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Free-fermion Page curve: Canonical typicality and dynamical emergence
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We provide further analytical insights into the recently established noninteracting (free-fermion) Page curve,
focusing on both the kinematic and dynamical aspects. First, we unveil the underlying canonical typicality
and atypicality for random free-fermion states. The former appears for a small subsystem and is exponentially
weaker than the well-known result in the interacting case. The latter explains why the free-fermion Page curve
differs remarkably from the interacting one when the subsystem is macroscopically large, i.e., comparable
with the entire system. Second, we find that the free-fermion Page curve emerges with unexpectedly high
accuracy in some simple tight-binding models in long-time quench dynamics. This contributes a rare analytical
result concerning quantum thermalization on a macroscopic scale, where conventional paradigms such as the
generalized Gibbs ensemble and quasiparticle picture are not applicable.
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I. INTRODUCTION

As a central concept in quantum information science [1],
entanglement has been recognized to play vital roles in de-
scribing and understanding quantum many-body systems in
and out of equilibrium [2–5]. For example, entanglement
area laws for ground states of gapped local Hamiltonians en-
able their efficient descriptions based on tensor networks [6],
while their violations may signature quantum phase transi-
tions [7,8]. The emergence of thermal ensemble from unitary
evolution, a process known as quantum thermalization [9], is
ultimately attributed to the entanglement generated between a
subsystem and the complement [10].

Almost 30 years ago, Page considered the fundamental
problem of bipartite entanglement in a fully random many-
body system and found a maximal entanglement entropy
(EE) up to finite-size corrections [11]. This seminal work
was originally motivated by the black-hole information prob-
lem [12]. Remarkably, it has attracted increasing and much
broader interest in the past decade, due not only to the the-
oretical insights from quantum thermalization [13–21] and
quantum chaos [22–24] but also to the practical relevance
in light of the rapid experimental development in quantum
simulations [25–32]. In particular, the saturation of maximal
entropy has been found to be a consequence of canonical
typicality [33–35], which means most random states behave
locally like the canonical ensemble. This typicality behavior
has been argued to emerge in generic interacting many-body
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systems satisfying the eigenstate thermalization hypothesis
[5,9,10,36–38] and can even be rigorously established or ruled
out in specific situations [39,40].

In this paper, we provide analogous insights into the
noninteracting counterpart of Page’s problem. That is, we
focus on free fermions or (fermionic) Gaussian states, which
are of their own interest in quantum many-body physics,
quantum information, and computation [41–59]. Somehow,
surprisingly, in the seemingly simpler noninteracting case,
the subsystem-size dependence of averaged EE, which is de-
scribed by the Page curve pictorially, was not solved until
very recently [60–62]. It turns out to be similar to the inter-
acting case for a small subsystem, but differs significantly
otherwise. See Fig. 1(b) for an illustration. With the mea-
sure concentration results on compact-group manifolds, we
establish the corresponding canonical typicality (atypicality)
in microscopic (macroscopic) regions for the free-fermion
ensemble. Thus, we explicitly explain the similarity and dif-
ference from the kinematic aspect. In addition, we show that
the free-fermion Page curve can be relevant to extremely
simple tight-binding models via long-time quench dynam-
ics. By classifying the systems according to their conserved
(eigen)mode occupation numbers, we construct two classes of
Hamiltonians which can (cannot) give rise to a highly similar
Page curve. Our findings concerning macroscopic properties
cannot be captured by the generalized Gibbs ensemble (GGE)
or quasiparticle picture and thus goes beyond the conven-
tional paradigm of local thermalization. In the Appendices,
we provide further details about the proofs of Theorems 1
and 2 in the main text, together with some generalizations and
calculation strategies for other arguments in the main text.

II. CANONICAL TYPICALITY AND ATYPICALITY

We start by generalizing the main result in Ref. [33] to the
random fermionic Gaussian (RFG) ensemble. While Ref. [33]
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FIG. 1. (a) The entire free-fermion system has N sites with half
filling. The subsystem of interest has NA (NA � N) sites. The RFG
ensemble is generated by Haar-random Gaussian unitaries with num-
ber conservation. (b) The Page curves of the RFG and interacting
ensemble in the thermodynamic limit N → ∞. It is obvious that
these two Page curves agree with each other in the microscopic
region but show a O(1) deviation in the macroscopic region. The
interacting Page curve in the thermodynamic limit is always satu-
rated. (c) The table summarizes the typicality (atypicality) property
for the RFG and interacting ensembles. Here Poly. and Exp. indicate
polynomial and exponential scalings, respectively.

already considers possible restrictions, we stress that Gaus-
sianity is inadequate since Gaussian states do not constitute
a Hilbert subspace. For simplicity, we consider number-
conserving systems with totally N modes occupied by N/2
fermions, i.e., the half-filling case. Compared to the fully ran-
dom case without number conservation, this setting appears
to be more physically comprehensible and experimentally rel-
evant, while displaying exactly the same Page curve [60,61].
More general ensembles are discussed in Appendix A.

A pictorial illustration of our setup is shown in Fig. 1(a).
Due to Wick’s theorem [63], a fermionic Gaussian state ρ

is fully captured by its covariance matrix Cj, j′ = Tr(ρa†
j a j′ )

[64]. Here a j is the annihilation operator for mode j, which
may label, e.g., a lattice site. As the covariance matrices
for any RFG-pure state can be related to each other by a
unitary transformation, the uniform distribution over this en-
semble can be generated at the level of the covariance matrix
{C = UC0U †}. Here U is taken Haar randomly over the uni-
tary group U (N ) [60,61] and C0 is an arbitrary reference
covariance matrix in the ensemble satisfying C2

0 = C0 and
TrC0 = N/2.

An important property of Gaussian states is that their
subsystems remain Gaussian. We denote CA as the NA × NA

covariance matrix restricted to subsystem A with NA modes.
The EE SA = −Tr(ρA log2 ρA) of the reduced state ρA = TrĀρ

(Ā: complement of A) then reads

SA = −Tr(CA log2 CA) − Tr((IA − CA) log2(IA − CA)), (1)

where IA is the identity matrix with dimension NA.

Our first result is the measure concentration property of the
covariance matrix for RFG ensemble.

Theorem 1. For arbitrary ε > 0 and subsystem A, the prob-
ability that the reduced covariance matrix of a state in the RFG
ensemble deviates from the ensemble average satisfies

P (dHS(CA, IA/2) � η + 2ε) � 2e− ε2

η′ (2)

and

P
(
d2

HS(CA, IA/2) � ηa − 2ε
)
� 2e

− ε2

η′
a , (3)

with η =
√

N2
A

2(N−1) , η′ = 12
N , ηa = N2

A
4(N+1) , η′

a = 12NA
N and

dHS(C,C′) =
√

Tr(C − C′)2 being the Hilbert-Schmidt
distance.

