Supporting Crystallographic Data

Figure S1. Structure of 2,2,2-trichloroethyl (S)-2-(4-fluorophenyl)3-(4-isopropylphenyl)propanoate (23b) in the solid state; all H -atoms removed for clarity

X-ray Crystal Structure Analysis of Compound 23b: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{~F} \mathrm{O}_{2}, M_{r}=417.73 \mathrm{~g} \mathrm{~mol}^{-1}$, colorless prism, crystal size $0.31 \times 0.14 \times 0.11 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1}[4], a=10.3857(19) \AA, b=5.6716(12) \AA, c$ $=17.111(3) \AA$ Å, $\beta=98.769(11)^{\circ}, V=996.1(3) \AA^{3}, T=100(2) \mathrm{K}, Z=2, D_{\text {calc }}=1.393 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073 \AA, \mu(\mathrm{Mo}-$ K_{α}) $=0.480 \mathrm{~mm}^{-1}$, Gaussian absorption correction ($T_{\min }=0.90, T_{\max }=0.95$), Bruker-AXS Kappa Mach3 with APEX-II detector and $I \mu S$ microfocus source, $2.878<\theta<33.078^{\circ}$, 17357 measured reflections, 7426 independent reflections, 6619 reflections with $I>2 \sigma(I), R_{\text {int }}=0.0673$. The structure was solved by SHELXT and refined by full-matrix least-squares $(S H E L X L)$ against F^{2} to $R_{1}=0.071[I>2 \sigma(I)], w R_{2}=0.189, S=1.067$, 237 parameters, absolute structure parameter $=0.04(7)$.

Largest diff. peak and hole $=1.1(0.81 \AA$ from Cl 2$)$ and $-1.0(0.74 \AA$ from Cl 1$) \mathrm{e} \cdot \AA^{-3}$.

Complete .cif-data of the compound are available under CCDC- 2191047

INTENSITY STATISTICS FOR DATASET \# 1 14225sadabs.raw
Resolution \#Data \#Theory \%Complete Redundancy Mean I Mean I/s Rmerge Rsigma

Inf - -2.61	112	120	93.3	3.61	170.32	21.36	0.0665	0.0482
$2.61-1.76$	266	266	100.0	3.13	75.75	18.99	0.0723	0.0523
$1.76-1.40$	366	367	99.7	3.13	40.62	18.21	0.0640	0.0518
$1.40-1.23$	391	392	99.7	2.90	31.99	17.46	0.0625	0.0549
$1.23-1.11$	384	385	99.7	2.98	26.98	17.28	0.0605	0.0554
$1.11-1.03$	397	397	100.0	2.77	17.09	15.65	0.0618	0.0584
$1.03-0.97$	354	354	100.0	2.69	12.26	14.17	0.0590	0.0606
$0.97-0.92$	405	405	100.0	2.63	10.94	14.09	0.0631	0.0637
$0.92-0.88$	401	401	100.0	2.44	11.47	12.84	0.0638	0.0679
$0.88-0.85$	309	309	100.0	2.30	9.48	11.98	0.0620	0.0728
$0.85-0.82$	372	373	99.7	2.25	7.52	11.43	0.0635	0.0777
$0.82-0.79$	454	458	99.1	2.18	6.47	10.20	0.0622	0.0826
$0.79-0.77$	361	363	99.4	2.01	5.24	9.09	0.0762	0.0964
$0.77-0.75$	371	372	99.7	1.99	5.03	8.53	0.0790	0.1003
$0.75-0.73$	412	416	99.0	1.92	4.82	7.90	0.0880	0.1079
$0.73-0.71$	430	439	97.9	1.88	4.35	7.36	0.0898	0.1189
$0.71-0.70$	245	251	97.6	1.78	3.70	6.34	0.0983	0.1412
$0.70-0.68$	580	594	97.6	1.76	3.17	5.40	0.1130	0.1708
$0.68-0.67$	258	281	91.8	1.62	3.26	4.98	0.1190	0.1862
$0.67-0.66$	305	334	91.3	1.60	2.61	4.32	0.1335	0.2259
$0.66-0.65$	259	297	87.2	1.51	2.70	4.12	0.1284	0.2347
--12								

Table 2. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

$\mathrm{Cl}(1)-\mathrm{C}(1)$	1.768(4)	$\mathrm{Cl}(2)-\mathrm{C}(1)$	1.770(4)
$\mathrm{Cl}(3)-\mathrm{C}(1)$	1.763(4)	$\mathrm{F}(1)-\mathrm{C}(9)$	1.357(4)
$\mathrm{O}(1)-\mathrm{C}(2)$	1.424(4)	$\mathrm{O}(1)-\mathrm{C}(3)$	1.351(4)
$\mathrm{O}(2)-\mathrm{C}(3)$	$1.198(5)$	$\mathrm{C}(1)-\mathrm{C}(2)$	1.519(5)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.516(5)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.539(4)
$\mathrm{C}(4)-\mathrm{C}(6)$	1.524(4)	$\mathrm{C}(5)-\mathrm{C}(12)$	1.503(4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.392(5)	$\mathrm{C}(6)-\mathrm{C}(11)$	1.391(5)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.396(4)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.374(6)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.384(5)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.394(4)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.387(5)	$\mathrm{C}(12)-\mathrm{C}(17)$	$1.399(5)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.395(5)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.388(5)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.396(5)$	C(15)-C(18)	$1.521(5)$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.392(4)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.503(7)
$\mathrm{C}(18)-\mathrm{C}(20)$	1.515(6)		
$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{C}(2)$	118.4(3)	$\mathrm{Cl}(1)-\mathrm{C}(1)-\mathrm{Cl}(2)$	110.2(2)
$\mathrm{Cl}(3)-\mathrm{C}(1)-\mathrm{Cl}(1)$	108.92(19)	$\mathrm{Cl}(3)-\mathrm{C}(1)-\mathrm{Cl}(2)$	108.62(18)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cl}(1)$	110.2(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cl}(2)$	107.7(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cl}(3)$	111.2(3)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	109.4(3)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	109.3(3)	$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	124.8(3)
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	125.9(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	109.9(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	110.1(3)	$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(5)$	111.4(3)
$\mathrm{C}(12)-\mathrm{C}(5)-\mathrm{C}(4)$	114.3(3)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(4)$	118.9(3)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(4)$	121.5(3)	$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	119.6(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.6(3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	118.2(3)
$\mathrm{F}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	118.7(3)	$\mathrm{F}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	118.1(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	123.2(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	117.8(3)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	120.7(3)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(5)$	120.8(3)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	118.3(3)	$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(5)$	120.9(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	121.1(3)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.9(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	118.1(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)$	120.6(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(18)$	121.3(3)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	121.2(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	120.4(3)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(15)$	112.7(4)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(20)$	111.3(6)	$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{C}(15)$	110.5(3)

General. Unless stated otherwise, all reactions were carried out under argon atmosphere in flame dried Schlenk glassware. The solvents were purified by distillation over the indicated drying agents under argon: THF (Mg /anthracene), $\mathrm{Et}_{2} \mathrm{O}$ (Mg /anthacene), pentane (Na / K), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$. MeCN and $\mathrm{Et}_{3} \mathrm{~N}$ were dried by an absorption solvent purification system based on molecular sieves. Flash chromatography: VWR Chemicals silica gel $40-63 \mu \mathrm{~m}$. TLCs were stained with vanillin $/ \mathrm{H}_{2} \mathrm{SO}_{4}$, anisaldehyde or PMA.
$\mathrm{C}_{6} \mathrm{~F}_{6}$ was purchased from $A B C R$ and used as received

NMR spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AV III 600 spectrometers in the solvents indicated; chemical shifts are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}}=77.2 \mathrm{ppm}\right.$; residual $\mathrm{CHCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}}=54.0 \mathrm{ppm} ;$ residual $\mathrm{CHDCl}_{2}: \delta_{\mathrm{H}}=5.32 \mathrm{ppm} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta_{\mathrm{C}}=39.5 \mathrm{ppm} ;$ residual $\left(C D_{3}\right)\left(\mathrm{CD}_{2} \mathrm{H}\right) \mathrm{SO}: \delta_{H}=2.50 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{C}}=128.1 \mathrm{ppm}$; residual $\left.\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}: \delta_{H}=7.16 \mathrm{ppm}\right)$. Proton and carbon assignments were established using HSQC, HMBC and NOESY experiments.

IR: Alpha Platinum ATR (Bruker), wavenumbers ($\tilde{\text { v }}$) in cm^{-1}.

MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker) or Thermo Scientific LTQ-FT or Thermo Scientific Exactive. HRMS: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan) or Thermo Scientific LTQ-FT or Thermo Scientific Exactive. GC-MS was measured on a Shimadzu GCMS-QP2010 Ultra instrument.

HPLC analyses for the determination of enantiomeric excesses were conducted on a Shimadzu LC 2020 instrument equipped with a Shimadzu SPD-M2OA UV/VIS detector. Solvents were purchased in HPLC grade and used without further purification. The exact conditions are specified for each substrate.

Optical rotations were measured with an A-Krüss Otronic Model P8000-t polarimeter at a wavelength of 589 nm . The values are given as specific optical rotation with exact temperature, concentration (c/(10 mg/mL)) and solvent.

Unless stated otherwise, all commercially available compounds (abcr, Acros, TCI, Aldrich, Alfa Aesar, Fluoro Chem) were used as received.
$\left[\mathrm{BiRh}\left(\mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3}\right)_{4}\right]$ was prepared according to the literature. ${ }^{1}$
The diazo derivatives were prepared according to literature procedures; the recorded characterization data matched the literature. ${ }^{2,3,6}$

Preparation of the New Heterobimetallic Paddlewheel Complexes

Scheme S1. Preparation of the new [BiRh] tetracarboxylate complexes 7c,d comprising iodinated phthalimido "paddles"

5,6-Diiodoisobenzofuran-1,3-dione (S2). Acetic anhydride (15 mL) was added to a round-bottom flask
 charged with 4,5 -diiodophthalic acid $(2.45 \mathrm{~g}, 5.86 \mathrm{mmol})^{4}$ and the mixture was stirred at $145^{\circ} \mathrm{C}$ (bath temperature) for 2 h . Excess acetic anhydride was removed under reduced pressure and the residue was dried under high vacuum to give the desired product as a pale yellow solid ($2.12 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta=8.53(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=161.8,134.6,131.5,119.7 ;$ IR (ATR): $\tilde{v}=1843,1777,1730,1698,1537,1350,1289,1235,1080,899$, 870, 853, 727, 693, $583 \mathrm{~cm}^{-1}$; HRMS (EI $)$ for $\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{O}_{3} \mathrm{l}_{2}[\mathrm{M}]^{+}$: calcd: 399.80879, found: 399.80889.

