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Recently there have been discussions about which complex metrics should be allowable in quantum
gravity. These discussions assumed that the matter fields were real valued. We make the observation that for
compactified solutions it makes sense to demand convergence of the theory’s path integral in the higher-
dimensional parent theory. Upon compactification this allows for more general matter configurations in the
lower-dimensional theory, in particular it allows for complex scalar fields, with a bound on their imaginary
parts. Similar considerations apply to metric rescalings in the presence of higher curvature corrections.
We illustrate this effect with the example of the no-boundary proposal, in which scalar fields are typically
required to take complex values. We find that complex no-boundary solutions exist, and satisfy the derived
bound, if the potential is sufficiently flat. For instance, for a compactification from D dimensions,

the bound on the imaginary part ImðϕÞ of the internal volume modulus reads jV;ϕj=V <
ffiffiffiffiffiffiffi
D−4
D−2

q
=3

ffiffiffi
2

p
. This

leads to a mild tension with swampland conjectures.
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I. INTRODUCTION

Euclidean and, more generally, complex metrics have
proven useful in a number of contexts: for example, Wick
rotated versions of black hole metrics typically provide the
quickest way to derive thermodynamic properties of black
holes [1]. Moreover, quantum effects in gravity are often
described by analytically continued metrics, such as worm-
holes [2], Coleman-DeLuccia instantons [3], or the bubble
of nothing [4]. However, it is also clear that not all complex
metrics make sense. Counterexamples include zero-action
wormholes [5] or unstable quantum bounces [6]. Thus, one
needs a criterion specifying which complex metrics should
be allowed, and which not.
This question has gained renewed interest recently,

due to a proposal of Kontsevich and Segal [7], building
on earlier work of Louko and Sorkin [8], in the context of
quantum field theories (without dynamical gravity). Their
proposal is to allow for all complex metrics on which
the path integral over all possible matter fields converges.
Here the matter fields are taken to be scalars and p forms
of all possible ranks, and moreover these matter fields are
assumed to take real values only. One reason for this

assumption is that it allows for a context-independent
definition of matter states. Explicitly, the condition reads

jei
ℏSj < 1 or je−1

ℏSE j < 1 implying ð1Þ

Re½ ffiffiffi
g

p
gj1k1 � � � gjpþ1kpþ1Fj1���jpþ1

Fk1���kpþ1
� > 0; ð2Þ

where SE is the Euclidean action and (2) gives the implied
condition stemming from the kinetic term of a (pþ 1)-form
field strength F. If one now writes the metric in diagonal
form (which can always be done locally),

gjk ¼ δjkλj; ð3Þ

then one may show that convergence (for all p) imposes
a bound on the sum of arguments of the diagonal metric
elements [7]

Σ≡XD
j¼1

jArgðλjÞj < π: ð4Þ

Note that Euclidean metrics satisfy the bound trivially,
with Σ ¼ 0, while Lorentzian metrics saturate the bound,
with Σ ¼ π. This is consistent with the fact that real-time
Feynman path integrals are only conditionally convergent,
see e.g., [9]. Thus, as emphasized in [7], Lorentzian physics
takes place on the boundary of the domain of allowable
metrics.
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Witten applied the criterion (4) to theories with dynamical
gravity [5], noting that it indeed eliminates pathological
examples, and retains the above-mentioned “good” exam-
ples such as analytically continued black hole spacetimes.
In [10,11] this program was extended to cosmology and to
considerations of integration contours for the path integrals.
These works showed that no-boundary metrics (without
scalar fields) pass the allowability criterion in all dimensions,
while proposed examples of quantum bounces do not.
Thus the Louko-Sorkin-Kontsevich-Segal-Witten