The proof largely relies on the generalized Levy’s lemma
for Riemann manifolds with positive curvature [65–67],
which allows us to turn the upper bound on the dis-

tance average 〈dHS(CA, IA/2)〉 �
√

N2
A

2(N−1) or the lower bound

〈d2
HS(CA, IA/2)〉 � N2

A
4(N+1) into a probability inequality, see

Appendix A for details. From Eq. (2), we can easily see for
infinite environments N → ∞, the local microscopic system
will have maximal entropy SA → NA.

We emphasize that in Eq. (2), η and η′ only scale poly-
nomially with the (sub)system size. This contrasts starkly
with the exponential scaling canonical typicality for random
interacting ensembles [33]. Intuitively, this is because in the
interacting case, the Hilbert-space dimension scales expo-
nentially with the (sub)system size, which, however, simply
equals the size of the covariance matrix in the free-fermion
case. Physically, the Gaussian constraint makes the ensem-
ble only explore a very limited submanifold in the entire
Hilbert space. This polynomial scaling means that, for a fixed
subsystem size NA, the reduced state still exhibits canonical
typicality, while the atypicality is only polynomially sup-
pressed by the environment size. Accordingly, the averaged
EE should achieve the maximal value but with a polynomial
finite-size correction. In fact, such an exponentially weaker
canonical typicality (2) can also be exploited to explain the
qualitatively larger variance of the EE for the RFG ensemble,
which is O(N−2) in comparison to e−O(N ) in the interacting
case, see Refs. [60,61] and Appendix B.

On the other hand, if the subsystem is macroscopically
large, meaning that f = NA/N is O(1), the concentration in-
equality (2) becomes meaningless since η is O(

√
N ), the same

order as the Hilbert-Schmidt norm of CA. Instead, we may
take ε = O(Nα ) with α ∈ (0, 1) in Eq. (3), finding that the
majority of the reduced covariance matrix differs significantly
from the ensemble average. In other words, the RFG ensemble
exhibits canonical atypicality in this case. In particular, this
result implies an O(1) deviation in the EE density from the
maximal value. We recall that, in stark contrast, the canonical
typicality for interacting states is exponentially stronger and
persists even on any macroscopic scale with f < 1/2.

The above discussions can be made more straightforward
by considering the measure concentration property of SA. By
bounding SA using dHS(CA, IA/2) from both sides, we obtain
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FIG. 2. (a), (b) The tight-binding Hamiltonians H0 + H1 with period 2. H1 in (a) only includes the odd-range hopping, while (b) includes
even-range hopping. (c) Dynamical Page curve for the minimal model (6) (blue) as a representative of (a) and its comparison with the Page
curve for the RFG ensemble (red) as well as our theoretic result up to order O( f 5) (green). Here N = 200. These three lines are very close
to each other, with a difference ∼10−3 which agrees with our analysis. This figure can also represent the general dynamical Page curve
for Hamiltonians in (a). (d) Dynamical Page curve for Hamiltonian H = (

∑N
j=1 a†

j a j+1 + 0.3
∑

j:even a†
j a j+2 − 0.3

∑
j:odd a†

j a j+2) + H.c. as
a representative of (b). Here also N = 200. The dynamical Page curve is obviously different from the Page curve for the RFG ensemble.
The considerable deviation between the theoretical result and the dynamical Page curve near f = 1

2 , where higher-order terms become least
negligible, is because we only calculate up to the third term in Eq. (7), see Appendix C4 for more details.

(see Appendix B for more details)

P (SA � NA − ε) � 2e− (
√

ε−ξ )2

ξ ′ , ∀ε > ξ 2 (4)

in the microscopic region and

P (SA � NA − ξa + ε) � 2e
− ε2

ξ ′
a , ∀ε > 0 (5)

in the macroscopic region. Here ξ =
√

2N2
A

N−1 , ξ ′ = 192
N , ξa =

N2
A

2 ln 2(N+1) and ξ ′
a = 192NA

ln2 2N
. Note that Eq. (4) also become

meaningless in the macroscopic region since ξ 2 will be com-
parable with NA. Choosing ε = (ξ + O(N−α/2))2 for Eq. (4)
and ε = O(Nα ) in Eq. (5) with α ∈ (0, 1), we fully explain the
microscopic similarity and macroscopic difference between
the Page curves for the RFG and interacting ensembles. See
Figs. 1(b) and 1(c).

Although our discussion above is mainly focused on the
entanglement profile, the typicality (2) and atypicality (3) are
indeed more general. A similar typical argument has been
proposed to prove the quantum advantage in the context of
Gaussian-state-based metrology [68]. The atypicality, on the
other hand, establishes an unconventional result concerning
macroscopic scales that contrasts the common thermalization
belief [5,37–39,69].

III. DYNAMICALLY EMERGENT PAGE CURVE

We recall that a particularly intriguing point of the (inter-
acting) Page curve is its emergence in physical many-body
systems with local interactions [13–18], which are typically
chaotic but yet far from fully random. Indeed, a popular
phenomenological theory for describing generic entanglement
dynamics on the macroscopic level, the so-called entan-
glement membrane theory [24], explicitly assumes that the
entanglement profile of the thermalized system follows the
Page curve. The intuition is that a long-time evolution can

generate highly nonlocal correlations in a state and roughly
exhaust the whole Hilbert (sub)space, provided the dynamics
is ergodic. It is thus natural to ask whether the free-fermion
Page curve could be relevant to thermalization in real physical
systems without interactions. Note that this question is com-
plementary to the aforementioned (a)typicality results, which
are kinematic, i.e., irrelevant to dynamics, as in the interacting
case [33].

We try to address the above question by analytically
investigating the long-time averaged EE in the quench dynam-
ics governed by some simple local quadratic Hamiltonians
with number conservation. Hereafter, we use the term dy-
namical Page curve to refer to this long-time averaged
entanglement profile. Unlike Refs. [41,70,71], which deal
with models with strong spatiotemporal disorder so the emer-
gence of the RFG Page curve is somehow expectable, we
assume the Hamiltonian H to be time independent, trans-
lation invariant (under the periodic boundary condition),
and specify our initial state |�0〉 to be a period-2 density
wave with half filling. Our simple setup thus appears to be
far-from-random and highly experimentally accessible. See
Figs. 2(a) and 2(b) for a schematic illustration. The dynam-
ical Page curve is formally given by S(ρA(t )), where ρA =
TrĀ[e−iHt |�0〉〈�0|eiHt ] and f (t ) = limT →∞ T −1

∫ T
0 dt f (t )

denotes the long-time average. It is worth mentioning that the
dynamical Page curve is ensured to be concave by translation
invariance, as a result of the strong subadditivity of quantum
entropy [72].

We primarily focus on the minimal model, i.e., a one-
dimensional lattice with nearest-neighbor hopping:

H0 =
∑

j

a†
j a j+1 + H.c., (6)

whose band dispersion reads Ek = 2 cos k. We believe that
the exact results for the large (spatiotemporal) scale dynam-
ical behaviors of this fundamental model are interesting on
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their own. Moreover, our method and results actually ap-
ply to much broader situations, as will soon become clear
below.