5-Iodoisobenzofuran-1,3-dione (S3). Prepared according to the literature procedure. ${ }^{5}$ Characterization
 data matched with the reported data. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.38(\mathrm{dd}, \mathrm{J}=1.4,0.6 \mathrm{~Hz}$, 1 H), 8.26 (dd, $J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (dd, $J=8.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl3):} \delta$ $=162.2,161.3,145.2,134.8,132.6,130.4,126.6,103.6 ; \operatorname{IR}(A T R): \tilde{v}=3098,1842,1766,1590$, 1411, 1318, 1241, 1168, 1101, 885, 854, 838, 726, 684, 658, 632, 577, 540, 480, $406 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{l}[\mathrm{M}+\mathrm{H}]^{+}$: calcd: 274.91997, found: 274.91980 .
(R)-2-(1-(3,5-Bis(triisopropylsilyl)phenyl)allyl)-5,6-diiodoisoindoline-1,3-dione (S4). HCl (4 M in dioxane,
 $0.33 \mathrm{~mL}, 1.347 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ under air to a solution of $(R)-\mathrm{N}-((R)-1-(3,5-$ bis(triisopropylsilyl)phenyl)allyl)-2-methylpropane-2-sulfinamide (S1) (247 mg, 0.449
 $\mathrm{mmol})^{6}$ in methanol (HPLC-grade, 6 mL). The flask was capped with a rubber septum and the solution was stirred at room temperature for 1 h . The mixture was concentrated under vacuum. Water $(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added to the residue and the aqueous phase was basified to $\mathrm{pH} \approx 10$ upon addition of aqueous $\mathrm{NaOH}(3 \mathrm{~m})$ before it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuum to give (R)-1-(3,5-bis(triisopropylsilyl)phenyl)prop-2-en-1-amine, which was used directly in the next step.

5,6-Diiodoisobenzofuran-1,3-dione (S2) (197.3 mg, 0.493 mmol) and $\mathrm{Et}_{3} \mathrm{~N}$ ($63 \mu \mathrm{~L}, 0.449 \mathrm{mmol}$) were added to the crude amine in toluene (20 mL) and the resulting mixture was stirred at reflux temperature for 36 h while the released water was collected in a Dean-Stark apparatus. Evaporation of the solvent and purification of the residue by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using $4 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane as eluent afforded the title compound as a colorless waxy solid (315 mg , 85% yield over 2 steps). $[\alpha]_{\mathrm{D}}^{20}=7.2$ ($\mathrm{c}=0.5, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=8.28(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.61$ (ddd, $J=17.3,10.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ (dd, J=7.2, 1.48 Hz, 1H), 5.39-5.24 (m, 2H), 1.37 (hept, J=7.4 Hz, 6H), 1.03 (dd, J=7.5, 2.1 Hz, 36H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=166.0,142.1,136.0,135.2,134.4,133.9,133.8,132.2,119.0,115.2,58.0,18.7$, 10.9; IR (ATR): $\tilde{v}=2941,2862,1772,1712,1461,1366,1337,1130,1015,993,879,715,641,563,503, \mathrm{~cm}^{-}$ ${ }^{1}$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{NO}_{2} \mathrm{Si}_{2} \mathrm{I}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 850.14400, found: 850.14313.
(R)-2-(1-(3,5-Bis(triisopropylsilyl)phenyl)allyl)-5-iodoisoindoline-1,3-dione (S5). Prepared analogously
 from compound S1 (542 mg, 1.21 mmol$)$ and anhydride $\mathbf{S 3}$ ($430 \mathrm{mg}, 1.57 \mathrm{mmol}$) as a colorless sticky solid ($605 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.17(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.05 (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 4 \mathrm{H}), 6.62$ (ddd, $J=17.3,10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-5.22(\mathrm{~m}, 2 \mathrm{H}), 1.36$ (hept, $J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.03(\mathrm{dd}, J=7.5$, $2.3 \mathrm{~Hz}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.3,166.4,143.0,142.0,136.1,135.1,134.6$, 133.8, 133.5, 132.5, 131.3, 124.7, 118.9, 100.9, 57.8, 18.6 (2 x), 10.9; IR (ATR): $\tilde{v}=2941,2889,2863,1772$, $1715,1602,1461,1412,1367,1343,1312,1239,1170,1134,1015,993,881,840,789,744,712,675,641$, 562, $502 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NO}_{2} \mathrm{Si}_{2} \mathrm{I}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 724.24735, found: 724.24688.
(S)-2-(3,5-Bis(triisopropylsilyl)phenyl)-2-(5,6-diiodo-1,3-dioxoisoindolin-2-yl)acetic acid (S6). A round
 bottom flask containing a magnetic stir-bar was charged with (R)-2-(1-(3,5-bis(triisopropylsilyl)phenyl)allyl)-5,6-diiodoisoindoline-1,3-dione (S4) (290 mg, 0.35 $\mathrm{mmol})$, sodium metaperiodate ($375 \mathrm{mg}, 1.752 \mathrm{mmol}$), water $(3 \mathrm{~mL})$, acetonitrile $(2 \mathrm{~mL})$ and $\mathrm{CCl}_{4}(2 \mathrm{~mL})$. Ruthenium trichloride hydrate ($3.6 \mathrm{mg}, 0.017 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added to the biphasic mixture, which was stirred vigorously for 12 h at ambient temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the phases were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a Celite ${ }^{\circledR}$ pad, and the filtrate was concentrated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using 10% EtOAc in pentane $+1 \% \mathrm{AcOH}$ as eluent to afford the title compound as a colorless solid (215 $\mathrm{mg}, 73 \%) \cdot[\alpha]_{\mathrm{D}}^{20}=3.2\left(\mathrm{c}=2.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=173.1,165.3,142.9,137.0,134.1,134.1,132.0,131.6,115.6,56.6,18.6,18.6,10.8 ; \operatorname{IR}(A T R): \tilde{v}$ $=2941,2863,1778,1714,1461,1366,1230,1129,1106,1015,881,746,673,642,582,502 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{34} \mathrm{H}_{49} \mathrm{NO}_{4} \mathrm{Si}_{2} \mathrm{I}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 868.11818 , found: 868.11798
(S)-2-(3,5-Bis(triisopropylsilyl)phenyl)-2-(5-iodo-1,3-dioxoisoindolin-2-yl)acetic acid (S7). Prepared
 analogously from compound $\mathbf{S 5}(600 \mathrm{mg}, 0.855 \mathrm{mmol}$) as a colorless solid (440 mg , $71 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{~s}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 1.39$ (hept, $J=7.6 \mathrm{~Hz}, 6 \mathrm{H}$), $1.04(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 36 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=173.2,166.4,165.5,143.1,142.6,136.8,133.8$, 133.1, 132.7, 131.7, 130.9, 124.9, 101.1, 56.4, 18.5, 18.5, 10.7; IR (ATR): $\tilde{v}=2942,2863$, $1777,1720,1603,1461,1413,1369,1107,1015,916,881,789,743,729,675,641,561,500,464 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{NO}_{4} \mathrm{ISi}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd: 720.23959, found: 720.23993.

Complex 7d. A mixture of $\left[\mathrm{BiRh}\left(\mathrm{OCOCF}_{3}\right)_{4}\right](36 \mathrm{mg}, 0.047 \mathrm{mmol})^{1}$ and acid $\mathbf{S 6}(200 \mathrm{mg}, 0.236 \mathrm{mmol})$ in
 toluene (25 mL) was stirred at reflux temperature for 3 h , passing the condensed vapor through a Soxhlet apparatus filled with $\mathrm{K}_{2} \mathrm{CO}_{3}$; at this point, ligand exchange was complete as judged by ${ }^{19} \mathrm{~F}$ NMR. The mixture was concentrated in vacuum and the residue was purified by flash chromatography using $90 \% \mathrm{CHCl}_{3}$ in pentane as eluent to give the title complex as a yellow solid ($163 \mathrm{mg}, 93 \%$). NMR spectra were recorded at $80^{\circ} \mathrm{C}$; at lower temperature only very broad signals with poor resolution were observed. $[\alpha]_{\mathrm{D}}^{20}=111.9$ ($\mathrm{c}=$ $\left.1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 353 \mathrm{~K}\right): \delta=8.41(\mathrm{~s}, 8 \mathrm{H}), 7.62(\mathrm{~s}, 8 \mathrm{H}), 7.57(\mathrm{~s}, 4 \mathrm{H}), 6.31(\mathrm{~s}, 4 \mathrm{H}), 1.35$
(hept, $J=7.5 \mathrm{~Hz}, 24 \mathrm{H}), 1.02$ (dd, $J=7.5,5.3 \mathrm{~Hz}, 144 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 353 \mathrm{~K}\right): \delta=181.7,165.1$, $142.4,137.8,134.4,133.6,133.3,132.7,114.9,58.4,18.8,18.8,11.1 ; \operatorname{IR}(A T R): ~ \tilde{v}=2941,2863,1777,1717$, $1593,1463,1364,1130,993,880,751,643,581 \mathrm{~cm}^{-1} ;$ HRMS (ESI ${ }^{+}$) for this complex could not be measured due to poor ionization.

Complex 7c. Prepared analogously from $\left[\mathrm{BiRh}(\mathrm{OTfa})_{4}\right](32 \mathrm{mg}, 0.042 \mathrm{mmol})$ and acid $\mathbf{S 7}$ (174 mg ,
 0.242 mmol) as a yellow solid ($118 \mathrm{mg}, 88 \%$). NMR spectra were recorded at $80^{\circ} \mathrm{C}$; at lower temperature only very broad signals with poor resolution were observed. ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}, 353 \mathrm{~K}\right): \delta=8.26(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.00(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.65(\mathrm{~s}, 8 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{~s}, 4 \mathrm{H}), 6.33(\mathrm{~s}, 4 \mathrm{H}), 1.34(\mathrm{~h}, J=7.5 \mathrm{~Hz}, 24 \mathrm{H})$, $1.09(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 12 \mathrm{H}), 1.02(\mathrm{dd}, \mathrm{J}=7.5,4.8 \mathrm{~Hz}, 132 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $353 \mathrm{~K}): \delta=181.9,166.2,165.4,142.9,142.3,137.8,134.0,133.8,133.6,133.0,131.8,125.0,100.6,58.3$, 18.8 (2 x), 11.2; IR (ATR): $\tilde{v}=2940,2889,2863,1775,1717,1598,1461,1411,1362,1326,1265,1101$, 1013, $880,781,747,713,675,663,642,563,500,421 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for this complex could not be measured due to poor ionization.