(LSKSW) bound is empirically found to be rather
successful, though one may wonder whether it is too
strong in the gravitational context. One indication comes
from cosmology: when discussing early universe models,
one notices that gauge invariant curvature perturbations
mix metric and scalar field degrees of freedom [12]. This
makes one question whether it makes sense to treat the two
types of fields differently. Another indication is that
theories of gravity can include a scalar degree of freedom,
in particular fðRÞ theories [13]. In that context the scalar is
not fundamental, rather it arises from a rescaling of the
metric. But if the metric can take on complex values, then
there appears to be no need to require this scalar to take
real values.
Perhaps the clearest motivating argument is to be found

in the context of supergravity theories. In theories with
extended supersymmetry, the multiplets containing the
graviton also contain vectors and, with enough supersym-
metry, scalars. Moreover, supergravity theories are
linked to each other by a web of compactifications [14].
Dimensional reduction gives rise to many vectors and
scalars that were originally part of the metric in the higher-
dimensional theory. Meanwhile, higher-dimensional form
fields give rise in the lower dimensions both to form fields
of the same rank and to those with progressively smaller
rank, as indices can take values in the internal dimensions.
All of this suggests that the allowability criterion should
really be imposed in the higher-dimensional parent theory.
To recap, the LSKSW bound is derived by studying the

convergence of the matter part of the action, with matter
fields assumed to take real values. The gravitational part of
the action is allowed to be complex, and it is implicitly
assumed that suitable integration contours for gravity can
be found, rendering the gravitational action convergent as
well. The LSKSW bound then constrains how complex the
metric can be. Our main observation then is that in this
setting there are situations in which some (matter) fields
should be allowed to take complex values, namely when
they arise from components of the metric. We will focus
on two examples: the first (Sec. II) is the volume modulus
of an internal manifold, in a compactification to lower
dimensions. The second (Sec. III) is a rescaling of the
metric by a (scalar) conformal factor, in the case where
higher order terms are present in the gravitational action. In
both cases, we assume that the LSKSW bound is imposed

on the higher-dimensional/original metric, and we will
demonstrate that this translates into a bound on how
complex these scalars can be.
No-boundary solutions provide an ideal test bed for

these ideas, as they typically require scalar fields to take
complex values in order to keep the metric and matter
configurations regular (Sec. IV). As we will discuss,
convergence of the parent theory then puts a bound on
the imaginary part of the induced scalar fields, and this
bound is satisfied as long as the scalar potential is flat
enough. The bound that is found, and which we will derive
in detail for specific examples, roughly speaking requires
the potential to be flat enough to allow for inflationary
solutions to exist. In the discussion Sec. V, we will
comment on possible implications of this result.

II. KALUZA-KLEIN VOLUME REDUCTION

We consider a compactification from D down to
d dimensions, with d > 2, on an internal (D − d)-
dimensional manifold with volume determined by a scalar
field ϕ. We would like to specify a compactification ansatz
such that ϕ is canonically normalized in d dimensions.
We will focus on the dimensional reduction of the Einstein-
Hilbert action. Capital Latin indices run over D dimen-
sions, small case Latin indices over the internal manifold,
and Greek indices over the d-dimensional external mani-
fold. (A detailed description of Kaluza-Klein compactifi-
cations can be found, e.g., in [14].)
Write the compactification ansatz as

gMNdxMdxN ¼ e2aϕgμνdxμdxν þ e2bϕgijdxidxj; ð5Þ

where a, b remain to be determined. Here we are assuming
the coordinate dependencies gμνðxρÞ; gijðxkÞ and ϕðxμÞ.
Indicating higher-dimensional quantities by hats, one then
finds that

ffiffiffiffiffiffi
−ĝ

p
R̂ ¼ e½ðd−2ÞaþðD−dÞb�ϕ ffiffiffiffiffiffi

−g
p

Rþ � � � : ð6Þ

If we would like to end up in Einstein frame in d
dimensions, then we must choose

a ¼ −
D − d
d − 2

b: ð7Þ

With this choice, one obtains

R̂μν ¼ Rμν þ
D − d
d − 2

bgμν□ϕ − b2
ðD − dÞðD − 2Þ

d − 2
ϕ;μϕ;ν;