Surprisingly, despite the additional translation-invariant
and energy-conserving constraints compared to the RFG en-
semble, this minimal model (6) turns out to give rise to a
dynamical Page curve extremely close to that for the RFG
ensemble [see blue and red curves in Fig. 2(c)]. To gain
some analytic insights, we perturbatively expand the entropy
expression (1) around CA = IA

2 , obtaining

SA(t ) = NA −
∞∑

n=1

Tr(2CA(t ) − IA)2n

2n(2n − 1) ln 2
. (7)

Thanks to the translational invariance, CA(t ) can be related
to the block-diagonal momentum-space covariance matrix
C̃(t ) =⊕k C̃k (t ) via CA(t ) = �AUFC̃(t )U †

F �
†
A. Here UF and

�A are the Fourier transformation matrix and projector to sub-
system A, respectively. The off-diagonal elements of a 2 × 2
block C̃k (t ) involve a time-dependent phase eiθk (t ) with θk (t ) =
t (Ek − Ek+π ). When calculating Tr(2CA(t ) − IA)2n, we will
encounter terms like eiθk (t )eiθk′ (t ), which equals δk,k′+π in the
thermodynamic limit. This contraction allows us to establish
a set of Feynman rules for systematically calculating Eq. (7)
order by order, see Appendixes C 1 and C 2 for more details.

Since the bipartite EE is identical for either of the
subsystems, the Page curve is reflection symmetric
with respect to f = 1

2 and thus it suffices to focus on
f = NA/N � 1

2 . In the thermodynamic limit, the dynamical
Page curve turns out to be

SA

N
= f − 1

ln 2

(
1

2
f 2 + 1

6
f 3 + 1

10
f 4

)
+ O( f 5); (8)

see Appendix C 2 for the derivation.
On the other hand, the Page curve for RFG ensemble

is [60]

〈SA〉
N

= f − 1

ln 2

(
1

2
f 2 + 1

6
f 3 + 1

12
f 4

)
+ O( f 5). (9)

The above two equations differ only by 1
60 ln 2 f 4 + O( f 5),

which is as small as about 10−3 even for f near 1/2.
Interestingly, if we add a perturbation H1 to Eq. (6),

as long as H1 is period-2 and only includes odd-range
hopping, as represented by Fig. 2(a), the dynamical Page
curve can be analytically demonstrated to be the same as
Eq. (8) in the thermodynamic limit, as the same Feynman
rules apply, see Appendix C 3 for the proof. One example
is H1 = J (

∑
j:even a†

j a j+2m+1 −∑ j:odd a†
j a j+2m+1) + H.c. for

arbitrary J and integer m. Thus, we have defined another
ensemble of fermionic Gaussian states by dynamical evo-
lution, which covers a wide class of Hamiltonians and this
ensemble has remarkably similar Page curve as the RFG
ensemble.

However, if H1 includes even-range hopping, as repre-
sented by Fig. 2(b) the dynamical Page curve will be very
different, as shown in Fig. 2(d). This can be easily explained
with the canonical typicality property proved above: for this
class of Hamiltonians, their conserved (eigen) mode occu-
pation number nk deviates from the average value of RFG

ensemble, which is 1
2 . Thus, the dynamical ensemble is nat-

urally atypical even for microscopic scale because the local
conserved observable is constructed from mode occupation
numbers [69]. This result implies that the reduced state on
a small subsystem deviates considerably from being max-
imally mixed so the tangent slope of the dynamical Page
curve at f = 0 is well below that for the RFG ensemble.
Physically, this class of Hamiltonians may correspond to a
nonuniform random free-fermion ensemble consistent with
the momentum-dependent occupation numbers. Its dynamical
Page curve is perturbatively calculated in Appendix C 4.

In contrast, one can show that all the conserved mode
occupation numbers for the class of Hamiltonians with only
period-2, odd-range hopping as mentioned above are 1

2 .
All the observations above constitute our second main

result.
Theorem 2. The RFG ensemblelike dynamical Page

curve (8) emerges for a period-2 short-range free-fermion
Hamiltonian if and only if the conserved mode occupation
numbers are 1/2.

Besides hoppings, the on-site potentials can also be incor-
porated into the above discussion since our theorem does not
require a specific form of the Hamiltonian but only its con-
served mode occupation numbers, see Appendix C 3. Another
viewpoint is that the on-site potential can be identified as
zero-range hopping.

IV. DISCUSSIONS

It is well-known that the GGE characterizes the local
thermalization of integrable systems including free fermions
[69,73–76]. However, in principle, GGE only predicts the
expectation values of observables, which do not include the
entropy. Note that the former (latter) is linear (nonlinear) in
ρA and thus commutes (does not commute) with time average.
Moreover, we also study the macroscopic scale, which cannot
be captured by GGE as well as its recently proposed refined
version [77] concerning the purified subsystem by measuring
the complement [78]. In this sense, our study goes well be-
yond the conventional paradigm of quantum thermalization in
integrable systems, pointing out especially the highly nontriv-
ial behaviors on the macroscopic level, where typicality may
completely break down.

Finally, let us mention the relation between our strategy
and the quasiparticle picture, which is widely used to cal-
culate EE growth [76,79–85]. It turns out this picture fails
to reproduce the dynamical Page curve. Under the period-
ical boundary condition, the quasiparticle picture predicts

SA = N − N2
A

N for the Hamiltonian satisfying the conditions
in Theorem 2, see Appendix D for the derivation. This re-
sult is obtained by counting the steady number of entangled
pairs shared by A and Ā. On the other hand, noting that
(2CA − IA)2n � (2CA − IA)2, if we replace all the higher-order
terms of (2CA − IA) in Eq. (7) with (2CA − IA)2, we will get a
lower entropy bound, which coincides with the prediction by
the quasiparticle picture: SA � NA − Tr(2CA−IA )2

ln 2

∑
n

1
2n(2n−1) =

NA − N2
A

N . It is thus plausible to argue that the quasiparti-
cle picture ignores possible higher-order correlations beyond
quasiparticle pairs.
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V. CONCLUSION AND OUTLOOK

We have derived the canonical (a)typicality for the RFG
ensemble and pointed out the quantitative scaling difference
in atypicality suppression from interacting systems. This ex-
plains the very different behaviors of the Page curves. We
have also explored the relevance to long-time quench dynam-
ics of free-fermion systems. To our surprise, some simple
time-independent Hamiltonians are enough to make the free-
fermion Page curve emerge to a very high accuracy. We
analytically prove a necessary and sufficient condition about
this behavior. The breakdown of the quasiparticle picture was
also discussed.

