Supporting Crystallographic Data

Figure S1. Structure of 2,2,2-trichloroethyl (*S*)-2-(4-fluorophenyl)3-(4-isopropylphenyl)propanoate (**23b**) in the solid state; all H-atoms removed for clarity

X-ray Crystal Structure Analysis of Compound 23b: $C_{20} H_{20} Cl_3 F O_2$, $M_r = 417.73 \text{ g mol}^{-1}$, colorless prism, crystal size 0.31 x 0.14 x 0.11 mm³, monoclinic, space group $P2_1[4]$, a = 10.3857(19) Å, b = 5.6716(12) Å, c = 17.111(3) Å, $\beta = 98.769(11)^\circ$, V = 996.1(3) Å³, T = 100(2) K, Z = 2, $D_{calc} = 1.393 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 0.480 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.90$, $T_{max} = 0.95$), Bruker-AXS Kappa Mach3 with APEX-II detector and IµS microfocus source, $2.878 < \theta < 33.078^\circ$, 17357 measured reflections, 7426 independent reflections, 6619 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0673$. The structure was solved by *SHELXT* and refined by full-matrix least-squares (*SHELXL*) against F^2 to $R_1 = 0.071 [I > 2\sigma(I)]$, $wR_2 = 0.189$, S = 1.067, 237 parameters, absolute structure parameter = 0.04(7).

Largest diff. peak and hole = 1.1 (0.81 Å from Cl2) and -1.0 (0.74 Å from Cl1) $e \cdot Å^{-3}$.

Complete .cif-data of the compound are available under CCDC- 2191047

INTENSITY STATISTICS FOR DATASET # 1 14225sadabs.raw

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.61	112	120	93.3	3.61	170.32	21.36	0.0665	0.0482
2.61 - 1.76	266	266	100.0	3.13	75.75	18.99	0.0723	0.0523
1.76 - 1.40	366	367	99.7	3.13	40.62	18.21	0.0640	0.0518
1.40 - 1.23	391	. 392	99.7	2.90	31.99	17.46	0.0625	0.0549
1.23 - 1.11	384	385	99.7	2.98	26.98	17.28	0.0605	0.0554
1.11 - 1.03	397	397	100.0	2.77	17.09	15.65	0.0618	0.0584
1.03 - 0.97	354	354	100.0	2.69	12.26	14.17	0.0590	0.0606
0.97 - 0.92	405	405	100.0	2.63	10.94	14.09	0.0631	0.0637
0.92 - 0.88	401	401	100.0	2.44	11.47	12.84	0.0638	0.0679
0.88 - 0.85	309	309	100.0	2.30	9.48	11.98	0.0620	0.0728
0.85 - 0.82	372	373	99.7	2.25	7.52	11.43	0.0635	0.0777
0.82 - 0.79	454	458	99.1	2.18	6.47	10.20	0.0622	0.0826
0.79 - 0.77	361	. 363	99.4	2.01	5.24	9.09	0.0762	0.0964
0.77 - 0.75	371	. 372	99.7	1.99	5.03	8.53	0.0790	0.1003
0.75 - 0.73	412	416	99.0	1.92	4.82	7.90	0.0880	0.1079
0.73 - 0.71	430	439	97.9	1.88	4.35	7.36	0.0898	0.1189
0.71 - 0.70	245	251	97.6	1.78	3.70	6.34	0.0983	0.1412
0.70 - 0.68	580	594	97.6	1.76	3.17	5.40	0.1130	0.1708
0.68 - 0.67	258	281	91.8	1.62	3.26	4.98	0.1190	0.1862
0.67 - 0.66	305	334	91.3	1.60	2.61	4.32	0.1335	0.2259
0.66 - 0.65	259	297	87.2	1.51	2.70	4.12	0.1284	0.2347
0.75 - 0.65	2489	2612	95.3	1.74	3.59	5.93	0.1036	0.1543
Inf - 0.65	7432	7574	98.1	2.29	15.94	11.23	0.0672	0.0648

Cl(1)-C(1)	1.768(4)	Cl(2)-C(1)	1.770(4)
Cl(3)-C(1)	1.763(4)	F(1)-C(9)	1.357(4)
O(1)-C(2)	1.424(4)	O(1)-C(3)	1.351(4)
O(2)-C(3)	1.198(5)	C(1)-C(2)	1.519(5)
C(3)-C(4)	1.516(5)	C(4)-C(5)	1.539(4)
C(4)-C(6)	1.524(4)	C(5)-C(12)	1.503(4)
C(6)-C(7)	1.392(5)	C(6)-C(11)	1.391(5)
C(7)-C(8)	1.396(4)	C(8)-C(9)	1.374(6)
C(9)-C(10)	1.384(5)	C(10)-C(11)	1.394(4)
C(12)-C(13)	1.387(5)	C(12)-C(17)	1.399(5)
C(13)-C(14)	1.395(5)	C(14)-C(15)	1.388(5)
C(15)-C(16)	1.396(5)	C(15)-C(18)	1.521(5)
C(16)-C(17)	1.392(4)	C(18)-C(19)	1.503(7)
C(18)-C(20)	1.515(6)		
C(3)-O(1)-C(2)	118.4(3)	Cl(1)-C(1)-Cl(2)	110.2(2)
Cl(3)-C(1)-Cl(1)	108.92(19)	Cl(3)-C(1)-Cl(2)	108.62(18)
C(2)-C(1)-Cl(1)	110.2(2)	C(2)-C(1)-Cl(2)	107.7(2)
C(2)-C(1)-Cl(3)	111.2(3)	O(1)-C(2)-C(1)	109.4(3)
O(1)-C(3)-C(4)	109.3(3)	O(2)-C(3)-O(1)	124.8(3)
O(2)-C(3)-C(4)	125.9(3)	C(3)-C(4)-C(5)	109.9(3)
C(3)-C(4)-C(6)	110.1(3)	C(6)-C(4)-C(5)	111.4(3)
C(12)-C(5)-C(4)	114.3(3)	C(7)-C(6)-C(4)	118.9(3)
C(11)-C(6)-C(4)	121.5(3)	C(11)-C(6)-C(7)	119.6(3)
C(6)-C(7)-C(8)	120.6(3)	C(9)-C(8)-C(7)	118.2(3)
F(1)-C(9)-C(8)	118.7(3)	F(1)-C(9)-C(10)	118.1(3)
C(8)-C(9)-C(10)	123.2(3)	C(9)-C(10)-C(11)	117.8(3)
C(6)-C(11)-C(10)	120.7(3)	C(13)-C(12)-C(5)	120.8(3)
C(13)-C(12)-C(17)	118.3(3)	C(17)-C(12)-C(5)	120.9(3)
C(12)-C(13)-C(14)	121.1(3)	C(15)-C(14)-C(13)	120.9(3)
C(14)-C(15)-C(16)	118.1(3)	C(14)-C(15)-C(18)	120.6(3)
C(16)-C(15)-C(18)	121.3(3)	C(17)-C(16)-C(15)	121.2(4)
C(16)-C(17)-C(12)	120.4(3)	C(19)-C(18)-C(15)	112.7(4)
C(19)-C(18)-C(20)	111.3(6)	C(20)-C(18)-C(15)	110.5(3)

 Table 2. Bond lengths [Å] and angles [°].

General. Unless stated otherwise, all reactions were carried out under argon atmosphere in flame dried Schlenk glassware. The solvents were purified by distillation over the indicated drying agents under argon: THF (Mg/anthracene), Et₂O (Mg/anthacene), pentane (Na/K), CH₂Cl₂ (CaH₂). MeCN and Et₃N were dried by an absorption solvent purification system based on molecular sieves. Flash chromatography: VWR Chemicals silica gel 40 – 63 μ m. TLCs were stained with vanillin/H₂SO₄, anisaldehyde or PMA.

C₆F₆ was purchased from ABCR and used as received

NMR spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AV III 600 spectrometers in the solvents indicated; chemical shifts are given in ppm relative to TMS, coupling constants (*J*) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ_{C} = 77.2 ppm; residual CHCl₃: δ_{H} = 7.26 ppm; CD₂Cl₂: δ_{C} = 54.0 ppm; residual CHDCl₂: δ_{H} = 5.32 ppm; (CD₃)₂SO: δ_{C} = 39.5 ppm; residual (CD₃)(CD₂H)SO: δ_{H} = 2.50 ppm; C₆D₆: δ_{C} = 128.1 ppm; residual C₆D₅H: δ_{H} = 7.16 ppm). Proton and carbon assignments were established using HSQC, HMBC and NOESY experiments.

IR: Alpha Platinum ATR (Bruker), wavenumbers (\tilde{v}) in cm⁻¹.

MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker) or Thermo Scientific LTQ-FT or Thermo Scientific Exactive. HRMS: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan) or Thermo Scientific LTQ-FT or Thermo Scientific Exactive. GC-MS was measured on a Shimadzu GCMS-QP2010 Ultra instrument.

HPLC analyses for the determination of enantiomeric excesses were conducted on a Shimadzu LC 2020 instrument equipped with a Shimadzu SPD-M20A UV/VIS detector. Solvents were purchased in HPLC grade and used without further purification. The exact conditions are specified for each substrate.

Optical rotations were measured with an A-Krüss Otronic Model P8000-t polarimeter at a wavelength of 589 nm. The values are given as specific optical rotation with exact temperature, concentration (c/(10 mg/mL)) and solvent.

Unless stated otherwise, all commercially available compounds (abcr, Acros, TCI, Aldrich, Alfa Aesar, Fluoro Chem) were used as received.

[BiRh(OC(O)CF₃)₄] was prepared according to the literature.¹

The diazo derivatives were prepared according to literature procedures; the recorded characterization data matched the literature.^{2,3,6}

Preparation of the New Heterobimetallic Paddlewheel Complexes

Scheme S1. Preparation of the new [BiRh] tetracarboxylate complexes **7c,d** comprising iodinated phthalimido "paddles"

5,6-Diiodoisobenzofuran-1,3-dione (S2). Acetic anhydride (15 mL) was added to a round-bottom flask charged with 4,5-diiodophthalic acid (2.45 g, 5.86 mmol)⁴ and the mixture was stirred at 145°C (bath temperature) for 2 h. Excess acetic anhydride was removed under reduced pressure and the residue was dried under high vacuum to give the desired product as a pale yellow solid (2.12 mg, 90%). ¹H NMR (400 MHz, DMSO-d₆): δ = 8.53 (s, 2H); ¹³C NMR (101 MHz, DMSO-d₆): δ = 161.8, 134.6, 131.5, 119.7; IR (ATR): \tilde{v} = 1843, 1777, 1730, 1698, 1537, 1350, 1289, 1235, 1080, 899, 870, 853, 727, 693, 583 cm⁻¹; HRMS (EI⁺) for C₈H₂O₃I₂ [M]⁺: calcd: 399.80879, found: 399.80889.

5-Iodoisobenzofuran-1,3-dione (S3). Prepared according to the literature procedure.⁵ Characterization data matched with the reported data. ¹H NMR (400 MHz, CDCl₃): δ = 8.38 (dd, *J* = 1.4, 0.6 Hz, 1H), 8.26 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.73 (dd, *J* = 8.0, 0.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 162.2, 161.3, 145.2, 134.8, 132.6, 130.4, 126.6, 103.6; IR (ATR): \tilde{v} = 3098, 1842, 1766, 1590, 1411, 1318, 1241, 1168, 1101, 885, 854, 838, 726, 684, 658, 632, 577, 540, 480, 406 cm⁻¹; HRMS (ESI⁺) for C₈H₃O₃I [M+H]⁺: calcd: 274.91997, found: 274.91980. (R)-2-(1-(3,5-Bis(triisopropylsilyl)phenyl)allyl)-5,6-diiodoisoindoline-1,3-dione (S4). HCl (4 M in dioxane,

0.33 mL, 1.347 mmol) was added at 0°C under air to a solution of (*R*)-N-((*R*)-1-(3,5-bis(triisopropylsilyl)phenyl)allyl)-2-methylpropane-2-sulfinamide (**S1**) (247 mg, 0.449 mmol)⁶ in methanol (HPLC-grade, 6 mL). The flask was capped with a rubber septum and the solution was stirred at room temperature for 1 h. The mixture was concentrated

under vacuum. Water (20 mL) and CH_2Cl_2 (20 mL) were added to the residue and the aqueous phase was basified to pH \approx 10 upon addition of aqueous NaOH (3 M) before it was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried over Na_2SO_4 and the solvent was removed in vacuum to give (*R*)-1-(3,5-bis(triisopropylsilyl)phenyl)prop-2-en-1-amine, which was used directly in the next step.