ð8Þ

R̂μi ¼ 0; ð9Þ

R̂ij ¼ Rij − be2ðb−aÞϕgij□ϕ: ð10Þ
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In order for ϕ to be canonically normalized, we must
therefore set

b ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d − 2

ðD − dÞðD − 2Þ

s
; ð11Þ

and we will choose the plus sign above (this sign is not
physically significant). At the level of the action, the
dimensional reduction thus yields

1

2

Z
dDx

ffiffiffiffiffiffi
−ĝ

p
R̂

¼ Vol
2

Z
ddx

ffiffiffiffiffiffi
−g

p �
R −∇μϕ∇μϕþ e−2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D−2

ðD−dÞðd−2Þ
p

ϕR̄

�
;

ð12Þ

where Vol is the volume of the unit-radius internal space
and R̄ the integral of its curvature scalar. The last term
is a potential for ϕ (further contributions typically arise
from the dimensional reduction of other terms in the
D-dimensional theory). In order for this term to make
sense in d dimensions, one usually takes the internal metric
gij to be real valued. If that is the case, then we can see
from (5) that we get an extra contribution to the LSKSW

sum Σ of ðD − dÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d−2
ðD−dÞðD−2Þ

q
jImðϕÞj. Note that it is the

imaginary part, and not the argument, of the scalar ϕ that
contributes to Σ. This comes from the normalization of the
scalar field.
In order to see how the allowability criterion is affected,

one has to make assumptions about the metric gμν. If the
lower-dimensional metric is Euclidean, then we get a total
contribution of

Σ ¼
"
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − d

ðD − 2Þðd − 2Þ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − dÞðd − 2Þ

D − 2

r #
2jImðϕÞj:

ð13Þ

For cases in which the higher-dimensional theory must
satisfy the LSKSW bound Σ < π, we thus find a restriction
on how large the imaginary part of ϕ can be. For instance, if
we compactify from D down to four dimensions, we find

6
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
D − 4

D − 2

r
jImðϕÞj < π; or

jImðϕÞj <
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 4

r
π

6
ffiffiffi
2

p ≈
π

10
: ð14Þ

We can see that the imaginary part of ϕ is required to be
quite small, but crucially it may be nonzero. This extends
the LSKSW criterion in the lower-dimensional theory.

If the lower-dimensional metric gμν is Lorentzian, then
the contributions from the time-time and a spatial-spatial
components will cancel, leaving

Σ ¼ π þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − dÞðd − 2Þ

D − 2

r
jImðϕÞj: ð15Þ

Then ϕ must be real already in order for the metric to sit at
the boundary of the allowed domain.

III. CONFORMAL TRANSFORMATIONS

Another situation of interest arises when quantum
corrections to the Einstein-Hilbert action are present.
These arise generically, and take the form of terms that
involve higher powers of the Riemann curvature tensor. In
quantizing (super)gravity theories, these terms arise as
counterterms. In string theory, they arise due to the finite
length of the string, as α0 corrections. Note that the LSKSW
criterion is derived by considering only the matter part of
the action, and not the purely gravitational part. Here we
will assume that appropriate integration contours for the
gravitational part have been chosen, such that it is con-
vergent. In specific cases, such contours can be explicitly
found, see e.g., [9], but the general definition of integration
contours for gravity remains an outstanding issue.
Let us then consider the example of a gravity theory

augmented by higher curvature corrections, for simplicity
involving only the Ricci scalar R̂,

S ¼ 1

2

Z
dDx

ffiffiffiffiffiffi
−ĝ

p
fðR̂Þ; ð16Þ

where f is a function that we may think of as a Taylor
series, f ¼ P

m∈N fmR̂
m. The terms R̂m with m ≥ 2 effec-

tively introduce a new scalar degree of freedom [15]. This is
most easily seen by performing a conformal transformation
on the metric,