Cyclopropanation

2,2,2-Trichloroethyl (1S,2R)-1-(3-methoxyphenyl)-2-phenylcyclopropane-1-carboxylate (9a). An oven
 dried jacketed Schlenk flask equipped with a magnetic stir bar was charged with the [BiRh] catalyst ($0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%$) under argon. Styrene ($52.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and pentane (1 mL) were added and the resulting solution cooled to $-10^{\circ} \mathrm{C}$. A solution of the diazo compound 8 a ($32.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) in pentane (3 mL) was added dropwise over 10 min . The resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ until TLC analysis indicated the complete consumption of the diazo compound. For work up, the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/EtOAc) afforded the title compound as a colorless oil; with $\left[\mathrm{BiRh}(S-\mathrm{PTTL})_{4}\right] \cdot \mathrm{MeCN}(6 a): 92 \%, 59 \%$ ee; with catalyst 7b: 98\%, 87% ee; with $\left[\mathrm{BiRh}(S-D I P T T I P S P G){ }_{4}\right](7 d):$ $77 \%, 97 \%$ ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3, $\varnothing 4.6 \mathrm{~mm}$, $n-$ heptane/iso-propanol $=90 / 10, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=6.85 \mathrm{~min}, \mathrm{t}($ minor $)=4.81 \mathrm{~min}$.] $[\alpha]_{\mathrm{D}}^{20}=+17.8\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.09(\mathrm{dd}, J=5.0,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.68$ (dddd, $J=7.0,3.6,2.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=9.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=9.4,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.00(\mathrm{dd}, \mathrm{J}=7.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)_{3}$: $\delta=172.2,159.0,135.9,135.3,128.7,128.2$,
128.0, 126.8, 124.6, 117.6, 113.6, 95.2, 74.5, 55.2, 37.3, 34.0, 20.5; IR (ATR): $\tilde{v}=2957,1732,1584,1433$, 1238, 1147, 1043, 804, 694, $572 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Cl}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calcd: 421.01355, found: 421.01384.

Figure S2. HPLC traces of compound 9a: with catalyst 7b (top, left); with [BiRh(S-PTTL) $\left.{ }_{4}\right] \cdot \mathrm{MeCN}(6 \mathrm{a})$ (top, right); with 7d (bottom, left); the corresponding racemate (bottom, right).

C-H Insertion Reactions

General procedure A: Pentane as the Solvent. An oven-dried jacketed Schlenk flask equipped with a magnetic stir bar was charged with the [BiRh] catalyst ($0.0005 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) under argon. The substrate $(0.25 \mathrm{mmol})$ and pentane $(1 \mathrm{~mL})$ were added to the catalyst and the resulting solution cooled to $-10^{\circ} \mathrm{C}$. A solution of the diazo compound (0.1 mmol) in pentane (3 mL) was added dropwise over 60 min . The resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ until TLC analysis indicated the complete consumption of the diazo compound. For work up, the mixture was absorbed on silica, which was loaded on top of a silica column.

Purification by flash chromatography (n-pentane/Et $\mathrm{F}_{2} \mathrm{O}$ or hexanes/EtOAc) afforded the desired $\mathrm{C}-\mathrm{H}$ insertion product.

General procedure B: $\mathbf{C}_{6} \mathbf{F}_{6}$ as the Solvent. An oven dried Schlenk flask equipped with a magnetic stir bar was charged with the [BiRh] catalyst ($0.0005 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) under argon. The alkane substrate (0.4 mmol) and $\mathrm{C}_{6} \mathrm{~F}_{6}(1 \mathrm{~mL})$ were added. A solution of the diazo compound (0.1 mmol) in $\mathrm{C}_{6} \mathrm{~F}_{6}(3 \mathrm{~mL})$ was added dropwise over 20 min . The resulting mixture was stirred at ambient temperture until TLC analysis indicated the complete consumption of the diazo compound (5 min to 2 h). For work up, the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (n-pentane/Et ${ }_{2} \mathrm{O}$ or hexanes/EtOAc) afforded the desired C-H insertion product.

Larger Scale Experiment. Preparation of 2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(4-fluorophenyl) propanoate (20d). An oven dried Schlenk flask equipped with a magnetic stir bar was charged with catalyst 7b ($4.4 \mathrm{mg}, 0.0015 \mathrm{mmol}, 0.1 \mathrm{~mol} \%$) under argon. Cyclopentyl methyl ether ($0.875 \mathrm{~mL}, 7.5 \mathrm{mmol}$) and pentane (15 mL) were added and the resulting solution was cooled to $-10{ }^{\circ} \mathrm{C}$. A solution of the diazo derivative 8 c ($468 \mathrm{mg}, 1.5 \mathrm{mmol}$) in pentane (45 mL) was added dropwise over 2 h . The resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ during 18 h . For work up, the mixture was absorbed on silica, which was then loaded on top of a silica column. Purification by flash chromatography (hexanes/tert-butyl methyl ether, 98:2) afforded the title compound as a colorless liquid ($494.1 \mathrm{mg}, 86 \%$ yield, 99% ee). The analytical data are compiled below.

Stereochemical Assignment. The absolute configuration of the products was assigned in analogy to the stereostructure of product 23b determined by X-ray diffraction (Figure S1). In case of products $\mathbf{1 2}$ and 20e, this tentative assignment could be confirmed by comparison with literature data.

Diazoester Decomposition. 2,2,2-Trichloroethyl 2-(4-fluorophenyl)-3-(2,2,2-trichloroethoxy)propanoate

(11). An oven dried Schlenk flask equipped with a magnetic stir bar was charged with catalyst 7 b ($1.5 \mathrm{mg}, 0.0005 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) under argon. $\mathrm{C}_{6} \mathrm{~F}_{6}(1 \mathrm{~mL})$ was added before a solution of the diazo derivative $8 \mathrm{c}(0.1 \mathrm{mmol}, 31.1 \mathrm{mg})$ in $\mathrm{C}_{6} \mathrm{~F}_{6}$ (3 mL) was added dropwise over 2 h and the resulting mixture was stirred at ambient temperature for 18 h . For work up, the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/tert-butyl methyl ether, 98:2) afforded the ttle compound as a colorless liquid (12.5 mg, 58\% yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~s}$, $1 \mathrm{H}), 4.85(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (151 MHz, CDCl $)^{2} \delta=168.3,163.5(d, J=248.7 \mathrm{~Hz}), 130.4(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 129.5(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 116.0$ (d, J=21.9 Hz), 96.4, 94.4, 81.5, 81.2, 74.4; ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(470} \mathrm{MHz} ,\mathrm{CDCl}{ }_{3}$) $\delta=-111.7$; IR (ATR): $\tilde{v}=2962,1725$, 1613, 1501, 1424, 1370, 1281, 1255, 1219, 1151, 1116, 1063, 874, 801, 725, 602, $529 \mathrm{~cm}^{-1}$; HRMS (EI ${ }^{+}$) for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}_{6} \mathrm{FO}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calcd: 452.8559 , found: 452.8550 .

C-H Insertion into the Pentane Solvent. An oven dried Schlenk flask equipped with a magnetic stir bar was charged with the $[\mathrm{BiRh}]$ catalyst 7 d ($0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%$) and pentane (1 mL) under argon. A solution of the diazo derivative $8 \mathrm{c}(0.1 \mathrm{mmol})$ in pentane $(3 \mathrm{~mL})$ was added dropwise over 10 min and the resulting mixture was stirred at RT for 10 min . The yield (85%) was determined by NMR analysis of the crude product using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. The peak assignment for the determination of the regio- and diastereoselectivity followed a literature procedure (insertion at $\mathrm{C} 2: \mathrm{C} 1$: rr $\approx 64: 36$; with this catalyst, insertion at C3 was below the limits of detection; ratio of the diastereomers formed by insertion at C2: dr $\approx 78: 22) .{ }^{7}$

Methyl (S)-2-(cyclohexa-2,5-dien-1-yl)-2-(4-methoxyphenyl)acetate (12). Prepared at ambient
 temperature according to the general procedure A as a colorless oil; with [BiRh(S-PTTL) $]$ (6a): 61\%, 97\% ee; with catalyst 7b: 78\%, 99\% ee [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3, $\varnothing 4.6 \mathrm{~mm}, n$-heptane/isopropanol $=95 / 5, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}, \mathrm{t}($ minor $)=5.78 \mathrm{~min}, \mathrm{t}($ major $)=7.49 \mathrm{~min}]$.
$[\alpha]_{D}^{20}=+143\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)$; the literature reports for $(R)-12:[\alpha]_{D}^{21}=-126.1\left(\mathrm{c}=1.18, \mathrm{CHCl}_{3}\right)^{8}$ This comparison further confirms the assignment originally based on comparison to the stereostructure of product 23b (X-ray, Figure S1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{dtt}, J=10.0,3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.73-5.64(\mathrm{~m}, 2 \mathrm{H}), 5.33-5.25(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{tddt}, \mathrm{J}=9.0,5.7,3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.36(\mathrm{~d}, \mathrm{~J}=10.37 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.8,159.0,129.7,128.9$, $126.8,126.3,126.1,125.9,114.0,57.6,55.4,52.0,38.7,26.5$.

Figure S3. HPLC traces of compound 12: with $\left[\mathrm{BiRh}(S-\mathrm{PTTL})_{4}\right]$ (6a) (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-2-(4-methoxyphenyl)-2-((tetrahydrofuran-2-yl)acetate (13). Prepared according CoCles) to the general procedure \mathbf{A} as a colorless oil; with $\left[\mathrm{BiRh}(S-\mathrm{PTTL})_{4}\right](6 \mathrm{a}): 86 \%, 10: 1 \mathrm{dr}$, 88\% ee (major diastereomer), 78% ee (minor diastereomer); with catalyst 7b: 89\%, 52:1 dr, 99\% ee (major diastereomer), 94\% ee (minor diastereomer). [The ee was determined by 2D-HPLC analysis: Achiral separation: 50 mm Zorbax Eclipse Plus C18, $1.8 \mu \mathrm{~m}, \varnothing 4.6 \mathrm{~mm}, \mathrm{MeOH} /$ water $=60 / 40, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=11.11 \mathrm{~min}, \mathrm{t}($ major $)=$ 11.77 min ; chiral separation: Daicel 150 mm Chiralcel OZ-3R, $\varnothing 4.6 \mathrm{~mm}$, MeCN/water = 50/50, $\mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}, \mathrm{t}($ minor diastereomer, minor enantiomer $)=11.26 \mathrm{~min}, \mathrm{t}($ minor diastereomer, major enantiomer) $=12.32 \mathrm{~min}, \mathrm{t}$ (major diastereomer, major enantiomer $=11.54 \mathrm{~min}, \mathrm{t}($ major diastereomer, major enantiomer) $=12.05 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-13.6\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=7.3-7.3(\mathrm{~m}, 2 \mathrm{H}), 6.9-6.8(\mathrm{~m}, 2 \mathrm{H}), 4.8-4.7(\mathrm{~m}, 2 \mathrm{H}), 4.6(\mathrm{dt}, \mathrm{J}=10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.0-3.9(\mathrm{~m}, 1 \mathrm{H}), 3.8$ (ddd, $J=8.3,7.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.8(\mathrm{~s}, 3 \mathrm{H}), 3.6(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.9-1.8(\mathrm{~m}, 2 \mathrm{H}), 1.8-1.7(\mathrm{~m}, 1 \mathrm{H}), 1.5$ (ddt, J = 12.4, 8.5, 6.9 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3,159.4,129.8,127.2,114.3,95.0,80.5$, $74.2,68.6,56.8,55.4,29.6,25.6$ IR (ATR): $\tilde{v}=2955,1750,1610,1512,1443,1246,1179,1137,1064,1031$, 920, 832, 791, 755, 717, 573, $530 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Cl}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calcd: 389.00846, found: 389.00842.