5,6-Diiodoisobenzofuran-1,3-dione (**S2**) (197.3 mg, 0.493 mmol) and Et₃N (63 μL, 0.449 mmol) were added to the crude amine in toluene (20 mL) and the resulting mixture was stirred at reflux temperature for 36 h while the released water was collected in a Dean-Stark apparatus. Evaporation of the solvent and purification of the residue by flash chromatography (SiO₂) using 4% Et₂O in pentane as eluent afforded the title compound as a colorless waxy solid (315 mg, 85% yield over 2 steps). $[\alpha]_D^{20} = 7.2$ (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.28$ (s, 2H), 7.53 (d, *J* = 2.7 Hz, 3H), 6.61 (ddd, *J* = 17.3, 10.3, 7.2 Hz, 1H), 5.90 (dd, *J* = 7.2, 1.48 Hz, 1H), 5.39 – 5.24 (m, 2H), 1.37 (hept, *J* = 7.4 Hz, 6H), 1.03 (dd, *J* = 7.5, 2.1 Hz, 36H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 166.0$, 142.1, 136.0, 135.2, 134.4, 133.9, 133.8, 132.2, 119.0, 115.2, 58.0, 18.7, 10.9; IR (ATR): $\tilde{v} = 2941$, 2862, 1772, 1712, 1461, 1366, 1337, 1130, 1015, 993, 879, 715, 641, 563, 503, cm⁻¹; HRMS (ESI⁺) for C₃₅H₅₁NO₂Si₂I₂Na [M+Na]⁺: calcd: 850.14400, found: 850.14313.

(R)-2-(1-(3,5-Bis(triisopropylsilyl)phenyl)allyl)-5-iodoisoindoline-1,3-dione (S5). Prepared analogously

from compound **S1** (542 mg, 1.21 mmol) and anhydride **S3** (430 mg, 1.57 mmol) as a colorless sticky solid (605 mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ = 8.17 (d, *J* = 1.4 Hz, 1H), 8.05 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.58 – 7.50 (m, 4H), 6.62 (ddd, *J* = 17.3, 10.2, 7.2 Hz, 1H), 5.93 (d, *J* = 7.2 Hz, 1H), 5.44 – 5.22 (m, 2H), 1.36 (hept, *J* = 7.5 Hz, 6H), 1.03 (dd, *J* = 7.5, 2.3 Hz, 36H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 166.4, 143.0, 142.0, 136.1, 135.1, 134.6,

133.8, 133.5, 132.5, 131.3, 124.7, 118.9, 100.9, 57.8, 18.6 (2 x), 10.9; IR (ATR): $\tilde{v} = 2941$, 2889, 2863, 1772, 1715, 1602, 1461, 1412, 1367, 1343, 1312, 1239, 1170, 1134, 1015, 993, 881, 840, 789, 744, 712, 675, 641, 562, 502 cm⁻¹; HRMS (ESI⁺) for C₃₅H₅₂NO₂Si₂I [M+Na]⁺: calcd: 724.24735, found: 724.24688.

(S)-2-(3,5-Bis(triisopropylsilyl)phenyl)-2-(5,6-diiodo-1,3-dioxoisoindolin-2-yl)acetic acid (S6). A round

bottom flask containing a magnetic stir-bar was charged with (*R*)-2-(1-(3,5-bis(triisopropylsilyl)phenyl)allyl)-5,6-diiodoisoindoline-1,3-dione (**S4**) (290 mg, 0.35 mmol), sodium metaperiodate (375 mg, 1.752 mmol), water (3 mL), acetonitrile (2 mL) and CCl₄ (2 mL). Ruthenium trichloride hydrate (3.6 mg, 0.017 mmol, 5 mol%) was added to the biphasic mixture, which was stirred vigorously for 12 h at ambient temperature.

The mixture was diluted with CH₂Cl₂ (10 mL) and the phases were separated. The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL), the combined extracts were dried over Na₂SO₄, filtered through a Celite[®] pad, and the filtrate was concentrated. The crude product was purified by flash chromatography (SiO₂) using 10% EtOAc in pentane + 1% AcOH as eluent to afford the title compound as a colorless solid (215 mg, 73%). [α]_D²⁰ = 3.2 (c = 2.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 8.32 (s, 2H), 7.62 (d, *J* = 1.0 Hz, 2H), 7.58 (d, *J* = 1.3 Hz, 1H), 6.02 (s, 1H), 1.38 (h, *J* = 7.4 Hz, 6H), 1.04 (d, *J* = 7.5 Hz, 36H); ¹³C NMR (101 MHz, CDCl₃): δ = 173.1, 165.3, 142.9, 137.0, 134.1, 134.1, 132.0, 131.6, 115.6, 56.6, 18.6, 18.6, 10.8; IR (ATR): \tilde{v} = 2941, 2863, 1778, 1714, 1461, 1366, 1230, 1129, 1106, 1015, 881, 746, 673, 642, 582, 502 cm⁻¹; HRMS (ESI⁺) for C₃₄H₄₉NO₄Si₂l₂Na [M+Na]⁺: calcd: 868.11818, found: 868.11798

(S)-2-(3,5-Bis(triisopropylsilyl)phenyl)-2-(5-iodo-1,3-dioxoisoindolin-2-yl)acetic acid (S7). Prepared

analogously from compound **S5** (600 mg, 0.855 mmol) as a colorless solid (440 mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ = 8.19 (d, *J* = 1.5 Hz, 1H), 8.07 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.64 (s, 2H), 7.61 – 7.54 (m, 2H), 6.04 (s, 1H), 1.39 (hept, *J* = 7.6 Hz, 6H), 1.04 (d, *J* = 7.4 Hz, 36H); ¹³C NMR (101 MHz, CDCl₃): δ = 173.2, 166.4, 165.5, 143.1, 142.6, 136.8, 133.8, 133.1, 132.7, 131.7, 130.9, 124.9, 101.1, 56.4, 18.5, 18.5, 10.7; IR (ATR): \tilde{v} = 2942, 2863,

1777, 1720, 1603, 1461, 1413, 1369, 1107, 1015, 916, 881, 789, 743, 729, 675, 641, 561, 500, 464 cm⁻¹; HRMS (ESI⁺) for $C_{34}H_{51}NO_4ISi_2$ [M+H]⁺: calcd: 720.23959, found: 720.23993.

Complex 7d. A mixture of [BiRh(OCOCF₃)₄] (36 mg, 0.047 mmol)¹ and acid S6 (200 mg, 0.236 mmol) in

toluene (25 mL) was stirred at reflux temperature for 3 h, passing the condensed vapor through a Soxhlet apparatus filled with K₂CO₃; at this point, ligand exchange was complete as judged by ¹⁹F NMR. The mixture was concentrated in vacuum and the residue was purified by flash chromatography using 90% CHCl₃ in pentane as eluent to give the title complex as a yellow solid (163 mg, 93%). NMR spectra were recorded at

80°C; at lower temperature only very broad signals with poor resolution were observed. $[\alpha]_D^{20} = 111.9$ (c = 1.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃, 353K) : $\delta = 8.41$ (s, 8H), 7.62 (s, 8H), 7.57 (s, 4H), 6.31 (s, 4H), 1.35

(hept, J = 7.5 Hz, 24H), 1.02 (dd, J = 7.5, 5.3 Hz, 144H); ¹³C NMR (151 MHz, CDCl₃, 353K): $\delta = 181.7$, 165.1, 142.4, 137.8, 134.4, 133.6, 133.3, 132.7, 114.9, 58.4, 18.8, 18.8, 11.1; IR (ATR): $\tilde{v} = 2941$, 2863, 1777, 1717, 1593, 1463, 1364, 1130, 993, 880, 751, 643, 581 cm⁻¹; HRMS (ESI⁺) for this complex could not be measured due to poor ionization.

Complex 7c. Prepared analogously from [BiRh(OTfa)₄] (32 mg, 0.042 mmol) and acid S7 (174 mg,

0.242 mmol) as a yellow solid (118 mg, 88%). NMR spectra were recorded at 80 °C; at lower temperature only very broad signals with poor resolution were observed. ¹H NMR (600 MHz, CDCl₃, 353K): δ = 8.26 (d, *J* = 1.5 Hz, 4H), 8.00 (dd, *J* = 7.8, 1.5 Hz, 4H), 7.65 (s, 8H), 7.60 (d, *J* = 7.8 Hz, 4H), 7.56 (s, 4H), 6.33 (s, 4H), 1.34 (h, *J* = 7.5 Hz, 24H), 1.09 (d, *J* = 7.5 Hz, 12H), 1.02 (dd, *J* = 7.5, 4.8 Hz, 132H); ¹³C NMR (151 MHz, CDCl₃,

353K): δ = 181.9, 166.2, 165.4, 142.9, 142.3, 137.8, 134.0, 133.8, 133.6, 133.0, 131.8, 125.0, 100.6, 58.3, 18.8 (2 x), 11.2; IR (ATR): \tilde{v} = 2940, 2889, 2863, 1775, 1717, 1598, 1461, 1411, 1362, 1326, 1265, 1101, 1013, 880, 781, 747, 713, 675, 663, 642, 563, 500, 421 cm⁻¹; HRMS (ESI⁺) for this complex could not be measured due to poor ionization.

Cyclopropanation

2,2,2-Trichloroethyl (1*S*,2*R*)-1-(3-methoxyphenyl)-2-phenylcyclopropane-1-carboxylate (9a). An oven dried jacketed Schlenk flask equipped with a magnetic stir bar was charged with the [BiRh] catalyst (0.001 mmol, 1 mol%) under argon. Styrene (52.1 mg, 0.5 mmol) and pentane (1 mL) were added and the resulting solution cooled to -10 °C. A solution of

the diazo compound **8a** (32.2 mg, 0.1 mmol) in pentane (3 mL) was added dropwise over 10 min. The resulting mixture was stirred at -10 °C until TLC analysis indicated the complete consumption of the diazo compound. For work up, the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/EtOAc) afforded the title compound as a colorless oil; with [BiRh(*S*-PTTL)₄]·MeCN (**6a**): 92%, 59% ee; with catalyst **7b**: 98%, 87% ee; with [BiRh(*S*-DIPTTIPSPG)₄] (**7d**): 77%, 97% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3, Ø 4.6 mm, *n*-heptane/*iso*-propanol = 90/10, v = 1.0 mL/min, λ = 210 nm, t(major) = 6.85 min, t(minor) = 4.81 min.] [α]²⁰_D = +17.8 (c = 1.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ = 7.09 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.05 (t, *J* = 7.9 Hz, 1H), 6.85 – 6.80 (m, 2H), 6.68 (dddd, *J* = 7.0, 3.6, 2.1, 1.0 Hz, 2H), 6.56 (dd, *J* = 2.6, 1.6 Hz, 1H), 4.86 (d, *J* = 11.9 Hz, 1H), 4.64 (d, *J* = 11.9 Hz, 1H), 3.59 (s, 3H), 3.20 (dd, *J* = 9.4, 7.4 Hz, 1H), 2.26 (dd, *J* = 9.4, 5.1 Hz, 1H), 2.00 (dd, *J* = 7.5, 5.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 172.2, 159.0, 135.9, 135.3, 128.7, 128.2,

128.0, 126.8, 124.6, 117.6, 113.6, 95.2, 74.5, 55.2, 37.3, 34.0, 20.5; IR (ATR): $\tilde{v} = 2957$, 1732, 1584, 1433, 1238, 1147, 1043, 804, 694, 572 cm⁻¹; HRMS (ESI⁺) for C₁₉H₁₇O₃Cl₃Na [M+Na⁺]⁺: calcd: 421.01355, found: 421.01384.

Figure S2. HPLC traces of compound **9a**: with catalyst **7b** (top, left); with [BiRh(*S*-PTTL)₄]·MeCN (**6a**) (top, right); with **7d** (bottom, left); the corresponding racemate (bottom, right).

C–H Insertion Reactions

General procedure A: Pentane as the Solvent. An oven-dried jacketed Schlenk flask equipped with a magnetic stir bar was charged with the [BiRh] catalyst (0.0005 mmol, 0.5 mol%) under argon. The substrate (0.25 mmol) and pentane (1 mL) were added to the catalyst and the resulting solution cooled to -10 °C. A solution of the diazo compound (0.1 mmol) in pentane (3 mL) was added dropwise over 60 min. The resulting mixture was stirred at -10 °C until TLC analysis indicated the complete consumption of the diazo compound. For work up, the mixture was absorbed on silica, which was loaded on top of a silica column.

Purification by flash chromatography (n-pentane/Et₂O or hexanes/EtOAc) afforded the desired C–H insertion product.

General procedure B: C_6F_6 as the Solvent. An oven dried Schlenk flask equipped with a magnetic stir bar was charged with the [BiRh] catalyst (0.0005 mmol, 0.5 mol%) under argon. The alkane substrate (0.4 mmol) and C_6F_6 (1 mL) were added. A solution of the diazo compound (0.1 mmol) in C_6F_6 (3 mL) was added dropwise over 20 min. The resulting mixture was stirred at ambient temperture until TLC analysis indicated the complete consumption of the diazo compound (5 min to 2 h). For work up, the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (n-pentane/Et₂O or hexanes/EtOAc) afforded the desired C–H insertion product.