Strictly speaking, we define an ensemble arising from a
wide class of free-fermion Hamiltonians, whose dynamical
Page curve resembles a lot but yet differs from the fully
random one. The properties of this ensemble and its corre-
sponding Page curve merit further study. For example, its
dynamical Page curve (8) is a perturbative approximation
and a closed form expression will be satisfactory. Another
interesting question is how the dynamical Page curves will
be enriched upon imposing additional symmetries (such as
the Altland-Zirnbauer symmetries [86]), in which case one
may naturally consider the symmetry-resolved EE [87,88].
Our paper proposes a methodology to study this question.
In addition, whether or not the fully random Page curve can
emerge exactly for a time-independent free Hamiltonian also
remains open.

Finally, we want to emphasize that the free-fermion
Hamiltonians here are a special example of integrable models,
which can also be mapped to spin models. A problem of
fundamental interest is the entanglement dynamics of generic
interacting integrable many-body systems on large space-time
scales. For such systems, one may naturally ask whether a
dynamical Page curve similar to that for the RFG ensemble
would emerge. Further studies along this line will deepen our
understanding on the universal properties of nonequilibrium
quantum many-body systems.

Note added. Recently, a related work by Iosue et al. ap-
peared [89], which reported the typicality for random bosonic
Gaussian states. Their results are conceptually similar with
our Eq. (4) but on different systems and proved by different
methods.
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APPENDIX A: PROOF OF CANONICAL
TYPICALITY/ATYPICALITY FOR THE RFG ENSEMBLE

In this Appendix, we consider number conserving
fermionic Gaussian ensemble with N modes occupied by m
fermions. The notation follows the main text. In particular,
〈· · · 〉 is used to denote the average value over the ensemble.
The covariance matrix of the subsystem A for a particular

random Gaussian state is

CA = �AUC0U
†�

†
A, (A1)

where �A is the projection operator on the subsystem with
size NA × N , U is taken Haar randomly over U (N ), and C0

satisfies C2
0 = C0 and TrC0 = m. In the following, the dis-

tance between two matrices is measured by Hilbert-Schmidt
distance dHS. We define a function f : U (N ) → R as

f (U ) = dHS(�AUC0U
†�

†
A, 〈CA〉). (A2)

It is easy to check that f is Lipschitz continuous with
constant 2:

| f (U1) − f (U2)| � dHS(U1C0U
†
1 ,U2C0U

†
2 )

� dHS(U1C0U
†
1 ,U1C0U

†
2 )

+ dHS(U1C0U
†
2 ,U2C0U

†
2 )

= ‖C0(U †
1 − U †

2 )‖HS + ‖(U1 − U2)C0‖HS

� 2dHS(U1,U2).

The generalized Levy’s lemma [65–67] states that for any
Lipschitz continuous function over some Riemann manifolds
with positive curvature, its values are concentrated around the
mean one. For the unitary group, we have

P (| f (U ) − 〈 f (U )〉| � lε) � 2e− Nε2

12 , (A3)

where l is the Lipschitz constant. In what follows, we
will bound 〈 f (U )〉 = 〈dHS(�AUC0U †�

†
A, 〈CA〉)〉. First, since

〈CA〉 = �A
∫

dH(U )UC0U †�
†
A is invariant under any unitary

on U (NA), according to Schur’s lemma, 〈CA〉 = m
N IA and

〈‖�AUC0U
†�

†
A − 〈CA〉‖HS〉

�
√〈‖�AUC0U †�

†
A − 〈CA〉‖2

HS

〉
=
√

〈Tr(�AUC0U †�
†
A − 〈CA〉)2〉

=
√

〈Tr(�AUC0U †�
†
A)2〉 − m2

N2
NA.

Next, we need to calculate 〈Tr(�AUC0U †�
†
A)2〉. The idea is

similar as in Ref. [33] and originally comes from random
quantum channel coding [90]: We introduce another reference
space R′ which has the same dimension as the original total
system R. The following equation holds:

〈Tr(�AUC0U
†�

†
A)2〉 =

∫
dH (U )Tr[(�A ⊗ �A)

× (UC0U
† ⊗ UC0U

†)

× SWAPRR′ (�†
A ⊗ �

†
A)],

where SWAPRR′ is the SWAP operation between the original
system R and the reference one R′. From Schur-Weyl duality
[91], we obtain∫

dH (U )(UC0U
† ⊗ UC0U

†)SWAPRR′

= αIRR′ + βSWAPRR′ . (A4)
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Now, for simplicity, we can take C0 = (Im 0
0 0). The following relations hold:

TrSWAPRR′ = N,

Tr[(U ⊗ U )(C0 ⊗ C0)(U † ⊗ U †)SWAPRR′ ] = Tr[(U ⊗ U )(C0 ⊗ C0)SWAPRR′ (U † ⊗ U †)] = TrC2
0 = m,

Tr[(U ⊗ U )(C0 ⊗ C0)(U † ⊗ U †)] = m2.

The trace of Eq. (A4) gives N2α + Nβ = m. Multiplying
Eq. (A4) by SWAPRR′ and tracing it, we have Nα + N2β =
m2. Solving the equations leads to {α = Nm−m2

N (N2−1)

β = Nm2−m
N (N2−1)

As a result,

〈Tr(�AUC0U
†�

†
A)2〉

= Tr[(�A ⊗ �A)(αIRR′ + βSWAPRR′ )(�†
A ⊗ �

†
A)]

= αN2
A + βNA. (A5)

Assuming that in the thermodynamic limit N → ∞, the den-
sity of charge m

N is fixed as O(1), we obtain

〈 f (U )〉2 � mN2
A

N (N − 1)
∼ O

(
N2

A

N

)

and the typicality

P

(
dHS

(
CA,

m

N
IA

)
� 2ε +

√
mN2

A

N (N − 1)

)
� 2e− Nε2

12 . (A6)

For the other direction, we take f (U ) = d2
HS(CA, 〈CA〉),

which is also Lipschitz continuous with constant
calculated as

| f (U1) − f (U2)| � 2(dHS(�AU1C0U
†
1 �

†
A, 〈CA〉)

+ dHS(�AU2C0U
†
2 �

†
A, 〈CA〉))dHS(U1,U2)

� 4
√

NA

(
1 − m

N

)
dHS(U1,U2). (A7)

Here we assume m � N
2 due to the particle-hole symme-

try (otherwise, we may replace 1 − m
N by m

N ). According to
Eq. (A5), we obtain

〈 f (U )〉 = 〈Tr(�AUC0U
†�

†
A)2〉 − m2

N2
NA � (N − m)mN2

A

N2(N + 1)
.

(A8)

If NA
N and m

N are both fixed as O(1) in the thermodynamic
limit, this formula scales linear with N . Applying generalized
Levy’s lemma leads to

P

(
d2

HS

(
CA,

m

N
IA

)
� (N − m)mN2

A

N2(N + 1)
− 4

√
NA

(
1 − m

N

)
ε

)

� 2e− N
12 ε2

. (A9)

For example, if we choose ε ∼ O(N
1
3 ), the above inequality

means that CA will deviate from its ensemble average by an
O(N ) factor with almost unit probability. This is the atypical-
ity discussed in the main text.

