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Forecasting the future of artificial 
intelligence with machine learning-based 
link prediction in an exponentially growing 
knowledge network
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A tool that could suggest new personalized research directions and 
ideas by taking insights from the scientific literature could profoundly 
accelerate the progress of science. A field that might benefit from such 
an approach is artificial intelligence (AI) research, where the number of 
scientific publications has been growing exponentially over recent years, 
making it challenging for human researchers to keep track of the progress. 
Here we use AI techniques to predict the future research directions of AI 
itself. We introduce a graph-based benchmark based on real-world data—
the Science4Cast benchmark, which aims to predict the future state of 
an evolving semantic network of AI. For that, we use more than 143,000 
research papers and build up a knowledge network with more than 64,000 
concept nodes. We then present ten diverse methods to tackle this task, 
ranging from pure statistical to pure learning methods. Surprisingly, the 
most powerful methods use a carefully curated set of network features, 
rather than an end-to-end AI approach. These results indicate a great 
potential that can be unleashed for purely ML approaches without human 
knowledge. Ultimately, better predictions of new future research directions 
will be a crucial component of more advanced research suggestion tools.

The corpus of scientific literature grows at an ever-increasing speed. 
Specifically, in the field of artificial intelligence (AI) and machine learn-
ing (ML), the number of papers every month is growing exponentially 
with a doubling rate of roughly 23 months (Fig. 1). Simultaneously, the 
AI community is embracing diverse ideas from many disciplines such as 

mathematics, statistics and physics, making it challenging to organize 
different ideas and uncover new scientific connections. We envision a 
computer program that can automatically read, comprehend and act 
on AI literature. It can predict and suggest meaningful research ideas 
that transcend individual knowledge and cross-domain boundaries.  
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using supercomputer simulations, provides insights into scientists’ 
collective behaviour and suggests more efficient research strategies13. 
Although creating semantic networks from concept co-occurrences 
extracts only a small amount of knowledge from each paper, it captures 
non-trivial and actionable content when applied to large datasets2,4,13–15. 
PaperRobot extends this approach by predicting new links from large 
medical knowledge graphs and formulating new ideas in human lan-
guage as paper drafts16.

This approach was applied and extended to quantum physics17 
by building a semantic network of over 6,000 concepts. There, the 
authors (including one of us) formulated the prediction of new research 
trends and connections as an ML task, with the goal of identifying 
concept pairs not yet jointly discussed in the literature but likely to be 
investigated in the future. This prediction task was one component for 
personalized suggestions of new research ideas.

Link prediction in semantic networks
We formulate the prediction of future research topics as a link-prediction 
task in an exponentially growing semantic network in the AI field. The 
goal is to predict which unconnected nodes, representing scientific 
concepts not yet jointly researched, will be connected in the future.

Link prediction is a common problem in computer science, 
addressed with classical metrics and features, as well as ML tech-
niques. Network theory-based methods include local motif-based 
approaches18–22, linear optimization23, global perturbations24 and sto-
chastic block models25. ML works optimized a combination of predic-
tors26, with further discussion in a recent review27.

In ref. 17, 17 hand-crafted features were used for this task. In the 
Science4Cast competition, the goal was to find more precise methods 
for link-prediction tasks in semantic networks (a semantic network of 
AI that is ten times larger than the one in ref. 17).

Potential for idea generation in science
The long-term goal of predictions and suggestions in semantic net-
works is to provide new ideas to individual researchers. In a way, we 
hope to build a creative artificial muse in science28. We can bias or 
constrain the model to give topic suggestions that are related to the 
research interest of individual scientists, or a pair of scientists to sug-
gest topics for collaborations in an interdisciplinary setting.

Generation and analysis of the dataset
Dataset construction
We create a dynamic semantic network using papers published on arXiv 
from 1992 to 2020 in the categories cs.AI, cs.LG, cs.NE and stat.ML. The 
64,719 nodes represent AI concepts extracted from 143,000 paper 
titles and abstracts using Rapid Automatic Keyword Extraction (RAKE) 
and normalized via natural language processing (NLP) techniques 
and custom methods29. Although high-quality taxonomies such as the  
Computer Science Ontology (CSO) exist30,31, we choose not to use them 
for two reasons: the rapid growth of AI and ML may result in new con-
cepts not yet in the CSO, and not all scientific domains have high-quality 
taxonomies like CSO. Our goal is to build a scalable approach applicable 
to any domain of science. However, future research could investigate 
merging these approaches (see ‘Extensions and future work’).

Concepts form the nodes of the semantic network, and edges 
are drawn when concepts co-appear in a paper title or abstract. Edges 
have time stamps based on the paper’s publication date, and multiple 
time-stamped edges between concepts are common. The network is 
edge-weighted, and the weight of an edge stands for the number of 
papers that connect two concepts. In total, this creates a time-evolving 
semantic network, depicted in Fig. 2.