Larger Scale Experiment. Preparation of 2,2,2-Trichloroethyl (*R*)-3-(cyclopentyloxy)-2-(4-fluorophenyl) propanoate (20d). An oven dried Schlenk flask equipped with a magnetic stir bar was charged with catalyst 7b (4.4 mg, 0.0015 mmol, 0.1 mol%) under argon. Cyclopentyl methyl ether (0.875 mL, 7.5 mmol) and pentane (15 mL) were added and the resulting solution was cooled to -10 °C. A solution of the diazo derivative 8c (468 mg, 1.5 mmol) in pentane (45 mL) was added dropwise over 2 h. The resulting mixture was stirred at -10 °C during 18 h. For work up, the mixture was absorbed on silica, which was then loaded on top of a silica column. Purification by flash chromatography (hexanes/*tert*-butyl methyl ether, 98:2) afforded the title compound as a colorless liquid (494.1 mg, 86% yield, 99% ee). The analytical data are compiled below.

Stereochemical Assignment. The absolute configuration of the products was assigned in analogy to the stereostructure of product **23b** determined by X-ray diffraction (Figure S1). In case of products **12** and **20e**, this tentative assignment could be confirmed by comparison with literature data.

Diazoester Decomposition. 2,2,2-Trichloroethyl 2-(4-fluorophenyl)-3-(2,2,2-trichloroethoxy)propanoate

(11). An oven dried Schlenk flask equipped with a magnetic stir bar was charged with catalyst **7b** (1.5 mg, 0.0005 mmol, 0.5 mol%) under argon. C_6F_6 (1 mL) was added before a solution of the diazo derivative **8c** (0.1 mmol, 31.1 mg) in C_6F_6 (3

mL) was added dropwise over 2 h and the resulting mixture was stirred at ambient temperature for 18 h. For work up, the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/*tert*-butyl methyl ether, 98:2) afforded the ttle compound as a colorless liquid (12.5 mg, 58% yield). ¹H NMR (600 MHz, CDCl₃) δ = 7.57 – 7.50 (m, 2H), 7.13 – 7.06 (m, 2H), 5.41 (s, 1H), 4.85 (d, *J* = 11.9 Hz, 1H), 4.72 (d, *J* = 11.9 Hz, 1H), 4.34 (d, *J* = 11.5 Hz, 1H), 4.12 (d, *J* = 11.5 Hz, 1H); ¹³C

NMR (151 MHz, CDCl₃) δ = 168.3, 163.5 (d, *J* = 248.7 Hz), 130.4 (d, *J* = 3.3 Hz), 129.5 (d, *J* = 8.5 Hz), 116.0 (d, *J* = 21.9 Hz), 96.4, 94.4, 81.5, 81.2, 74.4; ¹⁹F NMR (470 MHz, CDCl₃) δ = -111.7; IR (ATR): \tilde{v} = 2962, 1725, 1613, 1501, 1424, 1370, 1281, 1255, 1219, 1151, 1116, 1063, 874, 801, 725, 602, 529 cm⁻¹; HRMS (EI⁺) for C₁₂H₉Cl₆FO₃Na [M+Na⁺]⁺: calcd: 452.8559, found: 452.8550.

C–H Insertion into the Pentane Solvent. An oven dried Schlenk flask equipped with a magnetic stir bar was charged with the [BiRh] catalyst **7d** (0.001 mmol, 1 mol%) and pentane (1 mL) under argon. A solution of the diazo derivative **8c** (0.1 mmol) in pentane (3 mL) was added dropwise over 10 min and the resulting mixture was stirred at RT for 10 min. The yield (85%) was determined by NMR analysis of the crude product using CH_2Br_2 as internal standard. The peak assignment for the determination of the regio- and diastereoselectivity followed a literature procedure (insertion at C2:C1: rr \approx 64:36; with this catalyst, insertion at C3 was below the limits of detection; ratio of the diastereomers formed by insertion at C2: dr \approx 78:22).⁷

 $[\alpha]_D^{20}$ = +143 (c = 0.6, CHCl₃); the literature reports for (*R*)-**12**: $[\alpha]_D^{21}$ = -126.1 (c = 1.18, CHCl₃).⁸ This comparison further confirms the assignment originally based on comparison to the stereostructure of product **23b** (X-ray, Figure S1)

¹H NMR (400 MHz, CDCl₃): δ = 7.26 – 7.22 (m, 2H), 6.88 – 6.83 (m, 2H), 5.80 (dtt, *J* = 10.0, 3.2, 1.6 Hz, 1H), 5.73 – 5.64 (m, 2H), 5.33 – 5.25 (m, 1H), 3.80 (s, 3H), 3.67 (s, 3H), 3.44 (tddt, *J* = 9.0, 5.7, 3.1, 1.6 Hz, 1H), 3.36 (d, *J* = 10.37 Hz, 1H), 2.66 – 2.56 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 173.8, 159.0, 129.7, 128.9, 126.8, 126.3, 126.1, 125.9, 114.0, 57.6, 55.4, 52.0, 38.7, 26.5.

Figure S3. HPLC traces of compound **12**: with [BiRh(*S*-PTTL)₄] (**6a**) (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-2-(4-methoxyphenyl)-2-((tetrahydrofuran-2-yl)acetate (13). Prepared according

to the general procedure **A** as a colorless oil; with $[BiRh(S-PTTL)_4]$ (**6a**): 86%, 10:1 *dr*, 88% ee (major diastereomer), 78% ee (minor diastereomer); with catalyst **7b**: 89%, 52:1 *dr*, 99% ee (major diastereomer), 94% ee (minor diastereomer). [The ee was determined by 2D-HPLC analysis: Achiral separation: 50 mm Zorbax Eclipse Plus C18,

1.8 μm, Ø 4.6 mm, MeOH/water = 60/40, v = 1.0 mL/min, λ = 220 nm, t(minor) = 11.11 min, t(major) = 11.77 min; chiral separation: Daicel 150 mm Chiralcel OZ-3R, Ø 4.6 mm, MeCN/water = 50/50, v = 1.0 mL/min, λ = 230 nm, t(minor diastereomer, minor enantiomer) = 11.26 min, t(minor diastereomer, major enantiomer) = 12.32 min, t(major diastereomer, major enantiomer = 11.54 min, t(major diastereomer, major enantiomer) = 12.05 min]. [α]_D²⁰ = -13.6 (c = 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.3 – 7.3 (m, 2H), 6.9 – 6.8 (m, 2H), 4.8 – 4.7 (m, 2H), 4.6 (dt, *J* = 10.0, 6.7 Hz, 1H), 4.0 – 3.9 (m, 1H), 3.8 (ddd, *J* = 8.3, 7.4, 6.1 Hz, 1H), 3.8 (s, 3H), 3.6 (d, *J* = 10.0 Hz, 1H), 1.9 – 1.8 (m, 2H), 1.8 – 1.7 (m, 1H), 1.5 (ddt, *J* = 12.4, 8.5, 6.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.3, 159.4, 129.8, 127.2, 114.3, 95.0, 80.5, 74.2, 68.6, 56.8, 55.4, 29.6, 25.6; IR (ATR): \tilde{v} = 2955, 1750, 1610, 1512, 1443, 1246, 1179, 1137, 1064, 1031, 920, 832, 791, 755, 717, 573, 530 cm⁻¹; HRMS (ESI⁺) for C₁₅H₁₇O₄Cl₃Na [M+Na⁺]⁺: calcd: 389.00846, found: 389.00842.

Figure S4. HPLC traces of compound **13**: with catalyst **7b** (top, left); with [BiRh(*S*-PTTL)₄] (**6a**) (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-2-(1,3-dioxolan-2-yl)-2-(4-fluorophenyl)acetate (14). Prepared according to the

general procedure **A** as a colorless oil; with catalyst **7b**: 77%, 85% ee; with complex **7c**: 96%, 92% ee; with complex **7d**: 65%, 98% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IA-3, Ø 4.6 mm, *n*-heptane/*iso*-propanol = 98/2, v = 1.0 mL/min, λ = 210 nm, t(minor) = 7.94 min, t(major) = 6.89 min.] [α]_D²⁰ = +5.9 (c =

1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.46 – 7.36 (m, 2H), 7.10 – 6.99 (m, 2H), 5.51 (d, *J* = 6.6 Hz, 1H), 4.78 (d, *J* = 1.2 Hz, 2H), 3.98 – 3.81 (m, 5H); ¹³C NMR (101 MHz, CDCl₃): δ = 169.0, 162.8 (d, *J* = 246.9 Hz), 130.9 (d, *J* = 8.0 Hz), 129.1 (d, *J* = 3.2 Hz), 115.9 (dd, *J* = 27.2, 21.5 Hz), 104.2, 94.7, 74.3, 65.5, 55.7; ¹⁹F NMR (282 MHz, CDCl₃): δ = –114.0; IR (ATR): \tilde{v} = 2891, 1752, 1606, 1510, 1224, 1191, 1129, 1098, 1061, 1033, 943, 871, 838, 804, 758, 716, 573, 546, 520, 440 cm⁻¹, HRMS (ESI⁺) for C₁₃H₁₂O₄FCl₃Na [M+Na⁺]⁺: calcd: 378.96774, found: 378.96810.

Figure S5. HPLC traces of compound **14**: with catalyst **7b** (top, left); with **7c** (top, right); with **7d** (bottom, left); the corresponding racemate (bottom, right).

2,2,2-Trichloroethyl (R)-2-(4-fluorophenyl)-2-(1,3,5-trioxan-2-yl)acetate (15). Prepared according to the

general procedure **B** as a white solid; with complex **7b**: 75% yield, 94% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IA-3, Ø 4.6 mm, n-heptane/i-propanol = 95/5, v = 1.0 mL/min, λ = 220 nm, t(major) = 6.18 min, t(minor) = 13.39 min]. $[\alpha]_{D}^{20}$ = 57.7 (c = 1.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.44 – 7.35 (m, 2H), 7.11 –

6.99 (m, 2H), 5.49 (d, J = 7.9 Hz, 1H), 5.24 (dd, J = 6.3, 1.3 Hz, 1H), 5.19 – 5.12 (m, 2H), 5.04 (d, J = 6.3 Hz, 1H), 4.79 (d, J = 12.0 Hz, 1H), 4.71 (d, J = 12.0 Hz, 1H), 4.07 (d, J = 7.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 168.4, 162.9 (d, J = 247.5 Hz), 130.9 (d, J = 8.1 Hz), 128.0 (d, J = 3.5 Hz), 115.9 (d, J = 21.6 Hz), 101.1, 94.6, 93.5, 93.4, 74.4, 55.6; ¹⁹F NMR (282 MHz, CDCl₃): δ = -113.50; IR (ATR): \tilde{v} = 1756, 1741, 1604, 1511, 1377, 1328, 1314, 1214, 1168, 1138, 1095, 1062, 1010, 980, 946, 877, 842, 806, 756, 718, 564, 537 cm⁻¹; HRMS (ESI⁺) for C₁₃H₁₂Cl₃FO₅Na [M+Na]⁺: calcd: 394.96266, found: 394.96298.

Figure S6. HPLC traces of compound 15: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(tert-butoxy)-2-(4-fluorophenyl)propanoate (16). Prepared according to the

general procedure **A** as a colorless oil; with catalyst **7b**: 70%, 99% ee; with catalyst **7c**: 90%, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N3, Ø 4.6 mm, *n*-heptane/*iso*-propanol = 95.9/0.1, v = 1.0 mL/min, λ = 220 nm, t(minor) = 5.07 min, t(major) = 5.40 min.] [α]_D²⁰ = -10.9 (c = 1.1, CHCl₃); ¹H NMR (400

MHz, CDCl₃): δ = 7.40 – 7.30 (m, 2H), 7.07 – 6.96 (m, 2H), 4.79 (d, *J* = 12.0 Hz, 1H), 4.71 (d, *J* = 12.0 Hz, 1H), 4.02 – 3.88 (m, 2H), 3.58 (dd, *J* = 7.8, 4.4 Hz, 1H), 1.17 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.2, 162.5 (d, *J* = 246.5 Hz), 131.2 (d, *J* = 3.2 Hz), 130.1 (d, *J* = 8.1 Hz), 115.7 (d, *J* = 21.5 Hz), 95.0, 74.3, 73.6, 63.9, 52.1, 27.5; ¹⁹F NMR (282 MHz, CDCl₃): δ = –114.53; IR (ATR): \tilde{v} = 2974, 1754, 1606, 1509, 1364, 1229, 1193, 1138, 1088, 1046, 908, 837, 804, 753, 736, 717, 630, 569, 519, 429 cm⁻¹; HRMS (EI) for C₁₅H₁₈O₃Cl₃FNa [M+Na]⁺: calcd: 393.01978, found: 393.02013.