iignal: DAD2 A, Sig=220,4 Ref $=360,100$

Signal: DAD2A, Sig=220,4 Ref=360,100

Figure S4. HPLC traces of compound 13: with catalyst 7b (top, left); with [BiRh(S-PTTL) ${ }_{4}$ ($\mathbf{6 a}$) (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-2-(1,3-dioxolan-2-yl)-2-(4-fluorophenyl)acetate (14). Prepared according to the
 general procedure A as a colorless oil; with catalyst 7b: 77\%, 85\% ee; with complex 7c: $96 \%, 92 \%$ ee; with complex 7 d : $65 \%, 98 \%$ ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak $I A-3, \emptyset 4.6 \mathrm{~mm}, \quad n$-heptane/iso-propanol $=98 / 2$, $\mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ minor $)=7.94 \mathrm{~min}, \mathrm{t}$ (major $)=6.89 \mathrm{~min}.][\alpha]_{\mathrm{D}}^{20}=+5.9(\mathrm{c}=$ 1.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.78 (d, J = $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.98-3.81(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.0,162.8(\mathrm{~d}, \mathrm{~J}=246.9 \mathrm{~Hz}$), 130.9 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}$), 129.1 (d, $J=3.2 \mathrm{~Hz}$), 115.9 ($\mathrm{dd}, J=27.2,21.5 \mathrm{~Hz}$), 104.2, 94.7, 74.3, 65.5, 55.7; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.0$; IR (ATR): $\tilde{v}=2891,1752,1606,1510,1224,1191,1129,1098,1061,1033$, $943,871,838,804,758,716,573,546,520,440 \mathrm{~cm}^{-1}$, HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{FCl}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}:$calcd: 378.96774, found: 378.96810.

Figure S5. HPLC traces of compound 14: with catalyst 7b (top, left); with 7c (top, right); with 7d (bottom, left); the corresponding racemate (bottom, right).

2,2,2-Trichloroethyl (R)-2-(4-fluorophenyl)-2-(1,3,5-trioxan-2-yl)acetate (15). Prepared according to the
 general procedure B as a white solid; with complex 7b: 75\% yield, 94% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IA-3, $\varnothing 4.6 \mathrm{~mm}$, n-heptane/ipropanol $=95 / 5, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=6.18 \mathrm{~min}, \mathrm{t}($ minor $)=13.39 \mathrm{~min}]$. $[\alpha]_{\mathrm{D}}^{20}=57.7\left(\mathrm{c}=1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.11-$ $6.99(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, 1 H), 4.79 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=168.4,162.9(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 101.1,94.6$, 93.5, 93.4, $74.4,55.6 ;{ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.50$; IR (ATR): $\tilde{\mathrm{v}}=1756,1741,1604,1511,1377$, $1328,1314,1214,1168,1138,1095,1062,1010,980,946,877,842,806,756,718,564,537 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{FO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 394.96266, found: 394.96298.

Figure S6. HPLC traces of compound 15: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(tert-butoxy)-2-(4-fluorophenyl)propanoate (16). Prepared according to the
 general procedure A as a colorless oil; with catalyst 7b: 70\%, 99\% ee; with catalyst 7c: 90\%, 99\% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IBN3, $\emptyset 4.6 \mathrm{~mm}, n$-heptane/iso-propanol $=95.9 / 0.1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, $\mathrm{t}($ minor $)=5.07 \mathrm{~min}, \mathrm{t}($ major $)=5.40 \mathrm{~min}.][\alpha]_{\mathrm{D}}^{20}=-10.9\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, \mathrm{J}=7.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,162.5$ ($\mathrm{d}, \mathrm{J}=246.5 \mathrm{~Hz}$), $131.2(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 95.0,74.3,73.6,63.9,52.1$, 27.5; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.53$; IR (ATR): $\tilde{v}=2974,1754,1606,1509,1364,1229,1193,1138$, 1088, 1046, 908, 837, 804, 753, 736, 717, 630, 569, 519, $429 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Cl}_{3} \mathrm{FNa}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 393.01978, found: 393.02013 .

Figure S7. HPLC traces of compound 16: with catalyst 7b (top, left); with catalyst 7c (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-3-((tert-butyldimethylsilyl)oxy)-2-(4-fluorophenyl)propanoate (17). Prepared
 according to the general procedure \mathbf{A} as a colorless oil; with catalyst 7b: 59\%, 98% ee; with catalyst 7d: 70\%, 99\% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, $\varnothing 4.6 \mathrm{~mm}$, n -heptane/iso-propanol $=99.99 / 0.01, \mathrm{v}=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (minor) $=4.03 \mathrm{~min}, \mathrm{t}$ (major) $=4.26 \mathrm{~min}.][\alpha]_{\mathrm{D}}^{20}=+2.5(\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.71 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (dd, $J=9.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (dd, J = 9.5, 5.6 Hz , $\left.1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.0,162.6(\mathrm{~d}, \mathrm{~J}=246.4 \mathrm{~Hz}), 131.0$ ($\mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}$), $130.2(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 94.9,74.3,65.2,53.9,25.9,18.3,-5.4 ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-114.5$; IR (ATR): $\tilde{\mathrm{v}}=2929,2857,1755,1606,1510,1464,1255,1230,1141,1097$, 1068, 1006, 890, 834, 807, 777, 717, 665, 574, 548, 518, $430 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{FCl}_{3} \mathrm{SiNa}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calcd: 451.04366, found: 451.04369.

Figure S8. HPLC traces of compound 17: with catalyst 7b (top, left); with 7d (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-2-(4-fluorophenyl)-3-(methoxymethoxy)propanoate (18). Prepared according to
 the general procedure A as a colorless oil; with catalyst 7b: 52\%, 99\% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3, $\varnothing 4.6 \mathrm{~mm}, n-$ heptane/iso-propanol $=98 / 2, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ minor $)=7.55 \mathrm{~min}$, t (major) $=6.29$ min. $][\alpha]_{\mathrm{D}}^{20}=-12.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.40-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03 (dd, J = 9.2, 5.3 Hz, 1H), 3.81 (dd, J = 9.4, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.7$, $162.6(\mathrm{~d}, \mathrm{~J}=246.9 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 96.8,94.8,74.3$, 68.9, 55.6, 51.4; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.1$; IR (ATR): $\tilde{\mathrm{v}}=2887,1752,1605,1510,1225,1145$, 1108, 1035, 918, 838, 804, 744, 717, 574, 555, 519, $444 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{FCl}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calcd: 380.98339, found: 380.98354 .

Figure S9. HPLC traces of compound 18: with catalyst 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-((4-bromobenzyl)oxy)-2-(4-fluorophenyl)propanoate (19). Prepared according
 to the general procedure B as a colorless liquid; with complex 7b: 56% yield, 99\% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-$\mathrm{N}-3, \emptyset 4.6 \mathrm{~mm}, \mathrm{n}$-heptane/iso-propanol $=99 / 1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, $\mathrm{t}($ minor $)=5.41 \mathrm{~min}, \mathrm{t}($ major $)=5.90 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=11.8\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.10(\mathrm{~m}$, $2 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.00$ (m, 2H), 3.71 (dd, J = 7.1, 3.3 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6,162.6(\mathrm{~d}, \mathrm{~J}=246.9 \mathrm{~Hz}), 136.9$, $131.7,130.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.4,121.8,115.9(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 94.8,74.3,72.8,71.5$, 51.4; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.0(\mathrm{tt}, J=8.4,5.2 \mathrm{~Hz}$); IR (ATR): $\tilde{\mathrm{v}}=2953,2865,1752,1605,1509$, 1487, 1372, 1227, 1142, 1094, 1070, 1011, 908, 837, 794, 717, 574, 518, $481 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrCl}_{3} \mathrm{FO}_{3}[\mathrm{M}]^{+}$: calcd: 481.92488, found: 481.92462 .

Figure S10. HPLC traces of compound 19: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-phenylpropanoate (20a). Prepared according to the general
 procedure \mathbf{A} as a colorless liquid; with complex $\mathbf{7 b}$: 71% yield, 95% ee; general procedure B as a colorless liquid; with complex 7b: 69\% yield, $>99 \%$ ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $=90 / 10, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=10.22 \mathrm{~min}, \mathrm{t}($ minor $)$ $=11.19 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=4.5\left(\mathrm{c}=1.31, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.52-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=7.5,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.76-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,135.2,128.9,128.4,128.0$, 95.0, 82.1, 74.3, 70.3, 52.5, 32.3, 32.2, 23.7; IR (ATR): $\tilde{v}=2956,2870,1753,1452,1348,1262,1138,1095$, 801, 716, 697, $571 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 387.02920, found: 387.02885.

Figure S11. HPLC traces of compound 20a: with complex 7b; procedure \mathbf{A} (top left); with procedure \mathbf{B} (top right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(p-tolyl)propanoate (20b). Prepared according to the
 general procedure A as a colorless liquid; with complex 7b: 77\% yield, 99% ee; general procedure B as a colorless liquid; with complex 7b: 64\% yield, 98% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IG-3, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $=95 / 5, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=4.28 \mathrm{~min}, \mathrm{t}($ minor $)$ $=5.08 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=5.5\left(\mathrm{c}=0.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.13$ $(\mathrm{m}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.92(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=8.1,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.3,137.7,132.1$, $129.5,128.2,95.0,82.1,74.3,70.4,52.1,32.3,32.2,23.7,21.2 ;$ IR (ATR): $\tilde{v}=2954,2869,1754,1514,1345$, 1138, 1095, $820,798,717,573,506 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 401.04485, found: 401.04466.

Figure S12. HPLC traces of compound 20b: following procedure \mathbf{A} with complex $\mathbf{7 b}$ (top left); the corresponding racemate (top right); following procedure \mathbf{B} with complex $\mathbf{7 b}$ (bottom left); the corresponding racemate (bottom right).

Methyl (R)-4-(3-(cyclopentyloxy)-1-oxo-1-(2,2,2-trichloroethoxy)propan-2-yl)benzoate (20c). Prepared
 according to the general procedure \mathbf{A} in pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a colorless liquid; with complex 7b: 62\% yield, >99\% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IG-3, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $=70 \%$ to 95% methanol in $10 \mathrm{~min}, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=16.23 \mathrm{~min}$, t (major) $=16.89 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=6.5\left(\mathrm{c}=1.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.04-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.91(\mathrm{~m}$, $4 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $170.5,166.9,140.3,130.1,129.9,128.6,94.8,82.2,74.4,69.8,52.5,52.3,32.3,32.2,23.6 ; \operatorname{IR}(A T R): \tilde{v}=$ 2953, 2870, 1754, 1721, 1612, 1435, 1217, 1182, 1141, 1097, 1020, 801, 718, $572 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: calcd: 423.05273, found: 423.05308 .

