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In modified theories of gravity, the potentials appearing in the Schrödinger-like equations that describe
perturbations of nonrotating black holes are also modified. In this paper we ask: can these modifications be
constrained with high-precision gravitational-wave measurements of the black hole’s quasinormal mode
frequencies? We expand the modifications in a small perturbative parameter regulating the deviation from
the general-relativistic potential, and in powers of M=r. We compute the quasinormal modes of the
modified potential up to quadratic order in the perturbative parameter. Then we use Markov-chain
Monte Carlo methods to recover the coefficients in theM=r expansion in an “optimistic” scenario where we
vary them one at a time, and in a “pessimistic” scenario where we vary them all simultaneously. In both
cases, we find that the bounds on the individual parameters are not robust. Because quasinormal mode
frequencies are related to the behavior of the perturbation potential near the light ring, we propose a
different strategy. Inspired by Wentzel-Kramers-Brillouin (WKB) theory, we demonstrate that the value of
the potential and of its second derivative at the light ring can be robustly constrained. These constraints
allow for a more direct comparison between tests based on black hole spectroscopy and observations of
black hole “shadows” by the Event Horizon Telescope and future instruments.
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I. INTRODUCTION

Since the first ground-breaking direct detection of gravi-
tational waves in 2015 [1], the LIGO-Virgo-KAGRA
Collaboration has reported around one hundred additional
events [2–6]. Most of the detected signals are in agreement
with the predictions of general relativity (GR) for the
merger of two black holes, while some of them involve
neutron stars. Besides the important implications for
astrophysical formation scenarios of black hole popula-
tions, these events allow for unprecedented tests of GR in
the strong field [7–18]. A key prediction from GR is that
rotating astrophysical black holes should be described by

the Kerr metric, and that their perturbative dynamics at late
times (in the so-called “ringdown” regime) should be well
described by a superposition of damped sinusoids called
quasinormal modes (QNMs), with characteristic frequen-
cies determined only by the black hole’s mass and spin. If
GR is the correct theory of gravity, the observed QNM
frequencies should match those predicted in GR for Kerr
black holes [19–21].
The LIGO-Virgo-KAGRA Collaboration has analyzed

the current catalogs, at first focusing on GW150914 and
then using multiple events, with the specific aim to extract
QNMs from the ringdown [14–17]. The observations are
generally consistent with the presence of the quadrupole
(l ¼ m ¼ 2) fundamental mode (with “overtone number”
n ¼ 0). Reference [22] claimed evidence for the presence
of overtones (higher-damping l ¼ m ¼ 2 modes with
n > 0) in GW150914, and Ref. [23] claimed evidence
for the fundamental mode with l ¼ m ¼ 3 in GW190521.
Later work showed that these conclusions depend on the
detector noise, data analysis methods, the choice of starting
time, and nonlinear effects in the theoretical modeling of
ringdown [24–30]. Despite the ongoing debate, the analysis
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of numerical relativity simulations implies that at least
some overtones can in principle be extracted when the
signal-to-noise ratio is large enough [31–40]. Theoretical
modeling and data analysis challenges may be more subtle
than anticipated, but next-generation detectors are expected
to provide reliable, high-precision measurements of more
than one QNM [41–44]. Therefore it is important to
investigate how these measurements will inform us on
possible deviations from GR.
There have been various attempts to introduce deviations

fromGR in the QNM spectrum in a theory-agnostic manner.
These include modifications of the gravitational action
around a GR black hole background [45], the addition of
perturbative corrections at the level of the perturbation
equations [46–48] or at the level of themetric [49,50] (which
then require suitable assumptions for the dynamics), or the
addition of free parameters in the QNM frequencies them-
selves [51–53]. While the physical interpretation of these
“theory-agnostic” constraints requires a specific modified
theory of gravity, it is desirable to have a robust phenom-
enological framework encompassing several theories and
allowing us to solve the “inverse problem”—i.e., to infer
what specific GR modification caused a deviation from GR.
For nonrotating spacetimes, the inverse problem based

on parametrized black hole metrics for axial (odd parity)
perturbations was studied in Ref. [49]. For spinning black
holes, a parametrized spectroscopy framework (“ParSpec”)
was introduced in Ref. [52], and applied to data in
Ref. [53]. The ParSpec framework is based on a Taylor-
series expansion of the QNM frequencies in the dimension-
less Kerr spin parameter. In principle this can be used to
stack multiple events [54], and then compare with the
predictions from specific theories.
In this work we assume that deviations from the QNM

spectrum in GR can be adequately captured by small
modifications of the underlying perturbation equations.
As a proof of principle, we focus on nonrotating or slowly
rotating black holes. We adopt the parametrized formalism
of Refs. [46,47], which systematically connects small
deviations in the perturbation equations with the QNM
spectrum. At lowest order, the idea is to consider small
modifications in the perturbation potential at the linear level
and to write them as a “post-Newtonian” (PN) series
expansion in M=r [46]. Going to quadratic order allows
one to capture (more realistically) possible couplings to
additional fields [47]. While in Refs. [46,47] the focus is on
the fundamental mode, Ref. [48] extended the analysis to
overtones, and studied the inverse problem using a princi-
pal component analysis.
We apply aBayesian analysis to solve the inverse problem:

given a simulated set of QNM frequencies computed within
the parametrized formalism, can we infer the deviation
parameters in the underlying potentials? We are particularly
interested in understandingwhether it is possible to constrain
the more general and realistic case where many deviation
parameters are varied simultaneously. Thereforewe compute

constraints on the individual PN-like expansion parameters
twice: we first vary the parameters one at a time (“optimistic”
case), and then we vary them all simultaneously (“pessi-
mistic” case). In both cases we find that the constraints on the
individual expansion parameters are not robust. The priors
play an important role, especially when all parameters are
varied simultaneously. In particular in the optimistic case the
recovered bounds on the individual parameters can be biased.
However, the complex correlations in the posterior