Figure S7. HPLC traces of compound **16**: with catalyst **7b** (top, left); with catalyst **7c** (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-3-((tert-butyldimethylsilyl)oxy)-2-(4-fluorophenyl)propanoate (17). Prepared

0

according to the general procedure **A** as a colorless oil; with catalyst **7b**: 59%, 98% ee; with catalyst **7d**: 70%, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, Ø 4.6 mm, n-heptane/iso-propanol = 99.99/0.01, v = 1.0 mL/min, λ = 210 nm, t(minor) = 4.03 min, t(major) = 4.26 min.] $[\alpha]_{D}^{20}$ = +2.5 (c = 1.0,

CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.38 – 7.29 (m, 2H), 7.07 – 6.97 (m, 2H), 4.78 (d, *J* = 12.0 Hz, 1H), 4.71 (d, *J* = 12.0 Hz, 1H), 4.19 (dd, *J* = 9.5, 8.6 Hz, 1H), 3.93 (dd, *J* = 8.6, 5.6 Hz, 1H), 3.84 (dd, *J* = 9.5, 5.6 Hz, 1H), 0.85 (s, 9H), 0.02 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.0, 162.6 (d, *J* = 246.4 Hz), 131.0 (d, *J* = 3.1 Hz), 130.2 (d, *J* = 8.1 Hz), 115.7 (d, *J* = 21.6 Hz), 94.9, 74.3, 65.2, 53.9, 25.9, 18.3, -5.4; ¹⁹F NMR (282 MHz, CDCl₃): δ = -114.5; IR (ATR): \tilde{v} = 2929, 2857, 1755, 1606, 1510, 1464, 1255, 1230, 1141, 1097, 1068, 1006, 890, 834, 807, 777, 717, 665, 574, 548, 518, 430 cm⁻¹; HRMS (ESI⁺) for C₁₇H₂₄O₃FCl₃SiNa [M+Na⁺]⁺: calcd: 451.04366, found: 451.04369.

Figure S8. HPLC traces of compound **17**: with catalyst **7b** (top, left); with **7d** (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-2-(4-fluorophenyl)-3-(methoxymethoxy)propanoate (18). Prepared according to

the general procedure **A** as a colorless oil; with catalyst **7b**: 52%, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3, Ø 4.6 mm, *n*-heptane/*iso*-propanol = 98/2, v = 1.0 mL/min, λ = 210 nm, t(minor) = 7.55 min, t(major) = 6.29 min.] [α]²⁰_D = -12.2 (c = 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ =

7.40 – 7.29 (m, 2H), 7.11 – 6.96 (m, 2H), 4.82 – 4.70 (m, 2H), 4.67 – 4.59 (m, 2H), 4.17 (t, J = 9.3 Hz, 1H), 4.03 (dd, J = 9.2, 5.3 Hz, 1H), 3.81 (dd, J = 9.4, 5.3 Hz, 1H), 3.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 170.7$, 162.6 (d, J = 246.9 Hz), 130.7 (d, J = 3.5 Hz), 130.1 (d, J = 8.0 Hz), 115.9 (d, J = 21.6 Hz), 96.8, 94.8, 74.3, 68.9, 55.6, 51.4; ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -114.1$; IR (ATR): $\tilde{v} = 2887$, 1752, 1605, 1510, 1225, 1145, 1108, 1035, 918, 838, 804, 744, 717, 574, 555, 519, 444 cm⁻¹; HRMS (ESI⁺) for C₁₃H₁₄O₄FCl₃Na [M+Na⁺]⁺: calcd: 380.98339, found: 380.98354.

Figure S9. HPLC traces of compound 18: with catalyst 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-((4-bromobenzyl)oxy)-2-(4-fluorophenyl)propanoate (19). Prepared according

to the general procedure **B** as a colorless liquid; with complex **7b**: 56% yield, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, Ø 4.6 mm, n-heptane/iso-propanol = 99/1, v = 1.0 mL/min, λ = 220 nm, t(minor) = 5.41 min, t(major) = 5.90 min]. $[\alpha]_D^{20}$ = 11.8 (c = 0.65, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.51 – 7.41 (m, 2H), 7.36 – 7.27 (m, 2H), 7.19 – 7.10 (m,

2H), 7.07 – 6.97 (m, 2H), 4.76 (d, *J* = 12.0 Hz, 1H), 4.73 (d, *J* = 12.0 Hz, 1H), 4.55 – 4.46 (m, 2H), 4.12 – 4.00 (m, 2H), 3.71 (dd, *J* = 7.1, 3.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.6, 162.6 (d, *J* = 246.9 Hz), 136.9, 131.7, 130.6 (d, *J* = 3.4 Hz), 130.1 (d, *J* = 8.2 Hz), 129.4, 121.8, 115.9 (d, *J* = 21.4 Hz), 94.8, 74.3, 72.8, 71.5, 51.4; ¹⁹F NMR (282 MHz, CDCl₃): δ = –114.0 (tt, *J* = 8.4, 5.2 Hz); IR (ATR): \tilde{v} = 2953, 2865, 1752, 1605, 1509, 1487, 1372, 1227, 1142, 1094, 1070, 1011, 908, 837, 794, 717, 574, 518, 481 cm⁻¹; HRMS (EI⁺) for C₁₈H₁₅BrCl₃FO₃ [M]⁺: calcd: 481.92488, found: 481.92462.

Figure S10. HPLC traces of compound 19: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-phenylpropanoate (20a). Prepared according to the general

procedure **A** as a colorless liquid; with complex **7b**: 71% yield, 95% ee; general procedure **B** as a colorless liquid; with complex **7b**: 69% yield, >99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3R, Ø 4.6 mm, methanol/water = 90/10, v = 0.5 mL/min, λ = 210 nm, t(major) = 10.22 min, t(minor)

= 11.19 min]. $[\alpha]_D^{20}$ = 4.5 (c = 1.31, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.52 – 7.27 (m, 5H), 4.79 (d, *J* = 12.0 Hz, 1H), 4.72 (d, *J* = 12.0 Hz, 1H), 4.06 – 3.97 (m, 2H), 3.96 – 3.89 (m, 1H), 3.65 (dd, *J* = 7.5, 3.3 Hz, 1H), 1.76 – 1.59 (m, 6H), 1.52 – 1.44 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.2, 135.2, 128.9, 128.4, 128.0, 95.0, 82.1, 74.3, 70.3, 52.5, 32.3, 32.2, 23.7; IR (ATR): \tilde{v} = 2956, 2870, 1753, 1452, 1348, 1262, 1138, 1095, 801, 716, 697, 571 cm⁻¹; HRMS (ESI⁺) for C₁₆H₁₉Cl₃NaO₃ [M+Na]⁺: calcd: 387.02920, found: 387.02885.

Figure S11. HPLC traces of compound **20a**: with complex **7b**; procedure **A** (top left); with procedure **B** (top right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (*R*)-**3-(cyclopentyloxy)-2-(p-tolyl)propanoate** (**20b**). Prepared according to the general procedure **A** as a colorless liquid; with complex **7b**: 77% yield, 99% ee; general procedure **B** as a colorless liquid; with complex **7b**: 64% yield, 98% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IG-3, Ø 4.6 mm, methanol/water = 95/5, v = 1.0 mL/min, λ = 220 nm, t(major) = 4.28 min, t(minor)

= 5.08 min]. $[\alpha]_D^{20}$ = 5.5 (c = 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.32 – 7.22 (m, 2H), 7.21 – 7.13 (m, 2H), 4.83 (d, *J* = 11.9 Hz, 1H), 4.74 (d, *J* = 11.9 Hz, 1H), 4.08 – 3.92 (m, 3H), 3.65 (dd, *J* = 8.1, 3.9 Hz, 1H), 2.37 (s, 3H), 1.82 – 1.63 (m, 6H), 1.57 – 1.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.3, 137.7, 132.1, 129.5, 128.2, 95.0, 82.1, 74.3, 70.4, 52.1, 32.3, 32.2, 23.7, 21.2; IR (ATR): \tilde{v} = 2954, 2869, 1754, 1514, 1345, 1138, 1095, 820, 798, 717, 573, 506 cm⁻¹; HRMS (ESI⁺) for C₁₇H₂₁Cl₃NaO₃ [M+Na]⁺: calcd: 401.04485, found: 401.04466.

Figure S12. HPLC traces of compound **20b**: following procedure **A** with complex **7b** (top left); the corresponding racemate (top right); following procedure **B** with complex **7b** (bottom left); the corresponding racemate (bottom right).

Methyl (R)-4-(3-(cyclopentyloxy)-1-oxo-1-(2,2,2-trichloroethoxy)propan-2-yl)benzoate (20c). Prepared

according to the general procedure **A** in pentane/CH₂Cl₂ as a colorless liquid; with complex **7b**: 62% yield, >99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IG-3, Ø 4.6 mm, methanol/water = 70% to 95% methanol in 10 min, v = 1.0 mL/min, λ = 220 nm, t(minor) = 16.23 min, t(major) = 16.89 min]. [α]_D²⁰ = 6.5 (c = 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃):

δ = 8.04 – 7.96 (m, 2H), 7.48 – 7.37 (m, 2H), 4.76 (d, *J* = 0.7 Hz, 2H), 4.11 – 3.99 (m, 2H), 3.94 – 3.91 (m, 4H), 3.68 (dd, *J* = 7.6, 3.8 Hz, 1H), 1.75 – 1.57 (m, 6H), 1.54 – 1.42 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.5, 166.9, 140.3, 130.1, 129.9, 128.6, 94.8, 82.2, 74.4, 69.8, 52.5, 52.3, 32.3, 32.2, 23.6; IR (ATR): \tilde{v} = 2953, 2870, 1754, 1721, 1612, 1435, 1217, 1182, 1141, 1097, 1020, 801, 718, 572 cm⁻¹; HRMS (ESI⁺) for C₁₈H₂₂Cl₃O₅ [M+H]⁺: calcd: 423.05273, found: 423.05308.

Figure S13. HPLC traces of compound 20c: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(4-fluorophenyl)propanoate (20d). Prepared according to

the general procedure **A** as a colorless oil; with catalyst **7b** (500 mg scale, see above): 86%, 99% ee; with **7c**: 90%, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak AS-3R, Ø 4.6 mm, MeCN/water = 50/50, v = 1.0 mL/min, λ = 220 nm, t(minor) = 21.70 min, t(major) = 23.16 min.] [α]_D²⁰ = -11.1 (c = 1.1, CHCl₃); ¹H

NMR (400 MHz, CDCl₃): δ = 7.37 – 7.30 (m, 2H), 7.05 – 6.98 (m, 2H), 4.79 – 4.70 (m, 2H), 4.02 – 3.90 (m, 3H), 3.68 – 3.59 (m, 1H), 1.70 – 1.44 (m, 8H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.0, 162.6 (d, *J* = 246.6 Hz), 131.0 (d, *J* = 3.4 Hz), 130.1 (d, *J* = 8.1 Hz), 115.7 (d, *J* = 21.2 Hz), 94.9, 82.2, 74.3, 70.2, 51.7, 32.3, 32.2, 23.6; ¹⁹F NMR (282 MHz, CDCl₃): δ = –114.4; IR (ATR): \tilde{v} = 2956, 2870, 1753, 1606, 1509, 1346, 1227, 1139, 1096, 1047, 837, 801, 743, 717, 574, 517, 422 cm⁻¹; HRMS (EI) for C₁₆H₁₈O₃FCl₃Na [M+Na]⁺: calcd: 405.01978, found: 405.02004.

Figure S14. HPLC traces of compound **20d**: with catalyst **7b** (top, left); with **7c** (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(4-bromophenyl)propanoate (20e). Prepared according to

the general procedure **A** as a yellow liquid; with complex **7b**: 79% yield, 99% ee; general procedure **B** with complex **7b**: 60% yield, >99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3R, Ø 4.6 mm, acetonitrile/water = 80/20, v = 0.5 mL/min, λ = 225 nm, t(major) = 7.40 min, t(minor) = 7.79 min].

 $[\alpha]_D^{20} = -2.1$ (c = 0.5, CHCl₃); the literature reports for (*R*)-**20d**: $[\alpha]_D^{20} = -1.47$ (c = 1.07, CHCl₃).⁹ This comparison further confirms the assignment originally based on comparison to the stereostructure of product **23b** (X-ray, Figure S1)

¹H NMR (400 MHz, CDCl₃): δ = 7.50 – 7.42 (m, 2H), 7.25 –7.23 (m, 2H), 4.77 (d, *J* = 11.9 Hz, 1H), 4.73 (d, *J* = 11.9 Hz, 1H), 4.01 – 3.94 (m, 2H), 3.94 – 3.89 (m, 1H), 3.68 – 3.60 (m, 1H), 1.73 – 1.56 (m, 6H), 1.52 – 1.44 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.7, 134.3, 132.0, 130.2, 122.1, 94.9, 82.2, 74.4, 69.9, 51.9, 32.3, 32.2, 23.6; IR (ATR): \tilde{v} = 2972, 2865, 1725, 1610, 1435, 1369, 1278, 1103, 1019, 720, 571 cm⁻¹; HRMS (ESI⁺) for C₁₆H₁₈BrCl₃O₃Na [M+Na]⁺: calcd: 464.93972, found: 464.93973.