Figure S13. HPLC traces of compound 20c: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(4-fluorophenyl)propanoate (20d). Prepared according to
 the general procedure \mathbf{A} as a colorless oil; with catalyst $\mathbf{7 b}$ (500 mg scale, see above): 86\%, 99\% ee; with 7c: 90\%, 99\% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak AS-3R, $\varnothing 4.6 \mathrm{~mm}, \mathrm{MeCN} /$ water $=50 / 50, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}($ minor $)=21.70 \mathrm{~min}, \mathrm{t}$ (major) $=23.16 \mathrm{~min}.][\alpha]_{\mathrm{D}}^{20}=-11.1\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.79-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.90(\mathrm{~m}$, 3 H), $3.68-3.59(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.44(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,162.6$ (d, J = 246.6 Hz), $131.0(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 130.1(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 115.7$ ($\mathrm{d}, \mathrm{J}=21.2 \mathrm{~Hz}$), $94.9,82.2,74.3,70.2,51.7,32.3,32.2,23.6$;
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.4 ; \operatorname{IR}(\mathrm{ATR}): \tilde{v}=2956,2870,1753,1606,1509,1346,1227,1139,1096$, 1047, 837, 801, 743, 717, 574, 517, $422 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{FCl}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 405.01978, found: 405.02004.

Figure S14. HPLC traces of compound 20d: with catalyst 7b (top, left); with 7c (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(4-bromophenyl)propanoate (20e). Prepared according to
 the general procedure A as a yellow liquid; with complex 7b: 79\% yield, 99% ee; general procedure B with complex 7b: 60\% yield, $\mathbf{> 9 9 \%}$ ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=$ $80 / 20, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}, \mathrm{t}$ (major $)=7.40 \mathrm{~min}, \mathrm{t}($ minor $)=7.79 \mathrm{~min}]$.
$[\alpha]_{\mathrm{D}}^{20}=-2.1\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; the literature reports for $(R)-20 \mathrm{~d}:[\alpha]_{\mathrm{D}}^{20}=-1.47\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right)^{9}$ This comparison further confirms the assignment originally based on comparison to the stereostructure of product 23b (X-ray, Figure S1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.44$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7,134.3,132.0,130.2,122.1,94.9,82.2,74.4,69.9,51.9,32.3$, 32.2, 23.6; IR (ATR): $\tilde{v}=2972,2865,1725,1610,1435,1369,1278,1103,1019,720,571 \mathrm{~cm}^{-1} ;$ HRMS (ESI $^{+}$) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrCl}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 464.93972, found: 464.93973.

Figure S15. HPLC traces of compound $\mathbf{2 0 e}$: with complex $\mathbf{7 b}$; procedure \mathbf{A} (top left); with procedure \mathbf{B} (top right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-2-(4-cyanophenyl)-3-(cyclopentyloxy)propanoate (20f). Prepared according to
 the general procedure \mathbf{A} in pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a colorless liquid; with complex $\mathbf{7 b}$: 57% yield, 99% ee; general procedure B with complex 7b: 60\% yield, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $=85 / 15, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}, \mathrm{t}$ (major) $=16.91 \mathrm{~min}$, t (minor) $=18.61 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-1.2\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.54-7.45(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.07-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dd}, \mathrm{J}=8.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ $-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0,140.7,132.5,129.5,118.7,112.0$, 94.7, 82.3, 74.4, 69.5, 52.4, 32.23, 32.18, 23.6; IR (ATR): $\tilde{v}=2957,2870,2230,1753,1505,1347,1143$, 1096, 839, 801, 778, 719, $563 \mathrm{~cm}^{-1}$; HRMS (ESI^{+}) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{NO}_{3} \mathrm{Na}$ [M+Na]+ calcd: 412.02445, found: 412.02463.

Figure S16. HPLC traces of compound 20f: with complex 7b; procedure \mathbf{A} (top left); with procedure \mathbf{B} (top right); the corresponding racemate (bottom).

2,2,2-TrichloroethyI (R)-3-(cyclopentyloxy)-2-(4-(methylsulfonyl)phenyl)propanoate (20g). Prepared according to the general procedure B as a colorless liquid; with complex 7b: 54\% yield, $>99 \%$ ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $=95 / 5, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=$ $6.19 \mathrm{~min}, \mathrm{t}$ (minor) $=7.34 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-1.3\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.96-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=12.0, \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (d, $J=12.0, ~ H z, 1 H), 4.08(d d, J=8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=9.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.41(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0,141.7,140.2,129.7$, $127.8,94.7,82.3,74.4,69.6,52.3,44.6,32.25,32.18,23.6$ IR (ATR): $\tilde{v}=2957,2870,1752,1599,1306$, 1090, 956, 760, 717, $533 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 465.0068, found: 465.0067.

Figure S17. HPLC traces of compound 20g: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)

 propanoate (20h). Prepared according to the general procedure \mathbf{B} as a yellow liquid; with complex 7b: 58\% yield, >99\% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=80 / 20$, $\mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}, \mathrm{t}$ (major) $=8.40 \mathrm{~min}, \mathrm{t}($ minor $)=13.83 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=$ 13.2 ($\mathrm{c}=0.62, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.77(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.57(\mathrm{~m}, 1 \mathrm{H}), 1.76$ $-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9,138.2,135.3,127.8$, $95.0,84.0,82.1,74.3,70.2,52.7,32.3,32.2,23.6$; IR (ATR): $\tilde{v}=2958,2866,1755,1716,1612,1398,1359$, $1324,1271,1140,1089,1021,858,800,719,657,573 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{BCl}_{3} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}:$calcd: 513.11441, found: 513.11474.

Figure S18. HPLC traces of compound 20h: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(3-methoxyphenyl)propanoate (21a). Prepared according
 to the general procedure \mathbf{A} as a colorless liquid; with complex $\mathbf{7 b}$: 64% yield, 93% ee; general procedure B as a colorless liquid; with complex 7b: 49\% yield, 97% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3R, $\varnothing 4.6$ mm , methanol $/$ water $=80 / 20, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=21.55 \mathrm{~min}$, t (minor) $=24.41 \mathrm{~min}] .[\alpha]_{D}^{20}=4.4\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.97$ - 6.89 (m, 2H), 6.83 (ddd, $J=8.2,2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-$ $3.90(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{dd}, \mathrm{J}=8.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1,159.9,136.6,129.8,120.8,114.1,113.5,95.0,82.1,74.3,70.3,55.4,52.5,32.3$, 32.2, 23.7; IR (ATR): $\tilde{v}=2955,2869,1753,1600,1585,1490,1446,1345,1261,1138,1094,1042,855$, 793, 714, $571 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 417.03976, found: 417.03927.


```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Peak \# & RetTime
[min] & & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% & \\
\hline & & & & & & --1 & \\
\hline 1 & 1.929 & V & 0.0588 & 23.00724 & 5.38780 & 0.4553 & \\
\hline 2 & 1.998 & VB & 0.0726 & 34.47395 & 6.32086 & 0.6822 & \\
\hline 3 & 3.552 & BB & 0.0859 & 5.11841 & 8.53781e-1 & 0.1013 & \\
\hline 4 & 4.668 & VV R & 0.1423 & 31.73808 & 3.05966 & 0.6280 & \\
\hline 5 & 5.110 & VB & 0.1203 & 8.21713 & 1.04981 & 0.1626 & \\
\hline 6 & 6.451 & BB & 0.1754 & 21.14618 & 1.78316 & 0.4184 & \\
\hline 7 & 9.522 & BB & 0.1941 & 8.09943 & 5.02313e-1 & 0.1603 & \\
\hline 8 & 13.161 & MF & 0.3790 & 148.29694 & 6.52074 & 2.9345 & \\
\hline 9 & 13.438 & FM & 0.3891 & 61.79604 & 2.64680 & 1.2228 & \\
\hline 10 & 16.606 & BB & 0.5600 & 4601.81689 & 126.92947 & 91.0603 1st enantiomer & = 97.2 \% \\
\hline 11 & 18.684 & BB & 0.4504 & 65.54720 & 1.72867 & 1.2970 2nd enantiomer & \\
\hline 12 & 21.118 & BB & 0.5545 & 44.33377 & \(9.39573 \mathrm{e}-1\) & 0.8773 & \\
\hline Totals & & & & 5053.59126 & 157.72264 & & \\
\hline
\end{tabular}
```

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	1.027	BB	0.0561	6.11837	1.42404	0.1816
2	1.929	BV	0.0712	29.14336	5.64860	0.8651
3	1.996	VB	0.0736	34.89260	6.40390	1.0357
4	3.096	BB	0.1452	12.40517	1.02508	0.3682
5	4.702	BB	0.1843	27.04014	1.84124	0.8026
6	5.181	BB	0.1228	86.31013	10.72962	2.5619
7	6.558	BB	0.1645	4.99411	3.65408e-1	0.1482
8	9.735	BB	0.1965	11.98189	7.37727e-1	0.3557
9	11.476	BB	0.2458	5.93979	$2.87748 \mathrm{e}-1$	0.1763
10	13.476	MF	0.4038	271.57382	11.21006	8.0611
11	13.794	FM	0.5140	134.41391	4.35865	3.9898
12	17.065	BV	0.5605	1351.14539	36.53251	40.1058 1st enantiomer
13	19.123	VB	0.6254	1362.60571	32.81698	40.4459 2nd enantiomer
14	21.701	BB	0.5674	30.39170	6.29387e-1	0.9021
Total				3368.95610	114.01096	

Figure S19. HPLC traces of compound 21a: following procedure \mathbf{A} with complex $\mathbf{7 b}$ (top left); the corresponding racemate (top right); following procedure \mathbf{B} with complex $\mathbf{7 b}$ (bottom left); the corresponding racemate (bottom right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(3-fluorophenyl)propanoate (21b). Prepared according to
 the general procedure A as a colorless liquid; with complex 7b: 71\% yield, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak AS-3R, $\varnothing 4.6$ mm , acetonitrile $/ \mathrm{H}_{2} \mathrm{O}=50 / 50, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=22.65 \mathrm{~min}$, t (major) $=25.02 \mathrm{~min}] \cdot[\alpha]_{\mathrm{D}}^{20}=15.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.6$, $163.0(\mathrm{~d}, J=246.4 \mathrm{~Hz}), 137.6(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=22.5 \mathrm{~Hz})$, $115.0(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 94.9,82.2,74.4,70.0,52.2(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}), 32.3,32.2,23.6 ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6,164.2,161.7,137.6(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.3(\mathrm{dd}, J=53.0$, 21.8 Hz), $94.9,82.2,74.4,70.0,52.2(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}), 32.3,32.2,23.6 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-112.53$ (td, J = 9.0, 5.9 Hz); IR (ATR): $\tilde{v}=2957,2870,1754,1614,1591,1488,1449,1373,1346,1263,1136,1096$, 796, $715,689,574 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{FO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}:$calcd: 405.01978, found: 405.01953.