distributions in the pessimistic case contain valuable
information. It has long been known that QNM frequencies
are related to the behavior of the perturbation potential near
the light ring [55–57]. Therefore we propose a different
strategy: we map the PN series expansion to the value of the
potential and its derivatives at the peak by using insights
from Wentzel-Kramers-Brillouin (WKB) theory. Higher-
order WKB methods relate the QNM frequencies with a
Taylor expansion of the effective perturbation potential in
the vicinity of its maximum, i.e., close to the light ring
[56,58–60]. In fact, the (closely related) eikonal approxi-
mation was used in Refs. [61–64] to build a “post-Kerr”
strategy to parametrized black hole spectroscopy. By
connecting the Taylor (PN-like) expansion to the light-
ring WKB expansion, we demonstrate that the value of the
potential and of its second derivative at the light ring can be
robustly constrained using Bayesian techniques.
Our work suggests that it may be possible to relate black

hole spectroscopy tests to electromagnetic observations of
black hole “shadows” by the Event Horizon Telescope and
future instruments [65–68]. However, the interpretation of
parametrized QNM tests of strong-field gravity will require
very precise measurements and a more solid theoretical
understanding of QNM excitation.
The paper is structured as follows. In Sec. II we

introduce our theoretical framework and Bayesian data
analysis techniques. In Sec. III we apply the method to GR
and non-GR injections. In Sec. IV we discuss our results
and outline possible directions for future work. Throughout
the paper we adopt geometrical units (G ¼ c ¼ 1).

II. METHODOLOGY

In this section we give an overview of the three main
ingredients of our method: the parametrized QNM frame-
work based on a Taylor expansion of the perturbation to
the GR potential (Sec. II A), the WKB expansion of the
modified potential near the light right (Sec. II B), and the
Bayesian inference approach used to address the inverse
problem (Sec. II C).

A. Parametrized QNM framework

The perturbations of the Schwarzschild black hole were
first studied in the odd-parity (axial) case by Regge and
Wheeler [69], and later extended to the even-parity (polar)
case by Zerilli [70]. The more general case of Kerr black
holes was worked out by Teukolsky [71].
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The characteristic frequencies and damping times of the
QNMs for rotating and nonrotating black holes in GR have
long been known (see [72–76] for reviews). More recently,
various authors have considered black hole perturbations
and QNMs in modified theories of gravity. Almost all
works are limited to nonrotating or slowly rotating black
holes [77–83], because finding exact analytical background
solutions for arbitrary rotation is not always possible, and
separating the perturbation equations is even harder (if at all
possible). Theory-specific works using the slow-rotation
approximation for gravitational perturbations include dyna-
mical Chern-Simons gravity [84,85], Einstein-dilaton-
Gauss-Bonnet gravity [86,87], and effective-field-theory
extensions of GR including higher-derivative terms
[88,89], although there are recent attempts at formulating
generalized Teukolsky equations valid for more generic
theories and arbitrary rotation [90,91].
Since Einstein’s theory is very well tested in the weak-

and strong-field regimes, from an experimental point of
view it is reasonable to treat possible modifications as small
deviations from GR. Under this assumption, the para-
metrized framework developed in Refs. [46–48] allows
for a convenient and efficient calculation of QNMs once the
perturbation equations are cast in the form

d2Φ
dr2�

þ ½ω2 − VðrÞ�Φ ¼ 0; ð1Þ

where the radial function Φ comes from a spherical
harmonic decomposition of the perturbed metric or of
some other perturbing field, the tortoise coordinate r� is
defined in terms of the areal radius r and the function f ¼
1 − rH=r through dr� ¼ dr=f, where rH is the location of
the black horizon, and ω is the complex QNM frequency.
For metric perturbations we can write

VðrÞ ¼ VGRðrÞ þ
X∞
k¼0

αðkÞδVkðrÞ; ð2Þ

where VGR is either the Regge-Wheeler or Zerilli potential,
and

δVkðrÞ ¼
fðrÞ
r2H

�
rH
r

�
k
: ð3Þ

If the coefficients αðkÞ are small, the QNMs obtained by the
solution of Eq. (1) can be approximated, up to second order,
by the expression

ω ≈ ω0 þ αðkÞdðkÞ þ
1

2
αðkÞαðsÞeðksÞ; ð4Þ

where ω0 are the GR frequencies, and the coefficients dðkÞ
and eðksÞ were first introduced in [46,47]. We compute
these coefficients via a continued-fraction method, as in

Ref. [48]. Note that in general the αðkÞ can be complex
numbers and might depend on the unperturbed QNM
frequency, and thus also on the overtone number itself.
We are also neglecting a quadratic correction term propor-
tional to the possible QNM dependence of the potential
correction term, which can be found in Ref. [47]. By a
redefinition of the field it is possible to reduce the number
of parameters in the potential [92], but this was only
demonstrated in the linear case, and it might not be possible
in the quadratic case studied in this work (or in the more
general and realistic case of rotating black holes).
The αðkÞ coefficients must be small enough for the

QNM frequencies to be adequately approximated by a
quadratic expansion in αðkÞ. Therefore we impose the
following—necessary but not sufficient—“convergence
criterion” (see [46]):

αðkÞ ≪ αðkÞM ≡ ðkþ 1Þ
�
1þ 1

k

�
k
: ð5Þ

B. Higher-order WKB method

The QNMs in this work are obtained either numerically
(with a continued fraction method) or analytically (through
the parametrized QNM framework). However, it will be
useful to analyze our results by making use of the physical
insight derived from a higher-order WKB approximation.
The WKB approximation is widely used for scattering
problems of the form of Eq. (1), if the potential describes a
barrier with a single maximum and suitable asymptotics.
Within black hole perturbation theory, the leading-order
WKB approximation is known as the Schutz-Will formula
[56], and it was later generalized to higher orders [58–60].
The higher-order WKB approximation can be written,
schematically, as

ω2
n ¼ Vð0Þ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vð2Þ

p �
nþ 1

2

�
þ
X
i

Λ̃iðnÞ; ð6Þ

where n is the overtone number. The correction terms in
the WKB approximation Λ̃iðnÞ are lengthy expressions
[58–60] (for completeness, we list them in Appendix up to
third order). They involve derivatives VðpÞ of the effective
potential with respect to the tortoise coordinate, evaluated
at the maximum of the potential:

VðpÞ ¼ dpV
drp�

����
rMAX

: ð7Þ

Increasing the order of the WKB correction introduces even
higher-order derivatives of the potential. In general the
WKB approximation works rather well for the fundamental
mode, and it becomes less accurate as n increases [93].
In the following we revise the calculation of the

potential derivatives assuming a perturbative expansion
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in the coefficients αðkÞ. The maximum of V with respect to
the tortoise coordinate is found by solving dV=dr� ¼ 0,
and it is located at rMAX ¼ r̄þP

k α
ðkÞδrk, where r̄ is the

location of the peak in GR and

δrk ¼ −
δVk

Vð2Þ
GR

����
r¼r̄

: ð8Þ

At first order in αðkÞ, denoting with a p superscript the pth
derivative with respect to r� evaluated at rMAX, we have

VðpÞ ¼ VðpÞ
GR þ

X∞
k¼0

αðkÞδVðpÞ
k : ð9Þ

In Fig. 1 we plot δVðpÞ
k for the l ¼ 2 axial potential (up to

p ¼ 4) as a function of k for k ≤ 40, while in Table I we list
the value of these derivatives for k ≤ 10.
We can solve for ω and expand the result at first order in

the αðkÞ. This yields the following relation for the frequency
at third order in the WKB approximation:

ω ≈ ωWKB þ
X∞
k¼2

αðkÞ

2ωWKB

�
δVð0Þ

k þ δVð2Þ
k

ω2
WKB − Vð0Þ

GR

2Vð2Þ
GR

þ δΛ̃k
2 þ δΛ̃k

3

�
; ð10Þ

where ωWKB is the frequency evaluated with the WKB
method within GR, and δΛ̃i are the linear expansions in α
of the coefficients Λ̃i. By comparing Eqs. (4) and (10) order
by order, we can map the coefficients dðkÞ to the derivatives

δVðpÞ
k of the displaced potential at the peak.

C. Bayesian approach

Bayesian analysis allows us to relate the observed dataD
with the underlying parameters θ of a model, or to compare
different models with each other. It also allows us to
quantitatively include our prior knowledge or assumptions
into the analysis, and understand how they affect the
posterior through Bayes’ theorem

PðθjDÞ ¼ PðDjθÞPðθÞ
PðDÞ ; ð11Þ

which states that the posterior PðθjDÞ is equal to the prior
PðθÞ times the likelihood PðDjθÞ, divided by the evidence
PðDÞ. The evidence is often unknown or hard to compute,
but it is still possible to compute the posterior via Markov-
chain Monte Carlo (MCMC) techniques. These only
require the knowledge of the prior and likelihood, and
can be used to directly draw samples from the posterior.
Standard MCMC techniques become very computationally
expensive when the number of sampled parameters is large.
The parametrized QNM framework of Eq. (4) is very
beneficial in this sense, because it speeds up the calculation
of the likelihood significantly by avoiding the more
involved (and not necessarily always converging) calcu-
lations that are necessary in other techniques. This results in
quick MCMC sampling, allowing us to study a reasonable
number of parameters.
We assume that our likelihood for the unknown param-

eters θ ¼ ½rH; αðkÞ� is given by

PðDjθÞ ∝ exp

�
−
1

2
h⃗ðθÞC−1h⃗ðθÞ

�
; ð12Þ

where C−1 is the inverse of the covariance matrix C of the
QNM frequencies, and

h⃗ðθÞ ¼ r0H
rH

ω⃗ðαðkÞÞ − D⃗; ð13Þ

where r0H is the location of the horizon as it would be
inferred in GR. We perform this rescaling since we do not
know a priori the correct value for rH.

FIG. 1. Displacement of the derivatives of the effective poten-
tial evaluated at the peak for different values of k for axial
perturbations with l ¼ 2.

TABLE I. Derivatives of the effective potential evaluated at the
peak for axial perturbations with l ¼ 2 and k ≤ 10.

k δVð0Þ
k δVð2Þ

k δVð3Þ
k δVð4Þ

k

0 −0.390 −0.0585 −0.107 0.256
1 −0.238 0.0293 −0.0366 0.0189
2 −0.145 0.0410 −0.0181 −0.0462
3 −0.0884 0.0291 −0.00937 −0.0413
4 −0.0539 0.0141 −0.000874 −0.0202
5 −0.0329 0.00268 0.00741 −0.00407
6 −0.0200 −0.00425 0.0140 0.00245
7 −0.0122 −0.00756 0.0182 0.00154
8 −0.00745 −0.00848 0.0199 −0.00319
9 −0.00454 −0.00804 0.0196 −0.00878
10 −0.00277 −0.00697 0.0181 −0.0134
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The exact form of the correlations depends on the details
of the observed binary black hole system, as well as the
details of the detector. However, by identifying the inverse
of the covariance matrix with the Fisher matrix, it is
possible to use analytic estimates derived in Ref. [21] as
an approximation. For measurements of the fundamental
QNM and of the first overtone (n ¼ 0, 1) the Fisher matrix
we need to estimate is a 4 × 4 matrix. The submatrix that
connects the real and imaginary parts of the frequency for a
fixed value of n can be approximated with the results of
Ref. [21], but the correlations between different n’s (i.e., the
2 × 2 off-diagonal blocks) cannot, and therefore we neglect
them. However, we have analyzed how moderate random
correlations between the fundamental mode and the first
overtone would change the results, and we did not find
substantial qualitative changes. We rescale the Fisher
matrix so that the real part of the n ¼ 0 mode is measured
with a relative error of 1%, which yields a relative error of
4.7% for its imaginary part. Assuming that the n ¼ 1
overtone is excited with a similar amplitude (an assumption
justified by fits to numerical relativity simulations [33])
yields relative errors of 3.4% and 8.2% for the real and
imaginary part of the overtone frequency, respectively.
Ongoing work in the literature suggests that the specific
model used to extract overtones can have an important
impact on interpreting the constraints [29,30], but this
approximate estimate of the Fisher matrix is sufficient for
our purposes.
The location of the black hole horizon rH affects

the QNM spectrum and depends on the underlying theory.
We assume that rH is close to its GR value r0H and that
the uncertainty on rH is relatively small (σrH ¼ 5%), for
example because we have a good estimate of the remnant
black hole’s mass from the inspiral/merger waveform. Then
we multiply the likelihood of Eq. (12) by an additional
factor

PrH ≡ exp

�
−
1

2

�
rH − r0H
σrH

�
2
�
: ð14Þ

This is equivalent to assuming a Gaussian prior for rH
centered around its value r0H in GR.
The priors PðαðkÞÞ cannot be chosen to be arbitrary

because we are using a parametrized QNM framework. For
the perturbative formalism to be valid, we must adopt
bounds consistent with Eq. (5). For concreteness, in our

analysis we consider two different prior realizations: αðkÞP20 ≡
αðkÞM =20 and αðkÞP10 ≡ αðkÞM =10, with k ∈ ½0; 10�. Our choice to
study 11 parameters for αðkÞ guarantees that we can explore
a large parameter space to capture modifications to GR, but
at the same time we can still perform efficient MCMC
sampling. To perform the MCMC analysis we use the
EMCEE sampler [94], which is based on the affine-invariant
ensemble sampler proposed by Goodman and Weare [95].

Since one would not generically expect that very large k
contribute in a dominant way, neglecting higher orders is a
reasonable choice. Throughout this work we assume flat
(uniform) priors within these two different bounds.
Considering different ranges allows us to quantify what
aspects of the analysis are sensitive to the choice of
priors and which are not. By using the continued-fraction
numerical code discussed in Ref. [48], we have checked

that the frequencies generated by taking αðkÞ ¼ �αðkÞP20, with
k ∈ ½0; 10�, are well approximated by the quadratic expan-
sion. However, for certain combinations of random draws

from the larger prior range αðkÞ ¼ �αðkÞP10 the approximation
can become inaccurate. Our results below (based on the
exact injection) show that this only mildly affects our
reconstruction of the perturbative parameters that were used
in the parametrized framework for the inference.

III. RESULTS

Using the techniques of the previous section, we now
study two complementary settings. In the first setting
(Sec. III A) we perform injections assuming that GR is
the correct theory of gravity. In the second setting (Sec. III B)
we assume a hypothetical modification with two nonzero
deviation parameters—a nontrivial, but tractable case.
Within each setting we use the (complex) l ¼ 2, n ¼ 0, 1

QNM frequencies as hypothetical observations, with errors
estimated by the Fisher matrix formalism as described in
Sec. II C. To explore the impact of different priors on the

posteriors, we always use two different prior ranges (αðkÞP20

and αðkÞP10).
Within each of these two settings, we will address the

inverse problem in two steps. We will first compare the
posteriors for the parameters αðkÞ in the optimistic scenario
(where only one parameter varies) against the pessimistic
scenario (where all parameters are varied simultaneously).
Then, from the reconstruction of the potential, we will
evaluate VðpÞ and compare it with the corresponding value

VðpÞ
GR in GR by computing the relative difference

δrelVðpÞ ¼ VðpÞðrH; αðkÞÞ − VðpÞ
GR

VðpÞ
GR

: ð15Þ

A. Results for a GR injection

First we present our results under the assumption that GR
is the correct theory of gravity.
The violin plots in Fig. 2 show the optimistic (left side)

vs pessimistic (right side) posteriors for the Taylor expan-
sion coefficients αðkÞ in Eq. (2). Different colors correspond
to posteriors obtained with the two different (flat) prior
ranges. In the optimistic case, it is possible to constrain
all parameters independently of the chosen prior range.
While the quantitative details of each optimistic bound are
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different and their widths increase with k (as expected),
they are qualitatively the same for all k. The situation is
clearly different in the pessimistic case. Here the posterior
distributions of all αðkÞ have support at the prior boundaries,
and they become broader when the prior range is increased.
Since we allow for more parameters (12 in total: 11 αðkÞ’s
and rH) than observed QNMs (4, i.e., 2 complex frequen-
cies), this is not surprising.
In Fig. 3 we show the results for the WKB deviation

coefficients δrelVðnÞ defined in Eq. (15). Since flat priors for
αðkÞ do not correspond to flat priors for δrelVðnÞ, it is
important to compare the posteriors with the priors. We
want to understand if QNM frequencies contain informa-
tion on the δrelVðnÞ coefficients, or if the inference is prior
dominated (in which case the QNMs would not be
informative). We focus on the pessimistic posteriors, since
the more general (pessimistic) assumption allows us to
draw conservative conclusions. As usual, we show the two
different prior ranges using different colors.
Quite remarkably, the posteriors for δrelVð0Þ are very

robust, and they do not depend on the prior range choice.
The posteriors for δrelVð2Þ and δrelVð3Þ are still more
informative than the priors, but the QNM frequencies do
not provide as much information as they do in the case of
δrelVð0Þ, and the measurement is even less informative in the

case of δrelVð4Þ. This is one of the main results of this paper:
the “change of basis” from the αðkÞ’s to the δrelVðnÞ’s
(variables related to the light ring) is very effective, because
QNMs carry physical information about the potential and
its derivatives at the peak. This is in agreement with the
conclusions of Ref. [48].
Note that the derivation of these results is fully inde-

pendent of the WKB approximation: we never use the
WKB approximation to compute the QNMs, but rather
we use Leaver’s method to compute the injected QNM
frequencies, and the parametrized framework of Eq. (4) to
model their deviations from GR. The full MCMC analysis
can capture correlations between the deviation parameters,
as long as they are small enough to ensure the validity of the
parametrized framework.

B. Results for a non-GR injection

As an example of a possible non-GR injection, we
consider the hypothetical case in which αð2Þ ¼ αð3Þ ¼ 0.2,
while all other αðkÞ’s are set to zero. We compute the QNM
frequency with Leaver’s method, while we use the para-
metrized framework for the MCMC analysis.
In Fig. 4 we report the MCMC results, following the

same notation and conventions as in Fig. 2. The injected
values of αðkÞ are marked by horizontal red lines. The plot

FIG. 2. MCMC results for simulated observations of the Schwarzschild n ¼ 0, 1 QNMs with relative errors described in the main text,
and assuming a Gaussian prior for rH corresponding to 5% at 1σ confidence. In each panel, on the left side we plot the posteriors in the
optimistic case (only one αðkÞ is varied at a time), and on the right side we plot the posteriors in the pessimistic case (all αðkÞ’s are varied
simultaneously). The blue (orange) color corresponds to a prior range of αðkÞP20 (αðkÞP10).

FIG. 3. Same MCMC results as in Fig. 2, but here we sample the relative errors of various derivatives of the effective potential δrelVðnÞ
with respect to the tortoise coordinate evaluated at the maximum. The right side of each violin plot shows the sampling from the prior

distribution of all αðkÞ simultaneously, with colors label the different αðkÞ prior ranges: αðkÞP20 (blue) and α
ðkÞ
P10 (orange). The left side of each

violin plot shows the sampling from the posterior distributions, with colors labeling the prior assumptions. We mark the injections (here
corresponding to a Schwarzschild black hole) by red horizontal lines.
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shows that it is not possible to infer the correct values for
any αðkÞ, except perhaps for k ¼ 2 and (less clearly) for
k ¼ 3. The recovered values for all other αðkÞ’s peak away
from their injected value. Some of the small-k posteriors
have strong support at the smaller prior limit, but they are
well captured by the larger prior limit.
Given that these results are qualitatively very different

from the GR injections, it is quite remarkable that the
WKB-motivated constraints on the potential near the peak
are as robust as before. In Fig. 5 we show that it is indeed
possible to recover the non-GR injections (shown as red
horizontal lines). The posterior of the dominant term
δrelVð0Þ has tight support away from GR, while δrelVð2Þ
is broader and has some overlap with the GR hypothesis.
The higher derivatives for this injection are very close to
their GR value, and the corresponding violin plots are
almost indistinguishable from those of Fig. 3.

C. Theory-specific approach: A simple example

A theory-specific analysis can, in principle, be carried
out in different ways. We could avoid making use of the
parametrized framework and base it on a full MCMC
analysis involving all free parameters of the theory. We
could also, in principle, use the parametrized framework

with the theory-predicted values of αðkÞ, which could
depend on one (or multiple) coupling constants of the
modified theory of gravity of interest. Instead of repeating
a full MCMC analysis, here we show that the posteriors
for δrelVð0Þ in the non-GR example above are already very
informative when used in a “postprocessing” analysis.
Let us assume, for simplicity, that the hypothetical

modified theory predicts two nonzero deviation parameters,
related to the only unknown parameter of the theory ζ as
follows:

αð2ÞðζÞ ¼ αð3ÞðζÞ ¼ ζ: ð16Þ

We use this trivial example just for illustrative purposes, but
no fundamental limitation prevents us from relaxing these
assumptions to allow for more than two nonzero deviation
parameters, or to allow for a more complicated dependence
of these parameters on ζ. In fact, we would find qualita-
tively similar results if we assumed that αð3Þ is suppressed
by a small factor ϵ.
By using Eq. (9) we can find the linear approximation for

the modified potential Vð0ÞðζÞ. The GR potential Vð0Þ is
known, so we can express the posteriors δrelVð0Þ in Fig. 5
(left side of the first violin plot) in terms of Vð0Þ. The

FIG. 4. MCMC results for simulated observations of a modified Schwarzschild n ¼ 0, 1 QNMs with relative errors described in the
main text and assuming a prior for rH corresponding to 5% at 1σ confidence. The injected values (shown as horizontal red lines) are
αð2Þ ¼ αð3Þ ¼ 0.2, with all other values of αðkÞ set equal to zero. From left to right we show the potential coefficients αðkÞ. In each panel,
on the left side we plot the posteriors in the optimistic case (only one αðkÞ is varied at a time), and on the right side we plot the posteriors

in the pessimistic case (all αðkÞ’s are varied simultaneously). The blue (orange) color corresponds to a prior range of αðkÞP20 (αðkÞP10).

FIG. 5. Same MCMC results as in Fig. 4, but here we sample the relative errors of various derivatives of the effective potential δrelVðnÞ
with respect to the tortoise coordinate evaluated at the maximum. The right side of each violin plot shows the sampling from the prior

distribution of all αðkÞ simultaneously. The colors label the different αðkÞ prior ranges, αðkÞP20 (blue) and α
ðkÞ
P10 (orange). The left side of each

violin plot shows the sampling from the posterior distributions, with colors labeling the prior assumptions. We mark the injections by
horizontal red lines.
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posteriors are well approximated by a Gaussian, whose
mean μV and width σV we can fit numerically. Then we can
insert the value of μV fitted to Vð0Þ into Eq. (9), and invert it
to find the most likely value of ζ, which we will denote by
μζ. We can also estimate the 1σ and 2σ errors by repeating
the inversion for μV � σV and μV � 2σV . In Fig. 6 we show
the results of this procedure. The injected value of the
coupling parameter ζ is well within the 1σ constraint. The
values of μζ and σζ can also be used to define the theory-
specific bounds on αð2ÞðζÞ and αð3ÞðζÞ in a similar way.
If we do not know the precise form of αð2ÞðζÞ; αð3ÞðζÞ

(i.e., in a theory-agnostic approach), we could treat them as

independent variables in a postprocessing analysis. From
Eq. (9) we can find αð3Þ as a function of αð2Þ and Vð0Þ, with
the results shown in Fig. 7. Once again, the injected value is
within the 1σ confidence levels.
Finally, we could repeat the analysis by using the

posteriors for Vð2Þ, which would in principle break the
two-parameter degeneracy of the agnostic case. In practice,
we find that the additional constraint is almost parallel
to the constraint from Vð0Þ and that it only excludes large
values of the deviation parameters, for which the approx-
imations do not hold anyway. These conclusions depend
on the specific combination αð2Þ; αð3Þ that we have chosen
in our example, and they may be qualitatively different for
other combinations of the deviation parameters.

IV. DISCUSSION AND CONCLUSIONS

In general, one may hope that modifications to the
perturbation potential proportional to αðkÞðrH=rÞk would
yield smaller corrections to the QNM spectrum as k grows,
as long as the coefficients αðkÞ are comparable in order of
magnitude. In fact, while this trend is present, the con-
tributions from terms with k ≥ 2 decay quite slowly. This
lack of a strong hierarchy implies that, in general, it will be
very difficult to recover the individual coefficients αðkÞ,
at least in the absence of an underlying theory-specific
ansatz. This was, indeed, the conclusion of previous work
on parametrized ringdown using a principal component
analysis [48].
Herewe confirm this conclusion by exploring two specific

cases: a GRQNM injection, and a non-GR injection. In both
cases we look at two extreme scenarios: in the optimistic
scenario we vary a single coefficient αðkÞ at a time, and in the
pessimistic scenariowe let multiple αðkÞ’s (with k ¼ 0;…10)
vary simultaneously. In both scenarios we find that it is
difficult to constrain the individual αðkÞ’s, as expected. We
study a non-GR injection in which we assume that only two
of the αðkÞ’s are nonzero. In the optimistic scenario we find
that the posteriors of all of the αðkÞ’s disfavor GR, but only
one of them is close to the correct injected value. Therefore it
is difficult to identify which nonzero αðkÞ’s are present in the
data without having more precise data, or additional (theory-
specific) criteria to interpret the posteriors.
The main conclusion of this work is that the problem can

be bypassed by exploiting the well-known relation between
QNM frequencies and the properties of the perturbation
potential at the light ring. This relation suggests that the
complex correlations present when many αðkÞ’s are varied
simultaneously can be understood by relating the αðkÞ’s to
the value of the potential and its derivatives at the light ring.
It is possible to obtain very robust constraints on the
potential and its derivatives at the light ring, even in the
pessimistic case in which many αðkÞ’s are varied simulta-
neously. More precisely, a measurement of the fundamental

FIG. 6. Postprocessing analysis using the posterior of Vð0Þ.
Blue areas show the 1σ and 2σ confidence levels of the theory-
agnostic analysis, while the orange areas label the corresponding
bounds on the theory-specific parameter ζ. The black dashed line
indicates the linear scaling predicted by Eq. (9). The black dot
shows the maximum of the posterior, and the cross is the
injected value.

FIG. 7. Postprocessing analysis using the posterior of Vð0Þ.
Blue areas show the 1σ and 2σ confidence levels on the functional
relation αð3Þðαð2Þ; Vð0ÞÞ. The black dashed line indicates the linear
relation assumed in the hypothetical theory. The black dot is the
intersection of the maximum of the posterior with the theory-
specific relation, while the cross is the injected value.
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mode and of the first overtone can constrain quite precisely
the value of the potential and of its second derivative
evaluated at the peak. As demonstrated, this conclusion is
not limited to GR injections, but it is also valid for non-GR
injections.
We analyze, as a proof of principle, a hypothetical theory

characterized by a single parameter ζ, such that all non-zero
deviations have the form αðkÞðζÞ. Through a simple post-
processing analysis based on the inferred posterior for the
value of the potential at the maximum, and assuming that
only two of the αðkÞ’s are nonzero, we can recover the
injected parameter ζ and estimate confidence intervals for
each of the αðkÞ’s. This demonstrates that MCMC con-
straints on the value of the potential at the maximum can be
used to find theory-specific properties, without rerunning a
full MCMC analysis.
The intimate link between QNM frequencies and the

potential at the light ring implies that there is a close
relation between strong-gravity tests using black hole
spectroscopy and the black hole shadow observations by
the Event Horizon Telescope collaboration [65,66,68]. In
analogy with QNMs, the strong-field character of the
shadow (which depends on the geometry near the light
ring) also implies that the individual parameters in a PN
expansion of the metric are hard to constrain, especially
when many of them are allowed to vary simultaneously
[67]. Black hole shadow measurements can still constrain
linear combinations of the metric and its derivative at the
light ring [67], in a way which is closely reminiscent of the
WKB results reported in this work.
In closing, it is important to discuss some caveats and

possible future extensions of this work. The parametri-
zed framework [46,47] is only valid for nonrotating or
slowly rotating black holes, but current gravitational-wave
observations involve rotating black holes. More theory-
dependent studies of QNMs for rotating black holes in
modified theories of gravity are necessary to overcome this
nontrivial obstacle, and to understand how a generalized
parametrized framework can effectively be implemented
and constrained. The increase in complexity resulting from
the (generally nonseparable) perturbation equations in
modified gravity implies that theory-specific tests may
be particularly valuable, because they typically involve a
small number of free parameters.
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APPENDIX: DETAILS FOR HIGHER
ORDER WKB METHOD

In this Appendix we report some of the lengthy WKB
expressions used in the main text. For convenience, we
report again the WKB formula (6), up to third order:

ω2
n ≃ Vð0Þ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vð2Þ

p
αn þ Λ̃2ðnÞ þ Λ̃3ðnÞ: ðA1Þ

Here n is the QNM overtone number, αn ¼ nþ 1=2, and
the higher-order corrections read
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[39] Xisco Jiménez Forteza, Swetha Bhagwat, Paolo Pani, and
Valeria Ferrari, Spectroscopy of binary black hole ringdown
using overtones and angular modes, Phys. Rev. D 102,
044053 (2020).

[40] Lorena Magaña Zertuche et al., High precision ringdown
modeling: Multimode fits and BMS frames, Phys. Rev. D
105, 104015 (2022).

[41] Emanuele Berti, Alberto Sesana, Enrico Barausse, Vitor
Cardoso, and Krzysztof Belczynski, Spectroscopy of Kerr
Black Holes with Earth- and Space-Based Interferometers,
Phys. Rev. Lett. 117, 101102 (2016).

[42] Miriam Cabero, Julian Westerweck, Collin D. Capano,
Sumit Kumar, Alex B. Nielsen, and Badri Krishnan, Black
hole spectroscopy in the next decade, Phys. Rev. D 101,
064044 (2020).

[43] Iara Ota and Cecilia Chirenti, Black hole spectroscopy
horizons for current and future gravitational wave detectors,
Phys. Rev. D 105, 044015 (2022).

[44] Swetha Bhagwat, Costantino Pacilio, Enrico Barausse, and
Paolo Pani, Landscape of massive black-hole spectroscopy
with LISA and the Einstein Telescope, Phys. Rev. D 105,
124063 (2022).

[45] Oliver J. Tattersall, Pedro G. Ferreira, and Macarena Lagos,
General theories of linear gravitational perturbations to a
schwarzschild black hole, Phys. Rev. D 97, 044021 (2018).

[46] Vitor Cardoso, Masashi Kimura, Andrea Maselli, Emanuele
Berti, Caio F. B. Macedo, and RyanMcManus, Parametrized
black hole quasinormal ringdown: Decoupled equations for
nonrotating black holes, Phys. Rev. D 99, 104077 (2019).

[47] Ryan McManus, Emanuele Berti, Caio F. B. Macedo,
Masashi Kimura, Andrea Maselli, and Vitor Cardoso,
Parametrized black hole quasinormal ringdown. II. Coupled
equations and quadratic corrections for nonrotating black
holes, Phys. Rev. D 100, 044061 (2019).

[48] Sebastian H. Völkel, Nicola Franchini, and Enrico Barausse,
Theory-agnostic reconstruction of potential and couplings
from quasinormal modes, Phys. Rev. D 105, 084046 (2022).

[49] Sebastian H. Völkel and Enrico Barausse, Bayesian metric
reconstruction with gravitational wave observations, Phys.
Rev. D 102, 084025 (2020).

[50] R. A. Konoplya and A. Zhidenko, First few overtones probe
the event horizon geometry, arXiv:2209.00679.

[51] J. Meidam, M. Agathos, C. Van Den Broeck, J. Veitch, and
B. S. Sathyaprakash, Testing the no-hair theorem with black
hole ringdowns using TIGER, Phys. Rev. D 90, 064009
(2014).

[52] Andrea Maselli, Paolo Pani, Leonardo Gualtieri, and
Emanuele Berti, Parametrized ringdown spin expansion
coefficients: A data-analysis framework for black-hole
spectroscopy with multiple events, Phys. Rev. D 101,
024043 (2020).

[53] Gregorio Carullo, Enhancing modified gravity detection
from gravitational-wave observations using the parame-
trized ringdown spin expansion coeffcients formalism,
Phys. Rev. D 103, 124043 (2021).

[54] Huan Yang, Kent Yagi, Jonathan Blackman, Luis Lehner,
Vasileios Paschalidis, Frans Pretorius, and Nicolás Yunes,
Black Hole Spectroscopy with Coherent Mode Stacking,
Phys. Rev. Lett. 118, 161101 (2017).

[55] William H. Press, Long wave trains of gravitational waves
from a vibrating black hole, Astrophys. J. Lett. 170, L105
(1971).

[56] Bernard F. Schutz and Clifford M. Will, Black hole normal
modes: A semianalytical approach, Astrophys. J. Lett. 291,
L33 (1985).

[57] Vitor Cardoso, Alex S. Miranda, Emanuele Berti, Helvi
Witek, and Vilson T. Zanchin, Geodesic stability, Lyapunov
exponents and quasinormal modes, Phys. Rev. D 79,
064016 (2009).

[58] Sai Iyer and Clifford M. Will, Black hole normal modes: A
WKB approach. 1. Foundations and application of a higher
order WKB analysis of potential barrier scattering, Phys.
Rev. D 35, 3621 (1987).

[59] R. A. Konoplya, Quasinormal behavior of the d-dimensional
Schwarzschild black hole and higher order WKB approach,
Phys. Rev. D 68, 024018 (2003).

[60] Jerzy Matyjasek and Michał Opala, Quasinormal modes of
black holes. The improved semianalytic approach, Phys.
Rev. D 96, 024011 (2017).

[61] Kostas Glampedakis, George Pappas, Hector O. Silva, and
Emanuele Berti, Post-Kerr black hole spectroscopy, Phys.
Rev. D 96, 064054 (2017).

[62] Kostas Glampedakis and Hector O. Silva, Eikonal quasi-
normal modes of black holes beyond general relativity,
Phys. Rev. D 100, 044040 (2019).

[63] Hector O. Silva and Kostas Glampedakis, Eikonal quasi-
normal modes of black holes beyond general relativity. II.
Generalized scalar-tensor perturbations, Phys. Rev. D 101,
044051 (2020).

[64] Albert Bryant, Hector O. Silva, Kent Yagi, and Kostas
Glampedakis, Eikonal quasinormal modes of black holes
beyond general relativity. III. Scalar Gauss-Bonnet gravity,
Phys. Rev. D 104, 044051 (2021).

[65] Kazunori Akiyama et al. (Event Horizon Telescope Col-
laboration), First M87 event horizon telescope results. I. The
shadow of the supermassive black hole, Astrophys. J. Lett.
875, L1 (2019).

[66] Kazunori Akiyama et al. (Event Horizon Telescope Col-
laboration), First M87 event horizon telescope results. VI.
The shadow and mass of the central black hole, Astrophys.
J. Lett. 875, L6 (2019).

CONSTRAINING MODIFICATIONS OF BLACK HOLE … PHYS. REV. D 106, 124036 (2022)

124036-11

https://doi.org/10.1103/PhysRevD.101.104005
https://doi.org/10.1103/PhysRevD.101.044033
https://doi.org/10.1103/PhysRevD.101.044033
https://doi.org/10.1103/PhysRevD.102.024023
https://doi.org/10.1103/PhysRevD.102.024023
https://doi.org/10.1103/PhysRevD.102.024027
https://doi.org/10.1103/PhysRevD.103.024041
https://doi.org/10.1103/PhysRevD.103.024041
https://doi.org/10.1103/PhysRevD.102.044053
https://doi.org/10.1103/PhysRevD.102.044053
https://doi.org/10.1103/PhysRevD.105.104015
https://doi.org/10.1103/PhysRevD.105.104015
https://doi.org/10.1103/PhysRevLett.117.101102
https://doi.org/10.1103/PhysRevD.101.064044
https://doi.org/10.1103/PhysRevD.101.064044
https://doi.org/10.1103/PhysRevD.105.044015
https://doi.org/10.1103/PhysRevD.105.124063
https://doi.org/10.1103/PhysRevD.105.124063
https://doi.org/10.1103/PhysRevD.97.044021
https://doi.org/10.1103/PhysRevD.99.104077
https://doi.org/10.1103/PhysRevD.100.044061
https://doi.org/10.1103/PhysRevD.105.084046
https://doi.org/10.1103/PhysRevD.102.084025
https://doi.org/10.1103/PhysRevD.102.084025
https://arXiv.org/abs/2209.00679
https://doi.org/10.1103/PhysRevD.90.064009
https://doi.org/10.1103/PhysRevD.90.064009
https://doi.org/10.1103/PhysRevD.101.024043
https://doi.org/10.1103/PhysRevD.101.024043
https://doi.org/10.1103/PhysRevD.103.124043
https://doi.org/10.1103/PhysRevLett.118.161101
https://doi.org/10.1086/180849
https://doi.org/10.1086/180849
https://doi.org/10.1086/184453
https://doi.org/10.1086/184453
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.35.3621
https://doi.org/10.1103/PhysRevD.35.3621
https://doi.org/10.1103/PhysRevD.68.024018
https://doi.org/10.1103/PhysRevD.96.024011
https://doi.org/10.1103/PhysRevD.96.024011
https://doi.org/10.1103/PhysRevD.96.064054
https://doi.org/10.1103/PhysRevD.96.064054
https://doi.org/10.1103/PhysRevD.100.044040
https://doi.org/10.1103/PhysRevD.101.044051
https://doi.org/10.1103/PhysRevD.101.044051
https://doi.org/10.1103/PhysRevD.104.044051
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141


[67] Sebastian H. Völkel, Enrico Barausse, Nicola Franchini, and
Avery E. Broderick, EHT tests of the strong-field regime of
general relativity, Classical Quantum Gravity 38, 21LT01
(2021).

[68] Prashant Kocherlakota et al. (Event Horizon Telescope
Collaboration), Constraints on black-hole charges with
the 2017 EHT observations of M87*, Phys. Rev. D 103,
104047 (2021).

[69] Tullio Regge and John A. Wheeler, Stability of a Schwarzs-
child singularity, Phys. Rev. 108, 1063 (1957).

[70] Frank J. Zerilli, Effective Potential for Even Parity Regge-
Wheeler Gravitational Perturbation Equations, Phys. Rev.
Lett. 24, 737 (1970).

[71] Saul A. Teukolsky, Perturbations of a rotating black hole. 1.
Fundamental equations for gravitational electromagnetic
and neutrino field perturbations, Astrophys. J. 185, 635
(1973).

[72] Kostas D. Kokkotas and Bernd G. Schmidt, Quasinormal
modes of stars and black holes, Living Rev. Relativity 2, 2
(1999).

[73] Hans-Peter Nollert, Topical review: Quasinormal modes:
The characteristic ‘sound’ of black holes and neutron stars,
Classical Quantum Gravity 16, R159 (1999).

[74] Emanuele Berti, Vitor Cardoso, and Andrei O. Starinets,
Quasinormal modes of black holes and black branes,
Classical Quantum Gravity 26, 163001 (2009).

[75] R. A. Konoplya and A. Zhidenko, Quasinormal modes of
black holes: From astrophysics to string theory, Rev. Mod.
Phys. 83, 793 (2011).

[76] Paolo Pani, Advanced methods in black-hole perturbation
theory, Int. J. Mod. Phys. A 28, 1340018 (2013).

[77] Vitor Cardoso and Leonardo Gualtieri, Perturbations of
Schwarzschild black holes in dynamical Chern-Simons
modified gravity, Phys. Rev. D 80, 064008 (2009); Erratum,
Phys. Rev. D 81, 089903 (2010).

[78] C. Molina, Paolo Pani, Vitor Cardoso, and Leonardo
Gualtieri, Gravitational signature of Schwarzschild black
holes in dynamical Chern-Simons gravity, Phys. Rev. D 81,
124021 (2010).

[79] Jose Luis Blázquez-Salcedo, Caio F. B. Macedo, Vitor
Cardoso, Valeria Ferrari, Leonardo Gualtieri, Fech Scen
Khoo, Jutta Kunz, and Paolo Pani, Perturbed black holes in
Einstein-dilaton-Gauss-Bonnet gravity: Stability, ringdown,
and gravitational-wave emission, Phys. Rev. D 94, 104024
(2016).

[80] Jose Luis Blázquez-Salcedo, Fech Scen Khoo, and Jutta
Kunz, Quasinormal modes of Einstein-Gauss-Bonnet-dila-
ton black holes, Phys. Rev. D 96, 064008 (2017).

[81] Jose Luis Blázquez-Salcedo, Daniela D. Doneva, Sarah
Kahlen, Jutta Kunz, Petya Nedkova, and Stoytcho S.
Yazadjiev, Axial perturbations of the scalarized Einstein-
Gauss-Bonnet black holes, Phys. Rev. D 101, 104006
(2020).

[82] Jose Luis Blázquez-Salcedo, Daniela D. Doneva, Sarah
Kahlen, Jutta Kunz, Petya Nedkova, and Stoytcho

S. Yazadjiev, Polar quasinormal modes of the scalarized
Einstein-Gauss-Bonnet black holes, Phys. Rev. D 102,
024086 (2020).

[83] Nicola Franchini, Mario Herrero-Valea, and Enrico
Barausse, Relation between general relativity and a class
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