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It is well documented that some brain regions, such as association cortices, caudate, and hippocampus, are particularly prone to age-
related atrophy, but it has been hypothesized that there are individual differences in atrophy profiles. Here, we document heterogeneity
in regional-atrophy patterns using latent-profile analysis of 1,482 longitudinal magnetic resonance imaging observations. The results
supported a 2-group solution reflecting differences in atrophy rates in cortical regions and hippocampus along with comparable caudate
atrophy. The higher-atrophy group had the most marked atrophy in hippocampus and also lower episodic memory, and their normal
caudate atrophy rate was accompanied by larger baseline volumes. Our findings support and refine models of heterogeneity in brain
aging and suggest distinct mechanisms of atrophy in striatal versus hippocampal-cortical systems.
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Introduction
In the era of precision medicine, it has been argued that a “one
size fits all” approach to cognitive aging is inadequate (Ryan
et al. 2019). The same is likely true for brain aging, as some
older individuals display relative maintenance of brain structure
and function, whereas others show marked age-related changes

(Nyberg et al. 2012; Patel et al. 2022). It is well documented that
some brain regions are more prone than others to show atrophy,
notably caudate, hippocampus, association cortices (e.g. Raz et al.
2005), but the differences in mean change across regions does not
preclude individual differences in profiles of change. Specifically,
it has been proposed that some individuals display age-related

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/9/5075/6748491 by M

PI H
um

an D
evelopm

ent user on 03 M
ay 2023

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0478-6165
https://orcid.org/0000-0003-1918-1123


5076 | Cerebral Cortex, 2023, Vol. 33, No. 9

changes in frontal-striatal regions, including the caudate, whereas
others show more pronounced changes in hippocampus and in
posterior cortical regions, including the precuneus (Buckner 2004).
This view is indirectly supported by findings that the caudate and
hippocampus form different developmental patterns in relation
to cortical maturation (Walhovd et al. 2015) and by suggestions
that the hippocampus and caudate have an antagonistic func-
tional and structural relationship (Poldrack and Packard 2003;
Sodums and Bohbot 2020).

More direct evidence for heterogeneity comes from studies
exploring different “dimensions” of brain aging (related terms
include “modes,” “patterns,” “factors,” and "facets"). A factor anal-
ysis of data from 317 participants with amnestic mild cognitive
impairment (aMCI) in the “Alzheimer’s Disease Neuroimaging
Initiative” (ADNI) provided support for multiple change factors,
including prefrontal and medial temporal cortex (MTC), and atro-
phy in these factors was considerably greater in those who con-
verted from aMCI to AD (Carmichael et al. 2013). Eavani et al.
(2018) applied multivariate pattern analysis techniques on data
from the Baltimore Longitudinal Study of Aging to reveal hetero-
geneity in structural and functional changes in advanced brain
aging. Their findings differentiated resilient and advanced brain
agers and suggested distinct subgroups among advanced brain
agers, including 1 with elevated focal hippocampal atrophy. A
final example comes from analyses of longitudinal data from
the Lothian Birth Cohort that revealed 3 dimensions of cortical
brain aging (Cox et al. 2021). The major dimension was cortex-
wide atrophy that predicted cognitive decline, with a pronounced
contribution of dorsolateral prefrontal cortex (DLPFC) and lateral
temporal regions, and the other 2 dimensions involved MTC and
medial parietal (precuneus) regions, respectively. These and other
findings (Smith et al. 2020; Cox and Deary 2022) support het-
erogeneity in brain aging but do not provide conclusive evidence
for individual differences in how aging influences caudate and
hippocampus integrity in relation to cortical change (cf., Buckner
2004).

The aim of the present study was to explore heterogeneity in
patterns of longitudinal structural brain aging using latent-profile
analysis (LPA), a data-driven statistical approach that is suitable
for identifying subgroups of individuals within a sample (Masyn
2013; cf., Lövdén et al. 2018). We focused on gray-matter atrophy in
the caudate and hippocampus and also in several cortical regions
(frontal cortex, lateral cortex, MTC, and precuneus), as measured
by magnetic resonance imaging (MRI), in a large longitudinal
dataset (1,482 observations) from the “Lifebrain” cohort (Walhovd
et al. 2018). Identified subgroups were compared on age, sex, and
education as well as “APOE”-distribution and episodic memory.
Elevated cortical and hippocampus atrophy was expected to be
associated with lower episodic memory and “APOE-ε4” carrier-
ship (cf., Buckner 2004; Rast et al. 2018; Cox et al. 2021). For a
smaller subset of individuals, the subgroup differences on epi-
genetic aging profiles were assessed (Horvath 2013) in terms
of deoxyribonucleic acid (DNA) methylation (DNAm). Given that
DNAm age and age acceleration are considered to represent mark-
ers of “biological aging,” we hypothesized a relation between
higher epigenetic age acceleration and higher atrophy.