Figure S20. HPLC traces of compound 21b: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(thiophen-3-yl)propanoate (22). Prepared according to the
 general procedure A as a colorless liquid; with complex 7b: 51\% yield, 98\% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3, $\varnothing 4.6 \mathrm{~mm}$, n-heptane/iso-propanol $=98 / 2, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=235 \mathrm{~nm}, \mathrm{t}$ (major) $=3.60 \mathrm{~min}$, $\mathrm{t}($ minor $)=4.04 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-7.3\left(\mathrm{c}=0.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29$ (dd, $J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (ddd, $J=3.0,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.71(\mathrm{~m}$, 2 H), 4.14 (dd, $J=9.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, \mathrm{J}=9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 6 \mathrm{H})$, $1.53-1.47(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.8,135.1,127.6,126.0,123.0,95.0,82.1,74.4,70.0$, $32.4,32.2,23.7$; IR (ATR): $\tilde{v}=2955,2869,1753,1448,1204,1136,1095,1045,849,791,720,570 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 392.98562, found: 392.98539 .

Figure S21. HPLC traces of compound 22: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S)-2-(4-fluorophenyl)-3-phenylpropanoate (23a). Prepared according to the general
 procedure \mathbf{B} but using toluene as solvent and reagent; the title compound was obtained as a white solid; with complex 7b: 80\% yield, 95% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IA-3, $\varnothing 4.6 \mathrm{~mm}, \mathrm{n}$ -heptane/i-propanol $=98 / 2, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=3.43 \mathrm{~min}$, t (major) $=4.13 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=57.7\left(\mathrm{c}=1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28$ $-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.94(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dd}$, $J=8.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.46(\mathrm{dd}, J=13.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}$,CDCl 3): $\delta=171.7,162.4(\mathrm{~d}, \mathrm{~J}=246.4 \mathrm{~Hz}), 138.3,133.4(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 129.9(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 129.1,128.6,126.8$, 115.7 ($\mathrm{d}, \mathrm{J}=21.6 \mathrm{~Hz}$), $94.8,74.2,52.8,39.6 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-114.58 ; \mathrm{IR}$ (ATR): $\tilde{\mathrm{v}}=1737$, 1602, 1508, 1455 1377, 1222, 1204, 1175, 1147, 1077, 1046, 842, 794, 743, 718, 698, 569, 542, $522 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{FO}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd: 396.99356, found: 396.99390.

Figure S22. HPLC traces of compound 23a: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S)-2-(4-fluorophenyl)-3-(4-isopropylphenyl)propanoate (23b). Prepared according
 to the general procedure A as a white solid; with complex 7b: 56\% yield, 97% ee; following procedure B: with complex 7b: 94% yield, 97% ee; with complex 7d: 71\% yield, 97% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=90 / 10, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $220 \mathrm{~nm}, \mathrm{t}$ (minor) $=5.82 \mathrm{~min}, \mathrm{t}$ (major) $=6.78 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=46.7\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=7.40-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=9.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=13.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=13.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}$,CDCl 3): $\delta=171.8,162.4(\mathrm{~d}, J=246.4 \mathrm{~Hz}$), $147.4,135.6,133.6(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 129.9(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 129.0,126.7,115.7(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 94.8,74.2,52.9$, $39.3,33.8,24.1 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.7$; IR (ATR): $\tilde{\mathrm{v}}=2960,1746,1507,1439,1375,1271$, 1220, 1139, 1060, 842, 825, 799, 747, 719, 676, 578, 556, $522 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{FO}_{2} \mathrm{Na}$ [$\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 439.04051, found: 439.04083.

Figure S23. HPLC traces of compound 23b: with complex 7b (left); the corresponding racemate (right).

2,2,2-TrichloroethyI (S,E)-2-(4-fluorophenyl)oct-4-enoate (24). Prepared according to the general
 procedure B as a colorless liquid; with complex 7b: 78\% yield, 98% ee, 10:1 rr; with complex 7d: 84\% yield, 95\% ee, 20:1 rr. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $=85 / 15$, v $=$ $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=23.02 \mathrm{~min}, \mathrm{t}$ (major) $=24.08 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=25.8\left(\mathrm{c}=2.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{dtt}, J=14.8,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dtt}$, $J=15.1,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.61(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=8.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (dddq$, J=15.2,8.1,7.1,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~h}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.9,162.3(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 134.1,133.6(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 125.9$, 115.6 ($d, J=21.3 \mathrm{~Hz}$), $94.9,74.2,51.3,36.4,34.7,22.5,13.7 ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-115.00 ; \mathrm{IR}$ (ATR): $\tilde{v}=2958,752,1605,1509,1438,1226,1137,1124,1043,969,837,799,716,573,519 \mathrm{~cm}^{-1}$; HRMS (El^{+}) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{FO}_{2}[\mathrm{M}]^{+}$: calcd: 366.03509, found: 366.03523 .

Figure S24. HPLC traces of compound 24: with complex 7b (top, left); with complex 7d (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (S,E)-6-((tert-butyldimethylsilyl)oxy)-2-(4-fluorophenyl)hex-4-enoate (25). Prepared according to the general procedure A as a colorless oil; with catalyst 7b: 59\%,
 96% ee; with catalyst 7d: 62%, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, MeCN/water $=65 / 35$, v $=$ $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (minor) $=18.14 \mathrm{~min}, \mathrm{t}($ major $)=19.14 \mathrm{~min}.][\alpha]_{\mathrm{D}}^{20}=$ $+13.2\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.50$ $(\mathrm{m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{dt}, \mathrm{J}=4.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.62$ $-2.50(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8,162.4(\mathrm{~d}, \mathrm{~J}=246.0$ $\mathrm{Hz}), 133.4(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 132.7,129.9(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 126.3,115.7(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 94.9,74.2,63.5,50.9$, 35.8, 26.1, 18.5, -5.1; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.9$ IR (ATR): $\tilde{\mathrm{v}}=2954,2930,2857,1752,1696$, 1605, 1510, 1254, 1227, 1136, 834, 807, 776, 717, 573, $518 \mathrm{~cm}^{-1}$; HRMS (ESI) for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{FCl}_{3} \mathrm{SiNa}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calcd: 491.07496, found: 491.07535.

Figure S25. HPLC traces of compound 25: with catalyst 7b (top, left); with catalyst 7d (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (S,E)-2-(4-fluorophenyl)-5-(4-methoxyphenyl)pent-4-enoate (26). Prepared
 according to the general procedure \mathbf{B} as a colorless oil; with catalyst $\mathbf{7 b}$: $71 \%, 98 \%$ ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OD-3, $\varnothing 4.6 \mathrm{~mm}, n$-heptane/iso-propanol $=99 / 1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=6.84 \mathrm{~min}, \mathrm{t}$ (major $)=7.88 \mathrm{~min}.][\alpha]_{\mathrm{D}}^{20}=+42.3(\mathrm{c}=1.1$, CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.85-$ $6.78(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{dt}, J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{ddd}, J=15.8,7.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.64(\mathrm{~m}, 2 \mathrm{H}), 3.87-$ $3.80(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.01$ (dddd, $J=14.3,8.7,7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta=171.8,162.4$ (d, $J=246.4 \mathrm{~Hz}$), 159.2, 133.4 ($\mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}$), 132.4, 130.0, 129.9 ($\mathrm{d}, J=8.1 \mathrm{~Hz}$), $127.4,123.8,115.8(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 114.1,94.9,74.3,55.4,51.2,36.9{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ -114.7; IR (ATR): $\tilde{v}=2935,1749,1606,1508,1245,1174,1160,1133,1034,966,837,791,759,716,572$, $520,436 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{FCl}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calcd: 453.01978, found: 453.01974.

Figure S26. HPLC traces of compound 26: with catalyst 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S,E)-5-bromo-2-(4-fluorophenyl)pent-4-enoate (27). Prepared according to the
 general procedure B as a colorless oil; with catalyst 7b: 80\%, 96% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OD-3, $\varnothing 4.6 \mathrm{~mm}, \mathrm{n}$ -heptane/iso-propanol $=99 / 1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=4.45 \mathrm{~min}$, t (major) $=5.09 \mathrm{~min}.][\alpha]_{\mathrm{D}}^{20}=+3.7\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33$ $-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.20-6.05(\mathrm{~m}, 2 \mathrm{H}), 4.81-4.64(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, \mathrm{J}=8.5,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.93-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,162.5(\mathrm{~d}, \mathrm{~J}=246.9 \mathrm{~Hz}), 133.7$, 132.6 ($d, J=3.2 \mathrm{~Hz}$), 129.8 ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}$), 116.0 ($\mathrm{d}, \mathrm{J}=21.7 \mathrm{~Hz}$), 108.0, $94.8,74.3,50.1,36.5 ;{ }^{19}$ F NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.13$; IR (ATR): $\tilde{v}=2929,1750,1605,1509,1372,1225,1199,1161,1134,1063,932$, 837, 794, $745,715,574,555,518,409 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{BrFCl}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: calcd: 402.90649, found: 402.90682 .

Figure S27. HPLC traces of compound 27: with catalyst 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl

(S,E)-2-(4-fluorophenyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4enoate (28). Prepared according to the general procedure B as a colorless oil; with catalyst 7b: 55\%, 97\% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel ID-3, $\varnothing 4.6 \mathrm{~mm}, \mathrm{MeCN} /$ water $=50 / 50, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, t (minor) $=14.91 \min , \mathrm{t}$ (major $)=16.22 \min .][\alpha]_{\mathrm{D}}^{20}=+28.7\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{dt}, J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dt}, J=17.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.57(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dd}, \mathrm{J}=8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dddd}, J=15.4,8.9,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dtd, $J=14.8,6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.7,162.4(\mathrm{~d}, \mathrm{~J}=246.0 \mathrm{~Hz})$, $149.2,133.3(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 122.0,94.8,83.4,74.2,49.9,39.1$, $24.9(2 x) ;{ }^{11} \mathrm{~B}$ NMR (128 MHz, CDCl_{3}): $\delta=-14.6 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.7$; IR (ATR): $\tilde{\mathrm{v}}=2930$, 1753, 1692, 1640, 1509, 1362, 1324, 1225, 1141, 1003, 972, 838, 803, 718, 574, 517, $441 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{BFCl}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calcd: 473.06312, found: 473.06331.

Figure S28. HPLC traces of compound 28: with catalyst 7b (left); the corresponding racemate (right).

