody algebras, which we always assume to be symmetrizable and indecomposable, gen-
eralize simple finite-dimensional Lie algebras as well as their (suitably extended) loop algebras

2020 Mathematics Subject Classification. Primary: 17B22, 17B40, 17B67; Secondary: 16B30, 17B37, 20F55.
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1We always work over an algebraically closed field of characteristic 0. Lie algebra automorphisms are always

understood to fix this field pointwise.
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[Ka68, Mo68, Ka74, PK83, Ka90]. Involutive automorphisms for Kac-Moody algebras were studied
for the affine case in [Ba86, Le88] and more generally in [KW92, Ch. 5]. In the infinite-dimensional
case, a crucial distinction exists between those automorphisms θ which preserve the two conjugacy
classes of Borel subalgebras and those which swap them; they are said to be of the first and of
the second kind and the corresponding real forms are called almost compact and almost split, re-
spectively. Involutions of the second kind, which are naturally described by Kac-Moody versions of
Satake diagrams, were studied in [Be89] and, with a particular focus on the associated real forms,
in [BBBR95, BR06]. They were revisited in the context of q-deformations of their fixed-point
subalgebras in [Ko14, Sec. 2]. For involutions of the first kind, see e.g. [Na92, BR03, BR07].

Such classifications of involutions rely on detailed knowledge of the structure of the automorphism
group in general, see e.g. [PK83, Ba86, KW92, Gü10, CZ17]. A natural generalization of the study of
involutive automorphism and their fixed-point subalgebras is obtained when we replace “involutive”
by “finite-order”, see e.g. [Ka69, JZh01, HG09].

1.1. Pseudo-involutions and pseudo-fixed-point subalgebras. In this paper we pursue a
rather different direction. Namely, we consider the following two questions for an arbitrary Lie
algebra g, defined over an algebraically closed field F of characteristic 0, and a distinguished sub-
algebra t ⊆ g:

(i) Are there (non-involutive) automorphisms θ : g → g which stabilize t such that the restriction
θ|t is an involution? Can we classify them?

(ii) What is a reasonable substitute k ⊆ g for the fixed-point subalgebra gθ? Since θ|t is still an
involution, it is natural to require that k ∩ t = tθ.

Furthermore, it is natural to replace t, θ and k in this setup by their Aut(g)-conjugacy classes.

To our best knowledge this problem has not been studied in great detail. Of course, whether this
is interesting depends on the choice of t; in particular, t should not be too small. If t is a Cartan
subalgebra2, we believe that the problem above is of interest for many different g, given the role
that Cartan subalgebras play in representation theory.

Slightly modifying the above setup, we propose the following generalization of an involutive Lie
algebra automorphism.

Definition 1.1. We call θ ∈ Aut(g) a pseudo-involution if there exists a θ-stable Cartan subalgebra
t ⊆ g such that θ|t is an involution, i.e. θ2|t = idt. �

Immediately we see that an involutive automorphism of g is a pseudo-involution if it stabilizes a
Cartan subalgebra. We expect that the resulting linear decomposition

(1.1) t = tθ ⊕ t−θ,

although weaker than the corresponding decomposition for g, is strong enough to serve as a natural
minimal condition for extensions of results in harmonic analysis on symmetric spaces to more
general homogeneous spaces.

To address question (ii) we propose the following generalization of the notion of a symmetric pair
(associated to θ), which relies on the t-root space decomposition3 of g. Denote by Φ(t) ⊂ t∗\{0}
the t-root system and by g

(t)
α ⊂ g the t-root space associated to α ∈ Φ(t).

2In this paper by Cartan subalgebra we mean a maximal ad-diagonalizable subalgebra of g. Since F is algebraically
closed, Cartan subalgebras are abelian. If in addition g is finite-dimensional its Cartan subalgebras are precisely its
self-normalizing nilpotent subalgebras.

3By t-root space we shall always mean a root space which is not associated to 0 ∈ t∗, i.e. not t itself.
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Definition 1.2. Let θ ∈ Aut(g) be a pseudo-involution and let t ⊆ g be a θ-stable Cartan subalgebra
such that θ|t is an involution. We call a subalgebra k ⊆ g a pseudo-fixed-point subalgebra if

k ∩ t = tθ,(1.2)

dim
(
k ∩
(
g(t)α + θ(g(t)α )

))
= dim(g(t)α ) for all α ∈ Φ(t).(1.3)

We call the pair (g, k) a pseudo-symmetric pair (associated to θ). �

The two conditions in Definition 1.2 can be motivated by showing that they hold for fixed-point
subalgebras of (suitable) involutions. Indeed, let θ be an involutive automorphism of g with θ-stable

Cartan subalgebra t, so that θ(g
(t)
α ) = g

(t)
θ∗(α) for all α ∈ Φ(t), and set k = gθ. We observe that (1.2)

is trivially satisfied. If θ∗(α) 6= α then the sum g
(t)
α + θ(g

(t)
α ) is direct and it is straightforward to

show that a basis of g
(t)
α can be θ-symmetrized to obtain a basis of g

(t)
α + θ(g

(t)
α ). If θ∗(α) = α then

(1.3) is equivalent to g
(t)
α ⊆ gθ and hence one needs the additional assumption that θ fixes pointwise

g
(t)
α , cf. [KW92, 5.15]. We obtain that, given an involutive automorphism θ with stable Cartan

subalgebra t, the fixed-point subalgebra gθ is pseudo-fixed-point if θ fixes pointwise all stable t-root

spaces, i.e. all g
(t)
α such that α ∈ (Φ(t))θ

∗
. Observe that this condition is part of the definition of a

maximally split involution of g, see e.g. [Le02, Section 7].

In the rest of the paper we study pseudo-involutions of the second kind and their pseudo-fixed-
point subalgebras of a Kac-Moody algebra g. To make the representation-theoretic role for Cartan
subalgebras more concrete we remark here that important categories of g-modules are defined in
terms of the standard Cartan subalgebra h, notably the category O introduced by Kac [Ka74] as a
Kac-Moody generalization of the category introduced in [Ge70, BGG71].

Since every involution θ of the second kind of a Kac-Moody algebra has a stable Cartan subalge-
bra (see e.g. [KW92, Lem. 5.7]), involutions of the second kind are examples of pseudo-involutions.
Moreover, by [KW92, Cor. 5.19], gθ is a pseudo-fixed-point subalgebra.

Recall that g is defined in terms of combinatorial datum (generalized Cartan matrix and as-
sociated Dynkin diagram). In terms of particular decorations of Dynkin diagrams, which we call
compatible decorations, see Definition 2.1, in Theorem 2.5 we classify pseudo-involutions of g of the
second kind. It is intermediate between (1) a weaker statement about semisimple automorphisms of
the second kind of g given in [KW92, 4.38-4.39] in terms of more general combinatorial datum and
(2) a classification of involutions of the second kind of g, see [KW92, Rmk. 5.33], [BBBR95], [Ko14,
App. A] in terms of Satake diagrams (more special combinatorial datum). The key ingredients of
the proof of Theorem 2.5 are basic decomposition results for Aut(g), see e.g. [KW92, Sec. 4] and
a handy result about twisted involutions in Coxeter groups due to Springer, see [Sp85]. We give a
refinement in Corollary 2.7 and point to a possible strengthening of this result in Conjecture 2.8.
Although these classifications follow straightforwardly from existing results on Kac-Moody algebras
and Coxeter groups, we believe that due to the novelty of the concept of pseudo-involution, they
qualify as main results of this paper.

If a compatible decoration satisfies an additional constraint then it is called a generalized Satake
diagram, see Definition 3.4. Precisely in this case it gives rise to a pseudo-fixed-point subalgebra k,
see Theorem 3.8, which is a direct Kac-Moody generalization of [RV20, Thm. 3.3], written in the
language of pseudo-fixed-point subalgebras. From this an Iwasawa decomposition associated to the
pair (g, k) readily follows, see Corollary 3.10; such a statement was not included in [RV20]. Note
that Iwasawa decompositions are well-known for symmetric spaces in the Kac-Moody setting, see
e.g. [PK83, Cor. 4(b)] (written in terms of the Kac-Moody group G).
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The restricted Weyl group and restricted root system can be considered for any involutive au-
tomorphism of the root system of g; in fact the restricted Weyl group and root system can be
studied without direct reference to g, see e.g. [Sch69, Lu76, He84, Hé91, Lu95] and also [Lu03,
Ch. 25], [DK19, Sec. 2] and [RV20, Sec. 2]. Generalized Satake diagrams already arose in the work
[He84] on restricted root systems associated to involutions of finite root systems. In this paper we
consider the Kac-Moody generalization of this and show that generalized Satake diagrams unify
various approaches to the restricted root system and Weyl group. The key results are Theorem
4.24, Corollary 4.25, Theorem 4.29 and Theorem 4.30.

1.2. Applications in the quantum deformed setting. If g is a symmetrizable Kac-Moody
algebra, the universal enveloping algebra Ug possesses a q-deformation Uqg (Drinfeld-Jimbo quan-
tum group), see e.g. [Ji85, Dr87, Lu94]. We briefly discuss the role of pseudo-involutions and
pseudo-fixed-point subalgebras in the context of reflection equations (quartic braid relations) in
representations of Uqg. Note that the canonical Cartan subalgebra h ⊂ g plays an important role:
since Uqh is generated by all invertible elements of Uqg, only automorphisms of g which stabilize h

can be lifted to algebra automorphisms of Uqg.

Given an involutive automorphism θ of g, consider the fixed-point subalgebra k = gθ. For finite-
dimensional g Letzter identified in [Le99, Le02, Le03] a one-sided coideal subalgebra Uqk ⊆ Uqg
which q-deforms Uk (cf. [NS95, NDS97] for alternative approaches to Uqk). A crucial step in
Letzter’s work was to “arrange” θ (by conjugacy) to make it maximally split: it stabilizes h, fixes
pointwise all θ-stable positive root spaces and sends other positive root spaces to negative root
spaces, see [Le99, Eqns. (3.1)-(3.3)] and [Le02, Sec. 7].

In addition, there is a B2-analogue of quasitriangularity for these subalgebras: there exists an
element K in the centralizer of Uqk (in a completion of Uqg) which satisfies the type B2-braid
relation. The construction of this element was described by Balagović and Kolb in [BK19], building
upon an earlier construction in [BW18] due to Bao and Wang for a particular k in the case g =
slN . These works place quantum symmetric pairs in the context of reflection equation algebras,
see [KS92, KS93, KS09]. In [RV20] we showed that the above construction for g, with minor
adjustments, is applicable in a larger setting. The Lie-theoretic underpinning of this is precisely
given by pseudo-involutions and their pseudo-fixed-point subalgebras.

In [Ko14], Kolb provided the Kac-Moody generalization of Letzter’s construction of Uqk of k = gθ

in the case that θ is an involution of the second kind, using a combinatorial approach to such θ
indicated in [KW92, Sec. 5] and discussed in [BBBR95]. Recall that Kac-Moody algebras of affine
type are (extensions of) loop algebras of finite-dimensional simple Lie algebras. Indeed, in the
affine case suitable interwiners for Uqk are known, see e.g. [DM03, RV16], to satisfy the reflection
equation (boundary Yang-Baxter equation) with spectral parameter [Ch84, Sk88, Ch92]. Therefore
pseudo-fixed-point subalgebras are relevant to the study of (quantum) integrability in the presence
of a boundary.

In [AV20] universal versions of these interwiners were constructed by extending the approach
from [BK19] to the Kac-Moody setting. Moreover, Kolb in [Ko21] showed that the existence of
the bar involution for Uqk follows from the construction in [AV20] which does not rely on explicit
presentations of Uqk. The works [AV20, Ko21] deal with quantizations of pseudo-fixed-point sub-
algebras k of Kac-Moody algebras, not just fixed-point subalgebras of involutions. Therefore the
present paper provides a Lie-theoretic context for the q-deformed constructions in [AV20, Ko21].

This work is also intended to serve as a platform supporting generalizations, in terms of a
homogeneous framework for the entire range of pseudo-symmetric pairs, of advanced representation-
theoretic applications, both undeformed and q-deformed. Thus far these have mainly focused on
quasi-split symmetric pairs; we mention [SV15, RSV15a, RSV15b, RSV18], [SR20, RS20, St21] and
[ES18, BW18, LW20] as illustrative examples of various flavours.
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1.3. Outline. This paper is organized as follows. Section 2 discusses pseudo-involutions in the
Kac-Moody setting in terms of compatible decorations. Subsections 2.1-2.7 are used to introduce
background material, mainly drawn from [KW92] and [BBBR95], and fix notation.

In Section 3 we look at pseudo-fixed-point subalgebras of Kac-Moody algebras in terms of gen-
eralized Satake diagrams, thereby providing Kac-Moody generalizations of the finite-dimensional
work in [RV20, Sec. 2 and 3].

In Section 4 we survey, combine and extend various approaches to the corresponding restricted
root system and restricted Weyl group, creating a comprehensive catalogue of results in this area.

Finally, in Appendix A we provide a classification of generalized Satake diagrams of finite and
affine types, combining and adding to existing lists, featuring a new easy-to-use notation. We hope
that these tables prove to be a useful reference for the community.

In this paper we will follow (almost precisely) Carter’s “Dynkin notation” for the affine root
systems, see [Ca05, App.]. We have the following correspondence with the customary notation due
to Kac, see e.g. [Ka90, Tables Aff 1-3]:

(Dynkin) Ân≥1 B̂n≥3 B̂∨
n≥3 Ĉn≥2 Ĉ∨

n≥2 Ĉ′
n≥1 D̂n≥4 Ê6,7,8 F̂4 F̂∨4 Ĝ2 Ĝ∨

2

(Kac) A
(1)
n B

(1)
n A

(2)
2n−1 C

(1)
n D

(2)
n+1 A

(2)
2n D

(1)
n E

(1)
6,7,8 F

(1)
4 E

(2)
6 G

(1)
2 D

(3)
4

where for the classical Lie types we have indicated the usual constraints on n (the rank of the
generalized Cartan matrix) to avoid low-rank coincidences.

Acknowledgements. The authors are grateful to the referees for valuable suggestions. The second-
named author was supported by the UK Engineering and Physical Sciences Research Council, grant
number EP/R009465/1.

2. Pseudo-involutions in terms of compatible decorations

This section gives a basic and, we hope, pedagogical account of the classification of pseudo-
involutions of the second kind of Kac-Moody algebras in terms of decorations of Dynkin diagrams.
We begin by reviewing some theory of Kac-Moody algebras and their automorphisms, for which
our main references are [KW92] and [BBBR95].

2.1. Generalized Cartan matrices and Dynkin diagrams. Given a finite index set I, let
A = (aij)i,j∈I be a generalized Cartan matrix, i.e. aii = 2 for all i ∈ I, aij ∈ Z≤0 for all distinct
i, j ∈ I and aij = 0 if and only if aji = 0. We will always assume that A is symmetrizable, i.e.
there exist setwise-coprime positive integers ǫi (i ∈ I) such that ǫiaij = ǫjaji for all i, j ∈ I. The
group of diagram automorphisms of A is the finite group

(2.1) Aut(A) := {τ : I → I invertible : aτ(i)τ(j) = aij for all i, j ∈ I}.
Let J ⊆ I. The principal submatrix AJ := (aij)i,j∈J is also a symmetrizable generalized Cartan
matrix. We set

(2.2) J⊥ := {i ∈ I : aij = 0 for all j ∈ J}.
We call K ⊆ J a component of J if J ⊆ K ∪K⊥. We call J connected if it is nonempty and has no
nonempty proper components. From now on we assume I is connected; hence (ǫi)i∈I is uniquely
determined by A.