Materials and methods
Participants
All participants gave written informed consent. All procedures
were approved by a relevant ethics review board. For the
Lifebrain consortium, approval was given by the Regional Ethical

Committee for South Norway, and all substudies were approved
by the relevant national review boards. The sample consisted of
741 healthy (absent of neurological/health problems) participants
(baseline age range = 50.5–85.4 years), with 2 observations (mean
scan interval = 3.4 y; range ∼= 1–10 years). They were from different
studies and European geographical sites (Barcelona, Spain [n = 51,
M age = 69 years]; Berlin, Germany [n = 253, M age = 70.1 years];
Oslo, Norway [n = 156, M age = 63.3 years]; and Umeå, Sweden
[n = 281, M age = 65.9 years]) and were aggregated within the
Lifebrain project (Walhovd et al. 2018).

MRI methods and region of interest definitions
The MRI data originated from 6 different scanners and were
processed with longitudinal FreeSurfer (version 7.0; https://
surfer.nmr.mgh.harvard.edu/) pipeline (Reuter et al. 2012) on
the same computer at the University of Oslo. Very noisy images
were removed before processing. Identical procedures were
used across all samples. Because FreeSurfer is almost fully
automated, to avoid introducing possible site-specific biases,
gross quality control measures were imposed, and no manual
editing was done. As part of the Lifebrain project, 7 volunteers
were scanned on 7 scanners in the project (Fjell et al. 2020).
Previous comparisons (Fjell et al. 2020) of hippocampal volume
showed that the between-participant rank order was almost
perfectly retained among scanners (r = 0.98). For sites used in
the present paper, we ran correlations between the volumetric
estimates in each of the regions of interest (ROIs) across sites.
This analysis showed correlations close to 1 for all regions except
MTL, where correlations were somewhat lower but still >r = 0.75.

Bilateral Freesurfer-derived volumes of the Desikan-Killiany
atlas were extracted for the ROIs and were then averaged across
the right and left hemispheres before being entered into the
LPA. The following “FreeSurfer” ROIs were used: (i) hippocampus,
(ii) medial temporal lobe (MTL; entorhinal and parahippocampal
cortexes), (iii) precuneus, (iv) lateral temporal lobe (LTL; “superior
temporal”), (v) caudate nucleus, and (vi) DLPFC (“caudal middle
frontal”).

For each ROI and participant, a slope was calculated as %-
annual change of volume. To test the potential influence of
enlarged ventricles on caudate segmentation accuracy, lateral
and inferior lateral ventricle volumes were also extracted and
correlated with the caudate volume to investigate possible cor-
relation differences between the groups using the Fischer r-to-
z transformation (Snedecor & Cochran 1980). Brain volume in
relation to estimated intracranial volume (eICV) was used as
baseline point estimations of atrophy (volume/ICV).

Episodic memory, APOE-status, DNAm profiling,
and education
As previously described (Gorbach et al. 2020), each participating
study contributed 1 or several episodic-memory measures. An
episodic-memory score for each study was defined by scaling
scores at both time points for each individual test by the mean
and standard deviation (SD) of the respective test at baseline.
Scaling was performed separately for each study due to differ-
ent scales across sites. A mean over the individual tests within
each site was used as episodic memory score. Annual episodic-
memory change was also calculated. Within each study, “APOE”
allele “ε4” carriership was defined (“ε4”-positive or -negative) by
determining the C-allele carrier status at single nucleotide poly-
morphism rs429358 using targeted genotyping or genome-wide
methods analogous to those described in (Sommerer et al. 2022).
DNAm profiling (Horvath 2013) was performed using the Infinium
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MethylationEPIC array (Illumina, Inc) and was processed with
the same workflows described previously (Sommerer et al. 2022).
Education was quantified as self-reported years of formal school-
ing, as previously described (Nyberg et al. 2021). Data for these
variables used to characterize subgroups were only available for
some participants, resulting in different number of participants
in the analyses (N memory = 714 (at W1), N education = 548, “N
APOE”-data = 643, and N DNAm = 96). Matlab R2015b (Mathworks
Inc) was used for data preparation.

Statistical analyses
LPA was performed using the R software with the tidyLPA package
(Rosenberg et al. 2018. Technically, the tidyLPA is a “wrapper” for
the mclust package (Scrucca et al. 2016). We assumed that the ROI
slopes followed a multivariate Gaussian (normal) distribution in
each group and let the respective mean vectors and covariance
matrices vary freely between groups. We investigated models
using up to 6 groups and used the Bayesian information criterion
(BIC) for selecting the number of groups based on results by Tein
et al. (2013), showing that, in an LPA setting selection, using BIC
has favorable properties over e.g. AIC and entropy measures in
selecting the correct number of classes. Tein et al. (2013) showed
that the group selection properties of BIC and variants likelihood
ratio tests are quite similar. We further modeled ROI volume as a
smooth function of age using a generalized additive mixed model
(Wood 2017).

After determining the number of classes, interpretation of the
outcome was based on inspecting the sizes and means of the
latent classes, supplemented by post hoc tests of pairwise group
differences in atrophy rates for the ROIs. The purpose of these
comparisons was to externally validate and to aid in the interpre-
tation of the identified LPA profiles and to examine if differences
remained after controlling for potential confounding factors (age,
sex, and site of study). The post hoc nature of these comparisons
should be considered when assessing the levels of significance
for significant group differences. Between-group differences in
episodic-memory change and educational attainment were inves-
tigated with pairwise t-tests, and the proportion e4-positive versus
e4-negative individuals in each class was compared using a chi-
square test.

Epigenetic (DNAm) age acceleration was quantified as the
residual of a linear regression analysis of chronological age versus
DNAm age as described previously (Sommerer et al. 2022). To
assess differences in epigenetic age acceleration between iden-
tified groups in the LPA, we fit a logistic regression model using
group membership as outcome and epigenetic age acceleration,
laboratory batch, the first 4 DNAm principal components (PCs),
and sex as predictors. DNAm PCs were calculated based on the
normalized DNAm beta values and account for the technical
variability in the data, as described previously (Sommerer et al.
2022).

Data availability
The “Lifebrain” data supporting the current results can be
requested from the principal investigator of each study, given
appropriate ethical and data protection approvals and data
transfer agreements.

Results
Table 1 shows the relation among the analyzed brain measures
eICV. Volumes at baseline (mean r = 0.42) and volume changes

(mean r = 0.30) were related, whereas the baseline-change correla-
tions were close to 0 (range = −0.09 to 0.14). Latent profile models
specifying one to six classes revealed that a 1-class solution
yielded poorer fit to data (i.e. higher BIC value) than all multiclass
models. Of the multiclass models, the lowest BIC value was
obtained for a 2-class solution, with a margin of 29 to the second-
lowest 3-class solution. Using the criteria outlined by Kass and
Raftery (1995), a difference >10 is considered as strong evidence in
favor of the model with lower BIC. Further investigation using the
bootstrapped likelihood ratio test indicated that up to 3 classes
were relevant. As the BIC favored 2 classes, we proceeded with
the 2-class solution. All study sites contributed to both groups
(N-group1/N-group2): Germany:116/137, Spain:30/21, Norway
104/52, and Sweden:236/45.

Figure 1A presents the latent profiles of mean atrophy rates
in each region for the 2 subgroups. Group 1 (n = 486, 66% of the
sample, mean age = 66.0 years) showed a relatively homogenous
profile of atrophy across all examined areas (amounting to ca
4–5% per decade). Group 2 (n = 255, 34% of the sample, mean
age = 68.9 years) showed greater cortical and hippocampal atro-
phy (ranging between ca 6–9% per decade). ANCOVAs (df = 734),
controlling for age, sex, and study site, confirmed significant
group differences in atrophy rates in all cortical regions and
hippocampus (P-values ranging between 0.0019 and <0.00001). By
contrast, caudate atrophy was not significantly different between
groups (P > 0.05). The latent profile was regionally more het-
erogenous in group 2, with the greatest atrophy rate for the
hippocampus, and hippocampal atrophy was significantly greater
than caudate atrophy (t(254) = 2.65, P = 0.0086), whereas no such
difference was seen in group 1 (t < 1). In a control analysis, it was
found that the correlation between ventricle volume and caudate
volume did not differ between groups at baseline (P = 0.16) or
follow-up (P = 0.62).

Figure 1B depicts longitudinal change as a function of age in
hippocampus, cortex (across ROIs), and caudate for the 2 groups.
These plots confirm more rapid atrophy for group 2 in cortex
and hippocampus after age 65, whereas the caudate volume
changed in a similar fashion in both groups. The change function
estimates indicated greater caudate volume in group 2 than in
group 1 across age (Fig. 1B; red > blue solid line). To directly
compare regional levels (i.e. intercepts) between the groups, for
each individual, we computed the volume of each region at study
onset in relation to ICV. Despite being older, group 2 had a signifi-
cantly larger baseline caudate volume than group 1 (t(739) = −3.32,
P = 0.00094; Fig. 1C). No other ROI differences were significant, and
a comparison of total brain volume in relation to eICV revealed
no significant difference between the 2 groups at the baseline
(t = −1.8, df = 737, P = 0.072) or in change between test waves
(t = −0.15, df = 737, P = 0.88).

Next, we conducted additional analyses to characterize the
identified groups (Table 2). The groups did not differ with
regard to education (t(546) = −0.64, P = 0.52), APOEε4-carriership
(χ2(1) = 1.44, P = 0.23), but group 2 was older (t(739) = −6.02,
P < 0.001) and included more men (χ2(1) = 4.48, P = 0.034]. For
episodic memory, the annual change was greater in group 1
(t(679) = 2.24, P = 0.025), but their performance level was still
greater than that of group 2 at both the first (t(712) = 4.10,
P < 0.001] and second test waves (t(703) = 2.36, P = 0.018).

Last, we assessed whether the 2 groups differed with respect
to their epigenetic aging profiles. Specifically, we computed
the degree of epigenetic age acceleration for each individual
with overlapping MRI and DNAm data (ngroup 1 = 47, ngroup 2 = 49)
and assessed whether the 2 groups showed differences in
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Table 1. Correlations among regional volumes at baseline (upper) and among regional changes (lower). Baseline volume-change
correlations are in bold font at the diagonal.

Baseline volume

DLPFC Hippocampus Precuneus LTL MTL Caudate eICV

Volume
change

DLPFC −0.09 0.32 0.52 0.47 0.27 0.31 0.00
Hippocampus 0.13 0.14 0.47 0.48 0.48 0.31 0.07
Precuneus 0.73 0.17 −0.04 0.60 0.39 0.42 0.02
LTL 0.51 0.26 0.57 0.00 0.45 0.48 0.09
MTL 0.16 0.29 0.19 0.35 0.01 0.37 0.03
Caudate
eICV

0.20
0.45

0.15
0.31

0.24
0.60

0.33
0.60

0.15
0.39

0.01
0.48

0.00
—

Table 2. Group characteristics.

Variable Group 1 Group 2

N (female/male in %)
Mean baseline age (range)
Education (M in years)
Episodic memory (M, SD)a

APOE (% ε4)

486 (48/52)
66.0 (50.5–82.7)
13.9
0.076 (0.75), −0.031 (0.78)
27

255 (40/60)
68.9 (50.6–85.4)
14.1
−0.17 (0.78), −0.19 (0.99)
22

aValues for the first and second test waves.

epigenetic age acceleration. The results of these analyses did
not indicate different epigenetic age acceleration between the
groups (beta = 0.0032, P-value = 0.92), but they were most likely
underpowered.

Discussion
Using latent profiling on longitudinal volumetric brain-atrophy
data, we obtained support for the existence of 2 subgroups of
individuals within our sample, which differed in their atrophy
profiles. The first group included about two-thirds of the sample
and had a fairly uniform pattern of atrophy across all 6 examined
cortical and subcortical ROIs, with an annual shrinkage rate of
about 0.5% which is comparable with the previous estimates
of mean atrophy rates across individuals (Fjell et al. 2009). The
change pattern was approximately linear, which agrees with past
observations for these regions across the age span investigated
here (Sørensen et al. 2021). The second subgroup showed higher
atrophy rates in the cortex and hippocampus. The higher-atrophy
group was slightly older, and the variation in age across the
included cohorts may explain the uneven distribution of par-
ticipants between groups (the German sample had the highest
percentage of participants in the high-atrophy group and also the
highest mean age). Also, the higher-atrophy group included more
males relative to females, but the group differences in atrophy
rates remained after controlling for both age and sex.

The groups were comparable with regard to APOE-distribution,
education, and epigenetic age (for the latter variable, a limitation
is that the analyses were underpowered). The higher-atrophy
group had lower episodic memory at both waves, which is con-
sistent with prior reports of a link between poorer memory and
hippocampal atrophy (Gorbach et al. 2020; Johansson et al. 2022).
In the higher-atrophy group, the lower initial performance level
together with less annual change in memory decline might have
reflected a pathological cascade that was initiated well before the
baseline session.

In the higher atrophy group, marked hippocampal atrophy was
accompanied by elevated atrophy in all examined cortical ROIs.

Thus, although the greatest cortical atrophy numerically was seen
in the precuneus, no support was found for selective cortical atro-
phy (Buckner 2004). Rather, the broad pattern of cortical atrophy
resembles findings from the ADNI (Carmichael et al. 2013) and
the major change dimension in the Lothian birth cohort (Cox et al.
2021). In view of the broad pattern of atrophy, it remains possible
that other cognitive processes, in addition to episodic memory,
were affected. Indeed, there is recent evidence that adult cogni-
tive decline or maintenance show a strong dependency among
various measures of fluid and crystallized ability (Tucker-Drob
et al. 2022).

Strikingly, the rate of caudate atrophy did not differ between
the groups. Within the higher-atrophy group, we also found that
hippocampus atrophy was significantly greater than the cau-
date atrophy. These observations are in line with the suggestion
that the hippocampus and striatum can follow different trajec-
tories during aging (Gardner et al. 2020). Moreover, despite being
older, individuals in the higher-atrophy group had larger caudate
baseline volumes, whereas the volumes of other regions (and
total brain volume) were comparable between groups. It remains
unclear whether larger caudate volumes contributed to normal
atrophy rates in the second group, but it has been proposed that
smaller hippocampal volumes in aging will bias toward striatal
computation and functional brain activity (e.g. Konishi et al. 2013;
cf. Bohbot et al. 2007, 2012; Schuck et al. 2015; Sodums and
Bohbot 2020) and that larger caudate volumes could reflect a
compensatory response to reduced hippocampus-driven function
(Persson et al. 2017).

The observed heterogeneity in atrophy profiles may relate to
evidence that the genetic influences on atrophy rates differ for
cortex, hippocampus, and the caudate (Fjell et al. 2021; Brouwer
et al. 2022). In the Brouwer et al. study, genes involved in interact-
ing with the tau protein were associated with the rate of change
in caudate volume. Aggregation of tau in aging and neurodegener-
ation also contributes to elevated cortical and hippocampal atro-
phy (La Joie et al. 2020). Additional genes with distinct influences
on the caudate relative to hippocampus and cortex likely also play
a role (Fjell et al. 2021).
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Fig. 1. (A) Mean (SE) profiles of atrophy for the 2-class solution. (B) Longitudinal volume changes in hippocampus, cortex, and caudate as a function of
age and group (the dotted lines represent 95% confidence intervals). (C) Mean (SE) absolute regional volumes for each ROI and subgroup at the first test
wave (W1). ∗∗∗ = P < 0.001; ∗∗ = P < 0.005.

Future studies will be needed to replicate these findings and
to address various limitations. We cannot rule out confounds
related to technical issues due to iron-induced bias in volume
estimations (Lorio et al. 2014) or to the automatic segmen-
tation of striatal volumes, although the control analyses did
not indicate any confounds in relation to ventricle size. We
examined a limited set of subcortical and cortical volumes.
Although we argue that this selection captured the relevant and
aging-sensitive parts of the cerebrum, it cannot be ruled out

that the analyses of other or additional regions, possibly with
a whole-brain high-dimensional coverage, would yield different
outcomes. Also, investigating the cortical thickness or surface
area instead of volumes could potentially lead to different
outcomes in relation to the magnitude of age changes and
cognition (Borgeest et al. 2021). Here, with no a priori hypotheses
concerning individual differences in change, we found cortical
volumes as a reasonable point of departure that harmonized
with the subcortical volumes.
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Conclusion
Taken together, our findings support and refine models of hetero-
geneity in brain aging by showing that about a third of the par-
ticipants (i) were characterized by elevated hippocampus atrophy,
(ii) had elevated cortical atrophy globally rather than selectively
in frontal or posterior cortex, and (iii) showed similar rates of
caudate atrophy as the lower-atrophy participants. Additional
studies with complementary imaging markers (e.g. tau-PET) will
be needed to specify the mechanisms that contribute to hetero-
geneity in brain aging.
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