Network-theoretical analysis
The published semantic network has 64,719 nodes and 17,892,352 
unique undirected edges, with a mean node degree of 553.  

If successful, it could greatly improve the productivity of AI researchers, 
open up new avenues of research and help drive progress in the field.

In this work, we address the ambitious vision of developing a 
data-driven approach to predict future research directions1. As new 
research ideas often emerge from connecting seemingly unrelated 
concepts2–4, we model the evolution of AI literature as a temporal  
network. We construct an evolving semantic network that encapsulates 
the content and development of AI research since 1994, with approxi-
mately 64,000 nodes (representing individual concepts) and 18 million 
edges (connecting jointly investigated concepts).

We use the semantic network as an input to ten diverse statistical 
and ML methods to predict the future evolution of the semantic net-
work with high accuracy. That is, we can predict which combinations 
of concepts AI researchers will investigate in the future. Being able to 
predict what scientists will work on is a first crucial step for suggesting 
new topics that might have a high impact.

Several methods were contributions to the Science4Cast competi-
tion hosted by the 2021 IEEE International Conference on Big Data (IEEE 
BigData 2021). Broadly, we can divide the methods into two classes: 
methods that use hand-crafted network-theoretical features and those 
that automatically learn features. We found that models using care-
fully hand-crafted features outperform methods that attempt to learn 
features autonomously. This (somewhat surprising) finding indicates 
a great potential for improvements of models free of human priors.

Our paper introduces a real-world graph benchmark for AI, pre-
sents ten methods for solving it, and discusses how this task contributes 
to the larger goal of AI-driven research suggestions in AI and other 
disciplines. All methods are available at GitHub5.

Semantic networks
The goal here is to extract knowledge from the scientific literature 
that can subsequently be processed by computer algorithms. At first 
glance, a natural first step would be to use large language model (such 
as GPT36, Gopher7, MegaTron8 or PaLM9) on each article to extract 
concepts and their relations automatically. However, these methods 
still struggle in reasoning capabilities10,11; thus, it is not yet directly clear 
how these models can be used for identifying and suggesting new ideas 
and concept combinations.

Rzhetsky et al.12 pioneered an alternative approach, creating 
semantic networks in biochemistry from co-occurring concepts in 
scientific papers. There, nodes represent scientific concepts, specifi-
cally biomolecules, and are linked when a paper mentions both in its 
title or abstract. This evolving network captures the field’s history and, 
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Fig. 1 | The number of papers published per month in the arXiv categories of 
AI and ML are growing exponentially. The doubling rate of papers per month is 
roughly 23 months, which might lead to problems for publishing in these fields, at 
some point. The categories are cs.AI, cs.LG, cs.NE and stat.ML.
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Many hub nodes greatly exceed this mean degree, as shown in Fig. 3, 
For example, the highest node degrees are 466,319 (neural network), 
198,050 (deep learning), 195,345 (machine learning), 169,555 (convo-
lutional neural network), 159,403 (real world), 150,227 (experimental 
result), 127,642 (deep neural network) and 115,334 (large scale). We 
fit a power-law curve to the degree distribution p(k) using ref. 32 and 
obtained p(k) ∝ k−2.28 for degree k ≥ 1,672. However, real complex net-
work degree distributions often follow power laws with exponential 
cut-offs33. Recent work34 has indicated that lognormal distributions 
fit most real-world networks better than power laws. Likelihood ratio 
tests from ref. 32 suggest truncated power law (P = 0.0031), lognormal  
(P = 0.0045) and lognormal positive (P = 0.015) fit better than power 
law, while exponential (P = 3 × 10−10) and stretched exponential 
(P = 6 × 10−5) are worse. We couldn’t conclusively determine the best 
fit with P ≤ 0.1.

We observe changes in network connectivity over time. Although 
degree distributions remained heavy-tailed, the ordering of nodes 
within the tail changed due to popularity trends. The most connected 
nodes and the years they became so include decision tree (1994), 
machine learning (1996), logic program (2000), neural network (2005), 
experimental result (2011), machine learning (2013, for a second time) 
and neural network (2015).

Connected component analysis in Fig. 4 reveals that the network 
grew more connected over time, with the largest group expanding 
and the number of connected components decreasing. Mid-sized 
connected components’ trajectories may expose trends, like image 
processing. A connected component with four nodes appeared in 
1999 (brightness change, planar curve, local feature, differential 
invariant), and three more joined in 2000 (similarity transformation,  
template matching, invariant representation). In 2006, a paper discussing  
support vector machine and local feature merged this mid-sized group 
with the largest connected component.

The semantic network reveals increasing centralization over 
time, with a smaller percentage of nodes (concepts) contributing to 
a larger fraction of edges (concept combinations). Figure 5 shows that 
the fraction of edges for high-degree nodes rises, while it decreases 
for low-degree nodes. The decreasing average clustering coefficient 
over time supports this trend, suggesting nodes are more likely to 
connect to high-degree central nodes. This could be due to the AI 
community’s focus on a few dominating methods or more consistent 
terminology use.

Problem formulation
At the big picture, we aim to make predictions in an exponentially 
growing semantic network. The specific task involves predicting which 
two nodes v1 and v2 with degrees d(v1/2) ≥ c lacking an edge in the year 
(2021 − δ) will have w edges in 2021. We use δ = 1, 3, 5, c = 0, 5, 25 and 
w = 1, 3, where c is a minimal degree. Note that c = 0 is an intriguing 
special case where the nodes may not have an associated edge in the 
initial year, requiring the model to predict which nodes will connect to 
entirely new edges. The task w = 3 goes beyond simple link prediction 
and seeks to identify uninvestigated concept pairs that will appear 
together in at least three papers. An interesting alternative task could 
be predicting the fastest-growing links, denoted as ‘trend’ prediction.

In this task, we provide a list of 10 million unconnected node pairs 
(each node having a degree ≥c) for the year (2021 − δ), with the goal of 
sorting this list by descending probability that they will have at least 
w edges in 2021.

For evaluation, we employ the receiver operating character-
istic (ROC) curve35, which plots the true-positive rate against the 
false-positive rate at various threshold settings. We use the area 
under the curve (AUC) of the ROC curve as our evaluation metric. The 
advantage of AUC over mean square error is its independence from 
the data distribution. Specifically, in our case, where the two classes 
have a highly asymmetric distribution (with only about 1–3% of newly 
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co-occur in titles or abstracts, resulting in an evolving network that expands 

as more concepts are jointly investigated. The task involves predicting which 
unconnected nodes (concepts not yet studied together) will connect within a 
few years. We present ten diverse statistical and ML methods to address this 
challenge.
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connected edges) and the distribution changes over time, AUC offers 
meaningful interpretation. Perfect predictions yield AUC = 1, whereas 
random predictions result in AUC = 0.5. AUC represents the percentage 
that a random true element is ranked higher than a random false one. 
For other metrics, see ref. 36.

To tackle this task, models can use the complete information of 
the semantic network from the year (2021 − δ) in any way possible. In 
our case, all presented models generate a dataset for learning to make 
predictions from (2021 − 2δ) to (2021 − δ). Once the models successfully 
complete this task, they are applied to the test dataset to make predic-
tions from (2021 − δ) to 2021. All reported AUCs are based on the test 
dataset. Note that solving the test dataset is especially challenging due 
to the δ-year shift, causing systematic changes such as the number of 
papers and density of the semantic network.

AI-based solutions
We demonstrate various methods to predict new links in a seman-
tic network, ranging from pure statistical approaches and neural  
networks with hand-crafted features (NF) to ML models without NF. 

The results are shown in Fig. 6, with the highest AUC scores achieved 
by methods using NF as ML model inputs. Pure network features 
without ML are competitive, while pure ML methods have yet to 
outperform those with NF. Predicting links generated at least three 
times can achieve a quasi-deterministic AUC > 99.5%, suggesting an 
interesting target for computational sociology and science of sci-
ence research. We have performed numerous tests to exclude data 
leakage in the benchmark dataset, overfitting or data duplication 
both in the set of articles and the set of concepts. We rank methods 
based on their performance, with model M1 as the best perform-
ing and model M8 as the least effective (for the prediction of a new 
edge with δ = 3, c = 0). Models M4 and M7 are subdivided into M4A, 
M4B, M7A and M7B, differing in their focus on feature or embedding  
selection (more details in Methods).

Model M1: NF + ML. This approach combines tree-based gradient 
boosting with graph neural networks, using extensive feature engineer-
ing to capture node centralities, proximity and temporal evolution37. 
The Light Gradient Boosting Machine (LightGBM) model38 is employed 
with heavy regularization to combat overfitting due to the scarcity of 
positive examples, while a time-aware graph neural network learns 
dynamic node representations.

Model M2: NF + ML. This method utilizes node and edge features 
(as well as their first and second derivatives) to predict link formation 
probabilities39. Node features capture popularity, and edge features 
measure similarity. A multilayer perceptron with rectified linear unit 
(ReLU) activation is used for learning. Cold start issues are addressed 
with feature imputation.

Model M3: NF + ML. This method captures hand-crafted node 
features over multiple time snapshots and employs a long short-term 
memory (LSTM) to learn time dependencies40. The features were 
selected to be highly informative while having a low computational 
cost. The final configuration uses degree centrality, degree of neigh-
bours and common neighbours as features. The LSTM outperforms 
fully connected neural networks.
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blue) vertical axis: number of connected components with more than one node. 
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component. For example, the network in 2019 comprises of one large connected 
component with 63,472 nodes and 1,247 isolated nodes, that is, nodes with no 
edges. However, the 2001 network has 19 connected components with size 
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interests of scientists88.
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Model M4: pure NF. Two purely statistical methods, preferential 
attachment41 and common neighbours27, are used42. Preferential attach-
ment is based on node degrees, while common neighbours relies on the 
number of shared neighbours. Both methods are computationally inex-
pensive and perform competitively with some learning-based models.

Model M5: NF + ML. Here, ten groups of first-order graph features 
are extracted to obtain neighbourhood and similarity properties, with 
principal component analysis43 applied for dimensionality reduc-
tion44. A random forest classifier is trained on the balanced dataset to  
predict new links.

Model M6: NF + ML. The baseline solution uses 15 hand-crafted 
features as input to a four-layer neural network, predicting the  
probability of link formation between node pairs17.

Model M7: end-to-end ML (auto node embedding). The baseline 
solution is modified to use node2vec45 and ProNE embeddings46 instead 
of hand-crafted features. The embeddings are input to a neural network 
with two hidden layers for link prediction.

Model M8: end-to-end ML (transformers). This method learns 
features in an unsupervised manner using transformers47. Node2vec 
embeddings45,48 are generated for various snapshots of the adjacency 
matrix, and a transformer model49 is pre-trained as a feature extractor. 
A two-layer ReLU network is used for classification.

Extensions and future work
Developing an AI that suggests research topics to scientists is a complex 
task, and our link-prediction approach in temporal networks is just 
the beginning. We highlight key extensions and future work directly 
related to the ultimate goal of AI for AI.

High-quality predictions without feature engineering. Interestingly, 
the most effective methods utilized carefully crafted features on a graph 
with extracted concepts as nodes and edges representing their joint 
publication history. Investigating whether end-to-end deep learning 
can solve tasks without feature engineering will be a valuable next step.

Fully automated concept extraction. Current concept lists, gener-
ated by RAKE’s statistical text analysis, demand time-consuming code 
development to address irrelevant term extraction (for example, verbs, 
adjectives). A fully automated NLP technique that accurately extracts 
meaningful concepts without manual code intervention would greatly 
enhance the process.

Leveraging ontology taxonomies. Alongside fully automated con-
cept extraction, utilizing established taxonomies such as the CSO30,31, 
Wikipedia-extracted concepts, book indices17 or PhySH key phrases is 
crucial. Although not comprehensive for all domains, these curated 
datasets often contain hierarchical and relational concept information, 
greatly improving prediction tasks.

Incorporating relation extraction. Future work could explore 
relation extraction techniques for constructing more accurate, sparser 
semantic networks. By discerning and classifying meaningful concept 
relationships in abstracts50,51, a refined AI literature representation is 
attainable. Using NLP tools for entity recognition, relationship iden-
tification and classification, this approach may enhance prediction 
performance and novel research direction identification.

Generation of new concepts. Our work predicts links between 
known concepts, but generating new concepts using AI remains a 
challenge. This unsupervised task, as explored in refs. 52,53, involves 
detecting concept clusters with dynamics that signal new concept 
formation. Incorporating emerging concepts into the current frame-
work for suggesting research topics is an intriguing future direction.

Semantic information beyond concept pairs. Currently, abstracts 
and titles are compressed into concept pairs, but more comprehensive 
information extraction could yield meaningful predictions. Exploring 
complex data structures such as hypergraphs54 may be computation-
ally demanding, but clever tricks could reduce complexity, as shown in 
ref. 55. Investigating sociological factors or drawing inspiration from 
material science approaches56 may also improve prediction tasks. A 

recent dataset for the study of the science of science also includes more 
complex data structures than the ones used in our paper, including 
data from social networks such as Twitter57.

Predictions of scientific success. While predicting new links 
between concepts is valuable, assessing their potential impact is essen-
tial for high-quality suggestions. Introducing a metric of success, like 
estimated citation numbers or citation growth rate, can help gauge 
the importance of these connections. Adapting citation prediction 
techniques from the science of science58–61 to semantic networks offers 
a promising research direction.

Anomaly detections. Predicting likely connections may not align 
with finding surprising research directions. One method for identify-
ing surprising suggestions involves constraining cosine similarity 
between vertices62, which measures shared neighbours and can be 
associated with semantic (dis)similarity. Another approach is detecting 
anomalies in semantic networks, which are potential links with extreme 
properties63,64. While scientists often focus on familiar topics3,4, greater 
impact results from unexpected combinations of distant domains12, 
encouraging the search for surprising associations.

End-to-end formulation. Our method breaks down the goal of 
extracting knowledge from scientific literature into subtasks, contrast-
ing with end-to-end deep learning that tackles problems directly with-
out subproblems65,66. End-to-end approaches have shown great success 
in various domains67–69. Investigating whether such an end-to-end 
solution can achieve similar success in our context would be intriguing.

Conclusion
Our method represents a crucial step towards developing a tool that 
can assist scientists in uncovering novel avenues for exploration. We 
are confident that our outlined ideas and extensions pave the way for 
achieving practical, personalized, interdisciplinary AI-based sugges-
tions for new impactful discoveries. We firmly believe that such a tool 
holds the potential to become a influential catalyst, transforming the 
way scientists approach research questions and collaborate in their 
respective fields.

Methods
Details on concept set generation and application
In this section, we provide details on the generation of our list of 64,719 
concepts. For more information, the code is accessible on GitHub. The 
entire approach is designed for immediate scalability to other domains.

Initially, we utilized approximately 143,000 arXiv papers from the 
categories cs.AI, cs.LG, cs.NE and stat.ML spanning 1992 to 2020. The 
omission of earlier data has a negligible effect on our research ques-
tion, as we show below. We then iterated over each individual article, 
employing RAKE (with an extended stopword list) to suggest concept 
candidates, which were subsequently stored.

Following the iteration, we retained concepts composed of at 
least two words (for example, neural network) appearing in six or more 
articles, as well as concepts comprising a minimum of three words  
(for example, recurrent neural network) appearing in three or more 
articles. This initial filter substantially reduced noise generated by 
RAKE, resulting in a list of 104,948 concepts.

Lastly, we developed an automated filtering tool to further 
enhance the quality of the concept list. This tool identified common, 
domain-independent errors made by RAKE, which primarily included 
phrases that were not concepts (for example, dataset provided or 
discuss open challenge). We compiled a list of 543 words not part of 
meaningful concepts, including verbs, ordinal numbers, conjunctions 
and adverbials. Ultimately, this process produced our final list of 64,719 
concepts employed in our study. No further semantic concept/entity 
linking is applied.

By this construction, the test sets with c = 0 could lead to very rare 
contamination of the dataset. That is because each concept will have at 
least one edge in the final dataset. The effects, however, are negligible.
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The distribution of concepts in the articles can be seen in Extended 
Data Fig. 1. As an example, we show the extraction of concepts from five 
randomly chosen papers:

•	 Memristor hardware-friendly reinforcement learning70: ‘actor 
critic algorithm’, ‘neuromorphic hardware implementation’, 
‘hardware neural network’, ‘neuromorphic hardware system’, 
‘neural network’, ‘large number’, ‘reinforcement learning’, ‘case 
study’, ‘pre training’, ‘training procedure’, ‘complex task’, ‘high 
performance’, ‘classical problem’, ‘hardware implementation’, 
‘synaptic weight’, ‘energy efficient’, ‘neuromorphic hardware’, 
‘control theory’, ‘weight update’, ‘training technique’, ‘actor 
critic’, ‘nervous system’, ‘inverted pendulum’, ‘explicit supervi-
sion’, ‘hardware friendly’, ‘neuromorphic architecture’,  
‘hardware system’.

•	 Automated deep learning analysis of angiography video 
sequences for coronary artery disease71: ‘deep learning 
approach’, ‘coronary artery disease’, ‘deep learning analysis’, 
‘traditional image processing’, ‘deep learning’, ‘image process-
ing’, ‘f1 score’, ‘video sequence’, ‘error rate’, ‘automated analysis’, 
‘coronary artery’, ‘vessel segmentation’, ‘key frame’, ‘visual 
assessment’, ‘analysis method’, ‘analysis pipeline’, ‘coronary angi-
ography’, ‘geometrical analysis’.

•	 Demographic influences on contemporary art with unsuper-
vised style embeddings72: ‘classification task’, ‘social network’, 
‘data source’, ‘visual content’, ‘graph network’, ‘demographic 
information’, ‘social connection’, ‘visual style’, ‘historical data-
set’, ‘novel information’

•	 The utility of general domain transfer learning for medical 
language tasks73: ‘natural language processing’, ‘long short term 
memory’, ‘logistic regression model’, ‘transfer learning tech-
nique’, ‘short term memory’, ‘average f1 score’, ‘class classifica-
tion model’, ‘domain transfer learning’, ‘weighted average f1 
score’, ‘medical natural language processing’, ‘natural language 
process’, ‘transfer learning’, ‘f1 score’, ’natural language’, ’deep 
model’, ’logistic regression’, ’model performance’, ’classification 
model’, ’text classification’, ’regression model’, ’nlp task’, ‘short 
term’, ‘medical domain’, ‘weighted average’, ‘class classifica-
tion’, ‘bert model’, ‘language processing’, ‘biomedical domain’, 
‘domain transfer’, ‘nlp model’, ‘main model’, ‘general domain’, 
‘domain model’, ‘medical text’.

•	 Fast neural architecture construction using envelopenets74: 
‘neural network architecture’, ‘neural architecture search’, ‘deep 
network architecture’, ‘image classification problem’, ‘neural 
architecture search method’, ‘neural network’, ‘reinforcement 
learning’, ‘deep network’, ‘image classification’, ‘objective func-
tion’, ‘network architecture’, ‘classification problem’, ‘evolution-
ary algorithm’, ‘neural architecture’, ‘base network’, ‘architecture 
search’, ‘training epoch’, ‘search method’, ‘image class’, ‘full 
training’, ‘automated search’, ‘generated network’, ‘constructed 
network’, ‘gpu day’.

Time gap between the generation of edges
We use articles from arXiv, which only goes back to the year 1992. 
However, of course, the field of AI exists at least since the 1960s75. Thus, 
this raises the question whether the omission of the first 30–40 years 
of research has a crucial impact in the prediction task we formulate, 
specifically, whether edges that we consider as new might not be so new 
after all. Thus, in Extended Data Fig. 2, we compute the time between 
the formation of edges between the same concepts, taking into account 
all or just the first edge. We see that the vast majority of edges are 
formed within short time periods, thus the effect of omission of early 
publication has a negligible effect for our question. Of course, different 
questions might be crucially impacted by the early data; thus, a careful 
choice of the data source is crucial61.

Positive examples in the test dataset
Table 1 shows the number of positive cases within the 10 million exam-
ples in the 18 test datasets that are used for evaluation.

Publication rates in quantum physics
Another field of research that gained a lot of attention in the recent 
years is quantum physics. This field is also a strong adopter of arXiv. 
Thus, we analyse in the same way as for AI in Fig. 1. We find in Extended 
Data Fig. 3 no obvious exponential increase in papers per month.  
A detailed analysis of other domains is beyond the current scope. It 
will be interesting to investigate the growth rates in different scientific 
disciplines in more detail, especially given that exponential increase 
has been observed in several aspects of the science of science3,76.

Details on models M1–M8
What follows are more detailed explanations of the models presented in 
the main text. All codes are available at GitHub. The feature importance 
of the best model M1 is shown here, those of other models are analysed 
in the respective workshop contributions (cited in the subsections).

Details on M1. The best-performing solution is based on a blend of a 
tree-based gradient boosting approach and a graph neural network 
approach37. Extensive feature engineering was conducted to capture 
the centralities of the nodes, the proximity between node pairs 
and their evolution over time. The centrality of a node is captured 
by the number of neighbours and the PageRank score77, while the 
proximity between a node pair is derived using the Jaccard index. We 
refer the reader to ref. 37 for the list of all features and their feature 
importance.

Table 1 | Positive examples within the 10 million evaluation 
examples

c ẟ = 1 ẟ = 3 ẟ = 5

0 20,990 49,548 64,027

5 21,430 61,347 107,654

25 22,713 75,039 153,304

c ẟ = 1 ẟ = 3 ẟ = 5

0 156 2,022 4,004

5 155 2,444 7,447

25 187 3,051 11,591

Results for ω = 1 (top) and ω = 3 (bottom).

Table 2 | Feature importance of the model M1

Features Average AUC

All features 0.9526

Remove u/v 0.9519

Remove jaccard_index 0.9508

Remove jaccard_index_diff 0.9511

Remove pagerank_score 0.9512

Remove pagerank_score_diff 0.9515

Remove rank_num_neighbors 0.9513

Remove rank_num_neighbors_diff 0.9502

Remove all temporal features 0.9489

As a sanity check of the winning model M1, we compute its average over all 18 datasets, for 
different removed features. This includes ω = 1 at the left side of Fig. 6 and ω = 3 at the right 
side of Fig. 6. As expected, the model with all features achieves the largest value of the 
average AUC.
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The tree-based gradient boosting approach uses LightGBM38 and 
applies heavy regularization to combat overfitting due to the scarcity 
of positive samples. The graph neural network approach employs a 
time-aware graph neural network to learn node representations on 
dynamic semantic networks. The feature importance of model M1, 
averaged over 18 datasets, is shown in Table 2. It shows that the tempo-
ral features do contribute largely to the model performance, but the 
model remains strong even when they are removed. An example of the 
evolution of the training (from 2016 to 2019) and test set (2019 to 2021) 
for δ = 3, c = 25, ω = 1 is shown in Extended Data Fig. 4.

Details on M2. The second method assumes that the probability 
that nodes u and v form an edge in the future is a function of the node 
features f(u), f(v) and some edge feature h(u, v). We chose node fea-
tures f that capture popularity at the current time t0 (such as degree, 
clustering coefficient78,79 and PageRank77). We also use these features’ 
first and second time derivatives to capture the evolution of the 
node’s popularity over time. After variable selection during training, 
we chose h to consist of the HOP-rec score (high-order proximity for 
implicit recommendation)80,81 and a variation of the Dice similarity 
score82 as a measure of similarity between nodes. In summary, we 
use 31 node features for each node, and two edge features, which 
gives 31 × 2 + 2 = 64 features in total. These features are then fed into 
a small multilayer perceptron (5 layers, each with 13 neurons) with 
ReLU activation.

Cold start is the problem that some nodes in the test set do not 
appear in the training set. Our strategy for a cold start is imputation. 
We say a node v is seen if it appeared in the training data, and unseen 
otherwise; similarly, we say that a node is born at time t if t is the first 
time stamp where an edge linking this node has appeared. The idea is 
that an unseen node is simply a node born in the future, so its features 
should look like a recently born node in the training set. If a node is 
unseen, then we impute its features as the average of the features of 
the nodes born recently. We found that with imputation during train-
ing, the test AUC scores across all models consistently increased by 
about 0.02. For a complete description of this method, we refer the 
reader to ref. 39.

Details on M3. This approach, detailed in ref. 40, uses hand-crafted 
node features that have been captured in multiple time snapshots (for 
example, every year) and then uses an LSTM to benefit from learning 
the time dependencies of these features. The final configuration uses 
two main types of feature: node features including degree and degree 
of neighbours, and edge features including common neighbours. In 
addition, to balance the training data, the same number of positive 
and negative instances have been randomly sampled and combined.

One of the goals was to identify features that are very informative 
with a very low computational cost. We found that the degree centrality 
of the nodes is the most important feature, and the degree centrality 
of the neighbouring nodes and the degree of mutual neighbours gave 
us the best trade-off. As all of the extracted features’ distributions are 
highly skewed to the right, meaning most of the features take near zero 
values, using a power transform such as Yeo–Johnson83 helps to make 
the distributions more Gaussian, which boosts the learning. Finally, for 
the link-prediction task, we saw that LSTMs perform better than fully 
connected neural networks.

Details on M4. The following two methods are based on a purely  
statistical analysis of the test data and are explained in detail  
in ref. 42.

Preferential attachment. In the network analysis, we concluded 
that the growth of this dataset tends to maintain a heavy-tailed degree 
distribution, often associated with scale-free networks. As mentioned 
before the γ value of the degree distribution is very close to 2, suggest-
ing that preferential attachment41 is probably the main organizational 

principle of the network. As such, we implemented a simple prediction 
model following this procedure. Preferential attachment scores in link 
prediction are often quantified as

sPAij = kikj. (1)

with ki,j the degree of nodes i and j. However, this assumes the scoring 
of links between nodes that are already connected to the network, 
that is ki,j > 0, which is not the case for all the links we must score in the 
dataset. As a result, we define our preferential attachment model as

sPAij = ki + kj. (2)

Using this simple model with no free parameters we could score 
new links and compare them with the other models. Immediately we 
note that preferential attachment outperforms some learning-based 
models, even if it never manages to reach the top AUC, but it is extremely 
simple and with negligible computational cost.

Common neighbours. We explore another network-based 
approach to score the links. Indeed, while the preferential attachment 
model we derived performed well, it uses no information about the dis-
tance between i and j, which is a popular feature used in link-prediction 
methods27. As such, we decided to test a method known as common 
neighbours18. We define Γ(i) as the set of neighbors of node i and 
Γ(i) ∩ Γ(j) as the set of common neighbours between nodes i and j. We 
can easily score the nodes with

sCNij = |Γ (i) ∩ Γ ( j)| (3)

the intuition being that nodes that share a larger number of neigh-
bours are more likely to be connected than distant nodes that do not  
share any.

Evaluating this score for each pair (i, j) on the dataset of uncon-
nected pairs, which can be computed as the second power of the  
adjacency matrix, A2, we obtained an AUC that is sometimes higher 
than preferential attachment and sometimes lower than it but is still 
consistently quite close with the best learning-based models.

Details on M5. This method is based on ref. 44. First, ten groups of 
first-order graph features are extracted to get some neighbourhood 
and similarity properties from each pair of nodes: degree centrality 
of nodes, pair’s total number of neighbours, common neighbours 
index, Jaccard coefficient, Simpson coefficient, geometric coefficient, 
cosine coefficient, Adamic–Adar index, resource allocation index and 
preferential attachment index. They are obtained for three consecu-
tive years to capture the temporal dynamics of the semantic network, 
leading to a total of 33 features. Second, principal component analy-
sis43 is applied to reduce the correlation between features, speed up 
the learning process and improve generalization, which results in a 
final set of seven latent variables. Lastly, a random forest classifier is 
trained (using a balanced dataset) to estimate the likelihood of new 
links between the AI concepts.

In this paper, a modification was performed in relation to the origi-
nal formulation of the method44: two of the original features, average 
neighbour degree and clustering coefficient, were infeasible to extract 
for some of the tasks covered in this paper, as their computation can be 
heavy for such a very large network, and they were discarded. Due to some 
computational memory issues, it was not possible to run the model for 
some of the tasks covered in this study, and so those results are missing.

Details on M6. The baseline solution for the Science4Cast competi-
tion was closely related to the model presented in ref. 17. It uses 15 
hand-crafted features of a pair of nodes v1 and v2. (Degrees of v1 and 
v2 in the current year and previous two years are six properties. The 
number of shared neighbours in total of v1 and v2 in the current year and 

http://www.nature.com/natmachintell


Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00735-0

previous two years are six properties. The number of shared neighbours 
between v1 and v2 in the current year and the previous two years are 
three properties). These 15 features are the input of a neural network 
with four layers (15, 100, 10 and 1 neurons), intending to predict whether 
the nodes v1 and v2 will have w edges in the future. After the training, the 
model computes the probability for all 10 million evaluation examples. 
This list is sorted and the AUC is computed.

Details on M7. The solution M7 was not part of the Science4Cast  
competition and therefore not described in the corresponding  
proceedings, thus we want to add more details.

The most immediate way one can apply ML to this problem is by 
automating the detection of features. Quite simply, the baseline solu-
tion M6 is modified such that instead of 15 hand-crafted features, the 
neural network is instead trained on features extracted from a graph 
embedding. We use two different embedding approaches. The first 
method is employs node2vec (M7A)45, for which we use the implementa-
tions provided in the nodevectors Python package84. The second one 
uses the ProNE embedding (M7B)46, which is based on sparse matrix 
factorizations modulated by the higher-order Cheeger inequality85.

The embeddings generate a 32-dimensional representation for 
each node, resulting in edge representations in [0, 1]64. These features 
are input into a neural network with two hidden layers of size 1,000 and 
30. Like M6, the model computes the probability for evaluation exam-
ples to determine the ROC. We compare ProNE to node2vec, a common 
graph embedding method using a biased random walk procedure with 
return and in–out parameters, which greatly affect network encoding. 
Initial experiments used default values for a 64-dimensional encoding 
before inputting into the neural network. The higher variance in node-
2vec predictions is probably due to its sensitivity to hyperparameters. 
While ProNE is better suited for general multi-dataset link prediction, 
node2vec’s sensitivity may help identify crucial network features for 
predicting temporal evolution.

Details on M8. This model, which is detailed in ref. 47, does not use any 
hand-crafted features but learns them in a completely unsupervised 
manner. To do so, we extract various snapshots of the adjacency matrix 
through time, capturing graphs in the form of At for t = 1994, …, 2019. We 
then embed each of these graphs into 128-dimensional Euclidean space 
via node2vec45,48. For each node u in the semantic graph, we extract 
different 128-dimensional vector embeddings nu(A1994), …, nu(A2019).

Transformers have performed extremely well in NLP tasks49; thus, 
we apply them to learn the dynamics of the embedding vectors. We 
pre-train a transformer to help classify node pairs. For the transformer, 
the encoder and decoder had 6 layers each; we used 128 as the embed-
ding dimension, 2,048 as the feed-forward dimension and 8-headed 
attention. This transformer acts as our feature extractor. Once we 
pre-train our transformer, we add a two-layer ReLU network with hid-
den dimension 128 as a classifier on top.

Data availability
All 18 datasets tested in this paper are available via Zenodo at  
https://doi.org/10.5281/zenodo.7882892 ref. 86.

Code availability
All of the models and codes described above can be found via GitHub 
at https://github.com/artificial-scientist-lab/FutureOfAIviaAI ref. 5  
and a permanent Zenodo record at https://zenodo.org/record/8329701 
ref. 87.
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Extended Data Fig. 1 | Number of concepts per article.
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Extended Data Fig. 2 | Time Gap between the generation of edges. Here, left shows the time it takes to create a new edge between two vertices and right shows the time 
between the first and the second edge.
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Extended Data Fig. 3 | Publications in Quantum Physics.
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Extended Data Fig. 4 | Evolution of the AUC during training for Model M1.
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