We say that A is of finite type if det(AJ ) > 0 for all J ⊆ I and of affine type if det(A) = 0 and
det(AJ ) > 0 for all J ⊂ I. Recall that if aijaji ≤ 4 for all i, j ∈ I, which is satisfied if A is of finite
or affine type, the Dynkin diagram associated to (I,A) is an oriented multigraph with vertex set
I with the edges determined as follows. Distinct vertices i, j ∈ I are connected by max(|aij |, |aji|)
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edges; if ǫi = ǫj we do not assign an orientation to the edges between i and j and otherwise these
edges point to the node with the smaller value of ǫ.

2.2. Braid group and Weyl group. Associated to A is the Artin-Tits braid group

(2.3) Br =
〈
{Ti}i∈I : TiTj · · ·︸ ︷︷ ︸

mij

= TjTi · · ·︸ ︷︷ ︸
mij

if i 6= j
〉

where mij = 2, 3, 4, 6 if aijaji = 0, 1, 2, 3, respectively, and mij = ∞ if aijaji ≥ 4. The assignment
Ti 7→ si extends to a surjective group map from Br to the Weyl group

(2.4) W =
〈
{si}i∈I : s2i = 1, (sisj)

mij = 1 if i 6= j
〉
.

The pair (W, {si}i∈I) is a Coxeter system and hence associated to it is the length function ℓ and
the notion of reduced expression, see e.g. [Bo68, Ch. IV, §1.1]. We define a map T : W → Br by
T (si1 · · · siℓ) = Ti1 · · ·Tiℓ if si1 · · · siℓ is reduced; hence T (ww′) = T (w)T (w′) for all w,w′ ∈W such
that ℓ(ww′) = ℓ(w) + ℓ(w′).

The action of Aut(A) on Br defined by τ(Ti) = Tτ(i) descends to an action of Aut(A) on W which
respects ℓ so that τ(T (w)) = T (τ(w)) for all τ ∈ Aut(A), w ∈W .

2.3. Minimal realization and bilinear forms. Recall that F is an algebraically closed field of
characteristic 0. We fix a minimal realization (h,Π,Π∨) of A over F; that is, h is a (|I|+corank(A))-
dimensional F-linear space and Π∨ = {hi}i∈I ⊂ h and Π = {αi}i∈I ⊂ h∗ are linearly independent
subsets such that αj(hi) = aij for all i, j ∈ I. There is a unique symmetric bilinear F-valued form

( , ) on h′ := SpFΠ
∨ with the property (hi, hj) = ǫ−1

j aij for all i, j ∈ I. By [Ka90, 2.1] one may

choose any complementary subspace h′′ to h′ in h and extend ( , ) to a nondegenerate symmetric
bilinear F-valued form on h with the properties

(2.5) (h, hj) = ǫ−1
j αj(h), (h′, h′′) = 0 for all h ∈ h, j ∈ I and h′, h′′ ∈ h′′.

Consider the linear map ν : h → h∗ defined by ν(h)(h′) = (h, h′) for all h, h′ ∈ h; it satisfies
ν(hi) = ǫ−1

i αi for all i ∈ I. Since ( , ) is nondegenerate, ν is an isomorphism. We now define
a symmetric bilinear form on h∗ by (λ, µ) = (ν−1(λ), ν−1(µ)), which satisfies (αi, αj) = ǫiaij for
all i, j ∈ I. In the remainder of this paper, whenever we discuss orthogonality, self-adjointness or
isometry, it will always be with respect to ( , ).

There are faithful linear isometric actions of W on h and h∗ determined by

(2.6) si(h) = h− αi(h)hi, si(α) = α− α(h)αi for i ∈ I, h ∈ h, α ∈ h∗.

The group Aut(A) acts via relabelling on h′; this can be extended to an action on h by choosing h′′

according to [KW92, 4.19]. The isomorphism ν allows us to define an action of Aut(A) on h∗ and
the bilinear forms ( , ) are Aut(A)-invariant.

2.4. Kac-Moody algebra and roots. Let g = g(A) be the (indecomposable symmetrizable) Kac-
Moody Lie algebra defined in terms of A with Chevalley generators ei, fi (i ∈ I) and hi := [ei, fi],
see [KW92, 1.1 and 1.2]. The derived subalgebra of g is the corank(A)-codimensional subalgebra g′

generated by all ei and fi (i ∈ I). The centre c is contained in h′ = h∩ g′. The action of Aut(A) on
h extends to an action by Lie algebra automorphisms of g if we set τ(ei) = eτ(i) and τ(fi) = fτ(i)
for all τ ∈ Aut(A), i ∈ I.
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We denote the subalgebra of g generated by all ei by n+ and the subalgebra generated by all fi
by n−. As identities of h-modules, we have the triangular decomposition g = n+ ⊕ h ⊕ n− holds
and the root space decomposition

(2.7) g =
⊕

α∈h∗

gα, gα = {x ∈ g : ∀h ∈ h, [h, x] = α(h)x}.

We call α ∈ h∗ a root if gα 6= {0} and define the root system Φ as the set of nonzero roots (note
that g0 = h). The root lattice is Q = ZΦ = ZΠ. We denote the positive cone of Q by Q+ = Z≥0Π.
We set Φ+ = Φ ∩Q+ so that n+ =

⊕
α∈Φ+ gα, Π ⊆ Φ+ and Φ = Φ+ ∪ (−Φ+).

The action of W on h∗ stabilizes Φ. We call α ∈ Φ real if α ∈ W (Π) and otherwise imaginary.
If α = w(αi) for some w ∈ W , i ∈ I then α∨ := w(hi) ∈ h is well-defined, Φ ∩ Zα = {α,−α},
(α,α) > 0, the root space gα is 1-dimensional and for all x ∈ gα the adjoint map ad(x) : g → g is a
locally nilpotent derivation.

2.5. Kac-Moody group and triple exponentials. Recall the Kac-Moody group G and, for
α ∈ W (Π), the map exp : gα → G, see [KW92, 1.3]. There is a group morphism Ad : G → Aut(g)
uniquely determined by Ad(exp(x)) = exp(ad(x)) for all x ∈ gα with α ∈ Φ real. There is also a
group morphism from Br to G given by triple exponentials

(2.8) Ti 7→ ni := exp(ei)exp(−fi)exp(ei).
Denote by N the subgroup of G which is the image of this morphism; note that Aut(A) acts on N by
relabelling. We compose the map T :W → Br defined in Section 2.2 with this morphism to obtain
a map n : W → G with image N which satisfies n(si) = ni for all i ∈ I and n(ww′) = n(w)n(w′)
if w,w′ ∈W are such that ℓ(ww′) = ℓ(w) + ℓ(w′). For all i ∈ I and all τ ∈ Aut(A) it follows that

(2.9) Ad(ni)|h = si, τ ◦ Ad(ni) = Ad(nτ(i)) ◦ τ.
Let H̃ := Hom(Q,F×) denote the group of characters on the root lattice Q. There is a group

morphism Ad : H̃ → Aut(g) given by

(2.10) Ad(χ)(x) = χ(α)x, χ ∈ H̃, x ∈ gα, α ∈ Φ,

which induces an action of H̃ on G, so we may consider H̃ ⋉ G and Ad(H̃ ⋉ G) < Aut(g), see
[KW92, 1.10]. By [BBBR95, Prop. 4.10.1],

(2.11) Ad(n(w−1)) = Ad(ζ(w)) ◦ Ad(n(w))−1

for all w ∈W , where ζ(w) ∈ H̃ is defined by

(2.12) ζ(w)(λ) =
∏

α∈Φ+∩w(−Φ+)

(−1)λ(α
∨), λ ∈ Q.

2.6. Subdiagrams of finite type. Given a subset X ⊆ I we may consider the Lie subalgebra
gX := 〈{ei, fi}i∈X〉, the Cartan subalgebra hX = h∩gX , the parabolic Weyl groupWX := 〈{si}i∈X〉
and the root subsystem ΦX := Φ ∩ QX where QX =

∑
i∈X Zαi. The following statements are

equivalent: AX is of finite type; the restriction of ( , ) to hX×hX is positive definite; WX is finite;
gX is finite-dimensional; ΦX is finite; all elements of ΦX are real. In this case gX is semisimple and
we simply say that X is of finite type, which we assume henceforth.

The unique longest element wX ∈WX is necessarily an involution and there exists an involutive
diagram automorphism oiX ∈ Aut(AX), called opposition involution, such that wX(αi) = −αoiX(i)

for all i ∈ X. Immediately we obtain

(2.13) wX · si = soiX(i) · wX for all i ∈ X
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in WX . The opposition involution of a connected subset X ⊆ I of finite type is the trivial diagram
automorphism except in the case where X is of type Ar with r > 1, Dr with r > 3 odd or E6; in
these cases oiX is the unique nontrivial diagram automorphism.

Because any τ ∈ Aut(A) preserves the length function, we obtain

(2.14) τ ◦ wX = wX ◦ τ ⇐⇒ τ ∈ AutX(A)

where AutX(A) is the subgroup {τ ∈ Aut(A) : τ(X) ⊆ X}. We denote nX := n(wX) and obtain
that τ ∈ Aut(A) commutes with Ad(nX) in Aut(g) if and only if τ ∈ AutX(A). By [BBBR95, Cor.
4.10.3] we have

(2.15) Ad(n2X) = Ad(ζX) where ζX := ζ(wX) ∈ H̃.

It follows that ζX(λ) = (−1)λ(2ρ
∨
X
) for all λ ∈ Q with ρ∨X half the sum of positive coroots of gX

(the sum of the fundamental coweights of gX).

2.7. Automorphisms of g. For any subset t ⊆ g we denote by Aut(g, t) the subgroup of Aut(g)
of automorphisms stabilizing t and by Aut(g; t) the subgroup of Aut(g, t) of automorphisms fixing t

pointwise. Furthermore, if K is a subgroup of Aut(g) and θ, θ′ ∈ Aut(g) are such that k ◦ θ = θ′ ◦ k
for some k ∈ K we say that θ and θ′ are K-conjugate and write θ ∼K θ′.

The subgroup Aut(g; g′) is the group of transvections of g described in [KW92, 4.20]; its elements
are of the form σf := id + f ◦ π′′ where f is an arbitrary F-linear map: h′′ → c and π′′ is the
projection from g onto h′′ with respect to the decomposition g = g′ ⊕ h′′. Such elements commute

with Ad(H̃ ⋉G) and satisfy τ ◦ σf ◦ τ−1 = στ◦f◦τ−1 for all τ ∈ Aut(A). The following then defines
a subgroup of Aut(g):

(2.16) Inn(g) := Aut(g; g′)× Ad(H̃ ⋉G).

The Chevalley involution is the unique involutive Lie algebra automorphism ω such that ω(ei) =
−fi and ω|h = −idh. Note that ω centralizes the subgroups Aut(A), Aut(g; g′) and Ad(N) of Aut(g).
For all X of finite type we have

(2.17) Ad(nX)|gX = ω ◦ oiX |gX ,
see e.g. [BBBR95, Lem. 4.9]; in particular ω ∈ Aut(A) ⋉ Inn(g) if A is of finite type. We set
Out(A) = Aut(A) if A is of finite type and Out(A) = {id, ω} × Aut(A) otherwise. The following
decomposition of Aut(g) is established in [KW92, 4.23]:

(2.18) Aut(g) = Out(A)⋉ Inn(g).

If θ ∈ Aut(g, h) then we denote the dual linear map (θ|h)∗ on h∗ simply by θ∗. From the definition
of root space it follows that θ(gα) = g(θ∗)−1(α) for all α ∈ Φ. In particular, θ∗ stabilizes Φ and Q.

Furthermore, θ acts on H̃ via (θ ∗ χ)(λ) = χ((θ∗)−1(λ)) for all λ ∈ Q, χ ∈ H̃, see [KW92, 4.23].

We denote by H̃θ the subgroup of H̃ consisting of those χ ∈ H̃ such that θ ∗ χ = χ. Note that,
since the field F is closed under taking square roots, one has

(2.19) ∀(θ, χ) ∈ Aut(g, h)× H̃ ∃χ′ ∈ H̃θ : Ad(χ) ◦ θ ∼
Ad(H̃) Ad(χ

′) ◦ θ.

By [KW92, 1.16 (i)], Aut(g, h)∩Ad(G) = Ad(N); since elements of Out(A), Aut(g; g′) and Ad(H̃)
all stabilize h we obtain

(2.20) Aut(g, h) = Out(A) ⋉ Inn(g, h), Inn(g, h) := Aut(g; g′)× Ad(H̃ ⋉N).

Note that elements of Aut(g, h) send real root spaces to real root spaces.
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By [PK83, Thm. 3], every Borel subalgebra of g is Ad(G)-conjugate to b+ or b−, where b± :=
〈h, n±〉. In particular, given θ ∈ Aut(g), θ(b+) is Ad(G)-conjugate to b+ or b− and we say that θ is
of the first or second kind, respectively. According to [KW92, 4.6], θ is of the second kind if and
only if θ(b+)∩ b+ is finite-dimensional. The set of automorphisms of the first kind is a subgroup of
Aut(g) and its coset with respect to ω is the set of automorphisms of the second kind. By (2.17), if
g is finite-dimensional then these two subsets coincide; otherwise they define a partition of Aut(g).

2.8. Twisted involutions and compatible decorations. Let θ ∈ Aut(g, h) be of the second

kind such that θ2|h = idh. By (2.20) there exist a linear map f : h′′ → c, φ ∈ H̃, w ∈ W and
τ ∈ Aut(A) such that

(2.21) θ = σf ◦ Ad(φ · n(w)) ◦ ω ◦ τ.
By Aut(g; g′)-conjugacy we may assume that f , and hence σf , commutes with τ . From the condition
that the restriction of θ to h is involutive we obtain

(2.22) f = 0, τ(w) = w−1, τ2 = idI .

In particular, w ∈ W is a τ -twisted involution. Invoking the result [Sp85, Prop. 3.3], we obtain
that there exists v ∈W and X ⊆ I of finite type such that τ |X = oiX and

(2.23) w = v ◦ wX ◦ τ(v)−1.

Recalling (2.11) we obtain

(2.24) θ = Ad(φ · n(v) · nX) ◦ ω ◦ τ ◦ Ad(ζ(w) · n(v)−1).

Hence there exists χ ∈ H̃, X ⊆ I of finite type and involutive τ ∈ AutX(A) such that τ |X = oiX
and

(2.25) θ ∼Ad(N) Ad(χ · nX) ◦ ω ◦ τ

Now by (2.19) we may assume that χ ∈ H̃θ(X,τ) where

(2.26) θ(X, τ) := Ad(nX) ◦ ω ◦ τ.
Note that θ(X, τ) is a particular case of a special semisimple automorphism of the second kind as
defined in [KW92, 4.38]. We observe that the three factors in (2.26) pairwise commute so that
θ(X, τ)2 = Ad(ζX) by (2.15); in particular, the order of θ(X, τ) divides 4. Also, by (2.17), the
condition τ |X = oiX implies that θ(X, τ)|gX = idgX , i.e. θ(X, τ) fixes pointwise all θ(X, τ)-stable
root spaces.

We are led to the following definition, the natural Kac-Moody analogue of [RV20, Eqn. (2.8)].

Definition 2.1. Let X ⊆ I and τ ∈ AutX(A). We call (X, τ) a compatible decoration ifX is of finite
type, τ2 = idI and τ |X = oiX . Furthermore, we call (X, τ, χ) an enriched compatible decoration if

(X, τ) is a compatible decoration and χ ∈ H̃θ(X,τ). If (X, τ, χ) is an enriched compatible decoration,
in a minor abuse of notation we will write θ(X, τ, χ) = Ad(χ) ◦ θ(X, τ). �

The following result summarizes the above discussion.

Proposition 2.2. Let θ ∈ Aut(g, h) be a pseudo-involution of the second kind. Then there exists
an enriched compatible decoration (X, τ, χ) such that θ ∼Inn(g,h) θ(X, τ, χ).

Compatible decorations are indicated diagrammatically by decorating the underlying Dynkin
diagram as follows: fill the nodes corresponding to X and indicate the nontrivial τ -orbits by
bidirectional single arrows. The following basic properties will be useful later.
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Lemma 2.3. Let (X, τ) be a compatible decoration, let i ∈ I\X and let Z be the union of connected
components of X ∪ {i, τ(i)} containing i or τ(i). The following statements are true.

(i) The pair (X ∩ Z, τ |Z) is a compatible decoration of the generalized Cartan matrix AZ , and
either Z is of type A1 × A1 or Z is connected.

(ii) One has the following identity for linear maps on h (or linear maps on h∗):

(2.27) (θ(X, τ)− id) ◦ (τ − id) = 0.

(iii) If {κ∨j }j∈X denotes the set of fundamental coweights of gX , then

(2.28) wX(αi) = αi +
∑

j∈X

vijαj, vij = −(αi + ατ(i))(κ
∨
j ) ∈ Z≥0.

Proof.

(i) Suppose i /∈ X⊥ and let j ∈ X such that aij 6= 0. Let X ′ be the connected component

of X containing j, so that i /∈ (X ′)⊥. Then τ |X′ = oiX |X′ = oiX′ . Taking the union of
all such X ′, we obtain the first statement. Furthermore, from aτ(i)τ(j) = aij it follows that

τ(i) /∈ (X ′)⊥ so that X ′ ∪{i, τ(i)} is connected. Now suppose i ∈ X⊥. By the above analysis,
also τ(i) ∈ X⊥. Consider the full Dynkin subdiagram whose set of vertices is Z = {i, τ(i)}.
If Z is not connected, it must be of type A1 × A1.

(ii) The linear map (θ(X, τ)− id) ◦ (τ − id) = (wX − id) ◦ (τ − id) maps into hX ; on the other hand

its image lies in h−θ(X,τ). Since θ(X, τ)|hX = idhX it follows that (θ(X, τ) − id) ◦ (τ − id) = 0.
A similar argument applies to the action on h∗.

(iii) It is clear that the first equality in (2.28) holds for some nonnegative integers vij. Now apply
that equality to the fundamental coweight κ∨j for j ∈ X. It yields vij = (wX(αi))(κ

∨
j )−αi(κ∨j ).

Since (X, τ) is a compatible decoration, we readily obtain (wX(αi))(κ
∨
j ) = αi(wX(κ

∨
j )) =

−αi(τ(κ∨j )) = −ατ(i)(κ∨j ) and we arrive at the desired expression for vij in terms of κ∨j . �

Satake diagrams (of Kac-Moody type) are particular types of compatible decorations, associated
to almost split real forms of Kac-Moody algebras or equivalently to involutive automorphisms of g
of the second kind (see [BBBR95, Def. 4.10 (b), Cor. 4.10.4] and [Ko14, Def. 2.3]). We can restate
this definition as follows.

Definition 2.4. We call i ∈ I\X an odd node if τ(i) = i and ζX(αi) = −1. A compatible decoration
is called a Satake diagram if there are no odd nodes. �

2.9. Classification of pseudo-involutions of the second kind. Now let θ ∈ Aut(g) be an
arbitrary pseudo-involution of the second kind and let t be a θ-stable Cartan subalgebra of g such
that θ|t is an involution. By [PK83, Thm. 2(a)], h is Ad(G)-conjugate to t. We can now apply
Proposition 2.2 and hence deduce the following main result of this section.

Theorem 2.5. Any pseudo-involution of the second kind is Inn(g)-conjugate to θ(X, τ, χ) for some
enriched compatible decoration (X, τ, χ).

Theorem 2.5 is a special case of [KW92, 4.39] with stronger constraints on the datum (X, τ). It
can be restated as follows: the assignment (X, τ, χ) 7→ θ(X, τ, χ) induces a surjection:

(2.29) {enriched compatible decorations} → {pseudo-involutions of the 2nd kind}/Inn(g).
We can compare Theorem 2.5 with [Ko14, Prop. A.6], the analogous statement about involutions
of the second kind in terms of Satake diagrams (X, τ). In that case without loss of generality we
may let χ take values among fourth roots of unity, see [Ko14, (2.7)], in order to guarantee the
involutiveness of θ(X, τ, χ).
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Note that Aut(A) acts on enriched compatible decorations via

(2.30) ψ · (X, τ, χ) = (ψ(X), ψ ◦ τ ◦ ψ−1, ψ ∗ χ), ψ ∈ Aut(A).

Also, ω commutes with θ(X, τ) for all compatible decorations (X, τ) and ω ∗ χ = χ−1 ∈ H̃θ(X,τ)

for all χ ∈ H̃θ(X,τ). Finally, note that all elements of Out(A) act by conjugation on the set of
pseudo-involutions of the second kind. Hence we obtain from Theorem 2.5 the following result.

Corollary 2.6. The assignment (X, τ, χ) 7→ θ(X, τ, χ) induces a surjection:

θ : {enriched compatible decorations}/Aut(A) → {pseudo-involutions of the 2nd kind}/Aut(g).
In the same way, [Ko14, Prop. A.6] can be promoted to the existence of a surjection from the

set of Aut(A)-orbits of Satake diagrams to the set of Aut(g)-conjugacy classes of involutions of
the second kind. Owing to results in [KW92, Ch. 5] about involutive automorphisms of g, this
surjection is in fact a bijection for any A, see [Ko14, Thm. 2.7].

However, the map θ in Corollary 2.6 is not always injective. Indeed, if A is such that there exists
a compatible diagram (X, τ) with at least one odd node, then there always exists a choice of χ such

that θ(X, τ, χ) is an involution. For instance, fix a square root
√
−1 ∈ F of −1 and let χ ∈ H̃ be

defined by χ(αi) = (
√
−1)2αi(ρ∨X ) for all i ∈ I. It can be checked using the formula (2.28) and the

relation ρ∨X =
∑

j∈X κ
∨
j that χ ∈ H̃θ(X,τ). Moreover, we have θ(X, τ, χ)2 = Ad(χ2 · ζX) = idg, as

claimed. By [Ko14, Thm. 2.7], θ(X, τ, χ) is Aut(g)-conjugate with some θ(X ′, τ ′, χ′) where (X ′, τ ′)
is a Satake diagram and χ′ is the character s(X, τ) defined in [Ko14, (2.7)]. Since the Aut(A)-action
on the set of compatible decorations preserves the set of Satake diagrams, injectivity does not hold.

Conversely, if χ ∈ H̃ is such that θ(X, τ, χ)2 = idg and i is an odd node then χ(αi−wX(αi)) = −1,
so χ(αj) 6= 1 for some j ∈ X. Hence, any involution of the form (X, τ, χ) where (X, τ) is not a
Satake diagram does not fix pointwise gX . It is therefore natural to focus on pseudo-involutions
of the second kind which fix pointwise all stable root spaces. Straightforwardly one obtains the
following refinement of Corollary 2.6.

Corollary 2.7. Any pseudo-involution of the second kind which fixes pointwise all stable root spaces
is Inn(g)-conjugate to θ(X, τ, χ) for some enriched compatible decoration (X, τ, χ) with χ|QX

= 1.

The set of enriched compatible decorations (X, τ, χ) such that χ|QX
= 1 is Aut(A)-stable. We

conjecture that only allowing maps which fix pointwise all stable root spaces resolves the failure of
the surjection θ in Corollary 2.6 to be a bijection.

Conjecture 2.8. The assignment (X, τ, χ) 7→ θ(X, τ, χ) induces a bijection θfix from

{enriched compatible decorations (X, τ, χ) such that χ|QX
= 1}/Aut(A)

to

{pseudo-involutions of the 2nd kind fixing pointwise all stable root spaces}/Aut(g).
Note that if ψ ∈ Aut(A) and (X, τ, χ) is a compatible decoration such that χ|QX

= 1 then
θ(ψ · (X, τ, χ)) = ψ ◦ θ(X, τ, χ) ◦ ψ−1. Considering Corollary 2.7 we see that in order to prove
Conjecture 2.8, it suffices to establish the injectivity of θfix. Note that pseudo-involutions θ of the
second kind which fix pointwise stable root spaces automatically have a split pair, see [KW92, 5.15],
so that a proof along the lines of the last part of [Ko14, App. A] may be possible. On the other
hand, the crucial result [KW92, Thm. 5.31] does not directly extend to pseudo-involutions: it is
no longer true that g = b+ + gθ if θ = θ(X, τ, χ) is not an involution. Nevertheless, it is useful to
follow this approach in first instance.
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Consider a pair of enriched compatible decorations (X, τ, χ) and (X ′, τ ′, χ′) such that χ|QX
=

χ′|QX′ = 1 and

(2.31) θ ◦ φ = φ ◦ θ′

for some φ ∈ Aut(g), where θ := θ(X, τ, χ) and θ′ := θ(X ′, τ ′, χ′). We wish to show that there
exists ψ ∈ Aut(A) such that

(2.32) ψ · (X ′, τ ′, χ′) = (X, τ, χ).

Using the decomposition (2.18) and observing that θ preserves g′ and satisfies θ ◦σf = στ◦f◦τ−1 ◦ θ
for all linear f : h′′ → c, we may assume that φ ∈ Aut(g′) = Out(A)⋉Ad(H̃ ⋉G). Furthermore, by
replacing φ by θ−1 ◦ φ if necessary, we may assume that φ is of the first kind, i.e. φ lies in

(2.33) AutI(g
′) := Aut(A)⋉ Ad(H̃ ⋉G).

Denoting the factor of φ in Aut(A) by ψ, from (2.18) we deduce

(2.34) τ ◦ ψ = ψ ◦ τ ′

as desired. It would now be sufficient to prove that ψ(X ′) = X, ψ∗χ′ = χ and φ◦ψ−1 ∈ Ad(H̃⋉G)
commutes with θ.

We make one more general remark before proving the conjecture in a special case. Consider
an enriched compatible decoration (X, τ, χ) such that χ|QX

= 1. Fix i ∈ I\X. The conditions
on χ imply that χ(αi + ατ(i)) = 1. Suppose in addition (if τ(i) = i this is automatic) that

χ(αi) = χ(ατ(i)), necessarily equal to ±1. Then there exists χ+ ∈ H̃θ(X,τ) such that

(2.35) θ(X, τ, χ) ∼
Ad(H̃) θ(X, τ, χ+), χ+(αi) = χ+(ατ(i)) = 1.

Indeed if χ(αi) = χ(ατ(i)) = −1, one can conjugate by Ad(ξ) where ξ ∈ H̃ satisfies ξ(αi) =

ξ(ατ(i)) =
√
−1 and ξ(αj) = 1 if j 6= {i, τ(i)}.

To provide evidence for the conjecture, we now give an elementary proof in the crucial case
g = sl3 (the smallest indecomposable Kac-Moody algebra for which there exist non-involutive
pseudo-involutions). Similar proofs, all based on the fact that conjugation of an automorphism
preserves its order and the dimension of its eigenspaces, can straightforwardly be given for other
low-rank cases.

Let I = {1, 2} and A = (aij)i,j∈I be such that a11 = a22 = 2 and a12 = a21 = −1. In addition
to the Satake diagrams (∅, id), (∅, oiI), (I, oiI), where oiI is the nontrivial diagram automorphism,
we have the compatible decorations ({1}, id) and oiI · ({1}, id) = ({2}, id). Consider two enriched
compatible decorations (X, τ, χ) and (X ′, τ ′, χ′) such that χ|QX

= χ′|QX′ = 1. Suppose that
θ(X, τ, χ) ∼AutI(g′) θ(X

′, τ ′, χ′). We must show that (X, τ, χ) and (X ′, τ ′, χ′) lie in the same Aut(A)-

orbit. By (2.34), we only need to show (X,χ) = (X ′, χ′) or (X,χ) = oiI · (X ′, χ′).

τ = τ ′ = id: By (2.35) we may assume χ = χ′ = 1. Hence it suffices to study the conjugacy problem

(2.36) θ(X, id) ∼AutI(g′) θ(X
′, id).

Recall that θ(X, τ)2 = Ad(ζX) and note that X is either empty or a singleton. Hence θ(X, id)
is an involution if and only if X = ∅. As a consequence, either X = ∅ = X ′, and we are done,
or X 6= ∅ 6= X ′. In the second case both X and X ′ are singletons and either X = X ′, in
which case (X, τ, χ) = (X ′, τ ′, χ′), or X = oiI(X

′), in which case (X, τ, χ) = oiI · (X, τ ′, χ′),
as required.
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τ = τ ′ = oiI : Note that in this case each of X and X ′ are equal to I or ∅, and it is necessary to show

that X = X ′. On the one hand, θ(I, oiI) = id so that θ(I, oiI , χ) = id for any χ ∈ H̃θ(I,oiI)

such that χ|QI
= 1 (i.e. for χ = 1). On the other hand, θ(∅, oiI , χ) sends h1 to −h2, and

hence is not the identity, for any χ ∈ H̃. Therefore θ(X, oiI , χ) ∼AutI(g′) θ(X
′, oiI , χ

′) implies
X = X ′. If X = X ′ = I, we automatically have χ = χ′(= 1), as required.

To deal with the case X = X ′ = ∅, note that θ(∅, oiI , χ) is an involution if and only if
χ2 = 1, which is equivalent to χ(α1) = χ(α2) ∈ {±1}. Again by (2.35), we may assume that
both χ and χ′ are equal to 1; we obtain (X, τ, χ) = (X ′, τ ′, χ′) as required.

It remains to deal with the case that χ2 6= 1 6= (χ′)2. It suffices to prove that χ(α1) =

χ′(α1). We observe that Ad(x) sends gθ
′
to gθ, as a consequence of (2.31). In this case

gθ = gθ
′
is the abelian subalgebra F(h1 − h2) ⊕ Fb12 where b12 := [f1, f2]− [e1, e2]. Now we

identify sl3 with its faithful 3-dimensional representation according to

(2.37) e1 =



0 1 0
0 0 0
0 0 0


 , f1 =



0 0 0
1 0 0
0 0 0


 , e2 =



0 0 0
0 0 1
0 0 0


 , f2 =



0 0 0
0 0 0
0 1 0


 .

Hence x is identified with an element of GL(3,F) (well-defined up to a scalar multiple). The
condition on x that Ad(x) preserves gθ has two solution classes.

(i) In the first class of solutions we have

(2.38)

Ad(x)(h1 − h2) = h1 − h2, Ad(x)(b12) = ǫb12,

x =



A 0 B
0 1 0
ǫB 0 ǫA


 ,

where ǫ ∈ {±1} and A,B ∈ F are such that A2 6= B2. Now we obtain

(2.39) Ad(x)(f1) = (A2 −B2)−1(Af1 − ǫBe2), Ad(x)(e2) = (A2 −B2)−1(−Bf1 + ǫAe2).