1-Ethyl 6-(2,2,2-trichloroethyl) (S,E)-5-(4-fluorophenyl)hex-2-enedioate (29). Prepared according to the general procedure B as a colorless liquid; with complex 7b: 50\% yield, 94\% ee.
 [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, $\varnothing 4.6$ mm, n-heptane/i-propanol $=98 / 2, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=3.09$ \min , t (minor $)=7.56 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=40.8\left(\mathrm{c}=1.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.36-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dt}, J=15.8,7.03 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=15.6,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.78-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dtd}, J=$ $15.3,6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.2,166.1,162.5(\mathrm{~d}, \mathrm{~J}=$ $247.0 \mathrm{~Hz}), 144.1,132.6(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 124.2,116.0(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}), 94.7,74.3,60.5$, 49.6, 35.5, 14.3; ${ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl_{3}): $\delta=-114.07$; IR (ATR): $\tilde{\mathrm{v}}=1751,1716,1657,1509,1369,1265$, 1224, 1192, 1137, 1037, 838, 805, 744, 716, 574, $518 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: calcd: 397.01710, found: 397.01742.

Figure S29. HPLC traces of compound 29: with complex 7b (left); the corresponding racemate (right).

1-Methyl 8-(2,2,2-trichloroethyl) ($(S, 2 E, 4 E)$-7-(4-fluorophenyl)octa-2,4-dienedioate (30). Prepared

according to the general procedure \mathbf{B} as a colorless liquid; with complex $\mathbf{7 b}$: 68% yield, $>99 \%$ ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $=90 / 10, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm, t (major) $=17.21 \mathrm{~min}, \mathrm{t}($ minor $)=19.14 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=68.3\left(\mathrm{c}=0.46, \mathrm{CHCl}_{3}\right) ;$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39$ (ddd, $\left.J=15.4,11.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.11-7.00$ $(\mathrm{m}, 2 \mathrm{H}), 6.90-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.01-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.69-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.52(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dtd}, J=14.6,8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dtd}, J=14.4,7.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3,167.4,162.4(\mathrm{~d}, \mathrm{~J}=246.9 \mathrm{~Hz}), 144.2,138.9,132.7(\mathrm{~d}, \mathrm{~J}=$ $3.5 \mathrm{~Hz}), 131.0,129.7(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 120.4,115.8(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 94.6,74.1,51.6,50.2,36.3$; ${ }^{19} \mathrm{~F}$ NMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-114.22(\mathrm{tt}, \mathrm{J}=8.7,5.2 \mathrm{~Hz}$); IR (ATR): $\tilde{\mathrm{v}}=2995,1723,1604,1509,1437,1224,1143,1035$, 980, $839,805,716,572,518,425 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{FO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 430.99904, found: 430.99875.

Figure S30. HPLC traces of compound 30: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S)-2-(4-fluorophenyl)-5-(trimethylsilyl)pent-4-ynoate (31a). Prepared according to
 the general procedure \mathbf{B} as a colorless liquid; with complex $\mathbf{7 b}$: $<51 \%$ yield (the product contained compound 11 as inseparable impurity, ca. 25%), 95% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IG-G, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=60 / 40, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=8.79 \mathrm{~min}$, t (major) $=10.75 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=26.0\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=$ $\left.16.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=16.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9,162.6$ ($\mathrm{d}, J=246.5 \mathrm{~Hz}$), $132.5(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 94.7,87.5,81.5,74.3,50.2$,
 1605, 1509, 1422, 1250, 1226, 1137, 1030, 837, 759, 717, 574, $516 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{FO}_{2} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 417.00179, found: 417.00140.

Figure S31. HPLC traces of compound 31a: with complex 7b (left); the corresponding racemate (right).

2,2,2-TrichloroethyI (S)-2-(4-fluorophenyl)-5-phenylpent-4-ynoate (31b). Prepared according to the general procedure \mathbf{B} as a colorless liquid; with complex $\mathbf{7 b}$: $<55 \%$ yield (the sample contained compound 11 as inseparable impurity, ca. 10\%), 96% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OD-3, $\varnothing 4.6 \mathrm{~mm}, \mathrm{n}$ -heptane/iso-propanol $=99 / 1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=5.20 \mathrm{~min}$, t (major) $=6.81 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=36.5\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33$ $-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, 1 H), 3.20 ($\mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.93(\mathrm{dd}, J=16.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.0$, $162.6(\mathrm{~d}, \mathrm{~J}=246.9 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 131.7,129.9(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 128.4,128.2,123.3,115.8(\mathrm{~d}, J=$ $21.6 \mathrm{~Hz}), 94.8,86.2,82.9,74.3,50.3,24.1$; ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-114.1$ (ddd, $J=13.8,8.8,5.1 \mathrm{~Hz}$); IR (ATR): $\tilde{v}=2957,1753,1604,1509,1142,1372,1224,1136,1060,837,806,755,717,691,574,518 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (EI^{+}) for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{FO}_{2}[\mathrm{M}]^{+}$: calcd: 398.00379, found: 398.00461.

Figure S32. HPLC traces of compound 31b: with complex 7b (left); the corresponding racemate (right).

5-Methyl 1-(2,2,2-trichloroethyl) (2S)-2-(4-fluorophenyl)-4-methylpentanedioate (33). Prepared
 according to the general procedure B as a colorless liquid; with complex 7b: 47\% yield, $\mathrm{dr}=1: 1,92 \%$ ee/93\% ee for the two diastereomers [The ee's were determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3, $\varnothing 4.6 \mathrm{~mm}, \mathrm{n}$ heptane/ethanol $=99 / 1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ minor diastereomer 1$)=$ $6.90 \mathrm{~min}, \mathrm{t}($ major diastereomer 1$)=9.77 \mathrm{~min} ; \mathrm{t}$ (major diastereomer 2$)=7.67 \mathrm{~min}, \mathrm{t}($ minor diastereomer 2) $=8.39 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=39.5\left(\mathrm{c}=0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.02$ $(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{dd}, \mathrm{J}=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}$, 3 H), 3.64 (s, 3H), 2.49 (ddd, $J=14.0,8.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dqd, J = 8.9, 7.1, 5.5 Hz , 1H), 2.21 (d, J = 7.4 Hz, 1H), 2.20 (d, J = $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95 (ddd, $J=13.9,9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.20 (d, J = 7.1 Hz , 3 H), $1.18(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=176.3,176.2,171.88(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}), 171.87$, $171.85,171.84(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}), 162.47(\mathrm{~d}, \mathrm{~J}=246.7 \mathrm{~Hz}), 162.45(\mathrm{~d}, \mathrm{~J}=246.4 \mathrm{~Hz}), 133.22(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 133.16$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}), 129.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 115.90,115.86(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 115.82(\mathrm{~d}, J=$ $21.5 \mathrm{~Hz}), 115.75,94.8,77.4,77.2,77.0,74.23,74.21,51.92,51.89,48.8,48.5,37.6,37.0,36.8,36.6,17.7$, 17.6; ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-114.46,-114.54$ (m); IR (ATR): $\tilde{\mathrm{v}}=2954,1733,1604,1509,1459,1436$, 1375, 1264, 1224, 1140, 1059, 839, 803, 716, 572, $519 \mathrm{~cm}^{-1}$; HRMS (EI') for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{FO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 406.99905, found: 406.99904.

Figure S33. HPLC traces of compound 33: with complex 7b (left); the corresponding racemate (right).

Reaction with Gaseous Substrates

Representative Procedure for C-H Insertion into Ethane. 2,2,2-Trichloroethyl (S)-2-(4fluorophenyl)butanoate (34a). A 45 mL stainless steel autoclave equipped with a magnetic stir bar was charged with the catalyst ($0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%$). The autoclave was evacuated and backfilled with argon 3 times and then purged with ethane. $\mathrm{C}_{6} \mathrm{~F}_{6}(1 \mathrm{~mL})$ was added and the autoclave was pressurized with ethane to ≈ 25 bar. A solution of the diazo derivative $8 \mathrm{c}(31.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{~F}_{6}(3 \mathrm{~mL})$ was added dropwise over 30 min to the pressurized autoclave with the help of an hplc pump. After the addition was complete, the mixture was left stirring at room temperature for 2 h . The pressure was carefully released and the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/EtOAc) afforded the title compound; with complex 7b: 80% yield, 90% ee; with complex 7d: 61\% yield, 95% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, $\varnothing 4.6 \mathrm{~mm}$, n-heptane2-propanol $=99.9 / 0.1, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=4.72 \mathrm{~min}, \mathrm{t}($ major $)=5.00 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}$ $=24.2\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.78-4.63$ $(\mathrm{m}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.4,162.3(\mathrm{~d}, J=245.9 \mathrm{~Hz}), 133.8(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 129.9(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 115.6(\mathrm{~d}, \mathrm{~J}=$ $21.2 \mathrm{~Hz}), 95.0,74.1,52.6,26.6,12.2 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-115.07$; $\mathrm{IR}(\mathrm{ATR}): \tilde{v}=1749,1604$, 1509, 1224, 1161, 1138, 1089, 836, 804, 785, 770, 715, 573, $519 \mathrm{~cm}^{-1}$; HRMS (EI ${ }^{+}$) for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{FO}_{2}[\mathrm{M}]^{+}$: calcd: 311.98814, found: 311.98807.

Figure S34. HPLC traces of compound 34a: with complex 7d (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S)-2-(4-bromophenyl)butanoate (34b). Prepared analogously as a colorless liquid;
 with complex 7b: 80\% yield, 94% ee; [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, $\varnothing 4.6 \mathrm{~mm}, \mathrm{n}$-heptane/2-propanol $=99.9 / 0.1$, v $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=5.52 \mathrm{~min}, \mathrm{t}($ major $)=5.89 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=14.3$ ($\mathrm{c}=2.5, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{dt}, J=13.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.93$ ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,137.1,131.9,130.0,121.7,94.9,74.2,52.8,26.5$, 12.2; IR (ATR): $\tilde{v}=1749,1488,1458,1408,1371,1265,1511,1193,1139,1091,1073,1011,826,785,716$, 571, $515 \mathrm{~cm}^{-1}$; HRMS (EI+) for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrCl}_{3} \mathrm{O}_{2}[\mathrm{M}]^{+}$: calcd: 371.90809, found: 371.90832.

Figure S35. HPLC traces of compound 34b: with complex 7b (left); the corresponding racemate (right).