ĝμν ≡ e
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðD−1ÞðD−2Þ
p ϕ

gμν; ð17Þ
under which

ffiffiffiffiffiffi
−ĝ

p
¼ e

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1ÞðD−2Þ

p ϕ ffiffiffiffiffiffi
−g

p
;

R̂ ¼ e
− 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðD−1ÞðD−2Þ
p ϕ

"
R −∇μϕ∇μϕ − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

D − 2

r
□ϕ

#
:

ð18Þ
The specific numerical coefficient in (17) is again chosen
such that the scalar field is canonically normalized. The
trick now is to rewrite the action as

S ¼ 1

2

Z
dDx

ffiffiffiffiffiffi
−ĝ

p
½f;R̂R̂ −U� ð19Þ
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with U ¼ ðf;R̂R̂ − fÞ. Then one finds

S ¼ 1

2

Z
dDx

ffiffiffiffiffiffi
−g

p �
f;R̂e

ffiffiffiffiffi
D−2
D−1

p
ϕ

�
R −∇μϕ∇μϕ

− 2

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

D − 2

r
□ϕ

�
− e

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1ÞðD−2Þ

p ϕ
U

�
: ð20Þ

In order to end up in Einstein frame we should now link the
scalar to the derivative of the action, according to

e
ffiffiffiffiffi
D−2
D−1

p
ϕ ¼ f;R̂: ð21Þ

Here we see that it is the R̂m terms with m ≥ 2 that give
rise to the scalar mode, as they lead to a nontrivial
derivative f;R̂. The identification above has the conse-
quence that the□ϕ term in (20) turns into a total derivative
and can be dropped. The potential is then given by

VðϕÞ ¼ 1

2
e

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1ÞðD−2Þ

p ϕðf;R̂R̂ − fÞ; ð22Þ

where the inverse transformation R̂ðϕÞ is implicit.
How complex can the scalar be? Again, we must study

this case by case, making assumptions about the metric.
If the rescaled metric is Euclidean, then the sum over
arguments is

Σ¼DjArge
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðD−1ÞðD−2Þ
p ϕj¼ 2DffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD−1ÞðD−2Þp jImðϕÞj: ð23Þ

If we impose the LSKSW bound and require Σ < π, then
we obtain the bound

jImðϕÞj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 1ÞðD − 2Þp

2D
π ≈

π

3
; ð24Þ

where the (crude) approximation above assumes the stan-
dard range of interest, 4 ≤ D ≤ 11. Once again note that it
is the imaginary part of the scalar, rather than its argument,
that is bounded. This can thus be a significant restriction
on solutions.
We will now look at specific examples to illustrate

these considerations. The no-boundary proposal provides
an ideal test bed for this.

IV. COMPLEX SCALARS
IN THE NO-BOUNDARY PROPOSAL

The no-boundary proposal [16,17] provides a context
in which the scalar field is generically required to be
complex valued. This is because, if we think in analogy
with transition amplitudes, there is no actual “in” state, only
an “out” state. On the final boundary, the fields must take
real values, since these are the observable values of the
fields. But on the inside of the no-boundary solution, both

the metric and the scalar are typically required to take
complex values, in order for the solution to be regular.
We will illustrate this by estimating how large the imagi-
nary part of the scalar typically has to be, generalizing a
calculation of Lyons who considered a potential consisting
of a mass term [18] (see also [19] for closely related work).
Here we will extend this analysis to an arbitrary inflationary
potential. As we will see, our enlarged allowability criterion
nevertheless leads to a constraint on inflationary potentials.
For a detailed discussion of how to define the no-boundary
wave function in the presence of a scalar field, we refer the
reader to [20].
We will assume that the lower-dimensional theory

resides in d ¼ 4 dimensions. Further, we will assume that
it contains a scalar field with a positive potential VðϕÞ.
Such a model can arise for example from compactification
of a higher-dimensional model including higher derivative
α0 corrections, and flux terms [21,22]. Assuming spatial
isotropy and homogeneity, the equations of motion and
constraint are given by

0 ¼ ϕ00 þ 3
a0

a
ϕ0 − V;ϕ; ð25Þ

0 ¼ 3a00 þ aðV þ ϕ02Þ; ð26Þ

0 ¼ 3a02 − 3þ a2
�
V −

1

2
ϕ02

�
; ð27Þ

where the scale factor is denoted aðτÞ, with τ ¼ it Euclidean
time and primes denoting derivatives with respect to τ. The
main feature of a no-boundary solution is that it remains
regular as the scale factor vanishes, a locus often referred to
as the “South Pole” of the solution. Shifting the origin of
time such that aðτ ¼ 0Þ ¼ 0, we can expand the equations of
motion around the origin to find

aðτÞ ¼ τ −
V
18

τ3 þ 8V2 − 27V2
;ϕ

8640
τ5 þOðτ7Þ; ð28Þ

ϕðτÞ ¼ ϕSP þ
V;ϕ

8
τ2 þ 2VV;ϕ þ 3V;ϕV;ϕϕ

576
τ4 þOðτ6Þ;

ð29Þ

where all quantities related to the potential are evaluated at
the South Pole value ϕSP. Our goal will be to estimate ϕSP,
which is the only parameter in the solution.
An inflationary no-boundary solution has recognizable

characteristics [17,23]. Figure 1 shows a numerical exam-
ple of such a solution. The graphs show the imaginary
parts of the scale factor a (left panel) and the scalar field ϕ
(right panel) in the complex time plane, where the dark
lines indicate the zero imaginary part, i.e. real field values.
The horizontal direction denotes Euclidean time, and the
vertical direction Lorentzian time. Although the South Pole
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value ϕSP can be complex, a no-boundary solution is only
physical if it reaches real field values a1;ϕ1 at a late time.
As the figure indicates, the scale factor is approximately
real along a line segment emanating in the Euclidean
direction from the origin, and then along a vertical line
segment extending to late Lorentzian values. Meanwhile,
the scalar field asymptotically approaches real field values
along the same Lorentzian time direction. We can use
these observations to determine ϕSP. We will assume
jImðϕÞj ≪ 1, an assumption that we will see is justified.
Note moreover that the metric is Euclidean near the South
Pole, and that thus the main contribution to the allowability
function Σ comes from the scalar field. As the graphs
already indicate—see the right panel in Fig. 2—the scalar
field takes its largest imaginary part at the South Pole, so it
is here that we can determine whether a no-boundary
solution is allowable or not. Away from the South Pole,
suitable complex time paths (suitable in the sense that they

keep Σ small) can be found using the methods presented
in [11]; these paths tend to be close to the Euclidean-
followed-by-Lorentzian contour used to produce Fig. 2.
The solution for the metric along the Euclidean axis is

rather simple, and corresponds to half of a 4-sphere,

aðτÞ ≈
ffiffiffiffi
3

V

r
sin

� ffiffiffiffi
V
3

r
τ

�
; ð30Þ

where V ¼ VðϕSPÞ is approximately real. The equator of

the sphere is reached at τRmax ¼
ffiffiffi
3
V

q
π
2
. Here we denote real

and imaginary parts by R, I superscripts respectively.
Meanwhile, the scalar field is roughly constant along the
Euclidean axis, reaching the value [cf. (29)]

ϕðτmaxÞ ≈ ϕSP þ
3π2

32

V;ϕ

V
: ð31Þ
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FIG. 1. Imaginary field values for a (left) and ϕ (right) respectively plotted over a region of the complexified time plane (Euclidean
time is in the horizontal direction, Lorentzian time vertical). Dark lines correspond to zero imaginary part, i.e. to the locus of real field
values. For this example, the potential was chosen to be of the form VðϕÞ ¼ 1

100
− e−ϕ. The initial condition is

ϕSP ¼ 8.0700 − 0.050189i, and the solution reaches the real values a1 ¼ 170;ϕ1 ¼ 8 at “time” τ ¼ 27.642þ 52.093i.

FIG. 2. Field evolutions for the example shown in Fig. 1, along a contour running from the South Pole in the Euclidean direction first,
and then in the Lorentzian direction. Note that the imaginary values (in orange) have been magnified to improve visibility. One can thus
see that along this contour the scale factor is real to high precision, while the scalar field is initially complex and then approaches real
values along the Lorentzian direction.
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This equation shows us that the accuracy of our approx-

imations is on the order of OðV;ϕ

V Þ ¼ Oð ffiffiffi
ϵ

p Þ, where ϵ≡ V2
;ϕ

2V2

is the slow-roll parameter. For realistic models, the accu-
racy is thus at the level of a few percent.
At late times, we can approximate the solution with the

slow-roll expressions

aðτÞ ≈ a0e
−i

ffiffi
V
3

p
τþ

V2
;ϕ

12Vτ
2

; ð32Þ

ϕðτÞ ≈ ϕSP þ i
V;ϕffiffiffiffiffiffi
3V

p τ; ð33Þ

a solution that remains valid to our desired level of accuracy
over Oð 1ffiffi

ϵ
p Þ Hubble times. The important observation

is that, if we move in the Lorentzian time direction
(imaginary τ), then the imaginary part of ϕ does not vary
any longer. Thus, if we manage to fix ϕ to take real values,
it will remain real as the universe expands. The scale factor
will remain (approximately) real if we match the late time
solution to the early solution precisely at the equator of
the 4-sphere, which from the Lorentzian point of view will
be the waist of the four-dimensional (quasi-)de Sitter
hyperboloid—this is achieved by taking

a0 ¼ i

ffiffiffiffi
3

V

r
; τ ¼ τRmax þ iτI ¼

ffiffiffiffi
3

V

r
π

2
þ iτI: ð34Þ

The scalar field thus remains real valued if we choose the
imaginary part at the South Pole to be given by [cf. (33)]

ϕI
SP ¼ −

V;ϕffiffiffiffiffiffi
3V

p τRmax ¼ −
V;ϕ

V
π

2
¼ −

ffiffiffiffiffi
2ϵ

p π

2
: ð35Þ

Thus we see that a complex value of the scalar field is
typically required at the South Pole, precisely in order to
reach real field values at late times. The only exception is
provided by an extremum of the potential, where V;ϕ ¼ 0.
Note that it is the imaginary part, rather than the argument,
of the scalar that is constrained. This is because the
scalar field appears as an exponent of the higher-
dimensional metric (5). The imaginary part of ϕSP is
required to be small, of order Oð ffiffiffi

ϵ
p Þ, which justifies an

assumption made earlier.
We may also check the approximate analytical expres-

sions given above by comparing with the numerical example
shown in Figs. 1 and 2. The potential is taken to be

VðϕÞ ¼ 1

100
− e−ϕ: ð36Þ

Then, at ϕ ¼ 8, we expect from (35) a South Pole
value ϕI

SP ¼ − V;ϕ

V
π
2
≈ −0.054, while numerically we found

ϕI
SP ≈ −0.050. This confirms that our approximations are

trustworthy at the level of a few percent, as expected.

We can now also see how this imaginary part compares
with the bound on allowable metrics. First, we will consider
the case where the scalar arose as the volume modulus of a
compactification. As we saw above, near the South Pole the
metric is Euclidean to a good approximation, and only
the scalar ϕ is complex valued. Thus, the d ¼ 4 version of
the bound (14) applies in this case:

jImðϕSPÞj<
ffiffiffiffiffiffiffiffiffiffiffi
D−4

D−2

r
π

6
ffiffiffi
2

p →
jV;ϕj
V

<

ffiffiffiffiffiffiffiffiffiffiffi
D−4

D−2

r
1

3
ffiffiffi
2

p : ð37Þ

Up to a factor smaller than 2, this condition translates into
jV;ϕj
V ⪅ 1

3
. This means that only for four-dimensional poten-

tials that are sufficiently flat do no-boundary solutions exist
which, when seen from the higher-dimensional point
of view, correspond to metrics on which quantum field
theories may be consistently defined.
When the scalar arises from a rescaling of the metric, the

restriction on the potential is similar. The best known model
of this kind is the Starobinsky model [24], with action

S ¼ 1

2

Z
d4x

ffiffiffi
g

p �
Rþ 1

6M2
R2

�
; ð38Þ

where M is a mass scale, which needs to be set to
about 1013 GeV in order to obtain a model compatible
with cosmic microwave background observations. The
conformal transformation (21) corresponds to the identi-

fication
ffiffi
2
3

q
ϕ ¼ lnð1þ R=ð3M2ÞÞ, and leads to the effec-

tive potential

VðϕÞ ¼ 3M2

4

	
1 − e−

ffiffi
2
3

p
ϕ


2
: ð39Þ

Near the South Pole of no-boundary solutions, (24) implies
the bound

jImðϕSPÞj <
ffiffiffi
6

p

8
π →

jV;ϕj
V

<

ffiffiffi
6

p

4
≈ 0.61: ð40Þ

This means that the scalar potential must be flat enough in
order for no-boundary solutions with an allowable complex
scalar to exist. The bound above translates into the require-
ment that ϕ > 1.59, and we illustrate the corresponding
range in Fig. 3. It is clear that this bound is not a strong
restriction on the model—the bound approximately corre-
sponds to the requirement that inflation should last more
than a couple of e-folds.
Another example is the eight-dimensional model studied

in [25] (based on [21,22]), which starts with an action of
the form

S ¼ 1

2

Z
d8x

ffiffiffiffiffiffi
−ĝ

p �
R̂þ αR̂4 −

1

2 · 4!
g2YMF

2
ð4Þ

�
: ð41Þ
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The action thus contains both a higher curvature correction
term and a flux term. Upon rescaling the metric to Einstein
frame according to (17) and (21), one obtains a scalar field
with a potential that is asymptotically flat. This is a higher-
dimensional analog of the Starobinsky model. The theory
is then compactified on a 4-sphere, and this introduces a
second scalar field. That second field is however stabilized
by contributions from the flux term. For an appropriate
range of fluxes, the overall potential is inflationary for the
first scalar field ϕ, with an effective potential

VeffðϕÞ ≈ Vplateau

	
1 − e−

ffiffi
6
7

p
ϕ

4

3: ð42Þ

In fact, this is the attraction of the model: only for a certain
range of fluxes do no-boundary solutions exist, so that the
requirement that such universes come into existence
automatically provides a selection principle on fluxes. In
eight dimensions, the rescaling bound (24) reads

jImðϕSPÞj <
ffiffiffiffiffi
42

p

16
π →

jVeff;ϕj
Veff

<

ffiffiffiffiffi
42

p

8
≈ 0.8: ð43Þ

This is not a particularly strong constraint on the potential,
as it has to be inflationary in any case in order for no-
boundary solutions to exist [17,26]. We illustrate the
allowed range graphically in Fig. 4. Explicit examples of
no-boundary solutions in this potential were discussed in
detail in [25].
From all the examples above, we can see that no-

boundary solutions in sufficiently flat scalar potentials
provide examples of solutions containing allowable com-
plex scalar fields.