APPENDIX B: SOME APPLICATIONS OF MEASURE
CONCENTRATION TYPICALITY

1. Measure concentration property for entropy

In this subsection, we will use Eqs. (A6) and (A9) to
derive the measure concentration typicality (atypicality) for
subsystem entropy. For simplicity, the half-filling condition is
assumed. The eigenvalues of CA are denoted as { 1

2 + λi}, i ∈
{1, . . . , NA}, with

∑NA
i=1 λ2

i = dHS(CA, IA
2 ) and λi ∈ [− 1

2 , 1
2 ]. If

the subsystem is microscopically small, we know the typical-
ity of entropy follows by noting that

SA =
NA∑
i=1

H

(
1

2
+ λi,

1

2
− λi

)

=
NA∑
i=1

[
1 −

∞∑
n=1

(2λi)2n

2n(2n − 1) ln 2

]

� NA − 4d2
HS

(
CA,

IA

2

)
, (B1)

where we replace (2λi )2n by (2λi)2 in the last inequality since
(2λi )2 � 1. Here H (p0, p1) = −p0 log2 p0 − p1 log2 p1 is the
Shannon entropy. Combined with Eq. (A6), we obtain

P (NA − SA � x)

� P

(
dHS

(
CA,

IA

2

)
�

√
x

2

)

�

⎧⎪⎨
⎪⎩

2 exp

[
− N

48

(√
x

2 −
√

N2
A

2(N−1)

)2]
, x >

2N2
A

N−1

1, x � 2N2
A

N−1 .

(B2)

As long as N  N2
A , we conclude the subsystem entropy will

be nearly maximal.
For the other direction, if NA is macroscopically large, we

can upper bound the left-hand side of Eq. (B1) by

SA � NA − 2

ln 2
d2

HS

(
CA,

IA

2

)
. (B3)

Following the atypicality of d2
HS(CA, IA

2 ) in Eq. (A9), the sub-
system entropy density will show an O(1) deviation from the
maximal value:

P

(
SA � NA − N2

A

2 ln 2(N + 1)
+ 2

ln 2
ε

)

� P

(
d2

HS

(
CA,

IA

2

)
� N2

A

4(N + 1)
− ε

)

� 2e− N
48NA

ε2

. (B4)
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We may take ε ∼ O(Nα ) for arbitrary α ∈ (0, 1), finding that
the majority of the subsystem entropy will be comparable

or smaller than NA − N2
A

2 ln 2(N+1) . This clearly illustrates the
difference of the Page curve for the RFG ensemble from the
interacting one.

2. Upper bound on the variance of entropy

At the end of this Appendix, we will discuss the variance of
entropy in microscopic region. Here the half-filling condition
is also assumed. From Eq. (B2), we obtain

P ((SA − NA)2 � x)

�

⎧⎪⎨
⎪⎩

1, x � 4N4
A

(N−1)2

2 exp

[
− N

48

(
x

1
4

2 −
√

N2
A

2(N−1)

)2]
, x >

4N4
A

(N−1)2 .

Therefore,

〈(SA − NA)2〉 =
∫

P ((SA − NA)2 � x)dx

� 4N4
A

(N − 1)2
+ 2

∫ ∞
4N4

A
(N−1)2

× dx exp

[
− N

48

(
x

1
4

2
−
√

N2
A

2(N − 1)

)2]
.

For the last line, we can change the integral variable into t =√
N ( x

1
4

2 −
√

N2
A

2(N−1) ), obtaining

2
∫ ∞

4N4
A

(N−1)2

dx exp

[
− N

48

(
x

1
4

2
−
√

N2
A

2(N − 1)

)2]

= 128√
N

∫ ∞

0
dt

(
t√
N

+
√

N2
A

2(N − 1)

)
3e− t2

48

= 128

N2

∫ ∞

0
dt

(
t +

√
NN2

A

2(N − 1)

)3

e− t2

48 ∼ O

(
1

N2

)
,

provided that NA is fixed as O(1). In conclusion, we obtain

Var(SA) � 〈(SA − NA)2〉 ∼ O(N−2),

which agrees with Refs. [60,61].

APPENDIX C: DETAILED CALCULATION OF THE
DYNAMICAL PAGE CURVES

As mentioned in the main text, for all the models in this
Appendix, we assume the initial state is a period-2 density
wave with half filling. Following the same notation in the main
text, we further define XA(t ) = 2CA(t ) − IA. Thus,

SA(t ) = NA −
∞∑

n=1

TrX 2n
A (t )

2n(2n − 1) ln 2
. (C1)

1. Calculation for the minimal model

We first consider the minimal model. Remember that the
minimal model means only nearest-neighbor hopping is in-
cluded. After introducing the Fourier transformed mode a†

k =
1√
N

∑N
j=1 e−ik ja†

j , we can easily obtain the correlation func-
tion in momentum space,

Tr[ρa†
k (t )ak′ (t )] = 1

2δk,k′ + 1
2δk,k′+πeiθk (t ), (C2)

where ak (t ) [a†
k′ (t )] is the annihilation (creation) operator

in the Heisenberg picture, θk (t ) = t (Ek − Ek+π ) and ρ =
|�0〉〈�0| corresponds to the initial density matrix. In the fol-
lowing, we may omit the index t if there is no ambiguity.

After the inverse Fourier transformation back to the po-
sition space, the covariance matrix for subsystem A reads
[CA]m1m2 = δm1 ,m2

2 + 1
2N

∑
k eiθk eik(m1−m2 )eiπm2 and thus

[XA]m1m2 = 1

N

∑
k

eiθk eik(m1−m2 )eiπm2 . (C3)

a. Second order in XA

With Eq. (C3), we can calculate TrX 2
A as

TrX 2
A = 1

N2

∑
k1,k2,m1,m2

eiθk1 eik1(m1−m2 )eiπm2 eiθk2 eik2(m2−m1 )eiπm1

= 1

N2

∑
k1,k2,m1,m2

(
δk1,k2+πeik1(m1−m2 )eik1(m2−m1 )e−iπ (m2−m1 )eiπ (m1+m2 ) + δk1+k2,πei2k1(m1−m2 )eiπ (m1+m2 )eiπ (m2−m1 )

)

= N2
A

N
+ 1

N

∑
k,m1,m2

ei2k(m1−m2 ) = N2
A

N
+ 1

N

∑
m1,m2

(
δm1−m2,0 + δm1−m2,

N
2

+ δm1−m2,− N
2

)
.

Noting that the first term in the middle step comes from
θk+π = −θk , which holds for general Hamiltonians according
to the definition. However, the second term is due to the
reflection symmetry (which implies Ek = E−k) of the minimal
model and is thus not universal. Fortunately, this model-
dependent term will vanish in the thermodynamic limit.