Methyl (S)-4-(1-oxo-1-(2,2,2-trichloroethoxy)butan-2-yl)benzoate (34c). A 45 mL stainless steel autoclave
 equipped with a magnetic stir bar was charged with catalyst 7b (0.001 mmol , $1 \mathrm{~mol} \%$) and the diazo compound (0.1 mmol). The autoclave was evacuated, backfilled with argon 3 times, and then purged with ethane. Next, the autoclave was cooled with dry ice, $\mathrm{C}_{6} \mathrm{~F}_{6}(3 \mathrm{~mL})$ was added. The autoclave was pressurized with ethane to 25 bar and the mixture was left stirring for 2 h while slowly reaching room temperature. After that, the pressure was released and the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/EtOAc) afforded the title compound as a colorless liquid (15.2 mg, 43\% yield, 96\% ee). [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, $\emptyset 4.6 \mathrm{~mm}$, n -heptane $/ 2-$ propanol $=98 / 2, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=5.50 \mathrm{~min}, \mathrm{t}($ major $)=6.60$ $\min] .[\alpha]_{\mathrm{D}}^{20}=20.5\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.05-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H})$, $4.78-4.65(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=171.8,166.9,143.2,130.1,129.6,128.4,94.9,74.2,53.4,52.3$, 26.5, 12.2; IR (ATR): $\tilde{v}=1751,1721,1611,1435,1276,1182,1141,1109,1019,857,815,786,717,572 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 374.99281 , found: 374.99305 .

Figure S36. HPLC traces of compound $\mathbf{3 4 c}$: with complex $\mathbf{7 b}$ (left); the corresponding racemate (right).

Cyclopropanation of Propene. 2,2,2-Trichloroethyl (1S,2S)-1-(4-fluorophenyl)-2-methylcyclopropane-1-
 carboxylate (35). A 45 mL stainless steel autoclave equipped with a magnetic stir bar was charged with catalyst 7b ($1.45 \mathrm{mg}, 0.0005 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$). The autoclave was evacuated and backfilled with argon 3 times and purged with propene. Pentane (1 mL) was added and the autoclave was pressurized with propene to 9 bar. A solution of the diazo compound $8 \mathrm{c}(31.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ in pentane (3 mL) was added over 30 min into the pressurized autoclave with the help of an hplc pump. After the addition was complete, the reaction mixture was left stirring at room temperature for 2 h before the pressure was carefully released and the reaction mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/EtOAc) afforded the title compound as a colorless liquid ($28.0 \mathrm{mg}, 86 \%$ yield, 94\% ee). [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, acetonitrile/water $=60 / 40, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=23.42 \mathrm{~min}, \mathrm{t}($ major $)=25.67 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}$ $=-4.9\left(\mathrm{c}=2.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dp}, J=9.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=9.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{dd}$, $J=6.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0,162.2(\mathrm{~d}, J=246.0 \mathrm{~Hz})$, 133.3 ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}$), $131.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 115.1(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 95.2,74.4,33.0,23.9,23.4,15.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-115.05 ; \mathrm{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=1731,1512,1369,1246,1222,1158,1115,1090,1046,884$, 839, 803, 752, 719, 590, 571, $543 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{FO}_{2}[\mathrm{M}]^{+}$: calcd: 323.98814, found: 323.98815.

Figure S37. HPLC traces of compound 35: with complex 7b (left); the corresponding racemate (right).

Further Reactions

2,2,2-Trichloroethyl (1R,2R)-2-bromo-1-(4-fluorophenyl)-2-methylcyclopropane-1-carboxylate (37a).

 NOE [major isomer] Prepared according to the general procedure \mathbf{B} as a colorless liquid; with complex 7b: 69\% yield, $\mathrm{dr}=95: 5$, 92% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, $\varnothing 4.6 \mathrm{~mm}$, methanol/water $=85 / 15, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, $\mathrm{t}($ minor $)=19.13 \mathrm{~min}, \mathrm{t}($ major $)=21.51 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=26.2\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.2,162.6(\mathrm{~d}$, $J=247.0 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 132.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 114.9(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 94.5,75.0,40.6,39.8,28.8$, 26.6; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.63$ (tt, J = 8.7, 5.4 Hz); IR (ATR): $\tilde{v}=2962,2927,1729,1602,1509$, 1424, 1371, 1291, 1265, 1217, 1155, 1111, 1054, 851, 806, 713, 600, 567, $529 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrCl}_{3} \mathrm{FO}_{2}[\mathrm{M}]^{+}$: calcd: 401.89867, found: 401.89908 .

Figure S38. HPLC traces of compound 37a: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl

(1R,2S)-1-(4-fluorophenyl)-2-methyl-2-((trimethylsilyl)methyl)cyclopropane-1carboxylate (37b). Prepared according to the general procedure B as a colorless liquid; with complex 7b: 68\% yield, $d r=63: 37$, major 90% ee, minor 95% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IG-G, $\varnothing 4.6 \mathrm{~mm}$, Acetonitrile/water $=65 / 35, v=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, major diastereomer t (minor) $=10.38 \mathrm{~min}, \mathrm{t}$ (major) $=11.95 \mathrm{~min}$; diastereoisomer t (major) $=9.43 \mathrm{~min}, \mathrm{t}$ (minor) $=10.12 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-32.1\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=7.33$ (ddd, $J=8.5,5.3,2.5 \mathrm{~Hz}, 2.80 \mathrm{H}), 7.04-6.93(\mathrm{~m}, 2.64 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=12.0$ $\mathrm{Hz}, 0.36 \mathrm{H}), 4.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.35 \mathrm{H}), 1.84(\mathrm{dd}, J=5.1$, $1.5 \mathrm{~Hz}, 0.34 \mathrm{H}), 1.79(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 0.38 \mathrm{H})$ $0.88(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}),-0.00(\mathrm{~s}, 3.12 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta=170.7(2 \mathrm{C}), 162.1(\mathrm{~d}, \mathrm{~J}=245.7$ $\mathrm{Hz}), 162.0(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 133.1(\mathrm{~m}), 129.6(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 114.9$ ($\mathrm{d}, \mathrm{J}=21.2 \mathrm{~Hz}$), $114.8(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 95.02,94.97,74.8,74.7,39.6,39.4,30.9,30.6,28.1,27.2,26.5,25.9$, 24.2, 22.4, 21.6, 21.1, -0.01, $-0.03 ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-115.3(\mathrm{tt}, \mathrm{J}=8.6,5.4 \mathrm{~Hz}, 0.35 \mathrm{~F}),-115.4$ (tt, J = 8.6, 5.4 Hz, 1F); IR (ATR): $\tilde{v}=2954,1732,1603,1510,1302,1248,1222,1181,1130,1050,835,806$, 755, 718, 570, $546 \mathrm{~cm}^{-1}$; HRMS (EI ${ }^{+}$for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{FO}_{2} \mathrm{Si}[\mathrm{M}]^{+}$: calcd: 410.04332, found: 410.04372.

Figure S39. HPLC traces of compound 37b with complex 7b: minor diastereomer (top left); the corresponding racemate (top right); major diastereomer (bottom left); the corresponding racemate (bottom right).

S2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

S2: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

S4: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

S4: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

S5: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S5: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{ll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$

S6: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
(~N

> ̃. i i

S6: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^0]S7: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S7: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 270 | 260 | 250 | 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | -20 | -30 | -40 |
| :--- |

7b: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

7b: ${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

7c: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 353 \mathrm{~K}$)

7c: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 353 \mathrm{~K}$)

7d: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 353 \mathrm{~K}$):

9a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

9a: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

9a: HSQC NMR ($400 \mathrm{MHz}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

9a: HMBC NMR (400MHz, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

9a: NOESY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

10: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

10: ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}):

[^1]11: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

11: ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^2]12: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

12: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(

14: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

14: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^3]14: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

15: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

15: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

										18	70	60	50		30			
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

15: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^4]16: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

16: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

16: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

17: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

17: ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]17: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

18: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

18: ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

18: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

19: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

19: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

19: ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^6]20a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20a: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20b: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20c: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

20c: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20d: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20d: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^7]20d: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20e：${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

ヘヘNへへへべN

20e：${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

20f: ${ }^{13}$ C NMR (101 MHz, CDCl_{3})

20g: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20g: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20h: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20h: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
葉
N

21a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

21a: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

21b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

21b: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

21b: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

22: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

22: ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^8]23a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

23a: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

```
#
```


23a: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^9]23b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

23b: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

23b: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^10]24: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

24: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$\stackrel{0}{m}$

24: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

25: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

25: ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

25: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

26: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

26: ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

26: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

27: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

27: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

27: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

28: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

28: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

28: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

28: ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^11]29: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

路

29: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

29: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

30: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Mल

30: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

30: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

31a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (the sample contained compound $\mathbf{1 1}$ as inseparable impurity, ca. 25\%)

31a: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (the sample contained compound 11 as inseparable impurity, ca. 25\%)

31a: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (the sample contained compound 11 as inseparable impurity, ca. 25%)

$$
\underbrace{\text { M }}
$$

[^12]31b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (the sample contained compound 11 as inseparable impurity, ca. 10%)

31b: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (the sample contained compound 11 as inseparable impurity, ca. 10\%)

31b: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (the sample contained compound $\mathbf{1 1}$ as inseparable impurity, ca. 10\%)

[^13]33: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); mixture of diastereomers

33: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); mixture of diastereomers

33: ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

34a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

34a: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

34a: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^14]34b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

34b: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

34c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

34c: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

35: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

35: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{1} \end{aligned}$	93	
	¢ِّ	
\|	\|	

35: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^15]37a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); mixture of diastereomers ($\mathrm{dr}=95: 5$)

			路

37a: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$); mixture of diastereomers ($\mathrm{dr}=95: 5$)

37a: ${ }^{19}{ }^{\mathrm{F}} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^16]37b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); mixture of diastereomers

37b: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$); mixture of diastereomers

37b: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

References

1 L. E. Löffler, M. Buchsteiner, L. R. Collins, F. P. Caló, S. Singha, A. Fürstner, Helv. Chim. Acta 2021, 104, e2100042.
C. Tortoreto, D. Rackl, H. M. L. Davies, Org. Lett. 2017, 19, 770.
L. Fu, J. D. Mighion, E. A. Voight, H. M. L. Davies, Chem. Eur. J. 2017, 23, 3272.
M. Dudic, I. Císarova, J. Michl, J. Org. Chem. 2012, 77, 68.
S. Furukawa, T. Yasuda, J. Mater. Chem. A 2019, 7, 14806.
S. Singha, M. Buchsteiner, G. Bistoni, R. Goddard, A. Fürstner, J. Am. Chem. Soc. 2021, 143, 5666.
K. Liao, S. Negretti, D. G. Musaev, J. Bacsa, H. M. L. Davies, Nature 2016, 533, 230-234.
H. Suematsu, T. Katsuki, J. Am. Chem. Soc. 2009, 131, 14218.
D. M. Guptill, H. M. L. Davies, J. Am. Chem. Soc. 2014, 136, 17718-17721.

[^0]:

[^1]: $\begin{array}{ll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & \end{array}$

[^2]:

[^3]: $\begin{array}{lllllllllllllllllllllllllllllll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30\end{array}-40$

[^4]:

[^5]:

[^6]:

[^7]:

[^8]:

[^9]:

[^10]:

[^11]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150\end{array}$

[^12]:

[^13]:

[^14]:

[^15]:

[^16]:

