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Millisecond cryo-trapping by the spitrobot
crystal plunger simplifies time-resolved
crystallography

Pedram Mehrabi 1,2,5 , Sihyun Sung 3, David von Stetten 3,
Andreas Prester 4, Caitlin E. Hatton 1, Stephan Kleine-Döpke 1,
Alexander Berkes 1, Gargi Gore 1, Jan-Philipp Leimkohl 2, Hendrik Schikora2,
Martin Kollewe2, Holger Rohde 4, Matthias Wilmanns 3,4,
Friedjof Tellkamp 2 & Eike C. Schulz 1,2,4,5

We introduce the spitrobot, a protein crystal plunger, enabling reaction
quenching via cryo-trapping with a time-resolution in the millisecond range.
Protein crystals are mounted on canonical micromeshes on an electropneu-
matic piston, where the crystals are kept in a humidity and temperature-
controlled environment, then reactions are initiated via the liquid application
method (LAMA) and plunging into liquid nitrogen is initiated after an elec-
tronically set delay time to cryo-trap intermediate states. High-magnification
images are automatically recorded before and after droplet deposition, prior
to plunging. The SPINE-standard sample holder is directly plunged into a
storage puck, enabling compatibility with high-throughput infrastructure.
Here we demonstrate binding of glucose and 2,3-butanediol in microcrystals
of xylose isomerase, and of avibactam and ampicillin in microcrystals of the
extended spectrum beta-lactamase CTX-M-14. We also trap reaction inter-
mediates and conformational changes in macroscopic crystals of tryptophan
synthase to demonstrate that the spitrobot enables insight into catalytic
events.

Proteins are vital to all processes of life and during the last decade
technological advances have enabled transformative changes in our
ability to determine structural changes in-operando. While tradition-
ally, trapping approaches were exploited to derive kinetic information
from crystallographic experiments, a more recent development in this
regard is time-resolved serial crystallography, which offers unprece-
dented structural insight into out-of-equilibrium conformations and
reaction intermediates that cannot be provided by other methods1,2.
Typically, a reaction is initiated in a protein crystal, which is subse-
quently exposed to an X-ray pulse after a defined delay time. This
procedure is repeated for thousands of crystals, which eventually

yields a 3D structure of this time point. Several of such temporal
snapshots can then be assembled into ‘movies’, providing even insight
into the fastest processes of life3.

However, uncovering these details requires insight from a variety
of fields, which is typically beyond the scope of a non-specialist group.
There is often an unfortunate gapbetween technological and scientific
expertise that is required to carry out these experiments. How much
more could be learned about the processes of life, if it was experi-
mentally more accessible?

This dilemma becomes even more pronounced when taking into
account that the majority of enzymes display only moderate turnover
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kinetics of ~10 s−1, making them accessible by synchrotron radiation
experiments4. Thismeans there is a largenumber of systems that could
be probed by readily available facilities. Primarily aiming for these
‘biologically relevant’ time scales, we have recently developed the hit-
and-return (HARE) and the liquid applicationmethod for time-resolved
analyses (LAMA) for in-situ mixing5,6. The versatility of these methods
encouraged us to further facilitate time-resolved experiments and
make them more accessible to the large user base that has already
access to standardized tools for high-throughput macro-molecular
crystallography at synchrotron beamlines. Bearing in mind that most
structure solutions by X-ray crystallography are carried out at cryo-
genic conditions, and can be done remotely, we sought for a solution
that would bridge the gap between traditional and time-resolved
methods using resources available to most structural biology labs.

Traditionally cryo-trapping has been exploited to quench enzy-
matic reactions within protein crystals and thereby obtain structural
information about reaction intermediates1. However, these traditional
approaches suffer from the limitations of manual substrate deposition
and accurate, reproducible delay times, in particular with respect to fast
time scales. To this end, we developed the spitrobot crystal plunger,
which enables cryo-trapping experiments with versatile time-resolutions
down to the millisecond range via the LAMA method (Fig. 1).

Results
The spitrobot comprises several different, main hardware parts: (a) the
plunger, (b) the humidity flow device (HFD), (c) the LAMA droplet
injector, (d) the vitrification chamber, (f) the camera system, and (e)
the control unit. All parameters are set via a control software.