In the case ψ = id, applying (2.31) to f1 gives χ(α2) = χ′(α2), as required. If ψ = oiI ,
applying (2.31) to f2 yields a contradiction, so (2.31) does not hold in this case and
there is nothing to prove.

(ii) In the second class, we find

(2.40)

Ad(x)(h1 − h2) = −1

2

(
h1 − h2 + 3ζb12

)
, Ad(x)(b12) = −η

2

(
h1 − h2 − ζb12

)
,

x =




1 C η
−ηD 0 D
ζ −ζC ζη




where ζ, η ∈ {±1} and C,D ∈ F×. Now we obtain

(2.41)
Ad(x)(f1) =

C

4

(
h1 + h2 + ζ

(
[e1, e2] + [f1, f2]

)
+ 2ηD−1

(
ζf2 − e1

))
,

Ad(x)(e2) =
ηC

4

(
h1 + h2 + ζ

(
[e1, e2] + [f1, f2]

)
− 2ηD−1

(
ζf2 − e1

))
.

Applying (2.31) to fψ(1) and considering the projections to gα1 and g−α2 results in a
contradiction. Hence (2.31) does not hold and there is nothing to prove.
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3. Pseudo-fixed-point subalgebras in terms of generalized Satake diagrams

In this section we discuss constructions of pseudo-fixed-point subalgebras in the Kac-Moody
setting, associated to pseudo-involutions of the second kind. In [RV20, Sec. 3] we considered a Lie
subalgebra k = k(X, τ, χ) ⊆ g of finite type which is a pseudo-fixed-point subalgebra if and only
if the enriched compatible decoration (X, τ, χ) satisfies certain additional conditions. Part of this
earlier work immediately generalizes to the Kac-Moody setting, see [RV20, Rmk. 3 (ii)]. Here we
give a brief synopsis of it for completeness. This is complemented with a statement of the Iwasawa
decomposition for a pseudo-symmetric pair.

3.1. The subalgebra k. Let t be an arbitrary Cartan subalgebra of the Kac-Moody algebra g.

Denote by g
(t)
α the t-root space associated to α ∈ t∗,

(3.1) g(t)α := {x ∈ g : ∀t ∈ t [t, x] = α(t)x}.
and by Φ(t) the corresponding root system,

(3.2) Φ(t) := {α ∈ t∗ : g(t)α 6= {0}}\{0}.
Choose a subset Π(t) ⊂ Φ(t) such that Φ(t) = SpZ≥0

Π(t) ∪ SpZ≤0
Π(t). Moreover, for every α ∈ Π(t)

and every choice of sign, choose nonzero elements x±α ∈ g
(t)
±α (simple root vectors). Then g is

generated by t and {xα, x−α}α∈Π(t) .

Definition 3.1. With the notation defined above, let θ ∈ Aut(g) be a pseudo-involution of the
second kind stabilizing t such that θ|t is an involution. To this datum we associate a subalgebra k,
defined to be the subalgebra generated by tθ, all xα and x−α such that α ∈ Πθ

∗
, and the elements

xα + θ(xα) for α ∈ Π\Πθ∗ . �

This generating set is natural in view of Definition 1.2 and shortly we will prove that under an
additional mild assumption on (X, τ, χ) the subalgebra k is indeed a pseudo-fixed-point subalgebra.

Remark 3.2. Definition 3.1 also makes sense if θ is of the first kind, but then k will typically not
be a pseudo-fixed-point subalgebra in the sense of Definition 1.2. This can be easily checked if g is

of type Â1 and θ is the nontrivial diagram automorphism, cf. [KW92, Example 5.11]. �

If θ is a pseudo-involution of the second kind then Theorem 2.5 implies that by Aut(g)-conjugacy
we may assume

(3.3) θ = Ad(χ) ◦ θ(X, τ)
for some enriched compatible decoration (X, τ, χ). Then the corresponding subalgebra k is generated
by hθ, n+X and the elements

(3.4) bi :=

{
fi if i ∈ X,

fi + θ(fi) otherwise,

which recovers the description of a fixed-point subalgebra gθ in the case that θ is involutive, see
[Ko14, Lem. 2.8].

Remark 3.3. Equally, we could have interchanged the role of n+ and n− in the definition of k. The
current choice is customary in recent work on q-deformations of Uk, see e.g. [Ko14, BK19, DK19,
RV20, AV20]. �
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3.2. Generalized Satake diagrams. We now consider a particular type of (enriched) compatible
decoration; we will see that, if and only if it is associated to such datum, the subalgebra k =
〈hθ, n+X , {bi}i∈I〉 is a pseudo-fixed-point subalgebra. For all i ∈ I\X we consider the set

(3.5) X[i] := X ∪ {i, τ(i)},

which we may indentify with the corresponding full subdiagram of I.

Definition 3.4.

(i) Let (X, τ) be a compatible decoration. We call (X, τ) a generalized Satake diagram if for all
i ∈ I\X such that τ(i) = i the connected component of the subdiagram X[i] containing i is
not of type A2 (i.e. X[i] does not have as a connected component).

(ii) Let (X, τ, χ) be an enriched compatible decoration. If (X, τ) is a generalized Satake diagram
and χ(ατ(i)) = χ(αi) for all i ∈ X⊥ such that aiτ(i) = 0 then we call (X, τ, χ) an enriched
generalized Satake diagram. �

Remark 3.5.

(i) Recall the notion of a Satake diagram given in Definition 2.4. If a compatible decoration
(X, τ) is not a generalized Satake diagram, then there exists (i, j) ∈ (I\X) × X such that

i, j ∈ (X\{j})⊥, τ(i) = i and aij = aji = −1. Hence ζX(αi) = (−1)αi(hj) = −1, so that i is
an odd node. It follows that all Satake diagrams are generalized Satake diagrams.

(ii) The action of Aut(A) on the set of (enriched) compatible decoration given in (2.30) stabilizes
the set of (enriched) generalized Satake diagrams. �

We give the classification of generalized Satake diagrams when A is of finite or affine type in
Appendices A.3 and A.4. Here we make some remarks to support this classification in the case
that A is of classical Lie type. Depending on the Lie type, the corresponding generalized Satake
diagrams naturally organize themselves into 2, 3 or 4 families.

To describe these families, it is convenient to say that a connected component of X is (X, τ)-
simple if it is a singleton {j} and there exists i ∈ I\X such that aijaji = 1 and τ(i) = i. Suppose

that τ is trivial except possibly on subsets of type A1×A1 (these occur when A is of type Dn, B̂n, B̂
∨
n

or D̂n). Then the condition that τ |X = oiX requires that X has at most two connected components
which are not (X, τ)-simple, which must be of type Bp, Cp or Dp (with p ≤ n). More precisely, if A

is of type An or Ân, then all connected components of X are (X, τ)-simple; if A is of type Bn, Cn
or Dn then X can have at most one connected component which is not (X, τ)-simple; in all other
cases X can have two connected components which are not (X, τ)-simple. The defining condition
of generalized Satake diagrams now require that either there are no (X, τ)-simple components, in
which case we call (X, τ) plain, or, due to the definining condition of generalized Satake diagram,
there are as many as fit in the complement of the other connected components of X, in which case
we call (X, τ) alternating.

If A is of type Ân, Ĉn, Ĉ
∨
n or D̂n then rotation by a half-turn is a diagram automorphism τ . To

extend τ to a generalized Satake diagram (X, τ), in the first case X must be empty and otherwise

of type Ap. In this case we call (X, τ) rotational. Finally, if A is of type An or Ân then τ can be a
reflection of the Dynkin diagram, in which case X is of type Ap or Ap1 × Ap2, respectively; we call
such generalized Satake diagrams reflecting.
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3.3. Basic properties of k. In this section we analyse the subalgebra k. In order to do that, for
i = (i1, . . . , iℓ) ∈ Iℓ (ℓ ∈ Z>0) we set

ei = [ei1 , [ei2 , . . . , [eiℓ−1
, eiℓ ] · · · ]] ∈ n+,(3.6)

fi = [fi1 , [fi2 , . . . , [fiℓ−1
, fiℓ ] · · · ]] ∈ n−,(3.7)

bi = [bi1 , [bi2 , . . . , [biℓ−1
, biℓ ] · · · ]],(3.8)

αi = αi1 + . . .+ αiℓ ∈ Q+.(3.9)

Fix a subset J ⊂ ∪ℓ∈Z>0I
ℓ such that {fi : i ∈ J } is a basis for n−. In particular I ⊆ J .

Recall the standard order on Q, defined for any λ, µ ∈ Q by λ ≥ µ if and only if λ − µ ∈ Q+.
Finally, for i, j ∈ I such that i 6= j we set Mij := 1− aij ∈ Z>0 and denote

(3.10) λij := αi +Mijαj ∈ Q+,

which is not a root (this statement is equivalent to the Serre relations in g).

Lemma 3.6. Let (X, τ, χ) be an enriched compatible decoration and let θ = Ad(χ) ◦ θ(X, τ). Then

(3.11) bi − fi ∈
⊕

α∈Φ
α>−αi

gα

for all i ∈ Iℓ, ℓ ∈ Z>0. Hence, the projection of bi on g−αi
with respect to the root space decompo-

sition (2.7) is fi.

Proof. A straightforward induction with respect to ℓ and the explicit formula (3.4). �

The generators bi satisfy Serre relations which, unlike those for fi, may have additional lower
order terms.

Lemma 3.7. [RV20, Eq. (3.7)] Let (X, τ, χ) be an enriched compatible decoration. Let i, j ∈ I be
such that i 6= j.

(i) Suppose θ∗(αi) + αi + αj ∈ −Φ+ ∪ {0}. Then i ∈ I\X, τ(i) = i, j ∈ X, θ∗(αi) + αi + αj ∈
−Φ+

X ∪ {0} and

(3.12) ad(bi)
Mij (bj) =





(1 + ζX(αi))[θ(fi), [fi, fj]] ∈ n+X if θ∗(αi) + αi + αj < 0, aij = −1,

−18χ(αi)
−2ej if θ∗(αi) + αi + αj = 0, aij = −3,

−χ(αi)−1(2hi + hj) if θ∗(αi) + αi + αj = 0, aij = −1,

0 otherwise.

(ii) Suppose θ∗(αi) + αj ∈ −Φ+ ∪ {0} and j ∈ I\X. Then i ∈ I\X, τ(i) = j, θ∗(αi) + αj ∈
−Φ+

X ∪ {0} and

(3.13) ad(bi)
Mij (bj) =





(1 + ζX(αi)χ(αi − αj))[θ(fi), fj ] ∈ n+X if θ∗(αi) + αj < 0, aij = 0,

χ(αj)
−1hi − χ(αi)

−1hj if θ∗(αi) + αj = 0, aij = 0,

2(χ(αi)
−1 + χ(αj)

−1)bi if θ∗(αi) + αj = 0, aij = −1,

0 otherwise.

(iii) Suppose θ∗(αi) = −αi and j ∈ I\X. Then i ∈ X⊥, τ(i) = i and

(3.14) ad(bi)
Mij (bj) =

∑

r∈Z>0
2r≤Mij

p
(r,Mij)
ij χ(αi)

−rad(bi)
Mij−2r(bj)
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where p
(r,m)
ij for m, r ∈ Z≥0 such that 0 ≤ 2r ≤ m ≤ Mij are negative integers defined as

follows. We set p
(0,m)
ij = −1 and p

(r,m)
ij = 0 if 2r > m and impose the recursion

(3.15) p
(r,m)
ij = p

(r,m−1)
ij + (m− 1)(M + 1−m)p

(r−1,m−2)
ij if 0 < r ≤ ⌊m2 ⌋.

(iv) If i and j do not satisfy any of the three conditions above then ad(bi)
Mij (bj) = 0.

Proof. This follows from a careful root space analysis, see [RV20, App. A]. �

The relation (3.14) and the coefficients p
(r,m)
ij also appeared in [St19, Def. 2.3] which deals with

the case θ = ω and k = gω. Such k are also called (embedded) generalized Onsager algebras.
The following result is a key motivation for introducing generalized Satake diagrams.

Theorem 3.8. [RV20, Thm. 3.3] Let (X, τ, χ) be an enriched compatible decoration and let θ =
Ad(χ) ◦ θ(X, τ). The following statements are equivalent:

(i) (X, τ, χ) is an enriched generalized Satake diagram;
(ii) for all i, j ∈ I such that i 6= j one has

(3.16) ad(bi)
Mij (bj) ∈ n+X ⊕ hθ ⊕

⊕

ℓ∈Z>0

⊕

i∈Iℓ

αi<λij

Fbi;

(iii) the following identity of hθ-modules holds:

(3.17) k = n+X ⊕ hθ ⊕
⊕

i∈J

Fbi;

(iv) k is a pseudo-fixed-point subalgebra.

Proof. We refer to [RV20] for the proof of the equivalence of the first 3 statements and condition
(1.2) in the definition of pseudo-fixed-point subalgebra. It suffices to prove that (ii) implies condition
(1.3) in the definition of pseudo-fixed-point subalgebra. In fact, since gα ⊂ k if α ∈ ΦX and θ∗

interchanges Φ+\ΦX and −Φ+\ΦX , it suffices to prove (1.3) with α ∈ −Φ+\ΦX .
First of all, by an induction argument it follows from (ii) that, for all i ∈ J ,

(3.18) bi − fi − θ(fi) ∈ n+X ⊕ hθ ⊕
⊕

j∈J
αj<αi

Fbj,

see [RV20, Eq. (3.20)]. Hence, fi+θ(fi) lies in k. On the other hand, fi+θ(fi) lies in g−αi
+g−θ∗(αi).

Now let α ∈ Φ+ be arbitrary. Since {fi : i ∈ J , αi = α} is a basis for g−α, Lemma 3.6 implies
that {fi + θ(fi) : i ∈ J , αi = α} is a basis for g−α + g−θ∗(α), as required. �

Remark 3.9. In [RV20, Thm. 3.3] we use the notation γi for the scalar χ(αi)
−1, i ∈ I\X; note that

the values χ(αj) for j ∈ X are irrelevant for Theorem 3.8 and we may as well assume that χ|QX
= 1,

cf. Corollary 2.7. �

3.4. Iwasawa decomposition for pseudo-symmetric pairs. Consider the subalgebra

(3.19) n+θ := n+ ∩ θ(n−) ⊆ n+.

Since n+∩θ(n+) = n+X and h is θ-stable, immediately we obtain n+ = n+X⊕n+θ . Hence the triangular
decomposition of g implies

(3.20) g = n+X ⊕ hθ ⊕ n− ⊕ h−θ ⊕ n+θ .
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Next, n− =
⊕

i∈J Ffi by definition of J . By Lemma 3.6 we may write

(3.21) g = n+X ⊕ hθ ⊕
⊕

i∈J

Fbi ⊕ h−θ ⊕ n+θ ,

which a priori is a decomposition of linear spaces, since
⊕

i∈J Fbi is not a subalgebra of g. However
Theorem 3.8 (iii) now implies the following decomposition for g in terms of subalgebras.

Corollary 3.10 (Iwasawa decomposition for the pseudo-symmetric pair (g, k)). Let (X, τ, χ) be an
enriched compatible decoration and let θ = Ad(χ)◦θ(X, τ). Then g has the following decomposition
in terms of subalgebras:

(3.22) g = k⊕ h−θ ⊕ n+θ

if and only if (X, τ, χ) is an enriched generalized Satake diagram.

3.5. A combinatorial description of k′. We complete this section with a description of the
derived subalgebra k′, which indicates how the universal enveloping algebra Uk can be modified by
scalar terms. This directly extends the discussion in [RV20, Sec. 3.3] to the Kac-Moody setting.
Let (X, τ, χ) be an enriched generalized Satake diagram and fix a subset I∗ ⊂ I\X intersecting
each τ -orbit in a singleton. Set

(3.23) JX := J ∩
⋃

ℓ>0

Xℓ.

From (2.27) it follows that {hi}i∈X ∪ {hi − hτ(i)}i∈I∗,τ(i)6=i is a basis for hθ. Hence, Theorem 3.8
implies that

(3.24) {ei}i∈JX
∪ {hi}i∈X ∪ {hi − hτ(i)}i∈I∗,τ(i)6=i ∪ {bi}i∈J

is an F-basis for k. Now consider the following subsets of I∗:

Idiff = {i ∈ I∗ : i /∈ (X ∪ τ(i))⊥ ∧ τ(i) 6= i},(3.25)

Ins = {i ∈ I∗ : i ∈ X⊥ ∧ τ(i) = i},(3.26)

Insf = {j ∈ Ins : ∀i ∈ Ins aij ∈ 2Z}.(3.27)

Elements of Idiff and Insf are called special τ -orbits.

Proposition 3.11. [RV20, Prop. 3.2] Let (X, τ, χ) be an enriched generalized Satake diagram.
Then the set

(3.28) {ei}i∈JX
∪ {hi}i∈X ∪ {hi − hτ(i)}i∈I∗\Idiff ,τ(i)6=i ∪ {bi}i∈J\Insf

is an F-basis for k′. Moreover,

(3.29) k ∩ g′ = k′ ⋊

(
⊕

i∈Idiff

F(hi − hτ(i))⊕
⊕

j∈Insf

Fbj

)
.

Remark 3.12.

(i) In (3.29), the intersection with g′ is only necessary since h may contain additional θ-fixed
elements if corank(A) > 1. In other words, k ⊆ g′ if corank(A) ≤ 1.

(ii) By Definition 3.4 (ii), if (X, τ, χ) is an enriched generalized Satake diagram and i ∈ I∗ then
χ(αi) and χ(ατ(i)) are allowed to be different precisely if i ∈ Idiff . This explains the notation.
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(iii) The set Ins is implicit in Lemma 3.7 (iii). Its elements are called nonstandard ; this nomen-
clature goes back to [Le02, Sec. 7, Variation 2] and [Ko14, Sec. 5] where it was pointed out
that if i ∈ Insf then a free parameter appears in the extra Cartan term in the quantum ana-
logues of the generators bi in Uqk. The non-deformed version of this statement is the result
[RV20, Prop. 3.13], which also extends directly to the Kac-Moody setting. It characterizes,
in terms of the set Insf , the essential freedom in the enveloping algebra Uk with respect to
the additional scalar terms. �

4. The restricted Weyl group and restricted root system

In this section we give a survey on results on the restricted Weyl group and restricted root system
associated to a root system involution of a Kac-Moody algebra, thereby generalizing some of Heck’s
work [He84] for finite root systems and drawing on works by Lusztig [Lu95] (also see [Lu03, Ch. 25])
and Geck and Iancu [GI14].

For finite root systems Φ, Heck [He84] studied involutive automorphisms of finite root systems
Φ. He obtained a diagrammatic constraint on involutions of finite root systems such that the asso-
ciated restricted root system and restricted Weyl group have natural properties, thereby essentially
obtaining the notion of a generalized Satake diagram (although the terminology in [He84] is differ-
ent). Heck’s work was a simplification of Schattschneider’s work [Sch69] in the still more general
case of an arbitrary group of automorphisms of a finite root system Φ.

Note that the Weyl group W is a Coxeter group (see e.g. [Ka90, §3.13], [MT72] and [Lo80]),
acting by reflections in the root system of g. A particular obstacle in the restricted setting is that,
given a compatible decoration (X, τ) and the associated root system involution wX ◦ τ , there are
no fewer than three different natural definitions of the restricted Weyl group, which we will denote

by W (Φ), W and W̃ . We will see that, precisely if (X, τ) is a generalized Satake diagram, these
three groups are isomorphic. Moreover in this case this group is a Coxeter group and the restricted
root system is stable under its action.

4.1. The Q-span of the root system. By (2.20), the subgroup of GL(h′) of invertible linear maps
on h′ that extend to Lie algebra automorphisms of g is of the form Out(A) ⋉W . The definition
of root space implies that the duals of such maps on h′ necessarily stabilize Φ. Conversely, an
invertible linear map on the dual of h′ which stabilizes Φ can be dualized and extended to a Lie
algebra automorphism stabilizing h.

It is convenient here to work over the ordered subfield Q ⊂ F in order to facilitate certain
(geometric) constructions, so we consider the following |I|-dimensional vector space over Q:

(4.1) V := SpQΦ = SpQΠ.

The group of root system automorphisms Aut(Φ) ∼= Out(A)⋉W is the subgroup of those σ ∈ GL(V )
which stabilize Φ. Note that the bilinear form ( , ) restricts to an Aut(Φ)-invariant Q-valued
bilinear form on V .

4.2. Root system involutions and the corresponding orthogonal decompositions. By the
results of Section 2, any pseudo-involution of the second kind is Inn(g)-conjugate to Ad(χ)◦θ(X, τ)
for some extended compatible decoration (X, τ, χ). The automorphism Ad(χ) ◦ θ(X, τ) restricts to
the linear involution −wX ◦ τ on h, stabilizing the subspace h′. The dual map on (h′)∗ = SpFΦ is
given by the same formula. It restricts to the Q-span V of Φ and is an example of an involutive
root system automorphism, which we call root system involution.

Our focus will be on the map

(4.2) σ := wX ◦ τ = −θ(X, τ)∗|V ∈ Aut(A)⋉W,
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which is also the convention used in [He84]. Since σ is an involution the following orthogonal linear
decomposition holds:

(4.3) V = V σ ⊕ V −σ.

We denote by the corresponding projection: V → V σ, so that

(4.4) λ =
λ+ σ(λ)

2
for all λ ∈ V.

Because σ is an isometry, the following property holds, which we will repeatedly use in this section:

(4.5) (β, γ) = (β, γ) = (β, γ) for all β, γ ∈ V.

For J ⊆ I we denote VJ := SpQΦJ . Since (X, τ) is a compatible decoration, the identity
σ|VX = wX ◦ oiX |VX = −idVX holds and hence the projection annihilates VX . The linear map
wX − id maps V to VX ; since σ commutes with wX , we obtain

(4.6) wX ◦ = ◦ wX = .

By multiplying by σ we also obtain

(4.7) τ ◦ = ◦ τ = .

From (4.6-4.7) it follows that V σ ⊆ V wX and V σ ⊆ V τ . Since V wX ∩ V τ ⊆ V σ is clear, we obtain

(4.8) V σ = V wX ∩ V τ .

4.3. The restricted root system.

Definition 4.1. Let σ be a root system involution. For any subset Σ ⊆ Φ (not necessarily a root
subsystem), we denote

(4.9) Σ := {α : α ∈ Σ}\{0}.
We call Φ the restricted (or relative) root system associated to σ and its elements restricted roots;
the dimension of SpQ(Φ) is called the restricted rank of σ. �

If σ = wX ◦ τ with (X, τ) a compatible decoration, then α = 0 if and only if α ∈ ΦX , so that

(4.10) Σ = {α : α ∈ Σ\ΦX}
for any Σ ⊆ Φ. Equivalently, Φ may be defined as {α|h−θ(X,τ)}\{0}, see e.g. [DK19, Sec. 2.3].

The restricted root system can be empty, non-reduced and non-crystallographic. More prob-
lematically, it is not necessarily stable under reflections in hyperplanes orthogonal to its elements.
We will return to this question shortly, indicating constraints on (X, τ) to guarantee that Φ is
reflection-stable.

Lemma 4.2. Let σ be a root system involution and let J ⊆ I be such that σ stabilizes VJ .

(i) If J is of finite type, then ΦJ is finite and, since (VJ )
σ ⊆ VJ , the restriction of ( , ) to (VJ )

σ

is positive definite.
(ii) If J is of infinite type we denote by Φ+

im,J the set of positive imaginary roots in ΦJ . Then

Φ+
im,J is infinite and contained in Φ+

J . Furthermore, if (VJ)
σ is 1-dimensional then (β, β) ≤ 0

for all β ∈ ΦJ .

Proof.

(i) If J is of finite type, then ΦJ is finite and hence ΦJ is finite. Since the restriction of the bilinear
form ( , ) to VJ = SpQ(ΦJ) is positive definite and σ is an isometry, the bilinear form ( , )
restricts to (VJ)

σ and the restriction is positive definite.
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(ii) If J is of infinite type then by [Ka90, Thm. 5.6], Φ+
im,J is nonempty. Note that AutJ(A)⋉WJ

stabilizes Φ+
im,J as a consequence of [Ka90, Thm. 5.4]. In particular, σ stabilizes Φ+

im,J and

therefore λ 6= 0 if λ ∈ Φ+
im,J . It follows that Φ+

im,J ⊆ Φ. By [Ka90, Prop. 5.5], Φ+
im,J is stable

under multiplication by Z≥0, so that Φ+
im,J is infinite. Finally, by [Ka90, Thm. 5.6] there exists

λ ∈ Φ+
im,J such that (λ, µ) ≤ 0 for all µ ∈ Φ+. Hence (λ, λ) ≤ 0 and moreover, since σ(λ) ∈ Φ+,

also (λ, σ(λ)) ≤ 0. Therefore (λ, λ) = (λ, λ) ≤ 0 as required. If (VJ)
σ is 1-dimensional, it is

spanned over Q by λ and we obtain (β, β) ≤ 0 for all β ∈ ΦJ . �

Remark 4.3. If J is of affine type then we can strengthen Lemma 4.2 (ii) as a consequence of [Ka90,
Theorem 5.6 (b)]. Namely, the kernel of AJ is spanned by a unique tuple of setwise coprime positive
integers (aj)j∈J and Φ+

im,J = SpZ>0
δJ where δJ =

∑
j∈J ajαj is the basic imaginary root. For all

j ∈ J it follows that δJ(hj) = 0 and hence sj(δJ) = δj . Since Aut(AJ) preserves the height function

on QJ , we obtain τ(δJ ) = δJ . It follows that δJ = δJ and hence Φ+
im,J = Φ+

im,J . �

4.4. Combinatorial bases for V σ and V −σ. Recall that we have fixed a subset I∗ ⊂ I\X which
intersects each τ -orbit in a singleton. Using (4.7) and (4.10), we obtain

(4.11) Π = {αi}i∈I\{0} = {αi}i∈I∗ .
Note that the set Π is linearly independent (for all i ∈ I∗, αi is the only element of Π such that
when expanding with respect to the basis Π of V , the coefficient of αi is nonzero).

Lemma 4.4. Given a compatible decoration (X, τ), let σ = wX ◦τ be the corresponding root system
involution. Then

(4.12) V σ = SpQ
(
Π
)
= SpQ

(
Φ
)
.

Moreover, Φ = Φ+ ∪ (−Φ+) with Φ+ contained in SpZ≥0

(
Π
)
.

Proof. Let β =
∑

i∈I miαi ∈ V σ with mi ∈ Q. Since β is fixed by σ it equals β given by

(4.13) β =
∑

i∈I

miαi =
∑

i∈I∗

τ(i)=i

miαi +
∑

i∈I∗

τ(i) 6=i

(mi +mτ(i))αi.

Therefore V σ ⊆ SpQ(Π). On the other hand, one has the natural inclusions SpQ
(
Π
)
⊆ SpQ

(
Φ
)
⊆ V σ

and the first statement follows. To establish the second statement, suppose β ∈ Φ. Then β = ±λ
for some λ ∈ Φ+. Hence either β or −β lies in

∑
i∈I miαi with mi ∈ Z≥0. Now (4.13) implies that

±β is a Z≥0-linear combination of the αi. �

Remark 4.5. If B ⊆ R ⊆ V is an inclusion of sets with V a Q-linear space spanned by R, B is called
a base for R if B is a Q-basis for V and R ⊆ SpZ≥0

B ∪ SpZ≤0
B. The root space decomposition

(2.7) implies that Π is a base for Φ. Owing to Lemma 4.4, Π is a base for Φ. �

It follows from Lemma 4.4 that the restricted rank of σ is the number of τ -orbits outside X;
hence we will also call this number the restricted rank of (X, τ). We refer to the elements αi as

simple restricted roots. For all β ∈ Φ
+
there exist unique mi ∈ Z≥0 such that β =

∑
i∈I∗ miαi and

we call
∑

i∈I∗ mi ∈ Z≥0 the restricted height of β. Note that β has restricted height 1 if and only
if β = αi for some i ∈ I∗.

Knowledge of the signs of the inner products between simple restricted roots will allow us to
study the action of the reflections with respect to the αi on Φ. For this purpose, recall the notation
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X[i] = X ∪ {i, τ(i)} for i ∈ I\X. It suffices to take i ∈ I∗. It will turn out to matter greatly
whether X[i] is of finite type, so we define

(4.14) Ĩ = {i ∈ I∗ : X[i] is of finite type}.
Example 4.6. Let (X, τ) be a compatible decoration. If I is of finite type then Ĩ = I∗. If I is
of affine type then I∗ is nonempty (since X 6= I) and there are two possibilities: if |I∗| = 1 then

X[i] = I for i ∈ I∗ and hence Ĩ = ∅; if |I∗| > 1 then Ĩ = I∗. �

Lemma 4.7. Let i, j ∈ I∗. Then (αi, αj) > 0 if and only if i = j ∈ Ĩ.

Proof. We split up the proof into some casework. We will repeatedly use that σ stabilizes VX[i] for
any i ∈ I∗ and is of restricted rank 1 as a root system involution of VX[i].

i = j ∈ Ĩ: In this case X[i] is of finite type and by Lemma 4.2 (i) we obtain (αi, αi) > 0.

i = j /∈ Ĩ: Now X[i] is of infinite type and (αi, αj) ≤ 0 by Lemma 4.2 (ii).
i 6= j: In this case i /∈ X[j]. Recalling Lemma 2.3 (iii) one has σ(αj) = ατ(j) +

∑
j∈X vijαj with

vij ∈ Z≥0. Hence

(4.15) 2(αi, αj) = (αi, αj + σ(αj)) = (αi, αj) + (αi, ατ(j)) +
∑

k∈X

vij(αi, αk) ≤ 0,

as required. �

It follows that, if Ĩ is a proper subset of I∗, there are imaginary simple restricted roots, as there
are for Borcherds’ generalized Kac-Moody algebras [Bo88].

We close this subsection with a description of the orthogonal complement V −σ.

Lemma 4.8. Given a compatible decoration (X, τ), let σ = wX ◦τ be the corresponding root system
involution. Then

(4.16) V −σ = SpQ({αi}i∈X ∪ {αi − ατ(i) : τ(i) 6= i}i∈I∗)
and Φ ∩ V −σ = ΦX .

Proof. Let β ∈ V −σ. Then there exist mi ∈ Q such that β =
∑

i∈I miαi. It follows that β equals

(4.17)
β − σ(β)

2
=
∑

i∈I

mi
αi − σ(αi)

2
=
∑

i∈X

miαi +
∑

i∈I\X

mi

2
(αi − wX(ατ(i))).

Here, the element αi−wX(ατ(i)) equals αi−ατ(i) plus a term in SpQ{αi}i∈X , so we obtain the first

statement. The second statement follows from the fact that Φ = Φ+ ∪ (−Φ+). �

4.5. The Weyl group of the restricted root system. Let β ∈ V such that (β, β) > 0. Consider

the idempotent linear map pβ : V → V defined by pβ(γ) =
(β,γ)
(β,β)β for all γ ∈ V ; it is idempotent.

Consider the involution

(4.18) sβ := id− 2pβ .

Note that the orthogonal decomposition V = Qβ ⊕ {λ ∈ V : (λ, β) = 0} diagonalizes sβ and we
refer to sβ as the orthogonal reflection associated to β, respectively. Because pβ is self-adjoint, so
is sβ; we conclude that sβ is an isometry. Finally, sγ = sβ for all γ ∈ Q 6=0β.

If in addition β ∈ V σ for some root system involution σ then one easily checks that pβ commutes
with σ, so that sβ commutes with σ. Hence sβ stabilizes V σ and is therefore an isometry of V σ. If
f is any isometry of V σ then

(4.19) f ◦ sβ ◦ f−1 = sf(β).
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Definition 4.9. The Weyl group of Φ is the following group:

(4.20) W (Φ) :=
〈
{sβ|V σ : β ∈ Φ, (β, β) > 0}

〉
≤ GL(V σ).

We call the elements si := sαi
|V σ with i ∈ Ĩ simple restricted reflections. �

The following basic property will later help us show that the set {si}i∈Ĩ generates W (Φ).

Lemma 4.10. For all i ∈ Ĩ, si stabilizes Φ+\Qαi.

Proof. This is a variation on a standard argument, see e.g. [Hu90, Prop. 1.4]. Let i ∈ Ĩ be arbitrary

and let β ∈ Φ+\Qαi. By Lemma 4.4, there exist mj ∈ Z≥0 such that

(4.21) β =
∑

j∈I∗

mjαj .

Since β /∈ Qαi there exists j ∈ I∗\{i} such that mj ∈ Z>0. At the same time si(β) = β− 2 (αi,β)
(αi,αi)

αi

with the same coefficient mj. By the second statement of Lemma 4.4, si(β) ∈ Φ+. Finally, if
si(β) ∈ Qαi then applying si produces a contradiction with β /∈ Qαi. �

4.6. The group W σ and the restricted Weyl group W . For any linear map ψ : V → V and
any subset S ⊆W we may consider the following subset of W :

(4.22) Sψ = {w ∈ S : w ◦ ψ = ψ ◦ w as linear maps on V }.
Given a root system automorphism σ, for all w ∈W σ, w stabilizes V σ and we may consider w|V σ .

Definition 4.11 ([Sch69, He84]). Given a root system involution σ of Φ, we define the restricted
Weyl group as

W := {w|V σ : w ∈W σ}. �

We may consider the groupsW (Φ) and W for any root system involution. It is natural to expect
that for suitable σ they are isomorphic. In the remainder of this section we will always assume

(4.23) σ = wX ◦ τ
for some compatible decoration (X, τ). We will show in the remainder of this section that for certain
compatible decorations both W (Φ) and W are isomorphic to a third combinatorially defined group

W̃ ≤W σ (and hence to each other, as desired). In order to do this we develop some more properties
of W σ and W . Note that

(4.24) W σ = {w ∈W : wXw = τ(w)wX}
and that any w ∈WX satisfies wXwwX = oiX(w) = τ(w), so that WX ≤W σ.

Lemma 4.12. The group WX is the kernel of the homomorphism ·|Vσ :W σ →W .

Proof. The proof of [He84, Prop. 3.1], which relies on [Bo68, Ch. V, §3.3, Prop. 1] and Lemma 4.8,
immediately generalizes to the Kac-Moody setting. Also cf. [Lo80, Thm. 1.3]. �

As a consequence of Lemma 4.12, WX is a normal subgroup of W σ and

(4.25) W σ ∼=WX ⋊W.

Consider the set of minimal left coset representatives of WX :

(4.26) WX = {w ∈W : ∀j ∈ X ℓ(sjw) > ℓ(w)}.
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Because τ permutes {sj}j∈X and preserves the length function on W , the set WX is also τ -stable.
By the natural generalization of the arguments in e.g. [Hu90, Prop. 1.10] to infinite Coxeter groups,
one has

(4.27) W =WX ·WX , WX ∩WX = {1},
i.e. for all w ∈ W there exists a unique (u, v) ∈ WX ×WX such that w = uv. Since σ fixes WX

pointwise, we deduce

(4.28) W σ =WX · (WX)σ, WX ∩ (WX)σ = {1}.
For two subsets S, S′ ⊆ W , we write NS(S

′) = {w ∈ S |wS′ = S′w} for the normalizer of S′ in S.
We will now show that (WX)σ can be identified with the τ -fixed point subset in

(4.29) W := NWX (WX).

Lemma 4.13. (WX)σ = Wτ .

Proof. Let w ∈ (WX)σ be arbitrary. Because w commutes with σ and WX is normal,

(4.30) wX · τ(w) = w · wX = u · w
for some u ∈WX . Since decompositions in W =WX ·WX are unique, it follows that τ(w) = w so
that (WX)σ ⊆W τ . Since WX is a normal subgroup of W σ we obtain (WX)σ ⊆ Wτ .

To prove the reverse inclusion, assume that w ∈ Wτ so that wWXw
−1 = WX . For all u ∈ WX

there exists a unique v ∈ WX such that wu = vw; since w ∈ WX we obtain ℓ(v) ≤ ℓ(u). On the
other hand, WX is finite so conjugation by w is surjective. It follows that wwX = wXw. Since
τ(w) = w, (4.24) now implies that w ∈W σ. �

By a statement in [Lu03, 25.1], which relies on [Lu03, Prop. 1.5, Lemma 2.2], the set W is a
group. Comparing (4.25) and (4.28), making use of Lemma 4.13 we obtain

Proposition 4.14. W ∼= Wτ .

4.7. A combinatorial prescription of the simple restricted reflections: the group W̃ .

Recall that W (Φ) was not defined as a subgroup of W . We now discuss a particular subgroup

W̃ ≤ W defined in terms of explicit generators s̃i, see e.g. [Lu76, §5], [Lu03, Ch. 25] and [GI14],
with the aim of having an isomorphic copy of W (Φ) in W . In particular we will strive to choose
the s̃i ∈ W so that s̃i|V σ = si. Having achieved this, we will obtain a straightforward proof that
W (Φ) is generated by the si.

Note that the simple restricted reflection si fixes pointwise {β ∈ V σ : (β, αi) = 0}. The following
lemma justifies selecting s̃i from WX[i].

Lemma 4.15. Let i ∈ I∗. If w ∈WX[i] stabilizes V
σ then w fixes pointwise {β ∈ V σ : (β, αi) = 0}.

Proof. Recall that WX[i] is generated by {sj}j∈X ∪ {si, sτ(i)}. If j ∈ X then αj = 0 so that the
orthogonality of the decomposition (4.3) implies that sj fixes V σ pointwise (and hence also the
relevant subspace). Now let β ∈ V σ such that (β, αi) = 0. It remains to prove that si and sτ(i) fix
β. From (4.8) it follows that τ(β) = β. Hence (β, αi) = 0 implies (β, αi) = (β, ατ(i)) = 0 so that
both si and sτ(i) fix β. �

Recall that for i ∈ I∗\Ĩ we have not defined a simple restricted reflection si. Indeed, the following
lemma shows that there are no involutions in W that negate αi.

Lemma 4.16. Suppose that i ∈ I∗ is such that X[i] is of infinite type. No involutive element of
W sends αi to −αi.
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Proof. Lemma 4.4 implies that (VX[i])
σ is 1-dimensional, so that (αi, αi) ≤ 0 by Lemma 4.2 (ii).

Now suppose there is an involution w ∈ W such that w(αi) = −αi. By [Ri82, Thm. A(a)]4 there
exists v ∈W and Z ⊆ I of finite type such that w = v ◦wZ ◦ v−1. Hence v−1(αi) is fixed by −wZ .
Since WZ maps Q+\QZ to Q+, it follows that v−1(αi) ∈ VZ . Since Z is of finite type, the bilinear
form ( , ) is positive definite on VZ , so that (αi, αi) = (v−1(αi), v

−1(αi)) > 0, contradicting the
first statement of the Lemma. �

Given i ∈ I∗, we now engineer the desired element s̃i. There are two clear desirable properties:
s̃i should commute with σ (so that it stabilizes V σ) and should send αi ∈ VX[i] to −αi (hence s̃i will
be involutive). By Lemma 4.15, it is natural to choose s̃i ∈ WX[i]. Since the longest element acts
as multiplication by −1 on VX[i] up to a diagram automorphism, it is natural to set s̃i = u · wX[i]

for some u ∈WX[i]. The two required properties are now seen to be equivalent to

(4.31) αi + σ(αi) ∈ (QX[i])
u◦oiX[i], u · woiX[i](X) = wX · τ(u).

If we choose u ∈ WX then u ◦ oiX[i] maps αi + σ(αi) ∈ Q+\QX to Q+\QX , which supports the
first condition in (4.31). A natural choice for u is now u = wX , since in this case s̃i has minimal
length. For this choice the last condition in (4.31) amounts to oiX[i](wX) = wX . Assuming this
and recalling Lemma 2.28, we see that the first condition in (4.31) is satisfied. Hence we are led to
the following definition.

Definition 4.17 (See e.g. [Lu03, 25.1] and [GI14, Rmk. 8]). We define W̃ := 〈{s̃i}i∈Ĩ〉 ≤W where

s̃i := wX · wX[i] ∈WX[i], i ∈ Ĩ . �(4.32)

Since the s̃i are fixed by τ in Aut(A)⋉W , we immediately obtain

(4.33) W̃ ≤W τ .

Example 4.18. It is useful to spell out the generator s̃i in certain typical configurations. Let i ∈ Ĩ.

(i) If i ∈ X⊥ then τ(i) ∈ X⊥ by Lemma 2.3 (i). In this case wX[i] = wX · w{i,τ(i)} so that
s̃i = w{i,τ(i)}. There are now three possibilities: τ(i) = i (i.e. i ∈ Ins), so that {i, τ(i)} is of
type A1 and s̃i = si; aiτ(i) = 0 (i.e. τ(i) 6= i and i /∈ Idiff), so that {i, τ(i)} is of type A1 × A1

and s̃i = sisτ(i); aiτ(i) = 1, so that {i, τ(i)} is of type A2 and s̃i = sisτ(i)si.
(ii) Suppose that τ(i) = i and that X[i] is of rank 2. Hence X = {j} and aijaji ∈ {0, 1, 2, 3}.

It follows that s̃i = w{j} · w{i,j} ∈ {si, sisj, sisjsi, sisjsisjsi}, respectively. Note that s̃i is an
involution except if aijaji = 1. �

The following key result shows that, given the definition (4.32), the desirable properties of s̃i are
equivalent to each other and to the condition that (X, τ) is a generalized Satake diagram. It extends
the result [RV20, Thm. 2.1] which itself combined and extended results in [He84] and [Lu03].

Proposition 4.19. The following statements are equivalent:

(i) W̃ ≤W σ;

(ii) s̃i is an involution for all i ∈ Ĩ;

(iii) {sj}j∈X is stable under conjugation by elements of W̃ ;

(iv) Φ+
X is W̃ -stable;

(v) (X, τ) is a generalized Satake diagram;

(vi) W̃ stabilizes V σ;

4This is a special case of the result [Sp85, Prop. 3.3] which we used in Section 2.8.
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(vii) s̃i(αi) = −αi for all i ∈ Ĩ;

(viii) W̃ ≤ NW (WX).

Proof. Note that each statement except (v) is a statement about the finite groupWX[i]; for instance,

(vi) is equivalent to the statement that for all i ∈ Ĩ, s̃i stabilizes V
σ. Furthermore, recall Definition

3.4 (i). Since the excluded connected component is of finite type, it follows that (X, τ) is a

generalized Satake diagram if and only if for all i ∈ Ĩ such that τ(i) = i the connected component
of the subdiagram X[i] containing i is not of type A2. Hence all statements in Proposition 4.19,

including (v), can be written in the form “For all i ∈ Ĩ, ...”. It therefore suffices to prove the

equivalence of the statements for a given fixed i ∈ Ĩ. We can refer to the proof of the finite-type
result [RV20, Thm. 2.1] for the equivalence of statements (i), (v) and (vii), as well as the statement

(4.34) wX · wX[i] = wX[i] · wX ,
which is easily seen to be equivalent to (ii). By (2.13) (with X replaced by X[i]), (4.34) can be
rephrased as the condition

(4.35) oiX[i](wX) = wX

which we encountered above, and which in turn is equivalent to (iii). By (2.14), (4.35) is equivalent
to

(4.36) oiX[i](X) = X.

In turn, this is equivalent to

(4.37) wX[i](Φ
+
X) = −Φ+

X .

Since also wX(Φ
+
X) = −(Φ+

X), (4.37) is equivalent to (iv).
In order prove that the remaining statements (vi) and (viii) are equivalent to the others, it

remains to establish some implications.

(i) ⇒ (vi): This is clear.
(iii) ⇒ (viii): This is clear.
(vi) ⇒ (v) and (viii) ⇒ (v): We prove the contrapositives. Suppose is a connected component

of X[i]. Then τ(i) = i and there exists j ∈ X such that wX[i]|SpQ{αi,αj} equals sisjsi = sjsisj.

Hence s̃i = w{i,j}w{i} = sisj. Note that σ|SpQ{αi,αj} = sj. We obtain αi = αi +
1
2αj ∈ V σ.

It follows that s̃i(αi) = si(αi +
1
2αj) = 1

2(αj − αi) which is not fixed by σ, as required.
Furthermore, conjugation by wX[i] maps sj to si, so that wX[i] does not normalize WX . �

Remark 4.20. Suppose (X, τ) is not a generalized Satake diagram. Let i ∈ I∗ be such that X[i]
has as a connected component.

(i) Note that s̃i does not stabilize V
σ, but it does stabilize the subspace {β ∈ V σ : (β, αi) = 0},

so there is no contradiction between Lemma 4.15 and Proposition 4.19 (vi).

(ii) The generator s̃i is of order 3. Hence in this case W̃ is a (possibly infinite) complex reflection
group. We will not pursue this further here. �

4.8. The group W (Φ) revisited. Note that Lemma 4.15 and Proposition 4.19 (vi)-(vii) combine

to imply that, for all i ∈ Ĩ,

(4.38) s̃i|Vσ = si.

As a consequence we obtain a group map φ : W̃ → W (Φ). We now proceed as in [DK19, Sec. 2.3]
to show that φ is an isomorphism. Denote by W ′(Φ) the subgroup of W (Φ) generated by {si}i∈Ĩ .
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The following lemma is similar to a key technical step in the standard proof that Weyl groups of
root systems are generated by the simple reflections, see e.g. [Hu90, Thm. 1.5, Step (1) of proof],
but we feel it is beneficial to go through it carefully in the restricted Kac-Moody setting.

Lemma 4.21. Let β ∈ Φ+ be and assume that (β, β) > 0. Then the W ′(Φ)-orbit through β

intersects Z≥0αi for some i ∈ Ĩ.

Proof. Denote the orbit under consideration by [β]. By Lemma 4.7, if αi ∈ [β] then i ∈ Ĩ. Hence
it is sufficient to prove that [β] intersects Z≥0αi for some i ∈ I∗.

Since [β] ∩ Φ+ contains β, it is nonempty. Now pick any µ ∈ Φ+ such that µ is an element of

[β] ∩ Φ+. By Lemma 4.4, µ =
∑

j∈I∗ mjαj with mj ∈ Z≥0. Since (µ, µ) = (β, β) > 0, there exists

i ∈ I∗ such that (µ, αi) > 0. If µ ∈ Z≥0αi, we are done. Otherwise consider si(µ) which lies in

Φ+\Qαi by Lemma 4.10. We obtain

(4.39) si(µ)− µ = −2
(αi, µ)

(αi, αi)
αi ∈ Q<0αi.

On the other hand,

(4.40) si(µ)− µ = s̃i(µ)− µ = s̃i(µ)− µ

as a consequence of (4.38) and Proposition 4.19 (i). Since s̃i(µ) − µ ∈ SpZ{αj}j∈X[i] it follows
that si(µ) − µ ∈ SpZ{αj}j∈X[i] = Zαi. Now (4.39) implies that si(µ) − µ lies in Z<0αi, so that

si(µ) ∈ Φ+ has smaller restricted height than µ.
We repeat the above steps with µ replaced by si(µ). This process terminates, since the restricted

simple roots are precisely the elements of Φ+ with restricted height 1 so that at some point an
element of Z>0αi is obtained for some i ∈ I∗. �

Proposition 4.22. The group W (Φ) is generated by si for i ∈ Ĩ.

Proof. We need to prove that W ′(Φ) equals W (Φ). From Lemma 4.21 it follows that

(4.41) {β ∈ Φ+ : (β, β) > 0}
lies in the W ′(Φ)-image of ∪

i∈Ĩ
Z>0αi. Since elements of W (Φ) are isometries, by (4.19) we obtain

that for all β ∈ Φ+ such that (β, β) > 0 there exist w ∈W ′(Φ), i ∈ Ĩ and m ∈ Z>0 such that

(4.42) sβ = wsmαi
w−1.

We complete the proof by observing that s−β = sβ and smαi
= si. �

Proposition 4.22 shows that W (Φ) is generated by {s̃i}i∈Ĩ so that the map φ is surjective. The
following result proves that the map φ is injective.

Lemma 4.23. If (X, τ) is a generalized Satake diagram, the action of W̃ on Φ is faithful.

Proof. We give a simplified version of the proof of [DK19, Lem. 2.8]. Suppose that w ∈ W̃ fixes Φ
pointwise. We need to prove that w = 1. In particular, w(αi) = αi for all i ∈ I∗, i.e.

(4.43) w(αi + σ(αi)) = αi + σ(αi) for all i ∈ I∗.

Recalling that σ = wX ◦ τ and using Lemma 2.3 (iii) we obtain

(4.44) σ(αi) = ατ(i) +
∑

j∈X

vijαj
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with vij ∈ Z≥0. Since the generators of W̃ commute with τ and act on ΠX := {αj}j∈X as a diagram
automorphism, we deduce from (4.43) the relation

(4.45) w(αi) + τ(w(αi)) +
∑

j∈X

vijw(αj) = αi + ατ(i) +
∑

j∈X

vijαj .

Now applying and using (4.6-4.7), we obtain w(αi) = αi for all i ∈ I∗. Using once again that w
commutes with τ and acts on ΠX as a diagram automorphism, it follows that w stabilizes Π. From
Aut(Φ) = Out(A)⋉W we deduce w = 1. �

We can now identify the two groups W̃ and W (Φ).

Theorem 4.24. W̃ ∼=W (Φ) if and only if (X, τ) is a generalized Satake diagram.

Proof. If (X, τ) is a generalized Satake diagram, by Proposition 4.22 and Lemma 4.23, the map φ
is a group isomorphism. It only remains to prove the “only if” part of the first statement, which
can be done as before via the contrapositive. Suppose (X, τ) is not a generalized Satake diagram.

By Proposition 4.19, there exists i ∈ Ĩ and j ∈ X such that s̃i = sisj is of order 3. It suffices

to prove that W̃ ∩WX[i] = 〈s̃i〉 is not isomorphic to W (Φ{i,j}). This is clear since by Lemma 4.4

W (Φ{i,j}) =W ({±αi}) is a group of two elements. �

As a consequence, we obtain that Φ is a root system in the following sense:

Corollary 4.25. If (X, τ) is a generalized Satake diagram, then Φ is W (Φ)-stable.

Proof. Let i ∈ Ĩ be arbitrary. In view of Theorem 4.24 it suffices to prove that Φ is stable under
the action of s̃i|V σ . Note that an arbitrary element of Φ is of the form λ with λ ∈ Φ\ΦX . Then

s̃i(λ) = s̃i(λ) by Proposition 4.19 (i). Combining λ ∈ Φ\ΦX with Proposition 4.19 (iv), we obtain

s̃i(λ) ∈ Φ\ΦX so that s̃i(λ) ∈ Φ as required. �

The converse to Corollary 4.25 is not true: Φ is stable under W (Φ) also if (X, τ) equals
(cf. [He84, Thm. 6.1], which is a result for the group W ).

4.9. The restricted Weyl group as a Coxeter group. It turns out that the condition that

(W̃ , {s̃i})i∈Ĩ is a Coxeter system is also equivalent to (X, τ) being a generalized Satake diagram.

We give a brief synopsis of the proof of this in the approaches of [Lu03, Appendix] and [GI14]. In
particular, we highlight the following property as it identifies where in this approach the condition
that (X, τ) is a generalized Satake diagram is necessary.

Lemma 4.26. W̃ ≤ Wτ if and only if (X, τ) is a generalized Satake diagram.

Proof. By Proposition 4.19, W̃ ≤ NW (WX) if and only if (X, τ) is a generalized Satake diagram.

Combining this with (4.33), it remains to prove that ℓ(sj s̃i) > ℓ(s̃i) for all i ∈ Ĩ and j ∈ X,
assuming that (X, τ) is a generalized Satake diagram. For all j ∈ X, sj s̃i = s̃is(oiXoiX[i])(j) with

(oiXoiX[i])(j) ∈ X. Therefore it suffices to prove that ℓ(s̃iwj) > ℓ(s̃i) for all j ∈ X, which by a basic

property of Coxeter groups is equivalent to s̃i sending {αi}i∈X into Φ+
X[i]. This follows directly from

s̃i(αj) = α(oiXoiX[i])(j) for all j ∈ X. �

The inductive proof of [GI14, Lem. 2] can be directly generalized to the current setting, which
yields the following statement.
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Lemma 4.27. For all w ∈ Wτ there exists (i1, . . . , iℓ(w)) ∈ Ĩℓ(w) such that

(4.46) w = s̃i1 · · · s̃iℓ(w)
.

Furthermore, if i ∈ I satisfies ℓ(siw) < ℓ(w) then we can choose (i1, . . . , iℓ(w)) so that i ∈ X[i1].

We obtain from Lemmas 4.26 and 4.27 the following result.

Corollary 4.28. W̃ ∼= Wτ if and only if (X, τ) is a generalized Satake diagram.

The following desirable property of W̃ can now be obtained.

Theorem 4.29. The group W̃ is a Coxeter group if and only if (X, τ) is a generalized Satake

diagram. In this case, with ℓ̃ denoting the length function for this Coxeter system, we have

(4.47) ℓ̃(ww′) = ℓ̃(w) + ℓ̃(w′) ⇐⇒ ℓ(ww′) = ℓ(w) + ℓ(w′) for all w,w′ ∈ W̃ .

Proof. We may proceed as in [GI14, Lem. 4 - Prop. 7] (also cf. [Hé91] and [Lu03, Appendix]) by

replacing W τ by Wτ according to [GI14, Rmk. 8]. In this approach, (W̃ , {s̃i}i∈Ĩ) is shown to be

a Coxeter system via the characterization that the exchange condition is satisfied, see e.g. [Bo68,
Ch. IV, §1.6, Thm. 1]. We leave the details to the reader.

To complete the proof, we also need to show that (W̃ , {s̃i}i∈Ĩ) is not a Coxeter system if (X, τ)
is not a generalized Satake diagram, which follows immediately from Proposition 4.19. �

Note that Proposition 4.14 and Corollary 4.28 combine to yield the following final identification.

Theorem 4.30. W̃ ∼=W if and only if (X, τ) is a generalized Satake diagram.

Remark 4.31.

(i) We leave it to the reader to check that the results in this section extend to non-crystallographic
Coxeter groups, if we make the following adjustment: call a compatible decoration (X, τ) a
generalized Satake diagram if for all i ∈ I\X such that τ(i) = i the connected component of
X[i] containing i is not a nontrivial odd dihedral group, i.e. not of type I2(m) with m > 1
odd. In the crystallographic case only I2(3) = A2 can occur, which recovers Definition 3.4 (i).

(ii) In the case (X, τ) = the three groups W , W (Φ) and W̃ are all distinct: their orders are
1, 2 and 3, respectively. �

4.10. Non-reduced and non-crystallographic root systems. In Appendices A.3 and A.4 we
also indicate the restricted root system, which can be non-reduced. In Table 1 below we recall the
standard notation and Dynkin diagrams for non-reduced crystallographic root systems of finite and
affine type. The notation is of the form (X,Y )n for n ≥ 1; here Xn is the type of the underlying
reduced crystallographic root system which is obtained by deleting 2β for all roots β such that
(β, β) > 0 and Yn is the type of the underlying reduced crystallographic obtained by deleting all
roots β such that (β, β) > 0 and 2β is also a root.

Only in one finite-type and one affine-type case a generalized Satake diagram yields a non-
crystallographic root system (which is also non-reduced). We consider these in detail now, also as
examples of the computation of the restricted root system via subdiagrams of restricted rank 1.

Example 4.32.

(i) Suppose g is of type G2. Label the Dynkin diagram as follows:
21
. Let σ = s1. From

(4.48) Φ = ±{α1, α2, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2}
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Table 1. Dynkin diagrams for non-reduced crystallographic finite and affine root
systems. If and only if a node in such a Dynkin diagram is marked by x, the root
system contains in addition to the corresponding simple root β also the root 2β.

Type Diagram Constraints Special low-rank case

(B,C)n x n ≥ 1 x n = 1

(B̂, B̂∨)n x n ≥ 2 x n = 2

(Ĉ′, Ĉ)n x n ≥ 1 x n = 1

(Ĉ∨, Ĉ)n x x n ≥ 1 x x n = 1

(Ĉ∨, Ĉ′)n x n ≥ 1 x n = 1

and

(4.49) α2 = α1 + α2 =
1
2α1 + α2, α1 + 2α2 = α1 + 2α2, α1 + 3α2 = 2α1 + 3α2 =

3
2α1 + 3α2

it follows that Φ = ±{1, 2, 3}α2 , a non-reduced non-crystallographic root system of rank 1.
We denote it5 by (B,C)+1 , since we may obtain it by adjoining 3β for all short roots β to the
non-reduced root system of type (B,C)1.

(ii) By adjoining a node corresponding to minus the highest short root to the Dynkin diagram

of the previous example we obtain the affine Lie algebra of type Ĝ∨
2 . More precisely, we may

label the nodes in the Dynkin diagram as follows:
021
.

Again, let σ = s1. As before, α2 = 1
2α1 + α2 and straightforwardly we find α0 = α0. We

may set ǫ0 = ǫ1 = 1 and ǫ2 = 3. We compute the inner products:

(4.50) (α0, α0) = (α0, α0) = 2, (α0, α2) = (α0, α2) = −1, (α2, α2) = (α2,
1
2α1 + α2) =

1
2 .

Hence α2 and α0 generate a crystallographic root system Φred of type Ĉ′
1. It is reduced in

the sense that Zβ ∩ Φred = {±β} for all real roots β ∈ Φred. Integer multiples of α2 arise in
this root system: α1 + 2α2 = 2α2 and 2α1 + 3α2 = 3α2. One verifies that Φ is obtained from
Φred by adjoining 2α and 3α for all real short roots α. Similar to the previous example, we

denote this non-reduced non-crystallographic root system by (Ĉ′, Ĉ)+1 . �

A. Classification of generalized Satake diagrams

This Appendix provides a classification of Aut(A)-orbits of generalized Satake diagrams whose
underlying Dynkin diagram is of finite or affine type6. We refer the reader to Definition 3.4 (i) for
the definition of generalized Satake diagram and to (2.30) for the definition of the Aut(A)-action on
the set of generalized Satake diagrams. For A of finite type we recover the classification obtained
in [He84, Table I]. We have also indicated the special τ -orbits (see Section 3.5) and odd nodes (see
Section 2.8) by marking the corresponding orbits in the diagram s and o, respectively. The absence
of odd nodes in a diagram allows the reader easily to recognize Satake diagrams and to recover

5This case is exceptional in another way: the corresponding subalgebra k is the only reductive one with (X, τ, γ)
an enriched generalized Satake diagram of finite type such that (X, τ ) is not a Satake diagram, see [RV20, Ex. 2 (ii)].

6For completeness we always include the split and compact Satake diagrams (∅, id) and (I, oiI).
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the classification obtained in [Ar62, §4 and §5] for A of finite type (also see [NS95, Sec. 3], [Le03,
Sec. 7] and [He12, Ch. IX]) and in [BBBR95, Sec. 6] for A of affine type.

For each diagram we indicate the type of the restriced root system Φ (see Section 4). We also
give the constraints on the discrete parameters determining the type and the description of (X, τ)
in terms of these parameters. Finally, we also enumerate the special cases where the nature of the
diagram is different from the general case (e.g. due to a different number of special τ -orbits or odd
nodes or a low rank case), in order of decreasing restricted rank.

A.1. Notation. We use the following descriptive notation for the generalized Satake diagrams:

(T)
type of (X,τ)
description of X .

Here T denotes the type of the underlying Dynkin diagram. The other details are as follows:

◦ If T is of a classical Lie type, the type of (X, τ) can be plain (indicated by pl), alternating
(alt), reflecting (rfl) or rotational (rot), as explained in Section 3.2. The description of X is a
listing of up to two nonnegative integers, except for copies of A1 for diagrams of alternating
type. Each such integer p indicates a connected component of type Ap−1 (for reflecting and
rotational types) or Bp, Cp or Dp (for plain and alternating types).

◦ If T is of an exceptional Lie type, the type of (X, τ) amounts to specifying whether τ =
id (indicated by an absence of a symbol) or τ is a nontrivial involution (indicated by an

apostrophe). The latter is only relevant if T is E6, Ê6 or Ê7; in each of these cases there is
a unique diagram automorphism of order 2 up to Aut(A)-conjugacy. The description of X is
simply its Lie type. When T = G2, it is supplemented by a superscript lo or sho indicating
whether X, when it has a single element, corresponds to the long or short simple root of G2.

We hope this notation will allow the reader to identify the diagram more easily than the roman
numeral notation commonly used for finite type and the notation in [BBBR95] used for affine type.

A.2. Low-rank coincidences. We will allow, in the infinite families of classical Lie type, the rank
to go below the usual lower bounds with the following natural interpretations:

Rank Diagrams

0 A−1 = A0 = B0 = C0 = D0 = D1 = (B,C)0 = Z0,

1 A1 = B1 = C1,

2 A1 × A1 = D2, B2 = C2

3 A3 = D3

Here Z0 denotes the type of the empty set (a finite root system) when considered in isolation (i.e.
not as part of an infinite family).