Figure S15. HPLC traces of compound **20e**: with complex **7b**; procedure **A** (top left); with procedure **B** (top right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-2-(4-cyanophenyl)-3-(cyclopentyloxy)propanoate (20f). Prepared according to

the general procedure **A** in pentane/CH₂Cl₂ as a colorless liquid; with complex **7b**: 57% yield, 99% ee; general procedure **B** with complex **7b**: 60% yield, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3R, Ø 4.6 mm, methanol/water = 85/15, v = 0.5 mL/min, λ = 230 nm, t(major) = 16.91 min,

t(minor) = 18.61 min]. $[\alpha]_D^{20}$ = -1.2 (c = 0.52, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.67 - 7.59 (m, 2H), 7.54 - 7.45 (m, 2H), 4.76 (s, 2H), 4.07 - 3.94 (m, 2H), 3.94 - 3.86 (m, 1H), 3.71 (dd, *J* = 8.8, 5.4 Hz, 1H), 1.72 - 1.56 (m, 6H), 1.53 - 1.41 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.0, 140.7, 132.5, 129.5, 118.7, 112.0, 94.7, 82.3, 74.4, 69.5, 52.4, 32.23, 32.18, 23.6; IR (ATR): \tilde{v} = 2957, 2870, 2230, 1753, 1505, 1347, 1143, 1096, 839, 801, 778, 719, 563 cm⁻¹; HRMS (ESI⁺) for C₁₇H₁₈Cl₃NO₃Na [M+Na]⁺: calcd: 412.02445, found: 412.02463.

Figure S16. HPLC traces of compound **20f**: with complex **7b**; procedure **A** (top left); with procedure **B** (top right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(4-(methylsulfonyl)phenyl)propanoate (20g). Prepared

according to the general procedure **B** as a colorless liquid; with complex **7b**: 54% yield, >99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, Ø 4.6 mm, methanol/water = 95/5, v = 1.0 mL/min, λ = 220 nm, t(major) = 6.19 min, t(minor) = 7.34 min]. [α]_D²⁰ = -1.3 (c = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.96 – 7.86 (m, 2H), 7.63 – 7.54 (m, 2H), 4.78 (d, *J* = 12.0, Hz, 1H), 4.74

(d, *J* = 12.0, Hz, 1H), 4.08 (dd, *J* = 8.2, 5.5 Hz, 1H), 3.99 –3.94 (m, 1H), 3.94 –3.90 (m, 1H), 3.74 (dd, *J* = 9.0, 5.5 Hz, 1H), 3.04 (s, 3H), 1.73 – 1.41 (m, 8H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.0, 141.7, 140.2, 129.7, 127.8, 94.7, 82.3, 74.4, 69.6, 52.3, 44.6, 32.25, 32.18, 23.6; IR (ATR): \tilde{v} = 2957, 2870, 1752, 1599, 1306, 1090, 956, 760, 717, 533 cm⁻¹; HRMS (ESI⁺) for C₁₇H₂₁Cl₃O₅SNa [M+Na]⁺: calcd: 465.0068, found: 465.0067.

Figure S17. HPLC traces of compound 20g: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)

propanoate (20h). Prepared according to the general procedure **B** as a yellow liquid; with complex **7b**: 58% yield, >99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, Ø 4.6 mm, acetonitrile/water = 80/20, v = 0.5 mL/min, λ = 230 nm, t(major) = 8.40 min, t(minor) = 13.83 min]. [α]_D²⁰ =

13.2 (c = 0.62, CHCl₃); ¹H NMR (400 MHz, CDCl₃): 7.77 (d, *J* = 8.1 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 4.77 (d, *J* = 12.0 Hz, 1H), 4.71 (d, *J* = 12.0 Hz, 1H), 4.06 – 3.95 (m, 2H), 3.95 – 3.84 (m, 1H), 3.69 – 3.57 (m, 1H), 1.76 – 1.56 (m, 6H), 1.52 – 1.46 (m, 2H), 1.34 (s, 12H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.9, 138.2, 135.3, 127.8, 95.0, 84.0, 82.1, 74.3, 70.2, 52.7, 32.3, 32.2, 23.6; IR (ATR): \tilde{v} = 2958, 2866, 1755, 1716, 1612, 1398, 1359, 1324, 1271, 1140, 1089, 1021, 858, 800, 719, 657, 573 cm⁻¹; HRMS (ESI⁺) for C₂₂H₃₀BCl₃O₅Na [M+Na]⁺: calcd: 513.11441, found: 513.11474.

Figure S18. HPLC traces of compound 20h: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(3-methoxyphenyl)propanoate (21a). Prepared according

to the general procedure **A** as a colorless liquid; with complex **7b**: 64% yield, 93% ee; general procedure **B** as a colorless liquid; with complex **7b**: 49% yield, 97% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3R, Ø 4.6 mm, methanol/water = 80/20, v = 1.0 mL/min, λ = 220 nm, t(major) = 21.55 min,

t(minor) = 24.41 min]. $[\alpha]_D^{20}$ = 4.4 (c = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.28 – 7.20 (m, 1H), 6.97 – 6.89 (m, 2H), 6.83 (ddd, *J* = 8.2, 2.5, 1.0 Hz, 1H), 4.79 (d, *J* = 12.0 Hz, 1H), 4.72 (d, *J* = 12.0 Hz, 1H), 4.06 – 3.90 (m, 3H), 3.80 (s, 3H), 3.64 (dd, *J* = 8.2, 3.9 Hz, 1H), 1.81 – 1.54 (m, 6H), 1.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.1, 159.9, 136.6, 129.8, 120.8, 114.1, 113.5, 95.0, 82.1, 74.3, 70.3, 55.4, 52.5, 32.3, 32.2, 23.7; IR (ATR): \tilde{v} = 2955, 2869, 1753, 1600, 1585, 1490, 1446, 1345, 1261, 1138, 1094, 1042, 855, 793, 714, 571 cm⁻¹; HRMS (ESI⁺) for C₁₇H₂₁Cl₃O₄Na [M+Na]⁺: calcd: 417.03976, found: 417.03927.

Peak	RetTime Ty	ype	Width	Area	Height	Area			Poak	RetTime Type	Width	4000	Height	Anon	
#	[min]		[min]	[mAU*s]	[mAU]	%			reak	Recitine Type	width	Area	nergit	Area	
		-							#	[min]	[min]	[mAU*s]	[mAU]	%	
1	1 929 14	, '	0 0588	23 00724	5 38780	0 4553									
2	1 998 1	2	0.0500	34 47395	6 32086	0.6822			1	1.027 BB	0.0561	6.11837	1.42404	0.1816	
3	3,552 BF	3	0.0859	5,11841	8.53781e-1	0.1013			2	1.929 BV	0.0712	29.14336	5.64860	0.8651	
4	4.668 V	/ R	0.1423	31,73808	3,05966	0.6280			3	1.996 VB	0.0736	34.89260	6.40390	1.0357	
5	5.110 VE	3	0.1203	8.21713	1.04981	0.1626			4	3.096 BB	0.1452	12.40517	1.02508	0.3682	
6	6.451 BE	3	0.1754	21.14618	1.78316	0.4184			5	4.702 BB	0.1843	27.04014	1.84124	0.8026	
7	9.522 BE	3	0.1941	8.09943	5.02313e-1	0.1603			6	5.181 BB	0.1228	86.31013	10.72962	2.5619	
8	13.161 M	F	0.3790	148.29694	6.52074	2.9345			7	6.558 BB	0.1645	4,99411	3.65408e-1	0.1482	
9	13.438 FM	4	0.3891	61.79604	2.64680	1.2228			8	9.735 BB	0.1965	11.98189	7.37727e-1	0.3557	
10	16.606 BE	3	0.5600	4601.81689	126.92947	91.0603	1st enantiomer	PP = 97.2%	9	11.476 BB	0.2458	5,93979	2.87748e-1	0.1763	
11	18.684 BE	3	0.4504	65.54720	1.72867	1.2970	2nd enantiomer	00 - 01.2 /0	10	13.476 MF	0.4038	271.57382	11.21006	8.0611	
12	21.118 BE	3	0.5545	44.33377	9.39573e-1	0.8773			11	13.794 FM	0.5140	134.41391	4.35865	3.9898	
									12	17.065 BV	0.5605	1351.14539	36.53251	40.1058	1st enantiomer
Total	s :			5053.59126	157.72264				13	19.123 VB	0.6254	1362.60571	32.81698	40.4459	2nd enantiomer
									14	21.701 BB	0.5674	30.39170	6.29387e-1	0.9021	
									Total	s :		3368.95610	114.01096		

Figure S19. HPLC traces of compound **21a**: following procedure **A** with complex **7b** (top left); the corresponding racemate (top right); following procedure **B** with complex **7b** (bottom left); the corresponding racemate (bottom right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(3-fluorophenyl)propanoate (21b). Prepared according to

the general procedure **A** as a colorless liquid; with complex **7b**: 71% yield, 99% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak AS-3R, Ø 4.6 mm, acetonitrile/H₂O = 50/50, v = 1.0 mL/min, λ = 220 nm, t(minor) = 22.65 min, t(major) = 25.02 min]. [α]²⁰_D = 15.0 (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): 170.6,

163.0 (d, *J* = 246.4 Hz), 137.6 (d, *J* = 7.7 Hz), 130.3 (d, *J* = 8.3 Hz), 124.3 (d, *J* = 3.0 Hz), 115.5 (d, *J* = 22.5 Hz), 115.0 (d, *J* = 21.0 Hz), 94.9, 82.2, 74.4, 70.0, 52.2 (d, *J* = 1.8 Hz), 32.3, 32.2, 23.6; ¹³C NMR (101 MHz, CDCl₃): δ = 170.6, 164.2, 161.7, 137.6 (d, *J* = 7.7 Hz), 130.3 (d, *J* = 8.3 Hz), 124.3 (d, *J* = 3.0 Hz), 115.3 (dd, *J* = 53.0, 21.8 Hz), 94.9, 82.2, 74.4, 70.0, 52.2 (d, *J* = 1.8 Hz), 32.3, 32.2, 23.6; ¹⁹F NMR (282 MHz, CDCl₃): δ = -112.53 (td, *J* = 9.0, 5.9 Hz); IR (ATR): \tilde{v} = 2957, 2870, 1754, 1614, 1591, 1488, 1449, 1373, 1346, 1263, 1136, 1096, 796, 715, 689, 574 cm⁻¹; HRMS (ESI⁺) for C₁₆H₁₈Cl₃FO₃Na [M+Na]⁺: calcd: 405.01978, found: 405.01953.

Figure S20. HPLC traces of compound 21b: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (R)-3-(cyclopentyloxy)-2-(thiophen-3-yl)propanoate (22). Prepared according to the

general procedure **A** as a colorless liquid; with complex **7b**: 51% yield, 98% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3, Ø 4.6 mm, n-heptane/iso-propanol = 98/2, v = 1.0 mL/min, λ = 235 nm, t(major) = 3.60 min, t(minor) = 4.04 min]. [α]_D²⁰ = -7.3 (c = 0.85, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.29

(dd, J = 5.0, 3.0 Hz, 1H), 7.24 (ddd, J = 3.0, 1.4, 0.6 Hz, 1H), 7.10 (dd, J = 5.0, 1.4 Hz, 1H), 4.82 – 4.71 (m, 2H), 4.14 (dd, J = 9.6, 4.9 Hz, 1H), 4.00 – 3.94 (m, 2H), 3.67 (dd, J = 9.0, 4.9 Hz, 1H), 1.73 – 1.59 (m, 6H), 1.53 – 1.47 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 170.8, 135.1, 127.6, 126.0, 123.0, 95.0, 82.1, 74.4, 70.0, 32.4, 32.2, 23.7; IR (ATR): <math>\tilde{v} = 2955, 2869, 1753, 1448, 1204, 1136, 1095, 1045, 849, 791, 720, 570 \text{ cm}^{-1}$; HRMS (ESI⁺) for C₁₄H₁₇Cl₃O₃SNa [M+Na]⁺: calcd: 392.98562, found: 392.98539.

Figure S21. HPLC traces of compound 22: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S)-2-(4-fluorophenyl)-3-phenylpropanoate (23a). Prepared according to the general

procedure **B** but using toluene as solvent and reagent; the title compound was obtained as a white solid; with complex **7b**: 80% yield, 95% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IA-3, Ø 4.6 mm, n-heptane/i-propanol = 98/2, v = 1.0 mL/min, λ = 220 nm, t(minor) = 3.43 min,

t(major) = 4.13 min]. $[\alpha]_D^{20}$ = 57.7 (c = 1.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.37 – 7.28 (m, 2H), 7.28 – 7.21 (m, 2H), 7.23 – 7.16 (m, 1H), 7.16 – 7.11 (m, 2H), 7.06 – 6.94 (m, 2H), 4.74 – 4.59 (m, 2H), 4.00 (dd, J = 8.7, 7.0 Hz, 1H), 3.46 (dd, J = 13.8, 8.7 Hz, 1H), 3.09 (dd, J = 13.8, 7.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.7, 162.4 (d, J = 246.4 Hz), 138.3, 133.4 (d, J = 3.4 Hz), 129.9 (d, J = 8.1 Hz), 129.1, 128.6, 126.8, 115.7 (d, J = 21.6 Hz), 94.8, 74.2, 52.8, 39.6; ¹⁹F NMR (282 MHz, CDCl₃): δ = -114.58; IR (ATR): \tilde{v} = 1737, 1602, 1508, 1455 1377, 1222, 1204, 1175, 1147, 1077, 1046, 842, 794, 743, 718, 698, 569, 542, 522 cm⁻¹; HRMS (ESI⁺) for C₁₇H₁₄Cl₃FO₂Na [M+Na]⁺: calcd: 396.99356, found: 396.99390.

Figure S22. HPLC traces of compound 23a: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S)-2-(4-fluorophenyl)-3-(4-isopropylphenyl)propanoate (23b). Prepared according

to the general procedure **A** as a white solid; with complex **7b**: 56% yield, 97% ee; following procedure **B**: with complex **7b**: 94% yield, 97% ee; with complex **7d**: 71% yield, 97% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, Ø 4.6 mm, acetonitrile/water = 90/10, v = 0.5 mL/min, λ =

220 nm, t(minor) = 5.82 min, t(major) = 6.78 min]. $[\alpha]_D^{20}$ = 46.7 (c = 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.40 – 7.30 (m, 2H), 7.14 – 7.05 (m, 4H), 7.05 – 6.97 (m, 2H), 4.69 (d, *J* = 12.0 Hz, 1H), 4.61 (d, *J* = 12.0 Hz, 1H), 3.99 (dd, *J* = 9.2, 6.5 Hz, 1H), 3.42 (dd, *J* = 13.9, 9.2 Hz, 1H), 3.05 (dd, *J* = 13.9, 6.5 Hz, 1H), 2.85 (hept, *J* = 6. 9 Hz, 1H), 1.21 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.8, 162.4 (d, *J* = 246.4 Hz), 147.4, 135.6, 133.6 (d, *J* = 3.3 Hz), 129.9 (d, *J* = 8.1 Hz), 129.0, 126.7, 115.7 (d, *J* = 21.2 Hz), 94.8, 74.2, 52.9, 39.3, 33.8, 24.1; ¹⁹F NMR (282 MHz, CDCl₃): δ = –114.7; IR (ATR): \tilde{v} = 2960, 1746, 1507, 1439, 1375, 1271, 1220, 1139, 1060, 842, 825, 799, 747, 719, 676, 578, 556, 522 cm⁻¹; HRMS (ESI⁺) for C₂₀H₂₀Cl₃FO₂Na [M+Na]⁺: calcd: 439.04051, found: 439.04083.

Figure S23. HPLC traces of compound 23b: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S,E)-2-(4-fluorophenyl)oct-4-enoate (24). Prepared according to the general

procedure **B** as a colorless liquid; with complex **7b**: 78% yield, 98% ee, 10:1 rr; with complex **7d**: 84% yield, 95% ee, 20:1 rr. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, \emptyset 4.6 mm, methanol/water = 85/15, v =

0.5 mL/min, λ = 220 nm, t(minor) = 23.02 min, t(major) = 24.08 min]. [α]_D²⁰ = 25.8 (c = 2.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.39 – 7.24 (m, 2H), 7.08 – 6.93 (m, 2H), 5.50 (dtt, *J* = 14.8, 6.8, 1.3 Hz, 1H), 5.32 (dtt, *J* = 15.1, 6.8, 1.3 Hz, 1H), 4.79 – 4.61 (m, 2H), 3.73 (dd, *J* = 8.5, 7.1 Hz, 1H), 2.81 (dddq, *J* = 15.2, 8.1, 7.1, 1.0 Hz, 1H), 2.57 – 2.44 (m, 1H), 1.97 – 1.86 (m, 2H), 1.31 (h, *J* = 7.4 Hz, 2H), 0.82 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.9, 162.3 (d, *J* = 246.1 Hz), 134.1, 133.6 (d, *J* = 3.3 Hz), 129.9 (d, *J* = 8.1 Hz), 125.9, 115.6 (d, *J* = 21.3 Hz), 94.9, 74.2, 51.3, 36.4, 34.7, 22.5, 13.7; ¹⁹F NMR (282 MHz, CDCl₃): δ = -115.00; IR (ATR): \tilde{v} = 2958, 752, 1605, 1509, 1438, 1226, 1137, 1124, 1043, 969, 837, 799, 716, 573, 519 cm⁻¹; HRMS (El⁺) for C₁₆H₁₈Cl₃FO₂ [M]⁺: calcd: 366.03509, found: 366.03523.

Figure S24. HPLC traces of compound **24**: with complex **7b** (top, left); with complex **7d** (top, right); the corresponding racemate (bottom).
2,2,2-Trichloroethyl (S,E)-6-((tert-butyldimethylsilyl)oxy)-2-(4-fluorophenyl)hex-4-enoate (25). Prepared

according to the general procedure A as a colorless oil; with catalyst 7b: 59%,

96% ee; with catalyst 7d: 62%, 99% ee. [The ee was determined by HPLC

analysis: Daicel 150 mm Chiralcel OJ-3R, Ø 4.6 mm, MeCN/water = 65/35, v = 1.0 mL/min, λ = 210 nm, t(minor) = 18.14 min, t(major) = 19.14 min.] [α]_D²⁰ = +13.2 (c = 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.37 – 7.27 (m, 2H), 7.07 – 6.97 (m, 2H), 5.68 – 5.50 (m, 2H), 4.70 (d, *J* = 1.3 Hz, 2H), 4.06 (dt, *J* = 4.7, 1.3 Hz, 2H), 3.78 – 3.73 (m, 1H), 2.92 – 2.80 (m, 1H), 2.62 – 2.50 (m, 1H), 0.87 (s, 9H), 0.02 (d, *J* = 0.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.8, 162.4 (d, *J* = 246.0 Hz), 133.4 (d, *J* = 3.3 Hz), 132.7, 129.9 (d, *J* = 8.1 Hz), 126.3, 115.7 (d, *J* = 21.5 Hz), 94.9, 74.2, 63.5, 50.9, 35.8, 26.1, 18.5, -5.1; ¹⁹F NMR (282 MHz, CDCl₃): δ = -114.9; IR (ATR): \tilde{v} = 2954, 2930, 2857, 1752, 1696, 1605, 1510, 1254, 1227, 1136, 834, 807, 776, 717, 573, 518 cm⁻¹; HRMS (ESI⁺) for C₂₀H₂₈O₃FCl₃SiNa [M+Na⁺]⁺: calcd: 491.07496, found: 491.07535.

Figure S25. HPLC traces of compound **25**: with catalyst **7b** (top, left); with catalyst **7d** (top, right); the corresponding racemate (bottom).

2,2,2-Trichloroethyl (S,E)-2-(4-fluorophenyl)-5-(4-methoxyphenyl)pent-4-enoate (26). Prepared

according to the general procedure **B** as a colorless oil; with catalyst **7b**: 71%, 98% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OD-3, Ø 4.6 mm, *n*-heptane/*iso*-propanol = 99/1, v = 1.0 mL/min, λ = 220 nm, t(minor) = 6.84 min, t(major) = 7.88 min.] [α]²⁰_D = +42.3 (c = 1.1,

CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.40 – 7.29 (m, 2H), 7.24 – 7.18 (m, 2H), 7.08 – 6.97 (m, 2H), 6.85 – 6.78 (m, 2H), 6.41 (dt, *J* = 15.6, 1.4 Hz, 1H), 5.96 (ddd, *J* = 15.8, 7.6, 6.7 Hz, 1H), 4.78 – 4.64 (m, 2H), 3.87 – 3.80 (m, 1H), 3.79 (s, 3H), 3.01 (dddd, *J* = 14.3, 8.7, 7.5, 1.3 Hz, 1H), 2.76 – 2.64 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.8, 162.4 (d, *J* = 246.4 Hz), 159.2, 133.4 (d, *J* = 3.1 Hz), 132.4, 130.0, 129.9 (d, *J* = 8.1 Hz), 127.4, 123.8, 115.8 (d, *J* = 21.5 Hz), 114.1, 94.9, 74.3, 55.4, 51.2, 36.9; ¹⁹F NMR (282 MHz, CDCl₃): δ = -114.7; IR (ATR): \tilde{v} = 2935, 1749, 1606, 1508, 1245, 1174, 1160, 1133, 1034, 966, 837, 791, 759, 716, 572, 520, 436 cm⁻¹; HRMS (ESI⁺) for C₂₀H₁₈O₃FCl₃Na [M+Na⁺]⁺: calcd: 453.01978, found: 453.01974.

Figure S26. HPLC traces of compound 26: with catalyst 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (*S,E*)-5-bromo-2-(4-fluorophenyl)pent-4-enoate (27). Prepared according to the general procedure **B** as a colorless oil; with catalyst **7b**: 80%, 96% ee. [The ee was

general procedure **B** as a colorless oil; with catalyst **7b**: 80%, 96% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OD-3, Ø 4.6 mm, *n*-heptane/*iso*-propanol = 99/1, v = 1.0 mL/min, λ = 220 nm, t(minor) = 4.45 min, t(major) = 5.09 min.] [α]_D²⁰ = +3.7 (c = 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.33

-7.27 (m, 2H), 7.08 -7.00 (m, 2H), 6.20 -6.05 (m, 2H), 4.81 -4.64 (m, 2H), 3.77 (dd, *J* = 8.5, 6.9 Hz, 1H), 2.93 -2.80 (m, 1H), 2.60 -2.49 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.2, 162.5 (d, *J* = 246.9 Hz), 133.7, 132.6 (d, *J* = 3.2 Hz), 129.8 (d, *J* = 8.1 Hz), 116.0 (d, *J* = 21.7 Hz), 108.0, 94.8, 74.3, 50.1, 36.5; ¹⁹F NMR (282 MHz, CDCl₃): δ = -114.13; IR (ATR): \tilde{v} = 2929, 1750, 1605, 1509, 1372, 1225, 1199, 1161, 1134, 1063, 932, 837, 794, 745, 715, 574, 555, 518, 409 cm⁻¹; HRMS (ESI⁺) for C₁₃H₁₂O₂BrFCl₃ [M+H]⁺: calcd: 402.90649, found: 402.90682.

Figure S27. HPLC traces of compound 27: with catalyst 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl

(*S*,*E*)-2-(4-fluorophenyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4enoate (28). Prepared according to the general procedure **B** as a colorless oil; with catalyst **7b**: 55%, 97% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel ID-3, Ø 4.6 mm, MeCN/water = 50/50, v = 1.0 mL/min, λ = 220 nm, t(minor) = 14.91 min, t(major) = 16.22 min.] [α]_D²⁰ = +28.7 (c = 0.9, CHCl₃); ¹H NMR

(400 MHz, CDCl₃) δ 7.30 – 7.20 (m, 2H), 7.03 – 6.89 (m, 2H), 6.46 (dt, *J* = 18.0, 6.4 Hz, 1H), 5.46 (dt, *J* = 17.9, 1.5 Hz, 1H), 4.71 – 4.57 (m, 2H), 3.76 (dd, *J* = 8.9, 6.5 Hz, 1H), 2.93 (dddd, *J* = 15.4, 8.9, 6.6, 1.5 Hz, 1H), 2.58 (dtd, *J* = 14.8, 6.4, 1.6 Hz, 1H), 1.17 (s, 12H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.7, 162.4 (d, *J* = 246.0 Hz), 149.2, 133.3 (d, *J* = 3.4 Hz), 129.8 (d, *J* = 8.1 Hz), 115.8 (d, *J* = 21.6 Hz), 122.0, 94.8, 83.4, 74.2, 49.9, 39.1, 24.9 (2x); ¹¹B NMR (128 MHz, CDCl₃): δ = -14.6; ¹⁹F NMR (282 MHz, CDCl₃): δ = -114.7; IR (ATR): \tilde{v} = 2930, 1753, 1692, 1640, 1509, 1362, 1324, 1225, 1141, 1003, 972, 838, 803, 718, 574, 517, 441 cm⁻¹; HRMS (ESI⁺) for C₁₉H₂₃O₄BFCl₃Na [M+Na⁺]⁺: calcd: 473.06312, found: 473.06331.

Figure S28. HPLC traces of compound 28: with catalyst 7b (left); the corresponding racemate (right).

1-Ethyl 6-(2,2,2-trichloroethyl) (S,E)-5-(4-fluorophenyl)hex-2-enedioate (29). Prepared according to the

general procedure **B** as a colorless liquid; with complex **7b**: 50% yield, 94% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, Ø 4.6 mm, n-heptane/i-propanol = 98/2, v = 1.0 mL/min, λ = 220 nm, t(major) = 3.09 min, t(minor) = 7.56 min]. $[\alpha]_D^{20}$ = 40.8 (c = 1.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃):

δ = 7.36 – 7.24 (m, 2H), 7.03 (t, *J* = 8.6 Hz, 2H), 6.84 (dt, *J* = 15.8, 7.03 Hz, 1H), 5.88 (dd, *J* = 15.6, 1.7 Hz, 1H), 4.78 – 4.65 (m, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.84 (t, *J* = 7.7 Hz, 1H), 3.10 – 2.97 (m, 1H), 2.71 (dtd, *J* = 15.3, 6.9, 1.6 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.2, 166.1, 162.5 (d, *J* = 247.0 Hz), 144.1, 132.6 (d, *J* = 3.1 Hz), 129.8 (d, *J* = 8.1 Hz), 124.2, 116.0 (d, *J* = 21.7 Hz), 94.7, 74.3, 60.5, 49.6, 35.5, 14.3; ¹⁹F NMR (282 MHz, CDCl₃): δ = -114.07; IR (ATR): \tilde{v} = 1751, 1716, 1657, 1509, 1369, 1265, 1224, 1192, 1137, 1037, 838, 805, 744, 716, 574, 518 cm⁻¹; HRMS (ESI⁺) for C₁₆H₁₇Cl₃FO₄ [M+H]⁺: calcd: 397.01710, found: 397.01742.

Figure S29. HPLC traces of compound 29: with complex 7b (left); the corresponding racemate (right).

3.5 Hz), 131.0, 129.7 (d, *J* = 8.1 Hz), 120.4, 115.8 (d, *J* = 6.4 Hz), 94.6, 74.1, 51.6, 50.2, 36.3; ¹⁹F NMR (282 MHz, CDCl₃): δ = -114.22 (tt, *J* = 8.7, 5.2 Hz); IR (ATR): \tilde{v} = 2995, 1723, 1604, 1509, 1437, 1224, 1143, 1035, 980, 839, 805, 716, 572, 518, 425 cm⁻¹; HRMS (ESI⁺) for C₁₇H₁₆Cl₃FO₄Na [M+Na]⁺: calcd: 430.99904, found: 430.99875.

Figure S30. HPLC traces of compound 30: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S)-2-(4-fluorophenyl)-5-(trimethylsilyl)pent-4-ynoate (31a). Prepared according to

the general procedure **B** as a colorless liquid; with complex **7b**: <51% yield (the product contained compound **11** as inseparable impurity, ca. 25 %), 95% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IG-G, Ø 4.6 mm, acetonitrile/water = 60/40, v = 1.0 mL/min, λ = 220 nm, t(minor) = 8.79 min,

t(major) = 10.75 min]. [α]_D²⁰ = 26.0 (c = 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.36 – 7.27 (m, 2H), 7.05 – 6.98 (m, 2H), 4.78 (d, *J* = 11.9 Hz, 1H), 4.71 (d, *J* = 11.9 Hz, 1H), 3.93 (t, *J* = 7.7 Hz, 1H), 2.99 (dd, *J* = 16.9, 8.0 Hz, 1H), 2.72 (dd, *J* = 16.9, 7.4 Hz, 1H), 0.08 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.9, 162.6 (d, *J* = 246.5 Hz), 132.5 (d, *J* = 3.4 Hz), 129.8 (d, *J* = 8.1 Hz), 115.7 (d, *J* = 21.5 Hz), 94.7, 87.5, 81.5, 74.3, 50.2, 24.5, 0.1; ¹⁹F NMR (282 MHz, CDCl₃): δ = -114.3 (ddd, *J* = 13.8, 8.7, 5.2 Hz); IR (ATR): \tilde{v} = 2959, 2179, 1754, 1605, 1509, 1422, 1250, 1226, 1137, 1030, 837, 759, 717, 574, 516 cm⁻¹; HRMS (ESI⁺) for C₁₆H₁₈Cl₃FO₂SiNa [M+Na]⁺: calcd: 417.00179, found: 417.00140.

Figure S31. HPLC traces of compound 31a: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S)-2-(4-fluorophenyl)-5-phenylpent-4-ynoate (31b). Prepared according to the

general procedure **B** as a colorless liquid; with complex **7b**: <55% yield (the sample contained compound **11** as inseparable impurity, ca. 10%), 96% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak OD-3, Ø 4.6 mm, n-heptane/iso-propanol = 99/1, v = 1.0 mL/min, λ = 220 nm, t(minor) = 5.20 min,

t(major) = 6.81 min]. $[\alpha]_D^{20}$ = 36.5 (c = 1.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.45 – 7.33 (m, 2H), 7.33 – 7.23 (m, 5H), 7.12 – 7.01 (m, 2H), 4.80 (d, *J* = 11.9 Hz, 1H), 4.74 (d, *J* = 11.9 Hz, 1H), 4.04 (t, *J* = 7.7 Hz, 1H), 3.20 (dd, *J* = 16.8, 8.0 Hz, 1H), 2.93 (dd, *J* = 16.8, 7.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.0, 162.6 (d, *J* = 246.9 Hz), 132.6 (d, *J* = 3.2 Hz), 131.7, 129.9 (d, *J* = 8.4 Hz), 128.4, 128.2, 123.3, 115.8 (d, *J* = 21.6 Hz), 94.8, 86.2, 82.9, 74.3, 50.3, 24.1; ¹⁹F NMR (282 MHz, CDCl₃) δ = -114.1 (ddd, *J* = 13.8, 8.8, 5.1 Hz); IR (ATR): \tilde{v} = 2957, 1753, 1604, 1509, 1142, 1372, 1224, 1136, 1060, 837, 806, 755, 717, 691, 574, 518 cm⁻¹; HRMS (EI⁺) for C₁₉H₁₄Cl₃FO₂ [M]⁺: calcd: 398.00379, found: 398.00461.

Figure S32. HPLC traces of compound 31b: with complex 7b (left); the corresponding racemate (right).

5-Methyl 1-(2,2,2-trichloroethyl) (2S)-2-(4-fluorophenyl)-4-methylpentanedioate (33). Prepared

according to the general procedure **B** as a colorless liquid; with complex **7b**: 47% yield, dr = 1:1, 92% ee/93% ee for the two diastereomers [The ee's were determined by HPLC analysis: Daicel 150 mm Chiralpak OJ-3, Ø 4.6 mm, n-heptane/ethanol = 99/1, v = 1.0 mL/min, λ = 210 nm, t(minor diastereomer 1) =

6.90 min, t(major diastereomer 1) = 9.77 min; t(major diastereomer 2) = 7.67 min, t(minor diastereomer 2) = 8.39 min]. [*α*]_D²⁰ = 39.5 (c = 0.95, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ = 7.31 (m, 2H), 7.29 (m, 2H), 7.02 (t, *J* = 8.7 Hz, 2H), 7.02 (m, 2H), 4.71 (m, 4H), 3.79 (dd, *J* = 9.0, 6.7 Hz, 1H), 3.76 (t, *J* = 7.8 Hz, 1H), 3.67 (s, 3H), 3.64 (s, 3H), 2.49 (ddd, *J* = 14.0, 8.9, 6.7 Hz, 1H), 2.45 (p, *J* = 7.1 Hz, 1H), 2.34 (dqd, *J* = 8.9, 7.1, 5.5 Hz, 1H), 2.21 (d, *J* = 7.4 Hz, 1H), 2.20 (d, *J* = 7.0 Hz, 1H), 1.95 (ddd, *J* = 13.9, 9.0, 5.5 Hz, 1H), 1.20 (d, *J* = 7.1 Hz, 3H), 1.18 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ = 176.3, 176.2, 171.88 (d, *J* = 0.8 Hz), 171.87, 171.85, 171.84 (d, *J* = 0.8 Hz), 162.47 (d, *J* = 246.7 Hz), 162.45 (d, *J* = 246.4 Hz), 133.22 (d, *J* = 3.2 Hz), 133.16 (d, *J* = 3.2 Hz), 129.97 (d, *J* = 8.2 Hz), 129.84 (d, *J* = 8.1 Hz), 115.90, 115.86 (d, *J* = 21.7 Hz), 115.82 (d, *J* = 21.5 Hz), 115.75, 94.8, 77.4, 77.2, 77.0, 74.23, 74.21, 51.92, 51.89, 48.8, 48.5, 37.6, 37.0, 36.8, 36.6, 17.7, 17.6; ¹⁹F NMR (565 MHz, CDCl₃) δ = -114.46, -114.54 (m); IR (ATR): \tilde{v} = 2954, 1733, 1604, 1509, 1459, 1436, 1375, 1264, 1224, 1140, 1059, 839, 803, 716, 572, 519 cm⁻¹; HRMS (EI⁺) for C₁₅H₁₆Cl₃FO₄Na [M+Na]⁺: calcd: 406.99905, found: 406.99904.

Figure S33. HPLC traces of compound 33: with complex 7b (left); the corresponding racemate (right).

Reaction with Gaseous Substrates

Representative Procedure for C-H Insertion into Ethane. 2,2,2-Trichloroethyl (S)-2-(4-

fluorophenyl)butanoate (34a). A 45 mL stainless steel autoclave equipped with a magnetic stir bar was charged with the catalyst (0.001 mmol, 1 mol%). The autoclave was evacuated and backfilled with argon 3 times and then purged with

ethane. C_6F_6 (1 mL) was added and the autoclave was pressurized with ethane to ≈ 25 bar. A solution of the diazo derivative **8c** (31.2 mg, 0.1 mmol) in C_6F_6 (3 mL) was added dropwise over 30 min to the pressurized autoclave with the help of an hplc pump. After the addition was complete, the mixture was left stirring at room temperature for 2 h. The pressure was carefully released and the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/EtOAc) afforded the title compound; with complex **7b**: 80% yield, 90% ee; with complex **7d**: 61% yield, 95% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, Ø 4.6 mm, n-heptane2-propanol = 99.9/0.1, v = 1.0 mL/min, λ = 220 nm, t(minor) = 4.72 min, t(major) = 5.00 min]. [α]_D²⁰ = 24.2 (c = 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.36 – 7.22 (m, 2H), 7.07 – 6.97 (m, 2H), 4.78 – 4.63 (m, 2H), 3.59 (t, *J* = 7.7 Hz, 1H), 2.25 – 2.09 (m, 1H), 1.94 – 1.78 (m, 1H), 0.93 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 172.4, 162.3 (d, *J* = 245.9 Hz), 133.8 (d, *J* = 3.1 Hz), 129.9 (d, *J* = 8.0 Hz), 115.6 (d, *J* = 21.2 Hz), 95.0, 74.1, 52.6, 26.6, 12.2; ¹⁹F NMR (282 MHz, CDCl₃): δ = -115.07; IR (ATR): \tilde{v} = 1749, 1604, 1509, 1224, 1161, 1138, 1089, 836, 804, 785, 770, 715, 573, 519 cm⁻¹; HRMS (EI⁺) for C₁₂H₁₂Cl₃FO₂ [M]⁺: calcd: 311.98814, found: 311.98807.

Figure S34. HPLC traces of compound 34a: with complex 7d (left); the corresponding racemate (right).

2,2,2-Trichloroethyl (S)-2-(4-bromophenyl)butanoate (34b). Prepared analogously as a colorless liquid;

with complex **7b**: 80% yield, 94% ee; [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, Ø 4.6 mm, n-heptane/2-propanol = 99.9/0.1, v = 1.0 mL/min, λ = 220 nm, t(minor) = 5.52 min, t(major) = 5.89 min]. $[\alpha]_{D}^{20}$ = 14.3

(c = 2.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.49 – 7.42 (m, 2H), 7.27 – 7.19 (m, 2H), 4.75 (d, *J* = 12.0 Hz, 1H), 4.69 (d, *J* = 12.0 Hz, 1H), 3.57 (t, *J* = 7.7 Hz, 1H), 2.24 – 2.09 (m, 1H), 1.86 (dt, *J* = 13.6, 7.4 Hz, 1H), 0.93 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 172.0, 137.1, 131.9, 130.0, 121.7, 94.9, 74.2, 52.8, 26.5, 12.2; IR (ATR): \tilde{v} = 1749, 1488, 1458, 1408, 1371, 1265, 1511, 1193, 1139, 1091, 1073, 1011, 826, 785, 716, 571, 515 cm⁻¹; HRMS (EI⁺) for C₁₂H₁₂BrCl₃O₂ [M]⁺: calcd: 371.90809, found: 371.90832.

Figure S35. HPLC traces of compound 34b: with complex 7b (left); the corresponding racemate (right).

Methyl (S)-4-(1-oxo-1-(2,2,2-trichloroethoxy)butan-2-yl)benzoate (34c). A 45 mL stainless steel autoclave

equipped with a magnetic stir bar was charged with catalyst **7b** (0.001 mmol, 1 mol%) and the diazo compound (0.1 mmol). The autoclave was evacuated, backfilled with argon 3 times, and then purged with ethane. Next, the

autoclave was cooled with dry ice, C₆F₆ (3 mL) was added. The autoclave was pressurized with ethane to 25 bar and the mixture was left stirring for 2 h while slowly reaching room temperature. After that, the pressure was released and the mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/EtOAc) afforded the title compound as a colorless liquid (15.2 mg, 43% yield, 96% ee). [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IB-N-3, \emptyset 4.6 mm, n-heptane/2-propanol = 98/2, v = 1.0 mL/min, λ = 220 nm, t(minor) = 5.50 min, t(major) = 6.60 min]. [α]_D²⁰ = 20.5 (c = 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 8.05 – 7.96 (m, 2H), 7.46 – 7.38 (m, 2H), 4.78 – 4.65 (m, 2H), 3.91 (s, 3H), 3.67 (t, *J* = 7.7 Hz, 1H), 2.28 – 2.11 (m, 1H), 1.98 – 1.82 (m, 1H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.8, 166.9, 143.2, 130.1, 129.6, 128.4, 94.9, 74.2, 53.4, 52.3, 26.5, 12.2; IR (ATR): \tilde{v} = 1751, 1721, 1611, 1435, 1276, 1182, 1141, 1109, 1019, 857, 815, 786, 717, 572 cm⁻¹; HRMS (ESI⁺) for C₁₄H₁₅Cl₃O₄Na [M+Na]⁺: calcd: 374.99281, found: 374.99305.

Figure S36. HPLC traces of compound 34c: with complex 7b (left); the corresponding racemate (right).

Cyclopropanation of Propene. 2,2,2-Trichloroethyl (15,25)-1-(4-fluorophenyl)-2-methylcyclopropane-1-

carboxylate (35). A 45 mL stainless steel autoclave equipped with a magnetic stir bar was charged with catalyst **7b** (1.45 mg, 0.0005 mmol, 0.5 mol%). The autoclave was evacuated and backfilled with argon 3 times and purged with propene. Pentane (1 mL) was added and the autoclave was pressurized with propene to 9 bar. A solution

of the diazo compound **8c** (31.2 mg, 0.1 mmol) in pentane (3 mL) was added over 30 min into the pressurized autoclave with the help of an hplc pump. After the addition was complete, the reaction mixture was left stirring at room temperature for 2 h before the pressure was carefully released and the reaction mixture was absorbed on silica, which was loaded on top of a silica column. Purification by flash chromatography (hexanes/EtOAc) afforded the title compound as a colorless liquid (28.0 mg, 86% yield, 94% ee). [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, Ø 4.6 mm, acetonitrile/water = 60/40, v = 0.5 mL/min, λ = 220 nm, t(minor) = 23.42 min, t(major) = 25.67 min]. [α]_D²⁰ = -4.9 (c = 2.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.31 - 7.22 (m, 2H), 7.08 - 6.97 (m, 2H), 4.76 (d, *J* = 11.9 Hz, 1H), 4.56 (d, *J* = 11.9 Hz, 1H), 1.99 (dp, *J* = 9.1, 6.3 Hz, 1H), 1.89 (dd, *J* = 9.0, 4.2 Hz, 1H), 1.15 (dd, *J* = 6.8, 4.2 Hz, 1H), 0.87 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 173.0, 162.2 (d, *J* = 246.0 Hz), 133.3 (d, *J* = 8.2 Hz), 131.0 (d, *J* = 3.2 Hz), 115.1 (d, *J* = 21.4 Hz), 95.2, 74.4, 33.0, 23.9, 23.4, 15.5; ¹⁹F NMR (282 MHz, CDCl₃): δ = -115.05; IR (ATR): \tilde{v} = 1731, 1512, 1369, 1246, 1222, 1158, 1115, 1090, 1046, 884, 839, 803, 752, 719, 590, 571, 543 cm⁻¹; HRMS (EI⁺) for C₁₃H₁₂Cl₃FO₂ [M]⁺: calcd: 323.98814, found: 323.98815.

Figure S37. HPLC traces of compound 35: with complex 7b (left); the corresponding racemate (right).

Further Reactions

2,2,2-Trichloroethyl (1*R*,2*R*)-2-bromo-1-(4-fluorophenyl)-2-methylcyclopropane-1-carboxylate (37a).

NOE [major isomer] Prepared according to the general procedure **B** as a colorless liquid; with complex **7b**: 69% yield, dr = 95:5, 92% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Cl₃CH₂CO₂C, Me Fr Chiralcel OJ-3R, Ø 4.6 mm, methanol/water = 85/15, v = 0.5 mL/min, λ = 220 nm, t(minor) = 19.13 min, t(major) = 21.51 min]. [α]_D²⁰ = 26.2 (c = 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.49 – 7.40 (m, 2H), 7.10 – 6.99 (m, 2H), 4.80 (d, *J* = 11.9 Hz, 1H), 4.60 (d, *J* = 11.9 Hz, 1H), 2.20 (d, *J* = 6.8 Hz, 1H), 2.02 (s, 3H), 1.85 (d, *J* = 6.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 168.2, 162.6 (d, *J* = 247.0 Hz), 133.4 (d, *J* = 8.5 Hz), 132.9 (d, *J* = 3.4 Hz), 114.9 (d, *J* = 21.6 Hz), 94.5, 75.0, 40.6, 39.8, 28.8, 26.6; ¹⁹F NMR (282 MHz, CDCl₃): δ = -113.63 (tt, *J* = 8.7, 5.4 Hz); IR (ATR): \tilde{v} = 2962, 2927, 1729, 1602, 1509, 1424, 1371, 1291, 1265, 1217, 1155, 1111, 1054, 851, 806, 713, 600, 567, 529 cm⁻¹; HRMS (EI⁺) for C₁₃H₁₁BrCl₃FO₂ [M]⁺: calcd: 401.89867, found: 401.89908.

Figure S38. HPLC traces of compound 37a: with complex 7b (left); the corresponding racemate (right).

2,2,2-Trichloroethyl

(1*R*,2*S*)-1-(4-fluorophenyl)-2-methyl-2-((trimethylsilyl)methyl)cyclopropane-1carboxylate (37b). Prepared according to the general procedure **B** as a colorless liquid; with complex 7b: 68% yield, dr = 63:37, major 90% ee, minor 95% ee. [The ee was determined by HPLC analysis: Daicel 150 mm Chiralpak IG-G, Ø 4.6 mm,

Acetonitrile/water = 65/35, v = 1.0 mL/min, λ = 220 nm, major diastereomer t(minor) = 10.38 min, t(major) = 11.95 min; diastereoisomer t(major) = 9.43 min, t(minor) = 10.12 min]. $[\alpha]_D^{20} = -32.1$ (c = 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.33 (ddd, J = 8.5, 5.3, 2.5 Hz, 2.80H), 7.04 – 6.93 (m, 2.64H), 4.78 (d, J = 12.0 Hz, 0.36H), 4.70 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.54 (d, J = 12.0 Hz, 0.35H), 1.84 (dd, J = 5.1, 1.5 Hz, 0.34H), 1.79 (d, J = 5.0 Hz, 1H), 1.33 (d, J = 1.1 Hz, 1H), 1.27 – 1.24 (m, 1H), 1.15 (d, J = 1.1 Hz, 0.38H) 0.88 (s, 3H), 0.09 (s, 9H), -0.00 (s, 3.12H).; ¹³C NMR (101 MHz, CDCl₃): δ = 170.7 (2C), 162.1 (d, J = 245.7 Hz), 162.0 (d, J = 245.5 Hz), 133.6 (d, J = 8.1 Hz), 133.2 (d, J = 8.0 Hz), 133.1 (m), 129.6 (d, J = 8.4 Hz), 114.9 (d, J = 21.2 Hz), 114.8 (d, J = 21.5 Hz), 95.02, 94.97, 74.8, 74.7, 39.6, 39.4, 30.9, 30.6, 28.1, 27.2, 26.5, 25.9, 24.2, 22.4, 21.6, 21.1, -0.01, -0.03; ¹⁹F NMR (282 MHz, CDCl₃): δ = -115.3 (tt, J = 8.6, 5.4 Hz, 0.35F), -115.4 (tt, J = 8.6, 5.4 Hz, 1F); IR (ATR): \tilde{v} = 2954, 1732, 1603, 1510, 1302, 1248, 1222, 1181, 1130, 1050, 835, 806, 755, 718, 570, 546 cm⁻¹; HRMS (EI⁺) for C₁₇H₂₂Cl₃FO₂Si [M]⁺: calcd: 410.04332, found: 410.04372.

Figure S39. HPLC traces of compound **37b** with complex **7b**: minor diastereomer (top left); the corresponding racemate (top right); major diastereomer (bottom left); the corresponding racemate (bottom right).

S2: ¹H NMR (400 MHz, CDCl₃):

S4: ¹H NMR (400 MHz, CDCl₃):

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

S6: ¹H NMR (400 MHz, CDCl₃):

S7: ¹H NMR (400 MHz, CDCl₃)

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

7b: ¹H NMR (600 MHz, CDCl₃):

7c: ¹H NMR (600 MHz, CDCl₃, 353K)

7d: ¹H NMR (600 MHz, CDCl₃, 353K):

9a: ¹H NMR (400 MHz, CDCl₃):

9a: HSQC NMR (400 MHz, 101 MHz, CDCl₃):

9a: HMBC NMR (400MHz, 101 MHz, CDCl₃):

9a: NOESY NMR (500 MHz, CDCl₃):

10: ¹H NMR (400 MHz, CDCl₃):

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

11: ¹H NMR (600 MHz, CDCl₃)

11: ¹⁹F NMR (470 MHz, CDCl₃)

2377388	
=======	
Lefter .	

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

12: ¹H NMR (400 MHz, CDCl₃)

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

13: ¹H NMR (400 MHz, CDCl₃)

S67

14: ¹H NMR (400 MHz, CDCl₃)

14: ¹⁹F NMR (282 MHz, CDCl₃)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -300 -320 -340

15: ¹H NMR (400 MHz, CDCl₃):

15: ¹⁹F NMR (282 MHz, CDCl₃):

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm)

16: ¹H NMR (400 MHz, CDCl₃)

^{270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40}

17: ¹³C NMR (101 MHz, CDCl₃)

^{270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40}

18: ¹H NMR (400 MHz, CDCl₃)

18: ¹³C NMR (101 MHz, CDCl₃)

170.65
100.65
101.40
130.68
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64
130.64

^{270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40}

S80

20d: ¹H NMR (400 MHz, CDCl₃)

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

21b: ¹H NMR (400 MHz, CDCl₃)

23a: ¹H NMR (400 MHz, CDCl₃):

23b: ¹H NMR (400 MHz, CDCl₃):

f1 (ppm)

24: ¹H NMR (400 MHz, CDCl₃):

f1 (ppm)

25: ¹H NMR (400 MHz, CDCl₃)

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

28: ¹H NMR (400 MHz, CDCl₃)

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 28: ¹¹B NMR (128 MHz, CDCl₃)

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 40 -50 -50 -50 -90 -100 -110 -120 -130 -140 -150

f1 (ppm)
30: ¹H NMR (400 MHz, CDCl₃)

30: ¹⁹F NMR (282 MHz, CDCl₃)

-114.17 -114.19 -114.20 -114.21 -114.22 -114.23 -114.23

			· · · ·																	
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

^{270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40}

31a: ¹⁹F NMR (282 MHz, CDCl₃) (the sample contained compound **11** as inseparable impurity, ca. 25%)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -24

31b: ¹H NMR (400 MHz, CDCl₃) (the sample contained compound **11** as inseparable impurity, ca. 10%)

177.46 177.338 177.

31b: ¹⁹F NMR (282 MHz, CDCl₃) (the sample contained compound **11** as inseparable impurity, ca. 10%)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230

S115

33: ¹⁹F NMR (565 MHz, CDCl₃)

114.46 114.46 114.47 114.47 114.49 114.49 114.49 114.45 114.50 11

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -24

f1 (ppm)

34a: ¹⁹F NMR (282 MHz, CDCl₃):

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm)

				Augustan angenerated year

f1 (ppm)

f1 (ppm)

35: ¹⁹F NMR (282 MHz, CDCl₃):

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm)

37a: ¹⁹F NMR (282 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

37b: ¹⁹F NMR (282 MHz, CDCl₃)

15.23 15.25 15.26	15.28 15.30 15.33 15.33	15.37 15.38 15.40 15.41 15.42 15.43 15.43

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

References

- ¹ L. E. Löffler, M. Buchsteiner, L. R. Collins, F. P. Caló, S. Singha, A. Fürstner, *Helv. Chim. Acta* 2021, 104, e2100042.
- ² C. Tortoreto, D. Rackl, H. M. L. Davies, *Org. Lett.* **2017**, *19*, 770.
- ³ L. Fu, J. D. Mighion, E. A. Voight, H. M. L. Davies, *Chem. Eur. J.* **2017**, *23*, 3272.
- ⁴ M. Dudic, I. Císarova, J. Michl, *J. Org. Chem.* **2012**, 77, 68.
- ⁵ S. Furukawa, T. Yasuda, *J. Mater. Chem. A* **2019**, *7*, 14806.
- ⁶ S. Singha, M. Buchsteiner, G. Bistoni, R. Goddard, A. Fürstner, J. Am. Chem. Soc. **2021**, 143, 5666.
- ⁷ K. Liao, S. Negretti, D. G. Musaev, J. Bacsa, H. M. L. Davies, *Nature* **2016**, *533*, 230-234.
- ⁸ H. Suematsu, T. Katsuki, J. Am. Chem. Soc. **2009**, 131, 14218.
- ⁹ D. M. Guptill, H. M. L. Davies, J. Am. Chem. Soc. **2014**, 136, 17718-17721.