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Summary

Since the turn of the century, great developments in our understanding of
the microbial world have occurred. The study of microbes associated with
animals, plants, and fungi — here referred to as host-associated microbiome —
is one that is modifying our understanding of ecology and evolution. While
empirical evidence has accumulated rapidly, the theory to explain it has been
lagging behind. During the time of my PhD, new theoretical advances have
been introduced. In this thesis, I present my contribution to understanding
the effect of host-specific ecological processes on the microbiome.

Each chapter is focused on a specific process with eco-evolutionary conse-
quences. To gain certainty about our understanding, I simplify the complex
biology of real-world hosts and microbes. In the models, hosts only provide a
space for microbes to inhabit without being affected by them. On the other
hand, the microbiome is affected by the processes imposed by their hosts
— specifically the microbial composition. I rely on the theory of stochastic
processes and focus on birth, death, and immigration as the drivers of the
microbial dynamics. All in all, the results are discussed in a broad context,
where potentially general microbiome patterns are identified.

The first project stems from observing that compared to classical habitats,
hosts have a lifespan that might interfere with the microbial dynamics. For
hosts which acquire all their microbes from the environment, the lifespan
indeed interferes in the long run, even leading to the coexistence of subpopu-
lations with distinct microbiome. In the second project I address the possible
“inheritance” of microbes from parents to their newborn hosts. I observe
that its effects depend on life-history traits including immigration and host
lifespan. In the last project, I question one of the critical assumptions. Rather
than equal growth and death rates for all microbes, I assume differences in a
simplified model. I find a surprising result — regardless of the assumption on
these rates, if immigration and biodiversity are sufficiently large, differences
at the population level do not modify the emergent community pattern.

This thesis is a glance of the many questions surrounding the ecology and
evolution of the microbiome. The results provided here build upon a theory
of the drivers at the microbial scale and its interaction with the macro scale.
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Zusammenfassung

Seit der Jahrhundertwende haben sich grofle Entwicklungen in unserem
Verstandnis der mikrobiellen Welt vollzogen. Die Untersuchung von Mikroben,
welche Tiere, Pflanzen und Pilze besiedeln — hier als wirtsassoziiertes Mikro-
biom bezeichnet — verdndert unser Versténdnis von Okologie und Evolu-
tion. Wahrend sich empirische Daten schnell angesammelt haben, hinkte die
erklarende Theorie hinterher. In dieser Dissertation prasentiere ich meinen
Beitrag zum Verstandnis der Wirkung wirtsspezifischer ckologischer Prozesse
auf das Mikrobiom.

Jedes Kapitel konzentriert sich auf einen bestimmten 6ko-evolutionaren
Prozess. Dabei vereinfache ich zum besseren Verstandnis die komplexe Biolo-
gie realer Wirte und Mikroben in mathematischen Modellen. In den Modellen
bieten Wirte einen Lebensraum fiir Mikroben ohne von ihnen selbst beeinflusst
zu werden. Das Mikrobiom wird dagegen von Wirtsprozessen beeinflusst —
insbesondere in seiner mikrobiellen Zusammensetzung. Ich wende die The-
orie stochastischer Prozesse an und konzentriere mich auf Reproduktion,
Tod und Einwanderung als Treiber der mikrobiellen Dynamik. Die Ergeb-
nisse werden in einem breiten Kontext diskutiert und potenzielle, allgemeine
Mikrobiomstrukturen identifiziert.

Das erste Projekt basiert auf der Beobachtung, dass Wirte im Vergleich zu
klassischen Habitaten eine begrenzte Lebensdauer haben, was die mikrobielle
Dynamik beeintrachtigen konnte. Bei Wirten, die ihre gesamten Mikroben
aus der Umwelt aufnehmen, wechselwirkt die begrenzte Wirtslebensdauer
tatsdchlich auf lange Sicht mit der mikrobiellen Dynamik. Dies fiihrt zur
Koexistenz von Wirtssubpopulationen mit unterschiedlichen Mikrobiomzusam-
mensetzungen. Im zweiten Projekt beschaftige ich mich mit der moglichen
“Vererbung” von Mikroben von den Eltern an neugeborenen Wirte. Ich zeige,
dass die Auswirkungen von Mikrobiom-Vererbung von Merkmalen des Wirts-
Lebenzyklus abhéangen, einschliellich der Einwanderung von Mikroben und
der Lebensdauer des Wirts. Im letzten Projekt hinterfrage ich eine der kri-
tischen Annahmen der vorherigen Modelle. Anstelle gleicher Wachstums-
und Todesraten fiir alle Mikroben gehe ich von unterschiedlichen Raten in
einem vereinfachten Modell aus. Ich finde ein tiberraschendes Ergebnis —
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wenn die Einwanderung von Mikroben und die Biodiversitat ausreichend grof3
sind, andern Unterschiede in den mikrobiellen Wachstumsraten nicht das
entstehende Muster der okologischen Gemeinschaft auf Populationsebene.

Diese Arbeit ist ein Blick auf die vielen Fragen rund um die Okologie und
Evolution des Mikrobioms. Die hier vorgelegten Ergebnisse bauen auf einer
Theorie der Prozesse auf der mikrobiellen Ebene und ihren Wechselwirkungen
mit der Makroskala auf.
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Introduction

“Our itmagination is struck only by what is great; but the lover of
natural philosophy should reflect equally on little things.”

— Alexander von Humboldt

Using current technologies, we can find microbes almost everywhere. Mi-
crobial life prevails in the vastly diverse habitats of the biosphere (Thompson
et al., 2017). This is more meaningful once we consider that ancient microbes
were the first living organisms and that their large abundance has even trig-
gered global-scale transformations (Battistuzzi et al., 2004). Nonetheless, the
central role of microbes in the biosphere has not always been clear.

Throughout human history, our perception of microbes has changed —
especially of those microbes found in the human body. Microbes have been
in our minds since the pioneering observations of Van Leeuwenhoek in the
17th century (Leeuwenhoek, 1677). At the time, their nature was unclear;
however, some generations later, microbes had become tiny enemies — the
agents of disease. The author Paul de Kruif gives us a vivid account of this
time in Microbe Hunters (De Kruif, 1926) — where characters like Pasteur
and Koch were at the front line to identify the pathogens behind some of the
most severe human diseases. Only new technologies allowed us to see that
microbes are more than pathogens. As Sergei Winogradsky would find out,
microbes are an integral part of ecosystems, not just pathogens — microbial
ecology had just been born (Winogradsky et al., 1949; Dworkin and Gutnick,
2012).

For microbes living in or on hosts, the extent of such integration has
crystalized, in recent years, in the concept of the host-associated microbiome
(Adair and Douglas, 2017). This view, where hosts and microbes are closely
associated, asks for the reinterpretation of ecological and evolutionary concepts
(Bordenstein and Theis, 2015). Instead of thinking of animals, plants, or
fungi as isolated individuals challenged by the environment, microbes might
actively participate in their eco-evolutionary processes. Correspondingly,
hosts might influence the dynamics of their microbiome. Some even consider
the concept of the holobiont (from the Greek hélos - whole, and biont - unit
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2 INTRODUCTION

of life) as the best way to describe what hosts and microbes experience in
nature (McFall-Ngai et al., 2013).

Motivation and structure of the thesis

In this thesis, I investigate processes experienced by microbes living in
or on hosts. While it could be argued that theories developed in a macro-
ecological context could explain the ecology and evolution of host-associated
microbiomes (Prosser et al., 2007), empirical evidence suggests that new
theoretical developments are needed (Miller et al., 2018). My motivation
is to provide theoretical insights into the ecological processes giving rise to
microbiome patterns in nature. Although each project addresses a distinct
possibility, the following questions connect them all: (i) Is there a process
exclusively (or mostly) experienced by host-associated microbes? And (i)
how does this process affect the microbiome composition? Inspired by its
insights to microbiome research (Sieber et al., 2019) and simple principles of
birth, death, and immigration, I build upon neutral ecological theory (Hubbell,
2001; Sloan et al., 2006).

Classic neutral models assume that habitats are everlasting (Hubbell,
2001). Although this is a sensible assumption if habitats change on geological
timescales, when animal, fungi, or plant hosts are the habitats, their timescale
of survival might interfere with the microbial dynamics. Here I investigate the
effect of host lifespan on the microbiome composition — where the transient
dynamics and the microbiome of newborns become essential. First, I consider
hosts born free of microbes in Chapter 1, then, the parental transfer of
microbes to newborns in Chapter 2. Both cases are of great interest for
microbiome research but challenging to address experimentally so far (Hammer
et al., 2019; Funkhouser and Bordenstein, 2013). Throughout, classic neutral
theory is my baseline for comparison (Sloan et al., 2006), however in Chapter 3
[ relax the assumption of neutrality. Each time, the observations are connected
to empirical evidence. I finish stating the overarching conclusions of my work
and identifying avenues of future research.

In the remainder of this section I provide necessary definitions and concepts,
including host-associated microbiome and neutral ecological theory. Then, I
present the theory of stochastic modeling relevant for the analyses.

What is a microbiome?

Ecology is the science that studies the interactions that determine the
distribution and abundance of organisms in the environment (Begon and
Townsend, 2020). Although its levels of study range from populations to the
entire biosphere, conventionally, studies focus on a specific ecological level,



where particular processes might come at play (Begon and Townsend, 2020).
A concept that transverses ecological levels is biome. A biome is a group
of individuals adapted to a particular environment (Berg et al., 2020). The
concept is sometimes used as synonym to community (a group of popula-
tions) or ecosystem. A biome composed of microscopic individuals is called
microbiome (Berg et al., 2020). Microbiomes can be classified in several
ways. One of considerable interest is according to the habitat where the
microbes are contained. A distinction is made between microbes located in
an abiotic environment — environmental microbiome — and those hosted in a
larger, living organism — e.g. plants, fungi, or animals — the host-associated
microbiome. In this thesis I refer to microbiome in the sense of community,
where various microbial populations coexist within the same environment.

Ecology of communities

Ecology and evolution have been intertwined since their conception as
scientific fields (Watts et al., 2019). Nowadays, we know this is especially
true in microbial communities, where the ecological and evolutionary time-
scales can overlap (Koskella et al., 2017). Although each chapter of this
thesis focuses on an ecological question, these have important evolutionary
consequences. Moreover, ecological and evolutionary definitions are blurred
in Chapter 2, where I consider a process of microbial “inheritance” to hosts.

Community ecology has a long history of dialogue between empirical and
theoretical studies. While new theories have been developed from empirical
insights, new experiments have emerged from theoretical predictions as well.
In the next paragraphs I briefly summarize the empirical and theoretical
knowledge of what Vellend (2010) calls the main drivers of community ecology.
These are useful to build from a solid conceptual ground.

The first driver is selection. Within a population, individuals naturally
show variation in their traits. In an ecological time-scale, such variation biases
the success of individuals in favour of those better adapted (Vellend, 2010).
Although the relevant traits for selection are contingent to the environment,
a commonality observed is that in large populations the strength of selection
increases (Vellend, 2010).

The second driver is ecological noise, often called ecological drift. This
occurs when random environmental or demographic fluctuations lead to
changes in the community composition (Zhou and Ning, 2017). Evidence
shows this is particularly important for smaller communities, where chance
plays a larger role (Vellend, 2010). Chapters 1 and 2 operate in a context
where all individuals have the same traits, so without selection, ecological
drift is the main driver acting upon the microbial types.
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The third driver is migration. In nature, habitats are very often partitioned
(Sieber et al., 2021). For example, the islands of an archipelago or the crypts
of the intestinal epithelium. If these partitions are sufficiently isolated from
each other, each could contain an isolated community. Migration is the
movement of individuals between such partitions — which has proved to be
important to sustain biodiversity (Macarthur and Wilson, 1967).

The last driver is speciation. In nature, numerous species coexist within
the same community. Speciation is the process by which new diversity is
generated from existing individuals (Gavrilets, 2003).

The drivers introduced above have been used extensively to develop
theories explaining the community patterns observed in nature (Gravel et al.,
2006). Although specific discoveries have paved the way, two theories unify
many of the findings — the so called niche and neutral theories of ecology.

Niche theory is developed from the premise of differential adaptation
of taxa to the habitat. Then, according to this perspective, the observed
diversity in nature is the result of different taxa being able to occupy different
ecological niches — e.g., food, space, time, etc (Chase et al., 2003).

Neutral theory is developed from an opposite premise, where selection is
considered negligible compared to ecological drift and migration. According
to this perspective, the observed diversity in nature results from continuous
demographic and environmental fluctuations, as well as migration between
patchy habitats (Hubbell, 2001).

Much knowledge has been gained about the ecology at the macro-scale
(Vellend, 2010). However, less is known about the microbial scale, and
particularly about the association of microbes to hosts (Zhou and Ning, 2017)
— among many questions, whether hosts provide more stable or challenging
habitats (Bansept et al., 2021), the effect of biological clocks (Thaiss et al.,
2016a), the fluctuation of resources based on feeding rhythms (Thaiss et al.,
2014), and the interaction with the immune system (Thaiss et al., 2016b).
Each of these topics is subject of active empirical and theoretical research.

In this thesis, I combine the ecological drivers and theories introduced
above with other mechanisms that could specifically drive the ecology of
host-associated microbes. For this, I primarily rely on stochastic models.

Stochastic modeling of communities

Stochastic fluctuations are one of the main drivers of ecological change.
These fluctuations can have an environmental or demographic origin (Zhou
and Ning, 2017). In this thesis, I use the concept of stochasticity in its
demographic sense — i.e. any fluctuation in the abundance of individuals due
to the probabilistic nature of birth, death, or migration.



Stochastic change is specially important if, at any point, the number
of individuals is close to zero (Vellend, 2010). In this case, fluctuations
of abundance can lead to a divergence of community compositions that
can propagate in time, even when the number of individuals is far from
zero (Vellend, 2010). In an extreme case, fluctuations can even lead to the
extinction of whole populations or communities (Vellend, 2010).

In the next paragraphs I detail the process to write down a stochastic
model. In general, this starts by identifying the subjects of study and the
events that change them at an individual — microscopic — level. Then, an
equation accounting for the change of the community composition through
time is derived. Finally, if needed, the microscopic equation can be translated
to a mesoscopic or macroscopic description. The resulting model can then be
used to address specific biological questions.

States, events, and rates

Given a collection of states, a stochastic model tracks either the state that
occurs or the probability of observing a given one. In a community, a state is
one of the possible community compositions (Otto and Day, 2007). States are
described by variables that can be discrete or continuous. The choice between
a discrete or continuous description primarily depends on the properties of
the community and the observables of interest.

At any given time, the composition can be maintained or changed. The
occurrence of a specific event depends on the processes driving the community
dynamics. The rates of events determine which of the possible events occurs
and the time between each of them (Otto and Day, 2007).

The knowledge of the states and rates of events is enough to give a
probabilistic account of the community composition through time. This
probabilistic description can be obtained in several ways. One possibility
are stochastic simulations. A simulation produces a time-course realization
of a single community, that upon collection with other realizations can be
subjected to statistical analyses (Gillespie, 1976). Another, sometimes more
powerful, possibility is to use an algebraic representation of the stochastic
model (Gardiner, 2004). Nonetheless, commonly, obtaining explicit solutions
to algebraic representations is not possible — thus, equations, their numerical
solution, and simulations become complementary.

Stochastic simulations

The aim of a stochastic simulation is to use the rates of events to produce
an individual realization of the model. Running a simulation is straightforward
once an initial state is specified — based on the current state a future state
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is obtained, then the new rates of events computed, and the steps repeated.
The most direct simulations use all the rates of events.

In general, a large number of realizations are needed before robust statis-
tical analyses can be performed. Depending on the complexity of the model,
this could lead to a large demand of computational resources and computing
time. Thus, various simulation algorithms have been developed to decrease
this burden. The Gillespie algorithm, also called stochastic simulation algo-
rithm, is the most common (Gillespie, 1976). This algorithm focuses only
on the rates of events that cause a change — called transition rates. Each
time-step, an event is randomly chosen based on the relative weight of its
transition rate. Then, the time length of the time-step is drawn based on
the sum of transition rates. Other algorithms build upon Gillespie to further
speed up simulations — for example, by exploiting particular properties of the
model or by sacrificing resolution at short time scales. Tau-leaping is one of
such algorithms, where the transition rates are only updated after a chosen
number of time-steps (Gillespie, 2001).

In some systems, the probability distribution reaches stationarity after a
transient dynamics. In this case, the collection of realizations with sufficiently
many simulated time-steps can lead to such a stationary distribution.

Algebraic representations

The possible realizations of a community can be “compressed” into a
dynamical equation. Then, the methods for differential equations can be
used to analyse it or even solve it. Similarly to the Gillespie algorithm, these
equations only track changes in the composition (Gardiner, 2004).

Under proper conditions or simplifying assumptions, closed form equations
of relevant quantities, such as probabilities and statistical moments (e.g. mean
and variance) can be obtained. Alternatively, numerical methods can be used
to compute solutions for chosen parameters.

Sometimes, a specific algebraic representation could simplify the compu-
tation of certain observables. That is the case in this thesis — thus, in the
upcoming Chapters I analyse the models using various representations.

When a stochastic model is developed from its microscopic description —
focusing on birth, death, and migration — transforming the set of transition
rates into a dynamical equation is the first step (Otto and Day, 2007). The
premise here is that for a given state — let us called it n — there is a set of
transition rates that lead to this state R(n’ — n), but also a set of transition
rates that lead out of it R(n — n’). Then, the probability of composition n



at time ¢, P(n,t), changes according to the following dynamical equation

OP(n,t)

o ZRn—>n ZRn—>n P(n,t). (1)
N——_—— n’#n n’#n

probability change N v _

TV TV
probability influx probability outflux

This equation is called the master equation of the system (Gardiner, 2004).
Its usefulness is that it contains the time-dependent information about every
possible state of the system. I use this equation as the final subject of study
in Chapter 3 and as an intermediate step in Chapters 1 and 2.

The states in the master equation are discrete. However, in some systems
the number of states is so large and their distance so short, that assuming
the states as a continuum might simplify the analysis. This is the premise
of the differential Chapman-Kolmogorov equation (dCK) (Gardiner, 2004).
In particular, if the number of states is bounded to a domain, these can be
normalized and approximated as a continuous variable. Let us define the
frequency x = n/N, where N is the number of individuals in the community,
which is constant. Then, the dCK equation is given by

OP(x,t) 1 0?
il s L N5 -2 b (x)P(x,t
5 Z G HOIPOR )45 D 5 (X P )
N—— ., (2%
probability change ~~ ~ ~ 4
drift component diffusion component (2)
+ / (R(x' = x)P(x',t) — R(x = X')P(x,t)) dx’.

jump component

Here, the first and second terms describe local changes, while the last term
describes non-local changes. Each of these terms scale differently. In particular,
in contrast to the other terms (order 1/N), the diffusion term (order 1/N?)
implies that noise is more relevant for smaller communities, N. I use the
dCK equation in Chapter 1, where I account for the effect of host death —
described as jumps — on the microbiome composition.

A particular case of the dCK equation is when no jumps occur — so the
last term is equal to zero. This is called the Fokker-Planck equation (FP)
(Risken, 1996). This equation has been useful to investigate the dynamics of
environmental microbiomes — where no sudden changes occur (Sloan et al.,
2006). In Chapters 1 and 2 I use the FP equation as a baseline to quantify
the effect of host dynamics on the microbiome composition.

The dCK equation describes the change of probability for an infinite
number of realizations. Similarly to simulations, single realizations can be
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obtained using the equivalent stochastic differential equation (SDE) (Gardiner,
2004). According to the theory of stochastic processes, the dynamics of a
system is generated by two contributing factors. Like in an ordinary differential
equation, in a SDE the change of frequency x is proportional to a deterministic
rate. However, in addition, the change depends on a noise term (Allen, 2007),

dx(t) =  a)dt  + c(x)AW(L) . (3)
S—~— N—— ————
frequency change deterministic component  noise component

The stochastic fluctuations lead to deviations from the deterministic case, so
resulting realizations are different from each other. I use this representation
in Chapter 2, where a set of more complicated transition rates account for
the transfer of microbes from parents to newborns. There, I apply the Fuler-
Maruyama algorithm, a first-order numerical method to solve SDEs (Allen,
2007).

Probability distribution at equilibrium

In this thesis I primarily focus on the long term state of the microbiome.
More concretely, on its stationary probability distribution. If stationarity
exists, this occurs in the limit of infinite time — mathematically, this can be
found when the derivative with respect to time in the master equation or the
dCK equals zero (Gardiner, 2004).

In particular, I model cases where regardless of the initial conditions, the
same stationary probability distribution is reached. This condition is called
ergodicity (Gardiner, 2004). Stochastic systems have this property if the
collection of all states cannot be separated in subcollections. In other words,
if all states are directly or indirectly connected in the space of states.

Exploiting ergodic properties, I use two approaches to compute the sta-
tionary probability distribution. Firstly, in Chapter 1, I analyse the following
time-discrete equation of probabilities,

P(n,t+1)= T(m) Pn,t), (4)
~——— S~ N——
prob. at t +1 transition r. prob. at ¢

This equation is stationary when the probability P(n,t + 1) = P(n,t), so
effectively P(n,t) = P(n). To find this stationary vector, I use the Perron-
Frobenius theorem (Caswell, 2001). This theorem indicates that we can write
T(n)P(n) = AP(n), where \ is the associated eigenvalue of matrix T'(n).
Thus, P(n) corresponds to the eigenvector of T'(n) with eigenvalue A = 1.

A second method, used in Chapter 3, relies on the master equation instead.
At stationarity, its derivative with respect to time equals zero. Then, for



each state the influx and outflux of probability are exactly equal. This is
called a detailed balance condition (Gardiner, 2004). We are left with a set
of equalities, that after some algebraic manipulations leads to a recurrence
equation. This equation allows us to compute the stationary probability
distribution starting from one of the states at the boundaries.

Modeling the microbiome

At the core of each stochastic model lie its transition rates. Regardless
of the algebraic representation or simulation method chosen, the transition
rates are responsible for the resulting dynamics. In fact, they contain infor-
mation about the variables that we consider relevant, their interactions, and
importantly, the assumptions that we make on them. In this thesis, I refer to
ecological process as the mathematical form of the transition rates (Figure 0).

There are many ways in which the transition rates could be written.
However, historically, some ways have been preferred since, mathematically,
they make the analyses feasible. A Markov process is probably the most
common way (Gardiner, 2004). In this process, we assume that the future
state of the community only depends on its present state — thus, no time
memory is considered. This is a strong simplification, that nonetheless, has
proven to be very effective to model diverse physical systems — including
ecological systems (Otto and Day, 2007).

A further simplification, common in ecological models, is to maintain the
number of individuals within a community constant. One conventional way to
achieve this is the Moran process (Moran, 1962). In a Moran process, deaths
and births — the drivers of dynamic change — occur consecutively, such that
within a single time-step either birth follows death or death follows birth.
The models presented in this thesis are Markovian following a Moran process,
where local microbial death is followed by either birth from a local microbe
or immigration of an environmental microbe (Figure 0).

In their most general form, the ecological processes that I analyse here
are described by transition rates like the following, where one microbial type
decreases by one individual while another increases by one individual,

on;( fini +mp;), (5)
NGRS

death birth migration

where n; and n; are the abundances of two microbial types, and ¢; and f;
are death rates and growth rates, respectively. The immigration from the
environment has magnitude m, each type with a fraction of immigrants p;.
Within each chapter, the research focus of the model leads to certain
assumptions on this transition rate (Figure 0). In Chapters 1 and 2, I assume
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neutral death and growth rate for all types, thus ¢; = f; = 1 for all microbial
types, focusing on the effect of host lifespan. In Chapter 3, I assume infinite
host lifespan, rather focusing on the effect of type-specific growth and death
rates — i.e. relaxing the assumption of neutral rates.

(A) Chapter 1. Stochastic colonization of microbe-free hosts.

a microbe

e .—l
yes
no . microbe no local microbe
host death? = local microbe death = L —_— q
immigration? reproduction

l yes

newborn host
(microbe free)

(B) Chapter 2. Parental transfer of microbes to newborns.

a microbe
immigrates
| yes
no q .
microbe no local microbe
host death? = local microbe death == L — .
immigration? reproduction
1 yes
newborn host
(microbe free)
1 E Are all microbial death and growth rates equal? Yes |
'

transfer of microbes
from parent

(C) Chapter 3. General death-birth models with immigration.

a microbe

H i
H '
'
o | and growth rates equal?
immigrates ' !
yes H No !
....................
microbe no local microbe
local microbe death === L —_— .
immigration? reproduction

Figure 0: Ecological processes modeled in this thesis. A flowchart indicates the
sequence of events occurring during a single time-step leading to the dynamics of the
microbiome composition. In the diamonds only one of the possible events occurs. Which
one occurs depends on the probability of each event. (A) All growth and death rates
are neutral and the research focus is the effect of the host lifespan on the microbiome
composition. (B) All growth and death rates are neutral and the research focus is the
effect of the parental transfer of microbes to newborn hosts. (C). The growth and death
rates are not strictly neutral, this relaxation becoming the research focus of the simplified
model.



CHAPTER 1

Stochastic colonization of microbe-free hosts

The history of models in macro-ecology is rich. Models that track the
abundance of types within a local community have been particularly successful.
When these models are applied to host-associated microbiomes, an immediate
realization is that compared to conventional habitats, hosts are also living
organisms with a finite lifespan. In this Chapter, I investigate how the host
lifespan can interfere with the microbiome dynamics and its composition.

This Chapter has been published under the title Stochastic colonization of
hosts with a finite lifespan can drive individual host microbes out of equilibrium
(Zapien-Campos et al., 2020), coauthored by Michael Sieber and Arne Traulsen.
The authors’ contributions are detailed at the end of the thesis.

1.1 Abstract

Macroorganisms are inhabited by microbial communities that often change
through the lifespan of an individual. One of the factors contributing to this
change is colonization from the environment. The colonization of initially
microbe-free hosts is particularly interesting, as their microbiome depends
entirely on microbes of external origin. We present a mathematical model of
this process with a particular emphasis on the effect of ecological drift and a
finite host lifespan. Our results indicate the host lifespan becomes especially
relevant for short-living organisms (e.g. Caenorhabditis elegans, Drosophila
melanogaster, and Danio rerio). In this case, alternative microbiome states
(often called enterotypes), the coexistence of microbe-free and colonized hosts,
and a reduced probability of colonization can be observed in our model. These
results unify multiple reported observations around colonization and suggest
that no selective or deterministic drivers are necessary to explain them.

11
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1.2 Introduction

Microbial communities inhabit every available habitat on this planet,
including the tissues of macroorganisms. For such host-associated communities
every host animal constitutes a distinct habitat. Migration between these
individual habitats and ecological drift within them play important roles in
structuring these communities (Zhou and Ning, 2017). This idea is formalized
in the Unified Neutral Theory of Biodiversity where individuals within a
community are regarded as ecologically equivalent (Hubbell, 2001). First
developed in a macro-ecological context, its application has been extended
to microbial populations (Sloan et al., 2006; Woodcock et al., 2007) and
host-associated microbiomes (Burns et al., 2016; Adair et al., 2018; Sieber
et al., 2019).