V. DISCUSSION

The main observation of this work is that scalar fields
that arise from the metric, be it via compactifications or
rescalings, can take on complex values—with the imaginary
part being bounded—without jeopardizing the convergence
properties of the original theory. This implies that the
allowability criterion of Louko-Sorkin-Kontsevich-Segal-
Witten may be extended somewhat, so as to allow for
complex matter fields under the described circumstances.
It is important to note that this generalized setting still

eliminates known pathological examples. For instance, the
zero action wormholes considered by Witten [5] are repre-
sented by a scale factor whose argument runs from 0 to π.
Thus, even if one adds a complex scalar field (with small
backreaction), somewhere in this spacetime the allowability
bound will be drastically violated, although the specific
location where this occurs may change compared to the case
where only real scalars are allowed. The same argument
applies to proposed quantum bounces, such as those in [6]:
even though they contain a complex scalar field, the metric
still runs through all possible values of its argument. Hence,
the imaginary part of the scalar cannot compensate for the
complexity in the scale factor, and Σ will exceed π some-
where along these interpolating solutions.
An important class of solutions that our extended

allowability criterion admits are no-boundary solutions
with a scalar field. As we have shown, away from an
extremum in the potential, these solutions require the scalar
field to take on complex values. When the scalar has its
origin in the metric, be it via compactification or conformal
transformation, then the theory retains a convergent path
integral as long as the scalar field does not become too
complex. The precise bound depends on the context, but
typically bounds the imaginary part by a factor of order
unity (or slightly less). Given that no-boundary solutions
require the imaginary part of the scalar to be of order
Oð ffiffiffi

ϵ
p Þ, where ϵ is the slow-roll parameter, this poses no

real conflict with the existence of no-boundary solutions,
certainly not with realistic solutions. This shows that
the no-boundary framework is consistent with a higher-
dimensional context—see also [25,27] for related works.
At the moment, the relevance of the results presented

here primarily concerns early universe cosmology. The no-
boundary proposal remains the best understood and most

FIG. 4. The effective scalar potential in the eight-dimensional
model (42). This model features both a rescaling of the metric due
to a higher curvature term, and a flux compactification down to
four dimensions. Once again, the orange part of the potential is
the region in which the potential is flat enough to allow for no-
boundary solutions with an allowable complex scalar field at the
South Pole.

FIG. 3. The effective scalar potential in the Starobinsky model
of inflation. The orange part of the potential is the region in which
the potential is flat enough to allow for no-boundary solutions
with an allowable complex scalar field at the South Pole.
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consistent theory of initial conditions for the universe [28].
However, inflationary no-boundary solutions require a
sufficiently flat potential in order to exist—and as we
saw, this fits well with an extended allowability criterion for
complex scalar fields. However, this leads to some tension
with supergravity and string theories, codified in the de
Sitter swampland conjecture [29].1 This conjecture essen-
tially expresses the expectation that it will be difficult/
impossible to find quasi-de Sitter solutions in classical
supergravity or perturbative string theory. One way forward
is then to consider nonperturbative corrections and loop
effects, yielding, e.g., higher curvature corrections (that this
will succeed is by no means guaranteed—for illustrations
of contrasting views see, e.g., [32–34]). This is precisely
the framework we have analyzed here, where complex
scalars may find a natural home. Moreover, one may then
envisage that allowability will help in selecting solutions.
It would be desirable to go beyond the examples studied

here. We have only analyzed examples of scalar fields
arising from the metric in a rather simple way. There are
many possible generalizations: one might look at more

involved compactifications including shape moduli. Also,
one might study cases where vector fields arise from a
higher-dimensional metric. This is technically more chal-
lenging, as applying the LSKSW bound requires one to
diagonalize the metric, but in principle there is no obstacle
in doing so. Further, it would be interesting to look at more
general curvature corrections involving Ricci and Riemann
tensors on top of the Ricci scalar, and start exploring
noncosmological solutions. These are all attractive avenues
for future work.
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Note added.—I have learned that Oliver Janssen, Joel
Karlsson and Thomas Hertog independently arrived at
similar conclusions regarding complex scalars in the no-
boundary proposal [35].
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