Similarly, the set of nonzero integer multiples of a fixed nonzero vector is an affine root system,

called the basic imaginary root system. We denote the type of this root system by Ẑ0 if considered
in isolation. In the infinite families of classical Lie type we will allow the rank to go below the usual
lower bounds with the following natural interpretations:

Rank Diagrams

0 Â0 = B̂0 = B̂∨
0 = Ĉ0 = Ĉ∨

0 = Ĉ′
0 = (B̂, B̂∨)0 = (Ĉ′, Ĉ∨)0 = (Ĉ∨, Ĉ∨)0 = (Ĉ∨, Ĉ′)0 = Ẑ0

1 Â1 = B̂1 = B̂∨
1 = Ĉ1 = Ĉ∨

1 = (B̂, B̂∨)1

2 B̂2 = Ĉ2, B̂∨
2 = Ĉ∨

2

3 Â3 = D̂3
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A.3. Finite type. Tables 2, 3 and 4 list the generalized Satake diagrams. For each Satake diagram
we also give the standard notation in terms of roman numerals. Note that types AIV and BDII are
distinguished from the larger families AIII and BDI, respectively, by the condition |I∗| = 1.

Table 2. Generalized Satake diagrams of finite Lie type An. We set N := n+ 1.

Type Diagram Type of Φ Constraints
(
An
)pl

AI X = ∅ τ = id An (n > 1)
(
An
)alt

AII X is of type A
N/2
1 τ = id An−1

2
n odd (n > 1)

(
An
)rfl
p

AIII

AIV
s s (B,C)N−p

2

0 ≤ p ≤ N
N − p even

X is of type Ap−1 τ has mod(p − 1, 2) fixed points

s s CN
2
, (B,C)N−1

2
p < 1

Special cases: Z0 p = N

s A1, Z0 n = 1, p ∈ {0, 2}

Table 3. Generalized Satake diagrams of finite classical Lie type other than An.

Type Diagram Type of Φ Constraints
(
Bn
)pl
p

BI BII Bn−p 0 ≤ p ≤ n

X is of type Bp τ = id

Special cases: s C2 p = n− 2

(
Bn
)alt
p o (B,C)n−p

2

0 ≤ p < n
n− p even

X is of type A
n−p

2
1 × Bp τ = id

Special cases: o (B,C)n
2

p = 0

(
Cn
)pl
p o (B,C)n−p 0 ≤ p < n

X is of type Cp τ = id

Special
cases:

CI s Cn p = 0

s o (B,C)2 p = n− 2

(
Cn
)alt
p

CII (B,C)n−p

2

0 ≤ p ≤ n
n− p even

X is of type A
n−p

2
1 × Cp τ = id

Special cases:
Cn/2 p = 0

Z0 p = n
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Type Diagram Type of Φ Constraints
(
Dn
)pl
p

DI DII Bn−p 0 ≤ p ≤ n

X is of type Dp τ has mod(p, 2) nontrivial orbits

Dn, Bn−1 p = 0, p = 1

Special cases:
s s C2 p = n− 2

s D4, B3, C2, A1, Z0
n = 4
0 ≤ p ≤ 4

(
Dn
)alt
p o o

(B,C)n−p
2

0 ≤ p < n
n− p even

X is of type A
n−p

2
1 × Dp τ has mod(p, 2) nontrivial orbits

Special
cases:

DIII s s Cn
2
, (B,C)n−1

2
p ≤ 1 (n > 4)

o
(B,C)1 n = 4, p = 2

Table 4. Generalized Satake diagrams of finite exceptional Lie type.

Type Diagram Type of Φ Type Diagram Type of Φ
(
E6

)
∅ EI E6

(
E6

)
D4

EIV A2

(
E6

)′
A3

EIII s (B,C)2
(
E6

)′
A5 o (B,C)1

(
E6

)′
∅

EII F4
(
E6

)′
E6

Z0

(
E7

)
∅ EV E7

(
E7

)
D4×A1

o (B,C)2
(
E7

)
A3
1

EVI F4
(
E7

)
D6

o
(B,C)1

(
E7

)
D4

EVII s C3

(
E7

)
E7

Z0

(
E8

)
∅ EVIII E8

(
E8

)
E7

o (B,C)1
(
E8

)
D4

EIX F4
(
E8

)
E8

Z0

(
E8

)
D6 o (B,C)2

(
F4
)
∅ FI F4

(
F4
)
C3 o (B,C)1

(
F4
)
C2 o (B,C)2

(
F4
)
F4

Z0
(
F4
)
B3

FII (B,C)1
(
G2

)
∅ G G2

(
G2

)lo
A1

o (B,C)+1
(
G2

)sho
A1

o (B,C)1
(
G2

)
G2

Z0
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A.4. Affine type. Tables 5, 6 and 7 list the generalized Satake diagrams.

Table 5. Generalized Satake diagrams of affine Lie type Ân. We set N := n+ 1.

Type Diagram Type of Φ Constraints

(
Ân
)pl

X = ∅ τ = id Ân (n > 1)

(
Ân
)alt

X is of type A
N/2
1 τ = id Ân−1

2
n odd (n > 1)

(
Ân
)rot

X = ∅ τ = half-turn Ân−1
2

n odd (n > 1)

(
Ân
)rfl
p1,p2

s s s s

s s s s

(Ĉ∨, Ĉ)N−p1−p2
2

0 ≤ p1 ≤ p2
p1 + p2 ≤ N
N − p1 − p2 even

X is of type Ap1−1 × Ap2−1 τ has mod(p1−1, 2) +mod(p2−1, 2) fixed points

s s
s

s
s s

ĈN
2

, (Ĉ′, Ĉ)N−1

2

,

(Ĉ∨, Ĉ)N−2

2

(p1, p2) ∈
{(0, 0), (0, 1), (1, 1)}

s
s

s
s

(Ĉ′, Ĉ)N−p2
2

p1 = 0, p2 ≥ 2

Special
cases:

s s s s (Ĉ∨, Ĉ)N+1−p2
2

p1 = 1, p2 ≥ 2

s s

s s

Ẑ0
p1 + p2 = N
p1 ≥ 2

s s Ẑ0
(p1, p2) ∈
{(0, N), (1, N−1)}

s s
s Â1, Ẑ0, Ẑ0

n = 1, (p1, p2) ∈
{(0, 0), (0, 2), (1, 1)}
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Table 6. Generalized Satake diagrams of affine classical Lie type other than Ân.

Type Diagram Type of Φ Constraints

(
B̂n
)pl
p1,p2

Ĉ∨
n−p1−p2

p1, p2 ≥ 0
p1 + p2 ≤ n

X is of type Dp1 × Bp2 τ has mod(p1, 2) nontrivial orbits

B̂n−p2 p1 = 0

s s
s Ĉ2, Ĉ

∨
2

p1 + p2 = n− 2
p1 < 2

Special
cases:

s s Ĉ∨
2

p1 + p2 = n− 2
p1 ≥ 2

s s Ĉ∨
2 (p1, p2) = (n−2, 0)

s s Â1 (p1, p2) = (n−1, 0)

s Ẑ0
(p1, p2) ∈
{(0, n), (1, n − 1)}

(
B̂n
)alt
p1,p2

o o

o o

(Ĉ∨, Ĉ)n−p1−p2
2

p1, p2 ≥ 0
p1 + p2 < n
n− p1 − p2 even

X is of type Dp1 × A
n−p1−p2

2
1 × Bp2 τ has mod(p1, 2) nontrivial orbits

Special
cases:

s
o

s
o

(Ĉ′, Ĉ)n−p2
2

,

(Ĉ∨, Ĉ)n−1−p2
2

p1 < 2

(
B̂∨
n

)pl
p1,p2

o

o

(Ĉ∨, Ĉ′)n−p1−p2
p1, p2 ≥ 0
p1 + p2 < n

X is of type Dp1 × Cp2 τ has mod(p1, 2) nontrivial orbits

s B̂∨
n (p1, p2) = (0, 0)

s s Ĉ′
n−p1 p1 > 0, p2 = 0

Special
cases:

s s
o s o (B̂, B̂∨)2, (Ĉ

∨, Ĉ′)2
p1 + p2 = n− 2
p1 < 2

s o s o (Ĉ∨, Ĉ′)2
p1 + p2 = n− 2
p1 ≥ 2

oo (Ĉ∨, Ĉ)1 (p1, p2) = (0, n−1)

s Ẑ0 p1+p2 = n, p1 < 2
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Type Diagram Type of Φ Constraints

(
B̂∨
n

)alt
p1,p2

o

o

(Ĉ∨, Ĉ)n−p1−p2
2

p1, p2 ≥ 0
p1 + p2 < n
n− p1 − p2 even

X is of type Dp1 × A
n−p1−p2

2
1 × Cp2 τ has mod(p1, 2) nontrivial orbits

s s Ĉn
2
, (Ĉ′, Ĉ)n−1

2

(p1, p2) ∈
{(0, 0), (1, 0)}

Special
cases:

s s
(Ĉ′, Ĉ)n−p2

2

,

(Ĉ∨, Ĉ)n−1−p2
2

p1 < 2, p2 ≥ 1

o o
(Ĉ′, Ĉ)n−p1

2
p1 > 0, p2 = 0

(
Ĉn
)pl
p1,p2 o o (Ĉ∨, Ĉ)n−p1−p2

0 ≤ p1 ≤ p2
p1 + p2 < n

X is of type Cp1 × Cp2 τ = id

s s Ĉn (p1, p2) = (0, 0)

Special
cases: s o (Ĉ′, Ĉ)n−p2 p1 = 0, p2 > 0

o s o (Ĉ∨, Ĉ)2
p1 + p2 = n− 2
p1 > 0

(
Ĉn
)alt
p1,p2

(Ĉ∨, Ĉ)n−p1−p2
2

0 ≤ p1 ≤ p2
p1 + p2 ≤ n
n− p1 − p2 even

X is of type Cp1 × A
n−p1−p2

2
1 × Cp2 τ = id

Special
cases:

Ĉn
2

(p1, p2) = (0, 0)

(Ĉ′, Ĉ)n−p2
2

p1 = 0, p2 > 0

(
Ĉn
)rot
p

s s (Ĉ′, Ĉ)n−p
2

0 ≤ p ≤ n
n− p even

X is of type Ap−1 τ = half-turn with mod(p − 1, 2) fixed points

Special
cases: s

s Ĉn
2
, (Ĉ′, Ĉ)n−1

2
p < 2

(
Ĉ∨
n

)pl
p1,p2

Ĉ∨
n−p1−p2

0 ≤ p1 ≤ p2
p1 + p2 ≤ n

X is of type Bp1 × Bp2 τ = id

Special
cases:

s s Ĉ∨
2 p1 + p2 = n− 2

s Â1 (p1, p2) = (0, n−1)

(
Ĉ∨
n

)alt
p1,p2 o o (Ĉ∨, Ĉ)n−p1−p2

2

0 ≤ p1 ≤ p2
p1 + p2 < n
n− p1 − p2 even

X is of type Bp1 × A
n−p1−p2

2
1 × Bp2 τ = id
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Type Diagram Type of Φ Constraints
(
Ĉ∨
n

)rot
p

s s (Ĉ∨, Ĉ′)n−p

2

0 ≤ p ≤ n
n− p even

X is of type Ap−1 τ = half-turn with mod(p − 1, 2) fixed points

Special
cases: s

s Ĉ′
n
2

, (Ĉ∨, Ĉ′)n−1

2

p < 2

(
Ĉ′
n

)pl
p1,p2

o (Ĉ∨, Ĉ′)n−p1−p2
p1, p2 ≥ 0
p1 + p2 ≤ n

X is of type Cp1 × Bp2 τ = id

s Ĉ′
n−p2 p1 = 0, p2 < n

o s o s (Ĉ∨, Ĉ′)2
p1 + p2 = n− 2
p1 > 0

Special
cases:

o s (Ĉ∨, Ĉ′)1 (p1, p2) = (n−1, 0)

Ẑ0 (p1, p2) = (0, n)

s o (Ĉ∨, Ĉ′)1, Ẑ0, Ẑ0

n = 1, (p1, p2) ∈
{(0, 0), (0, 1), (1, 0)}

(
Ĉ′
n

)alt
p1,p2 o (Ĉ∨, Ĉ)n−p1−p2

2

p1, p2 ≥ 0
p1 + p2 < n
n− p1 − p2 even

X is of type Cp1 × A
n−p1−p2

2
1 × Bp2 τ = id

Special
cases:

o (Ĉ′, Ĉ)n−p2
2

p1 = 0

(
D̂n
)pl
p1,p2

Ĉ∨
n−p1−p2

0 ≤ p1 ≤ p2
p1 + p2 ≤ n

X is of type Dp1 × Dp2 τ has mod(p1, 2) +mod(p2, 2) nontrivial orbits

D̂n (p1, p2) = (0, 0)

B̂n−p2 p1 = 0, p2 > 0

s s s s Ĉ2
p1 + p2 = n− 2
p1 = 0

s s Ĉ∨
2

p1 + p2 = n− 2
p1 = 1

Special
cases:

s s

s s

Ĉ∨
2

p1 + p2 = n− 2
p1 ≥ 2

s s Ẑ0 p1 + p2 = n, p1 < 2

s s
s

s

D̂4, B̂3, Ĉ2,

Â1, Ẑ0, Ĉ
∨
2 ,

Â1, Ẑ0, Ẑ0

n = 4, (p1, p2) ∈
{(0, 0), (0, 1), (0, 2),
(0, 3), (0, 4), (1, 1),
(1, 2), (1, 3), (2, 2)}
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Type Diagram Type of Φ Constraints

(
D̂n
)alt
p1,p2

o o

o o

o o

o o

(Ĉ∨, Ĉ)n−p1−p2
2

p1, p2 ≥ 0
p1 + p2 < n
n− p1 − p2 even
(n > 4 if p1+p2 ≤ 1)

X is of type Dp1 × A
n−p1−p2

2
1 × Dp2 τ has mod(p1, 2) +mod(p2, 2) nontrivial orbits

s s ss

s s

Ĉn
2
, (Ĉ′, Ĉ)n−1

2

,

(Ĉ∨, Ĉ)n−2

2

(p1, p2) ∈
{(0, 0), (0, 1), (1, 1)}

Special
cases:

s
o

s
o

(Ĉ′, Ĉ)n−p2
2

p1 = 0, p2 ≥ 2

s
o

s
o

(Ĉ∨, Ĉ)n−1−p2
2

p1 = 1, p2 ≥ 2

s
o

s s (Ĉ′, Ĉ)1, (Ĉ
∨, Ĉ)1

n = 4, (p1, p2) ∈
{(0, 2), (1, 1)}

(
D̂n
)rot
p

s s (B̂, B̂∨)n−p
2

0 ≤ p ≤ n
n− p even

X is of type Ap−1 τ = half-turn with mod(p − 1, 2) fixed points

s
s B̂∨

n
2

, (B̂, B̂∨)n−1

2

p < 2

Special
cases: s

s

s

s
Â1 p = n− 2

s s
Ẑ0 p = n
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Table 7. Generalized Satake diagrams of affine exceptional Lie type.

Type Diagram Type of Φ Type Diagram Type of Φ
(
Ê6

)
∅

Ê6

(
Ê6

)
D4

Â2

(
Ê6

)
A4
1

Â2

(
Ê6

)′
∅

F̂4
(
Ê6

)′
A5 os (Ĉ′, Ĉ)1

(
Ê6

)′
A2
1

s (B̂, B̂∨)2
(
Ê6

)′
A5×A1

Ẑ0

(
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(
Ê7

)
D4

s s Ĉ3
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Ê7

)′
∅

F̂∨4
(
Ê7
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(Ĉ′, Ĉ)1
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Ẑ0

(
Ĝ∨
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