What sets host-associated microbiomes apart is that their habitat — the
host animal — is itself subject to demographic processes such as reproduction
and death. Previous applications of neutral models to microbiome data have
generally ignored these host-level processes by assuming essentially static
hosts with infinite lifespans, allowing convergence to a long-term equilibrium
distribution of microbial abundances, see e.g. (Sieber et al., 2019). However,
any real host species will have a finite lifespan that may not allow for the
community to settle down on a potential long-term composition. Moreover,
differences in the lifespan across host species could obscure comparisons of
neutrality across different species. Several authors have fitted one of these
‘static host’ neutral models (Sloan et al., 2006) to microbiome datasets across
multiple host species, finding an overall high resemblance (Burns et al., 2016;
Adair et al., 2018; Sieber et al., 2019). However, one of these studies has found
much less resemblance for the gut microbiome of C. elegans compared to
sponges and hydra and speculated that this may be explained by the shorter
lifetime of C. elegans (Sieber et al., 2019). Others have noted that the worm
microbiome might be neutrally assembled, obscured by a transient state far
from the neutral long-term equilibrium (Vega and Gore, 2017).

Few studies have explored the effect of host life cycles on the microbiome.
Zeng et al. studied the change of microbiome composition under neutrality
and discrete host generations, but did not consider microbial dynamics (Zeng
et al., 2015). The effect of microbial symbionts, particularly the coevolution
under multilevel selection (Van Vliet and Doebeli, 2019), and the effect of
the horizontal and vertical acquisition of such microbes have been studied
elsewhere (Roughgarden, 2020).

An additional assumption of current neutral models is that hosts con-
tain the same abundance of microbes throughout their lives (Sloan et al.,
2006). This is not the case in the gut of important model organisms like
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C. elegans (Zhang et al., 2017), D. melanogaster (Chandler et al., 2011),
and D. rerio (Stephens et al., 2016), which are initially microbe-free and
only colonized from the environment later. According to the “sterile womb”
hypothesis (Perez-Mufioz et al., 2017), also human newborns may be initially
microbe-free.

By modelling the change from a microbe-free to a fully microbe-populated
state, we study the transients of colonization, and their implications as the
lifespan of hosts shortens. Existing models have suggested that neutral models
can explain microbial abundances within hosts. Extending these neutral
models of a host’s microbiome to capture microbial community dynamics
during the finite lifespan of a host seems thus natural. We analyse such a
model, including the colonization from a microbe-free state and the finite
lifespan of hosts. We discuss the dynamical consequences and the connection
to experimental observations.

1.3 Model and methods

A nearly-neutral model

We consider multiple hosts (habitats) connected to a pool of microbes.
This pool is the subset of environmental microbes capable of colonizing the
hosts. Microbial abundances within each host change by three processes: (i)
the death of a microbe, giving rise to empty space (ii) a birth-immigration
process, when the new empty space is replaced by a microbe, and (iii) host
renewal, when a host dies with its microbiome and a new host appears that
does not contain any microbe. An illustration of this host-microbiome model
is shown in Fig 1.1.

We consider a population of hosts that is sufficiently large to draw statis-
tical conclusions. The microbial community in each host grows dynamically,
but with a fixed maximum capacity N. To make this more precise, let n; be
the number of individuals of the i-th microbial taxon within a host (i > 1)
and M be the number of taxa. At any time we have Zf\il n; < N. We reserve
the index 7 = 0 for the unoccupied space, namely no = N — Zf\il n;. We
define z; = n;/N as the frequency of the i-th taxon within a host and assume
N > 1, such that z; is continuous and N —1 ~ N. Note, that x then denotes
the fraction of available space within a host. We assume the death of hosts
can be approximated as an event occurring each time step with probability 7,
given by the probability of host death-birth events per microbial death-birth
event. The limiting case 7 = 0 corresponds to infinitely living hosts (as in
(Sloan et al., 2006; Sieber et al., 2019)), while 7 = 1 corresponds to hosts
whose lifespan is as short as the average lifespan of a microbe, leading to
almost entirely empty hosts.
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Figure 1.1: The host-microbiome dynamics in our model and the coordinates of
host species in a map of its parameters. (A) Gray blobs indicate hosts, coloured- and
empty circles indicate microbes and empty space, respectively. Within the host, microbes go
through a death-birth process, with newborns migrating from a pool of colonizing microbes
with probability m or being chosen from the same host with probability 1 —m. The pool of
microbes includes all microbes capable of living within hosts. Hosts are identical habitats,
each with a finite, geometrically distributed lifespan. Each time step, there is a probability
7 of a host death followed by the birth of a new host. Newborn hosts contain no microbes.
The probability of a host death-birth event is relative to a microbe death-birth event. (B)
A space of m and 7 provides a life-history map on top of which hosts can be located and
variables interrogated (see Fig 1.3-1.6). We sketch hypothetical coordinates of multiple host
species. In practice however, m and 7 may depend on physiological, environmental and
behavioural factors. Silhouettes from PhyloPic (http://phylopic.org) licensed under
Public Domain Dedication 1.0 licenses.