This calculation can be diagrammatically represented as
shown in Fig. 3(a), where we draw an arrow from m1 to m2

(m2 to m1) because there is a factor eik1(m1−m2 ) (eik2(m2−m1 )). As
will become clear below, such a diagrammatic representation
provides a convenient and systematic way for dealing with
higher order terms.
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FIG. 3. Feynman diagrams for calculating the entanglement entropy order by order. Here each vertex represents a position index and
each leg represents a momentum index. Each leg is associated with eiθk eik(m−m′ )eiπm′

. In these diagrams, the legs with same color need to be
contracted. Each color corresponds to one contraction.

b. Third order in XA

We move on to calculate TrX 3
A and will see it vanishes in

thermodynamic limit. The expression is

TrX 3
A = 1

N3

∑
k1,2,3m1,2,3

eiθk1 +iθk2 +iθk3 eik1(m1−m2 )+ik2(m2−m3 )+ik3(m3−m1 )

× eiπ (m1+m2+m3 ).

The nonzero contribution of eiθk1 +iθk2 +iθk3 in the minimal
model only comes from two cases:

(1) k2 = k1 + π, k3 = ±π
2 and cyclic permutations. The

contribution is proportional to

1

N3

∑
k1,m1,m2,m3

eik1(m1−m3 )ei π
2 (m1+m3 )

= NA

N2

∑
m1,m3

δm1,m3 eiπm1 ∼ O

(
1

N

)
.

(2) k1, k2 satisfy | cos k1 + cos k2| � 1 and k3 =
arccos(− cos k1 − cos k2). The contribution is proportional to

∼ 1

N3

∑
k1,k2

∑
m1

eim1(k1−k3+π )
∑
m2

eim2(k2−k1+π )
∑
m3

eim3(k3−k2+π ).

With the Hölder inequality [92],
∑

i |ai||bi||ci| �
[(
∑

i |ai|3)(
∑

i |bi|3)(
∑

i |ci|3)]
1
3 , we can upper bound the

above contribution as

� 1

N3

⎧⎪⎨
⎪⎩
⎡
⎢⎣∑

k1,k2

∣∣∣∣∣∣
∑
m1

eim1(k1−k3+π )

∣∣∣∣∣∣
3
⎤
⎥⎦
⎡
⎢⎣∑

k1,k2

∣∣∣∣∣∣
∑
m2

eim2(k2−k1+π )

∣∣∣∣∣∣
3
⎤
⎥⎦

×

⎡
⎢⎣∑

k3,k2

∣∣∣∣∣∣
∑
m3

eim3(k3−k2+π )

∣∣∣∣∣∣
3
⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
3

.

Since here, no pair of two k differ by π (as is the case
already considered in the first case), the sum of m1, m2, m3

only contributes to O(1), so the total contribution will be
upper bounded by O( 1

N ).
In conclusion,

TrX 3
A ∼ O

(
1

N

)
and thus vanishes in the thermodynamic limit.

The above discussion can be generalized to higher orders:
As long as the degeneracy point of a Hamiltonian is not dense,
we can safely ignore the model-dependent contribution and
put eiθk1 eiθk2 = δk1,k2+π , which we call a contraction. In the
following, we will directly use this contraction rule [93].

c. Fourth order in XA

Now we are moving to calculate TrX 4
A :

TrX 4
A = 1

N4

∑
k1,2,3,4,m1,2,3,4

4∏
j

eiθk j eik j (mj−mj+1 )eimjπ , (C4)

where m5 = m1.
The first contracting class for eiθk1 eiθk2 eiθk3 eiθk4 is to con-

tract the dynamical phase factors in pairs. Two patterns in
this class are shown in Figs. 3(b) and 3(c). The legs with
same colors mean that they are contracted together. These
patterns correspond to eiθk1 eiθk4 eiθk2 eiθk3 = δk1,k4+πδk2,k3+π and

eiθk1 eiθk2 eiθk4 eiθk3 = δk1,k2+πδk4,k3+π , respectively. Substituting
these delta functions into Eq. (C4), we obtain

2 × N2
A

N4

∑
k1,3,m1,3

eik1(m1−m3 )eik3(m3−m1 ) = 2N3
A

N2
, (C5)

where the factor of 2 comes from the equal contribution of
these two diagrams.

Another pattern from this contracting class is shown
in Fig. 3(d), which gives eiθk1 eiθk3 eiθk2 eiθk4 = δk1,k3+πδk2,k4+π .
However, substituting this expression into Eq. (C4) leads to

1

N4

∑
k1,2,m1,2,3,4

ei(k1−k2 )(m1+m3−m2−m4 )eiπ (m2+m4 )

= 1

N2

∑
m1,2,3,4

δm1+m3,m2+m4 eiπ (m2+m4 ) ∼ O

(
1

N

)
. (C6)

This diagram thus vanishes in the thermodynamic limit.
It should be emphasized that, in the above discussion, some

terms are calculated multiple times. These form the other
contracting class: we contract the four legs all together, as
shown in Fig. 3(e). The contribution from this diagram needs
to be subtracted due to the multiple calculation in Figs. 3(b)
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FIG. 4. In this figure, more complicated Feynman diagrams are shown compared to Fig. 3. (a) A general Feynman diagram, (b)–(e)
Feynman diagrams for calculating TrX 6

A .

and 3(c):

− 1

N4

∑
k1,2,3,4,m1,2,3,4

δk2,k1+πδk3,k1δk4,k1+π

4∏
j

eik j (mj−mj+1 )eimjπ

= −N4
A

N3
. (C7)

Combining all the contributions together, we obtain

TrX 4
A = 2N3

A

N2
− N4

A

N3
. (C8)

From the above discussion, we can see that the contraction
rules here are obviously different from Wick’s theorem.

2. General Feynman rules

The method presented in the previous subsection allows us
to calculate Eq. (C1) to arbitrary orders. Here we summarize
our Feynman rules for contraction. A general Feynman dia-
gram for calculating TrX 2n

A is shown in Fig. 4(a). We will use
the integer i to label the legs associated with momentum ki.

(1) All the legs in Fig. 4(a) must be contracted. Each
contraction leads to a delta function of momenta ks and has
to include an even number of legs, where half of the legs
should be labeled as even and the other half as odd. This last
requirement arises from the phase factor eiπm in each leg and
is to ensure the diagram does not vanish in the thermody-
namic limit (we recall that Fig. 3(d) does not contribute, as
this requirement is not satisfied). For totally 2n legs with l

contractions, the N, NA dependence for this diagram is N2n−l+1
A
N2n−l .

(2) Each contraction with 2 j legs should also be assigned
a multiple factor a2 j , accounting for the multiple calculations.
a2 and a4 are obtained in previous discussion while higher a2 j

can be obtained iteratively, as shown below.

(3) For each diagram, multiply the term N2n−l+1
A
N2n−l and factors

a2 j obtained in Rules 1 and 2 together. Some diagrams also
need to multiply by subsystem correction factor β (see details
below). Summing over all possible diagrams leads to the de-
sired result.