Conceptually similar to cryo-EM vitrification devices7, the spi-
trobot relies on crystals mounted onto SPINE-standard MicroMeshTM

sample holders8. To trap reaction intermediates themicromeshes with

protein crystals are mounted on an electropneumatic piston in a
humidity and temperature-controlled environment. A sequence of
electronic signals initiates the in situ mixing reaction by shooting a
burst of picoliter-sized droplets onto themesh-mounted crystals using
our established LAMA technology5. After a defined delay time, the
micromeshes are directly plunged into SPINE-standard pucks sub-
merged in liquid nitrogen (Fig. 1). As a quality control, sample images
are automatically acquired before and after droplet deposition.
Adhering to the SPINE standard simplifies the integration into estab-
lished high-throughput beamline workflows.

The plunger
Themain component of theplunger is an electropneumatic piston that
drives the sample into the liquid nitrogen (Supplementary Fig. 1). It is
mounted on a sturdy steel post on top of the vitrification chamber. The
plunging velocity is regulated via the applied gas pressure. For typical
use we relied on pressure levels from 3 to 6 bar, which enable piston
motions on the order of 1.6m s−1, comparable to previously published
solutions9,10. The piston is equipped with an electromagnetic SPINE-
style sample holder, onto which the micro-meshes are manually
mounted. After being submerged in liquid nitrogen the micro-meshes
are automatically released into the SPINE-pucks, minimizing manual
interaction after sample preparation. For reaction initiation the LAMA
nozzle needs to be positioned within ca. 1mm of the micro-mesh. To
avoid accidental collisions and simplify sample mounting, the LAMA
nozzle is retracted via rail-mounted translation stages. Once the sam-
ple is mounted, the LAMA nozzle is pushed back into place, and sub-
sequently fine-aligned to the micro-mesh. Using the SPINE standard
provides a number of advantages regarding the compatibility with
established high-throughput beamline workflows. Adhering to this
established standardwill streamline crystal storage and shipment from
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Fig. 1 | Working principle of the ‘spitrobot’ and characterization of the vitrifi-
cation time. a Crystals are deposited onto micro-meshes; a reaction is initiated via
the LAMAmethod; after a defined delay time reaction intermediates are vitrified in
liquid nitrogen. b, c The spitrobot integrates with high-throughput workflows and
enables usingmacroscopic crystals andmicrocrystals for canonical rotation aswell
as cryo-SSX data collections. d (I, II) Vitrification delay determined with 250 and

13 µm temperature sensors, respectively, matching the size range of typical sam-
ples; (III) an experimental characterization of the vitrification time demonstrates
that the glass-transition temperature (160K) of a typically-sized sample is reached
within ~7.5ms. The total minimal delay for microcrystalline samples is approxi-
mately 50ms. Plunging time is affected by the air-pressure of the piston (indi-
cated in bar).
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(remote) MX-labs to synchrotron facilities, where sample exchange
and automated data-collection procedures also rely on standardized
samples, greatly increasing the turnover of samples and even enabling
fully automated data-collection11.

Environmental control with the HFD
To maintain the crystals in an environment close to physiological
conditions with controlled humidity and temperature we have devel-
oped a Humidity Flow Device (HFD), which provides a humid airflow at
a defined temperature between 4 °C and 40 °C (Supplementary Fig. 2).
Both the relative humidity and the temperature can be adjusted inde-
pendently. The nozzle of theHFDhas an inner diameter of about 13mm
and is placed about 1 cm from the SPINE sample. On the inside of the
nozzle, a few cm before its end, is a combined sensor for humidity and
temperature whose signals are transmitted to a microcontroller
(Arduino nano), which calculates the control variables. The tempera-
ture is controlled by heating resistors; the humidity is controlled by a
warm water bath, which is equipped with ultrasonic nebulizers. An
external cooler can also be connected via a heat exchanger. The HFD
provides temperatures between 4 °C and 40 °C at a humidity of up to
99%, with typical flow rates between 20 and 35 l/min. Humidity control
also permits controlled crystal dehydration if required (Supplementary
Information). To characterize the stability of theHFDwe recorded step-
functions of the relative humidity and the temperature, respectively, as
a function of time. Humidity was increased at 5% increments and
maintained at stable flow for several minutes. After an equilibration
period, the relative humidity can be maintained within less than a
percent (Supplementary Fig. 3), demonstrating its suitability to main-
tain a stable humidity environment for crystals and micro-crystals
during sample preparation (Supplementary Fig. 4a). For the tempera-
ture step function, the temperature was recorded at 4 °C, 10 °C, 20 °C,
30 °C, and 40 °C for several minutes, respectively, keeping the relative
humidity constantly at or above 95%.

Reaction initiation
The LAMA droplet injector has been previously described in detail5.
Briefly: via a piezo-actuator, 75 or 150 picoliter-sized droplets are shot
from a 50 or 70 µm (inner diameter) glass capillary with a velocity of
2m s−1 onto the target mesh. The nozzle is brought close (1–2mm) to
the target via manual, rail-mounted translation stages that enable
precise lateral and vertical alignment of the nozzles to adjust for dif-
ferences in sample holder length and also to correct for bent meshes.
Nozzle alignment is aided by two perpendicularly aligned cameras,
which focus on the target mesh (see below). This way the nozzle dis-
tance, as well as its lateral and vertical alignment can be precisely
controlled and adjusted to individual samples. Since the micromeshes
provide a large sample area, a high-frequency (5 kHz) burst of picolitre
droplets are added to the samples. The total volume of required liquid
depends on the sample area that has to be covered, the protein and
ligand concentrations, and the viscosity of the solutions. Between 100
and 500 droplets were applied for each sample used in this
study corresponding to a volume between 15 and 75 nl, respectively.

The vitrification chamber
The vitrification chamber is comprised of a regular foam dewar into
which an aluminum mount for the SPINE standard puck is fixed. The
mount permits a step-wise rotation of the puck between its 10 posi-
tions for sample vials for aligning each position to the vitrification
point of the spitrobot. Rotation of the puck to the next sample position
is donemanually via a hexagonal bolt screwdriver, eachposition snaps
intoplace. This simplifies and accelerates sample handling and transfer
as the process of vitrification deposits the sample directly into the
puck, enabling further usage of high-throughput infrastructure. The
dewar is closed via a transparent poly- methyl-methacrylate (PMMA)
lid, with an opening for the piston. To reduce icing in the liquid

nitrogen phase and improve vitrification rates the gaseous nitrogen
layer that forms between the lid and the liquid phase is displaced by a
stream of dry nitrogen gas as demonstrated previously9. To this end,
the dry nitrogen is actively siphoned away via a connected pump. To
further reduce ice formation on the lid, it is heated via a resistor array.
Liquid nitrogen is replaced manually at regular intervals via the refill
hole or the piston opening.

Experimental characterization of the vitrification process
The vitrification time was characterized by two independent approa-
ches, optically and electronically. For an optical characterization an
LED flashing every 2.5ms (400Hz) was mounted to the tip of the pis-
ton. A long time-exposure synchronized to the plunging process cap-
tured the number of flashes during the piston motion. Since 9 flashes
were recorded, this is equivalent to a piston motion time of 22.5ms.
However, this procedure only characterizes the piston motion, thus
the switching delay of the air valve and the actual vitrification time
were addressed in a separate experiment.

To obtain accurate vitrification times we used a thermocouple
with similar dimensions to the crystal size. For comparison to previous
studies, which mainly used larger thermocouples we thus recorded
vitrification times using two temperature sensors of different size.
Taking into account the spitrobots total processing time, including air-
valve delay, plunge time, and vitrification, the larger RTD sensor
(3.0 × 0.8 × 0.25mm (IST, P1K0.308.7W.B.007 Farnell, Germany,
−200 °C–600 °C) displays a total time of 800ms, due to a large offset,
which is presumably due to the Leidenfrost effect (insulating vapor
layer between the sample and the cryogenic liquid), as the temperature
drop-off from quenching is quite quick once the insulating vapor layer
has dissipated. By contrast, the smaller thermocouple, which has
approximately the same dimensions as the samples of interest (K-type
thermocouple [KFT-13-200-200(Y)], ~13 µm diameter, ANBE SMT Co.,
Osaka, Japan) minimizes this offset and therefore displays a total
processing timeof ~50ms and is thus almost negligible for the relevant
time scales (Fig. 1d).

To determine the actual vitrification time, we also recorded the
temperature decrease independent of the spitrobot. Here the glass-
transition temperature (<−140 °C) is reached within 7.5ms and a
90–10% analysis of the temperature drop resulted in a fall time of
7.5ms. Thus, the total delay time of the spitrobot consists of the
intrinsic delay of the device (air valve delay ~20ms, piston motion
~25ms), and the actual vitrification process ~7.5ms corresponding to a
cooling rate of 2.3 × 104 Ks−1. These vitrification times are comparable
to those reported previously for flash cooling devices operating with
liquid nitrogen9. Based on these observations the dead-time of the
spitrobot is on theorder of ~45msand time-pointswith aminimal delay
time of approximately 50ms can be obtained.

Characterization of the processes demonstrates a vitrifica-
tion time of ~7.5 ms, for samples on the order of 10 µm, and that
physiological conditions can be maintained within the sample
area and (Fig. 1, Supplementary information). The minimal delay
time currently achievable with the spitrobot setup is ~50ms. This
constraint is the result of the mechanical piston motion (22.5 ms),
air-valve delay (20ms), and vitrification time (7.5 ms)—the
deposition of the substrate solution occurs during the air-valve
delay and is thus accounted for. Microcrystals permitting for
serial data collection should have minimal dimensions, suitably
sized to match the beam characteristics of the microfocus
beamline. The dimensions of the crystals also define the minimal
ligand diffusion time, which should be faster than the turnover
time to reduce heterogeneity in the cryogenically trapped states

Camera system
For automatic reference image acquisition and convenient sample
alignment, the spitrobot is equipped with two cameras from
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different viewing directions, 90° apart. The primary purpose of the
camera system is sample alignment and LAMA-nozzle positioning.
The axis of the LAMA nozzle is at an angle of 60° relative to the
surface of the mesh. The LAMA nozzle can be positioned using the
aforementioned 3-axis stage to optimally deposit the substrate on
the micromesh and ensure reproducible results between different
samples. By using the high-resolution camera system during
sample preparation, the consistency between different samples
can be maintained. In addition, this setup provides automatic
image acquisition immediately before and after droplet deposi-
tions. This serves as a reference to (i) confirm the droplet
depositions and (ii) droplet dissipation on the micromesh. The
latter can be used during data collection at the beamline to narrow
down the area for data collection (Supplementary Fig. 4).

Serial crystallography
As a first proof-of-principle we focused on serial synchrotron data-
collection (cryo-SSX). To demonstrate that spitrobot-prepared
micro-crystals are suitable for cryo-SSX, 0.5 µl of the crystal slurry
was directly loaded by pipette on the SPINE standard sample
holder, 700/25 µm micromesh (MiTeGen, USA) and quickly
transferred to the humidity stream in the spitrobot (Supplemen-
tary information). Excess mother liquor was manually blotted
away until the sample meniscus disappeared, by quickly (<1 s)
applying Whatman paper to the back of the mesh. For reaction
initiation the ligand solution was supplied in the LAMA nozzle,
250–500 droplets were deposited in a burst mode (2–5 kHz
repetition rate). For optimal comparison we used Streptomyces
rubiginosus xylose isomerase (XI) (crystal size 10 × 15 × 15 µm) and
the Klebsiella pneumoniae extended spectrum β-lactamase CTX-
M-14 (crystal size 20 × 20 × 20 µm) as model systems, determining
a ligand complex 50ms and a covalent complex 1 s after reaction
initiation, respectively (Fig. 2, Supplementary information). After
a set delay time of 50ms for xylose isomerase (XI) and 1 s for CTX-
M-14 the crystals were vitrified in liquid nitrogen by directly
plunging them into a puck. After structure determination clear
difference electron density was visible in the active site, which
could be interpreted by modeling the ligand molecules (Fig. 2).

Comparison to our previously determined CTX-M-14 struc-
ture in complex with avibactam (PDB-ID: 6GTH) reveals only
minor differences between the cryogenically cooled crystals and
the room-temperature complex determined by SFX12. This con-
firms efficient mixing and diffusion of the ligand into the active
site as we have demonstrated previously5,12 (Fig. 2, Supplementary
Table 1).

Using 2,3-butanediol as a cryo-protectant in a buffer con-
taining its natural ligand glucose, we found that 2,3-butanediol
can also occupy the XI active site within 50ms, and is not
replaced by glucose within 500ms after reaction initiation (Fig. 2,
Supplementary Table 1). The 2,3-butanediol molecule soaked into
the XI crystals adopts a conformation similar to our previously
determined glucose bound complex structure 15 ms after reaction
initiation5.

Canonical rotation crystallography
As an alternative to serial crystallography, we aimed to demonstrate
that the spitrobot is also suitable for standard rotation data collec-
tion. We used the microfocus beam (3 × 7 µm) of EMBL beamline P14
(PETRA III, Hamburg), where individual micro-crystals were centered
in the X-ray beam. A convenient approach to identify well-diffracting
crystals is generating a diffractive-power heat map via the mesh
collection option inMXCuBE13,14. After selection of a suitable crystal a
standard rotation dataset was collected, amenable to automatic data-
processing routines available at most macro-molecular crystal-
lography beamlines.

To demonstrate that such data collections work routinely, we
prepared acyl-enzyme complexes of the activity impaired CTX-M-14
E166A mutant with ampicillin, at time-delays of 0.5 s, 1 s, and 5 s after
reaction initiation. At all time points the electron density confirms that
a covalent acyl-enzyme intermediate has formed, which compares well
to previously published data and thus confirms the consistency of the
crystallographic data across broad time-scales (7K2Y) (Fig. 2)15. In
addition, this experiment demonstrates that cryo-trapping data can
successfully be obtained via canonical rotation data collection and
automatic data processing routines, which greatly accelerates the
structure determination process.

Next, we aimed to explore theminimal permissible spitrobotdelay
time in comparison to previously established data4. For consistency
between the results obtained via the LAMA method at room-
temperature SSX and the cryo-trapping results from the spitrobot we
made use of our previously established model system xylose iso-
merase (XI). XI microcrystals were loaded onto SPINE standard, 700/
25 µm micromeshes (MiTeGen, USA), directly inside the humidity
stream using a standard micro-pipette. For reaction initiation the
substrate solution (1M D-glucose (aq)) was supplied in the LAMA
nozzle, 250 droplets were deposited using the burst mode (5 kHz
repetition rate).

Previously we had determined by RT-SSX that near full ligand
occupancy can be obtained in XI within 15ms, exceeding what is
mechanically feasible with the spitrobot5. Thus, crystals were vitrified
after 50ms, 250ms, 500ms, and 1000ms to narrow down the prac-
tical vitrification time limits. Consistent with our previous results dif-
ference density for the glucose molecule could be observed in the XI
active site consistently across all time-points. This emphasizes that fast
delay times are accessible to the spitrobot and that biologically rele-
vant time-scales in the millisecond time-domain can be addressed via
cryo-trapping crystallography. This emphasizes the high reproduci-
bility of the results, the comparability to TR-SSX data and the suit-
ability for cryo-trapping experiments in the sub-second time-
domain (Fig. 2).

Cryo-trapping crystallography of tryptophan synthase reaction
intermediates
Finally, we aimed to demonstrate as a proof-of-principle that the spi-
trobot can trap enzymatic reaction intermediates using single, mac-
roscopic crystals. To this end, we used the Salmonella typhimurium
tryptophan synthase (TS) (crystal size 200 × 100 × 50 µm), which cat-
alyzes the final steps in tryptophan biosynthesis. TS is a hetero-
tetrameric pyridoxal 5’-phosphate (PLP) dependent bi-enzyme com-
plex which generally assembles into a TrpA/TrpB2/TrpA dimer of het-
erodimers. In this structural architecture, a ~25 Å long allosteric
communication tunnel connects each of the TrpA/TrpB
heterodimers16,17. The accepted model for the TS turnover reaction is
as following: TrpA reversibly converts indole-3-glycerol phosphate
(IGP) into glyceraldehyde-3-phosphate (G3P) and indole. Simulta-
neously, in the active site of TrpB, serine reacts with PLP forming an
external aldimine (Aex-Ser) intermediate. Tryptophan is finally gener-
ated by indole passing through the tunnel between TrpA18 and TrpB,
allosterically regulated by the communication domain (COMM) of the
TrpB subunit (Fig. 3a). Once indole reaches the TrpB active site it
interacts with the Aex-Ser intermediate forming tryptophan as the end
product, which is finally released from TS17,19,20.

To demonstrate as a proof-of-principle that the spitrobot can be
used to gain insight into reaction intermediates, TS macro-crystals
were loaded onto standard 400/25 µm SPINE micromeshes (MiTeGen,
USA) and mounted on the spitrobot. Turnover was initiated by LAMA-
depositing reaction buffer containing indole, serine, and
glyceraldehyde-3-phosphate (G3P) as substrates onto the TS crystals.
To this end 500 droplets of reaction buffer were deposited at a 6 kHz
repetition rate. The TS crystals were then vitrified in liquid nitrogen by
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plunging them directly into a puck at the specified delay time points
(20 s, 25 s, and 30 s). At 20 and 30 s, in the active site of the TrpB
subunit near full occupancy of the Aex-Ser intermediate are observed
(Fig. 3). In addition to the formation of this intermediate, the side-chain
movements of bLys87 and bGln114 are visible (Fig. 3b–e; Supplemen-
tary Fig. 8). The structure at 25 s visualizes the start of the β-subunit
reaction. Here serine approaches the internal aldimine, priming the

β-subunit for the formation of the external aldimine (Aex-Ser), which
canbe clearly observed at 20 s and 30 s. Thus, the selected time-points
presumably show snapshots of different cycles of the irreversible
turnover reaction of the TS β-subunit. While further details will be
addressed in more detail in a follow-up study, these results clearly
demonstrate that the spitrobot can conveniently trap reaction inter-
mediates in macroscopic crystals providing insight into enzymatic
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Fig. 2 | Crystallographic assessment of representative time points.
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bactam complex formation after 1 s. d, e Single crystals: CTX-M-14E166A:ampicillin

complexes after 0.5, 1, and 5 s, respectively, and XI:glucose complexes after 50ms,
250ms, 500ms, and 1000ms after reaction initiation. POLDER omit maps are
shown at 3.0 r.m.s.d.
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turnover. While the fast time-scales enabled by the spitrobot are
inaccessible to manual procedures, the slow time-scales benefit from
precision, accuracy and the overall experiment gains reproducibility.

Discussion
Most available plungers are mainly intended to vitrify cryo-EM
samples21. By contrast, the commercial plunger ‘Nanuq’ (Mitegen,
USA) is specifically designed to vitrify protein crystals but can—to the
best of our knowledge—not initiate reactions. More recently a similar
crystal cryo-trapping solution was reported10. In contrast to the spi-
trobot, this ‘mix-and-quench’ device relies on non-standard crystal
sample holders without bases and thus requires more complex crystal
handling under cryo-conditions, which bears the potential for errors.
Moreover, as the crystals are plunged through a substrate-containing
film at high velocity it appears difficult to realize the biologically
important long-time delays, which greatly limits its applicability to
macroscopic crystals. By contrast, the spitrobot is built around the
SPINE-standard, and versatile time delays have been demonstrated.
While manual cryo-trapping is obviously an alternative approach for

larger crystals and longer time delays, reproducibility is a major issue
with this approach, as time delays cannot be kept with high accuracy.
Here, the relative error increases with decreasing time-delays and in
consequence the comparability between different samples is reduced.
While true time-resolved crystallographic experiments at room tem-
perature offer amuchmore complete access to the dynamic landscape
of protein function, cryo-trapping experiments may be sufficient to
solve many important biologically relevant questions—e.g., provide
insight into thermodynamically trapped, stable reaction
intermediates22,23. It is clear that care has to be taken to only use
crystals of highly similar dimensions to avoid that mechanistic con-
clusions are affected by different diffusion times. Along similar lines
the utility of isomorphous difference maps could be affected by non-
isomorphism originating in the freezing process.

However, if these aspects are accounted for spitrobot experiments
provide a number of clear and important advantages. The spitrobot (i)
allows for remote experiments by uncoupling of sample preparation
from data-collection; (ii) makes sub-second cryo-trapping possible,
which is manually either very hard or impossible, and produces longer

TrpA

TrpB
COMM

ba c

d e

PLPSer

PLP

Lys87

Gln114

Aex1

Aex1

0 s 20 s

25 s 30 s
Ser binding and Aex1 formation in TrpB

Fig. 3 | Time-resolved analysis of Tryptophan synthase (TS) turnover. aCartoon
representation of Tryptophan synthase AB complexwith each subunit represented
in a different color. b–e Formation of an external aldimine intermediate (Aex1) at
different time points (20 s, 30 s) and serine binding (25 s) after mixing.
c–e rearrangement of the residues, Lys87 (green arrow) and Gln114 (orange arrow)

during serine binding and Aex1 formation in TrpB, after reaction initiation. Active
site residues of TrpB are represented as stick and substrates are represented as ball-
and-stick. All electron density maps are represented as composite omit maps
contoured at 1.0.
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time delays more consistently than manual harvesting; (iii) enables
preparation for RT time-resolved experiments with “a few” crystals to
test, e.g., in situmixing and investigate in-crystal kinetics; (iv) facilitates
systemswith an unfavorable crystal-size to diffraction ratio, unsuitable
for serial crystallography; (v) provides physiological conditions during
reaction initiation; (vi) permits low-brightness beamlines or home-
sources to carry out experiments enabling insight into sub-second
time-delays, asmeasuring cryo-trapped intermediates is less limited by
the photon flux; (vii) provides lower susceptibility to radiation damage
when collecting data from frozen crystals; (vii) offers controlled
freezing,whichmay improve data-statistics; (ix) allows for cryo-SSX via
collection of oscillation data, which is very sample efficient compared
to RT serial approaches; (x) most importantly displays full compat-
ibilitywith SPINE standards and thuswith the existing high-throughput
infrastructure available at most MX-beamlines.

While caution must be applied to mechanistic conclusions that
could be biased by the cryo-trapping process (e.g., side-chain con-
formations, hydration structures, etc.) the practical advantages and its
widespread applicability put the spitrobot into an ideal position for the
transition from static structure determination to time-resolved crys-
tallography projects at ambient temperatures24. The versatility of the
spitrobot (crystal size, data-collection routines, time-delays, environ-
mental control), provides ample target opportunities for a large
number of labs and beamlines. Importantly the simplicity of the
workflow including canonical data-processing,makes it also accessible
to the inexperienced users.

Methods
Protein crystallization
CTX-M-14. CTX-M-14 crystals were generated as described
previously12. Briefly: Purified CTX-M-14 was concentrated to 26mg/ml
and incubated with CTX-M crystallization buffer (40% PEG8000,
200mM LiSO4, 100mM NaOAc, pH 4.5) and a highly concentrated
seed stock in a 50:45:5 ratio for batch micro-crystallization of the
protein. Homogenous micro-crystals with a typical size of
20 × 20 × 20 µm were obtained within one day. The asymmetric unit
contains oneCTX-M-14monomer in spacegroupP 31 2 1. Crystals of the
activity-impaired E166A mutant were generated under the same
conditions.

Xylose isomerase. Macroscopic crystals of xylose isomerase (XI) were
grown via the sitting drop vapor diffusion method. XI was con-
centrated to 40mg/ml and equal volumes of protein solution and XI-
crystallization buffer (31% (w/v) PEG 3350, 0.2M LiSO4, 0.01M Hepes
pH 7.5), were incubated for 4 days until first crystals formed, which
were harvested after several weeks at a size of approximately 300 µm
in diameter. The asymmetric unit contains one XI monomer in
spacegroup I 2 2 2.

XI microcrystals were generated as described previously5. Briefly:
Purified XI was concentrated to 80mg/ml and incubated with equal
amounts of XI crystallization buffer (35% (w/v) PEG3350, 0.2M
LiSO4, 0.01M Hepes pH 7.5). The solution was subjected to vacuum
evaporation in a ‘speedvac’-micro centrifuge (Eppendorf, Hamburg,
Germany) for 15–20min, yielding homogeneous micro-crystals with
dimension of 10 × 15 × 15 µm.

Tryptophan synthase (TS). TrpA and TrpB were purified as described
previously16. Birefly: TrpAB was recombinantly expressed in E. coli
(BL21 gold DE3) and purified via Ni-affinity chromatography (50mM
Tris/HCl pH 7.5, 150mM NaCl, 10mM imidazole; eluted with a linear
imidazole gradient to 1M) and an S75 size-exclusion column (50mM
Tris/HCl pH 7.5). The TS complex crystallized in 17% (w/v) PEG 300,
0.1M Tris-HCl (pH 7.5), and 20mM Cesium chloride. Crystals grew
after mixing 2 µl at 8–9mg/ml protein solution in size-exclusion buffer
(50mM Tris-HCl pH 7.5) with 2 µl of the reservoir solution at 18 °C by

the hanging‐drop vapor diffusion method. Crystals appeared after
2–3 days and reached the final size (200 × 100 × 50 µm) after five to
seven additional days. The asymmetric unit contains one TrpA andone
TrpB as TrpAB complex in spacegroup C 2.

Reaction initiation
While microcrystal slurries (~500nl) are deposited with a pipette,
single-crystals are fished manually and quickly placed in the humidity
stream on the spitrobot, excess mother liquor is manually blotted via
Whatman paper. For reaction initiation the substrate solutions were
sterile filtrated and degassed via sonication for 30min. The substrate
solutions were loaded into the LAMA nozzles according to the manu-
facturer’s instructions (Microdrop Technologies, Norderstedt, Ger-
many). For complex formation with CTX-M-14 500 150 pl droplets
(~75 nl) of avibactam-buffer (0.5M avibactam, 0.14M LiSO4, 0.07M
NaOAc, 0.006M MES, 15% (v/v) 2,3-butanediol) or 500 droplets of
ampicillin-buffer (1M Na-ampicillin, 0.14M LiSO4, 0.07M NaOAc,
0.006MMES, 15% (v/v) 2,3-butanediol), respectively, were applied at a
frequency of 2 kHz. For complex formation with XI 200-250 droplets
of glucose-buffer (1M Glucose) or 200–250 droplets of butanediol-
buffer (1M glucose, 15% (v/v) 2,3-butanediol), respectively, were
applied at a frequency of 5 kHz. For reaction initiation with TS, 500
droplets of reaction-buffer (17% (w/v) PEG 300, 0.1M Tris-HCl (pH 7.5),
20mM Cesium chloride, 10mM G3P, 110mM indole, 100mM serine,
and 30% ethanol) were applied at a frequency of 6 kHz via the LAMA
nozzle.

Cryo protection
To avoid ice-crystal formation the substrate solutions were supple-
mented with an appropriate cryo-protectant. In the case of CTX-M-14
crystals 15% (v/v) 2,3-butanediol was combined with the substrate
solution as stated above; in the case of XI crystals either a 15% (v/v)
2,3-butanediol solution or the 1M glucose solution served as cryo-
protectant; for TS the substrate solution contained 30% (v/v)
ethanol.

Data-collection and processing
Cryo SSX. Serial synchrotron crystallography was originally estab-
lished under cryo-conditions using a limited rotation workflow25.
However, unlike in the original workflow we collected still diffraction
images using a mesh scan workflow available in MXCuBE14. A focused
X-ray beam with a FWHM size of 7 × 3 µm, at an energy of 12.7 keV
(0.9763 Å) at a flux of ~2 × 1013ph/s and an exposure time of 7.5ms per
image was used during data collection with an Eiger2 CdTe 16M
detector (Dectris, Switzerland). For themeshcollections, ameshwith a
grid spacingmatching the dimensions of the beamwas drawn over the
whole micro-mesh sample, giving rise to several thousand still dif-
fraction images, which were processed using CrystFEL with the
XGANDALF indexing routine26,27. Structures were solved by molecular
replacement in PHASER using 6GTH as a search model for CTX-M-14
and 6RNF as a search model for XI28.

Single crystal data. Cryo-trapping data from single crystals were
solved by making use of canonical, single-crystal data-collection
workflows. A focused beamwith a FWHM size of 7 × 3 µm, at an energy
of 12.7 keV (0.9763 Å) at a flux of ~4 × 1011ph/s and an exposure time of
7.5ms per image was used during data-collection on an Eiger2 CdTe
16M detector for P14 and the Eiger16M for P13 (Dectris, Switzerland).
Diffraction data were processed using XDS29–31 and AutoPROC using
StarAniso32,33. For processing the TS datasets, the collected datasets
were initially integrated using XDS and merged and scaled using the
CCP4 suite programAIMLESS34,35. Structures were solved bymolecular
replacement in PHASER using 2WSY as a search model for TS36, 6RNF
as a search model for XI, and using 6GTH as a search model for CTX-
M-14.
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Refinement and data analysis. Refinement was carried out in the
phenix suite using phenix.refine37 and coot 0.8 for manual corrections
to the model38. POLDER maps were generated using phenix.polder39.
Composite omit maps for TS were generated using phenix.composi-
te_omit_map. Molecular images were generated in PyMol40.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. All crystallographic data have been deposited in
the Protein Data Bank (PDB) under accession codes 8AWE (Xylose
Isomerase in 99% relative humidity), 8AWD (Xylose Isomerase in 95%
relative humidity), 8AWB (Xylose Isomerase in 90% relative humidity),
8AWC (Xylose Isomerase in 85% relative humidity), 8AWF (Xylose
Isomerase in 80% relative humidity), 8AW9 (Xylose Isomerase in 75%
relative humidity), 8AW8 (Xylose Isomerase in 70% relative humidity).
Data for the cryo SSX datasets of XI and CTXM-14, respectively, have
been deposited under the accession numbers: 8AWY (Xylose Iso-
merase with 2,3-butanediol at 50ms) and 8B3M (CTXM-14 Avibactam
complex, SSX, 1 s). Data for the CTX-M-14E166A single crystal datasets
have been deposited under the accession numbers: 8B2W (CTX-M-14
E166A, Ampicillin, 500ms), 8B2V (CTX-M-14 E166A, Ampicillin, 1 s) and
8B2O (CTX-M-14 E166A, Ampicillin, 5 s). Data for the XI single crystal
datasets have been deposited under the accession numbers: 8AWS
(Xylose Isomerase with Glucose at 50ms), 8AWU (Xylose Isomerase
with Glucose at 250ms), 8AWV (Xylose Isomerase with Glucose at
500ms), 8AWX (Xylose Isomerase with Glucose at 1 s). Data for the TS
single crystal datasets have been deposited under the accession
numbers: 8B03 (Tryptophan synthase, 0 s), 8B05 (Tryptophan syn-
thase, 20 s), 8B06 (Trypotphan synthase, 25 s), and 8B08 (Tryptophan
synthase, 30 s). Previously published PDB files utilized can be found
using accession codes 6GTH, 7K2Y, 2WSY, and 6RNF. Further details
are available in Supplementary Tables 1–5.
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