The subsystem correction factor β does not appear in TrX 4
A

and TrX 2
A , but will appear in calculating TrX 6

A . For pedagogi-

cal purposes, we will now show how to calculate TrX 6
A . Some

diagrams are shown in Figs. 4(b)–4(e). In Fig. 4(b), there are
three contractions, each contracts two legs. The contribution

for this diagram is N4
A

N3 a3
2. In Fig. 4(c), there are two contrac-

tions, one contracts four legs together and the other contracts

two legs. The contribution is N5
A

N4 a4a2. In Fig. 4(d), all six legs

are contracted together, contributing to N6
A

N5 a6. Attention should
be payed to Fig. 4(e). After contracting the three pairs of legs,
we obtain ∑

k1,2,3m1,2,3,4,5,6

eik1(m1−m2+m4−m5 )eik2(m2−m3+m5−m6 )

× eik3(m3−m4+m6−m1 )

= N3
∑

m1,2,3,4,5,6

δm1+m4=m2+m5=m3+m6 mod N . (C9)

Naively, one may conjecture the result of the last sum to be
N4

A . However, this is only true when f = NA
N = 1. If f � 1

2 ,
the sum will be much smaller. After carefully counting the
pairs satisfying the delta function, we obtain for f � 1

2 ,

∑
k1,2,3m1,2,3,4,5,6

eik1(m1−m2+m4−m5 )eik2(m2−m3+m5−m6 )eik3(m3−m4+m6−m1 )

= 1

2
N3(N4

A + N2
A

)→ β1N3N4
A, (C10)

where β1 is defined as the subsystem correction factor in ther-

modynamic limit: β1 = { 1
2 f � 1

2
1 f = 1 . Summing over all possible

diagrams, the total contribution is

TrX 6
A = (5 + β1)

N4
A

N3
− (6 + 3β2)

N5
A

N4
+ N6

A

N5
a6, (C11)

where β2 is another subsystem correction factor β2 =
{ 2

3 f � 1
2

1 f = 1 . Here a6 can be determined by considering the case

when NA = N (i.e., f = 1). In this case, TrX 6
A = N , resulting

in a6 = 4. Therefore,

TrX 6
A = 11

2

N4
A

N3
− 8

N5
A

N4
+ 4

N6
A

N5
if f � 1

2
. (C12)

Following the above procedure for calculating the Feynman
diagrams, we arrive at, up to the order O( f 5),

SA

N
= f − 1

ln 2

(
1

2
f 2 + 1

6
f 3 + 1

10
f 4 + 0.06 f 5

)
+ O( f 6).

(C13)
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3. Proof of Theorem 2

In this subsection, we go beyond the minimal model and
consider the general Hamiltonians satisfying the condition in
Theorem 2 in the main text. We will find the Feynman rule
as well as the subsystem entropy is indeed the same as the
previous subsection.

Since the Hamiltonian is period 2, we can use a modified
Fourier transformation to block diagonalize it:

A†
k =

√
2

N

N
2∑

j=1

e−ik(2 j−1)a†
2 j−1,

B†
k =

√
2

N

N
2∑

j=1

e−i2k ja†
2 j, k ∈

{
2nπ

N

} N
2 −1

n=0

. (C14)

Here A†
k, B†

k are related to the conserved (eigen)modes
P†

k , Q†
k via a 2 × 2 unitary transformation U kas A†

k = U k
11P†

k +
U k

12Q†
k and B†

k = U k
21P†

k + U k
22Q†

k . Substituting into Eq. (C14)
leads to

a†
2m =

√
2

N

π∑
k=0

eik2m
(
U k

21P†
k + U k

22Q†
k

)
,

a†
2m+1 =

√
2

N

π∑
k=0

eik(2m+1)(U k
11P†

k + U k
12Q†

k

)
. (C15)

If we define Qk+π = Pk and

Zm
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
2U k

22, if m is even and k < π
√

2U k−π
21 , if m is even and k � π

√
2U k

12, if m is odd and k < π

−√
2U k−π

11 , if m is odd and k � π,

(C16)

the above inverse Fourier transformation (C15) can be
rewritten as

a†
m = 1√

N

2π∑
k=0

Zm
k Q†

keikm.

In the following, we will simplify
∑2π

k=0 as
∑

k and k should
be understood as module 2π . By assumption, all the con-
served quantity Tr(ρQ†

kQk ) = 1
2 for k ∈ [0, 2π ), thus

[CA]ml = 1

2N

∑
k

Zm
k Zl∗

k eik(m−l )

+ 1

2N

∑
k

eiθk Zm
k Zl∗

k+π eik(m−l )eiπ l

=1

2
δm,l + 1

2N

∑
k

eiθk Zm
k Zl∗

k+π eik(m−l )eiπ l ,

where θk+π = −θk by definition. In the last equality, we have
used the unitarity of U k; namely, if m − l is odd:

1

2N

∑
k

Zm
k Zl∗

k eik(m−l )

= 1

4N

∑
k

[
Zm

k Zl∗
k eik(m−l ) + Zm

k+π Zl∗
k+π ei(k+π )(m−l )

]
= 1

4N

∑
k

(
Zm

k Zl∗
k − Zm

k+π Zl∗
k+π

)
eik(m−l ) = 0.

A similar calculation can be carried out for the case in which
m − l is even. Therefore, we have

[XA]ml = 1

N

∑
k

eiθk Zm
k Zl∗

k+π eik(m−l )eiπ l .

This expression is very similar to Eq. (C3) except for the
extra factors Zk . Nonetheless, we will show those extra
Zk’s do not contribute in the thermodynamic limit. As a
result, the same Feynman rules and dynamical Page curve
follows.

When evaluating a Feynman diagram in the thermody-
namic limit with NA, N both going to infinity, we can first
sum over the position indices. Introducing s j = k j − k j−1,
k0 = k2n and m2n+1 = m1, we obtain

∑
m1,2···2n

2n∏
j=1

eik j (mj−mj+1 )eiπmj Z
mj

k j
Z

mj∗
k j−1+π

=
∑

m1,2···2n

2n∏
j=1

eimj s j eiπmj Z
mj

k j
Z

mj∗
k j−1+π

=
2n∏
j=1

[ ∑
mj :even

eimj (s j+π )Z0
k j

Z0∗
k j−1+π +

∑
mj :odd

eimj (s j+π )Z1
k j

Z1∗
k j−1+π

]

=
2n∏
j=1

[
1 − eiNA(s j+π )

1 − e2i(s j+π )

] 2n∏
j=1

(
Z0

k j
Z0∗

k j−1+π + ei(s j+π )Z1
k j

Z1∗
k j−1+π

)

= ei NA
2

∑2n
j=1(s j+π )

ei
∑2n

j=1(s j+π )

2n∏
j=1

[
sin NA(s j+π )

2

sin(s j + π )

] 2n∏
j=1

(
Z0

k j
Z0∗

k j−1+π + ei(s j+π )Z1
k j

Z1∗
k j−1+π

)

=
2n∏
j=1

[
sin NA(s j+π )

2

sin(s j + π )

] 2n∏
j=1

(
Z0

k j
Z0∗

k j−1+π + ei(s j+π )Z1
k j

Z1∗
k j−1+π

)
.
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FIG. 5. The dynamical Page curve for Hamiltonian (C19) (blue
curve) and its comparison with the one for the RFG ensemble (red
curve) and the theoretical result (green curve). Here N = 200. The
theoretical result is truncated up to order O( f 5), the same as in the
main text.

In the above calculation, we have assumed NA to be even
for simplicity. We also emphasize that s1 · · · s2n is not in-

dependent since
∑2n

i=1 si = 0. The factor
sin

NA (s j +π )

2
sin(s j+π ) will be

dominated by the contribution from s j = 0 or s j = π if Zk is
smooth enough. This is due to the convergence of the Fourier
series, see Ref. [94]. In Ref. [95], the difference between the
discrete sum over momenta and the integration is also upper
bounded. However, if s j � 0, it will lead to

Z0
k j

Z0∗
k j−1+π + ei(s j+π )Z1

k j
Z1∗

k j−1+π � Z0
k j

Z0∗
k j+π − Z1

k j
Z1∗

k j+π = 0

(C17)
due to the unitarity of U . In the end, we obtain∑

m1,2···2n

2n∏
j=1

eik j (mj−mj+1 )eiπmj Z
mj

k j
Z

mj∗
k j−1+π

� (Z0
k Z0∗

k + Z1
k Z1∗

k

)2n
2n∏
j=1

[
sin NA(s j+π )

2

sin(s j + π )

]
s j �= 0

= 22n
2n∏
j=1

[
sin NA(s j+π )

2

sin(s j + π )

]
s j �= 0. (C18)

Now we can see in the final expression Eq. (C18) that
the model-dependent factor Z disappears. Therefore, those
Hamiltonians satisfying the conditions in Theorem 2 in the
main text will have the same Feynman rules and dynamical
Page curve as the minimal model.

In Fig. 5, we plotted the dynamical Page curve for the
Hamiltonian

H =
∑

i

a†
i ai+1 + 0.3

∑
i:even

a†
i ai+3 − 0.3

∑
i:odd

a†
i ai+3 + H.c.

(C19)

This dynamical Page curve is nearly the same as the one of
minimal model in the main text.

4. Generalization to the atypical Page curves

In this subsection, we further consider the case be-
yond the condition in Theorem 2 in the main text, namely,
Tr(ρQ†

kQk ) �= 1
2 (we recall that Qk+π = Pk). We denote nk =

Tr(ρQ†
kQk ) and ηk = √

nk (1 − nk ). Following the half-filling
condition, we have

nk+π = 1 − nk, ηk+π = ηk,

and still a†
m = 1√

N

∑2π
k=0 Zm

k Q†
keikm with Zm

k defined in
Eq. (C16). The covariance matrix can be calculated as

[CA]ml = 1

N

∑
k1,2

Zm
k1

Zl∗
k2

eik1me−ik2lTr(ρQ†
k1

Qk2 )

= 1

N

∑
k

Zm
k Zl∗

k eik(m−l )nk

+ 1

N

∑
k

eiθk Zm
k Zl∗

k+π eik(m−l )eiπ lηk.

Since nk �= 1
2 , in general, there is no simple expression for XA.

Using the same techniques as in the previous sub-
section, we can still establish the Feynman rules for
this case. However, we have to distinguish two kinds of
legs, one like Z

mj

k j
Z

mj+1∗
k j

eik j (mj−mj+1 )nkj and the other like

eiθk j Z
mj

k j
Z

mj+1∗
k j+π

eik j (mj−mj+1 )eiπmj+1ηk j . There is no dynamical

phase eiθk in the former, namely, no delta functions associated
with contraction. Also, there is no extra eiπmj+1 phase term in
the former. Due to the difference between these two kinds of
legs, the rule is more complicated than the previous case.

As an example, we can calculate the first three nontrivial
terms to obtain

TrC2
A = NA

N

∑
k

n2
k + N2

A

N2

∑
k

η2
k ,

TrC3
A = NA

N

∑
k

n3
k + 3N2

A

N2

∑
k

nkη
2
k ,

TrC4
A = NA

N

∑
k

n4
k + 4

N2
A

N2

∑
k

n2
kη

2
k

+ 2
N2

A

N2

∑
k

η4
k + 2N3

A

N3

∑
k

η4
k − N4

A

N4

∑
k

η4
k .

Therefore, up to TrX 4
A [96],

SA � NA
(

ln 2 + 3
4

)− NA
N

∑
k

(
4n2

k − 8
3 n3

k + 4
3 n4

k

)− N2
A

N2

∑
k

(
4η2

k − 8nkη
2
k + 16

3 n2
kη

2
k + 8

3η4
k

)− N3
A

N3
8
3

∑
k η4

k + N4
A

N4
4
3

∑
k η4

k

ln 2
.

APPENDIX D: CALCULATION OF ENTANGLEMENT
ENTROPY IN THE QUASIPARTICLE PICTURE

In the quasiparticle picture, a nonequilibrium initial state is
a source for generating quasiparticles with opposite momenta,

which travel ballistically through the system. Here the main
assumption is those quasiparticle pairs generated at differ-
ent locations and times are incoherent. Therefore, the EE of
subsystem A is proportional to the number of pairs shared
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between A and its complement. Without loss of generality,
we can assume subsystem A is located in [0, NA), NA � N

2 .
For a certain type of pair with velocity ±v(k) [v(k) > 0], if
the right end of the pair is at position 0 � x < NA, i.e., within
subsystem A, only when x satisfies

NA − N � x − 2v(k)t < 0

can this pair contribute to the EE of A. Here the peri-
odic boundary condition is taken into account and 2v(k)t
should be understood as modulo N . The solution of this in-
equality is a continuous range x ∈ [xmin, xmax), where xmin =
max{0, 2v(k)t + NA − N} and xmax = min{NA, 2v(k)t}. Ac-
cordingly, we obtain

�x = xmax − xmin

=

⎧⎪⎪⎨
⎪⎪⎩

2v(k)t, 2v(k)t � NA

NA, NA < 2v(k)t < N − NA

N − 2v(k)t, 2v(k)t � N − NA.

A similar argument holds if the left end is in subsystem A.
We assume that after a sufficiently long time, the quasiparticle

pairs will distribute uniformly among the system. Hence, the
contribution of quasiparticle pairs with momentum k to the EE
upon the long-time average is given by

SA(k)

N2

∫ N

0
d (2v(k)t )�x = SA(k)

[
NA

N
−
(

NA

N

)2
]
,

where the coefficient SA(k) is to be determined. Summing over
all types of pairs, we obtain

Sqp
A =

(
NA

N
− N2

A

N2

)∑
k

SA(k).

If NA → 0, the limit Sqp
A → NA

∑
k

H (nk )
N should hold [97].

Therefore, SA(k) = H (nk ). If nk = 1
2 for all k’s, the EE for

subsystem A is

Sqp
A = NA − N2

A

N
,

which deviates considerably from the dynamical Page curve
discussed in the main text.
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