Let us focus on the events within a single host. In each time step, a
randomly selected site is changed. This site is either unoccupied space or
a microbe. Death is followed by replacement via immigration or birth of a
new type. With probability m, its content is replaced by a random microbe
from the environment, selected proportionally to its frequency in the pool of
colonizers, p; (note that py = 0). With probability 1 — m, it is replaced by a
microbe from the same host, selected proportionally to the fitness (1 + «;)z;
of the reproducing microbe — or it is replaced by unoccupied space with
probability proportional to (1 + ag)zg. The fitness parameter «; describes
deviations from strict neutrality, where proliferation of microbe ¢ is promoted
(o; > 0) or impeded (c; < 0). The parameter oy controls how rapidly
unoccupied space within a host is filled with microbes. This determines
the level of resistance a host poses to be occupied by microbes, or in other
words, how favourable the host environment is for microbial reproduction and
persistence. For ag > 0, hosts pose an increased resistance to the internal
microbes, while oy < 0 decreases such resistance. The acceptable range of
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a; and o ranges from —1 to infinity. The resulting stochastic process for a
given host can be described by the probabilities of events after one time step,

Plz; = 0i0] =7 (1.1a)

Pl i+ 4] = (1= 1) (1~ ) <mpz F-me fi)) (1.1b)

Ple; = 2= 4] = (1= 1)a; (m(l - p) (1 - +f;f§}])>

(1.1c)
(1.1d)

where Eq (1.1a) describes the probability of a host death event: All microbial
frequencies are set to zero, i.e. x; — 0 for ¢ > 1. At the same time,
a new empty host arises, corresponding to xqg — 1. This is captured by
di0, the Kronecker delta (1 for i = 0 and 0 otherwise). The three other
probabilities require that the host survives, which occurs with probability
1 — 7. For a microbial taxon i, Eq (1.1b) describes the probability of increase
by immigration or reproduction within the host, and Eq (1.1c) describes the
probability of decrease derived from other taxa immigration, reproduction
within the host, or their inability to reproduce. For i = 0, Eq (1.1b) and
Eq (1.1¢) describe the probability of increasing and decreasing the unoccupied
space, respectively. Finally, Eq (1.1d) indicates the probability of no change.
Focusing on the effect of ecological drift we fix the microbial fitness o; = 0
(for ¢ > 1) for the remainder of the manuscript.

Probabilities in Eq (1.1) change considerably through time. For example,
because hosts are largely empty at birth, unoccupied space decreases rapidly
as Plrg — xzo — %] > Plzg — xo + |, while the microbial frequencies
increase because Pl; — z; — +] < Plz; = x; + ~|.

For 7 = 0 the probabilities are as in Sloan et al.’s (Sloan et al., 2006),
which becomes a good approximation when the time scale of reproduction
on the microbial level is much faster than the time scale of reproduction
on the host level. We focus on the dynamics of the probability density of
x;, ®;[x;, t]. Due to the differences in p; and «;, ®;[x;,t] can be different for
all microbial taxa ¢. This can be approximated in the large N limit by a
Fokker-Planck equation (see Appendix B.1), with ¢ being measured in the

number of microbial death-birth events. Writing down the equations for
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unoccupied space xy and microbes separately we have

0 0 10

a@o[l’o,t] = a—xo |:—G0[l’0](b0[l'0,t] + Ea—xobg[mo]q)o[l'o, t]‘| +7 (5330’1 — q)o[l’o,t])
(1.2a)

Sl ] = o |l 1+ B 7 (G — Bl 1)

8t i\ Li, - 8131 Ay | Tq| P | T4, 281’1 i [ Li| i | Tq, T \0z;,0 ilTi, )
(1.2b)

where a;[r;] describes the deterministic part of the change and b?[z;] describes
changes due to randomness (Gardiner, 2004). The term a;[z;] is calculated as
the first moment of Ax;, the expectation (Ax;),

dolzo] = (1 - 7) <—m$0—(1—m)x0 (1_ 1+ a ))%

(1+ ap)xg + (1 — )
(1.3a)

1 1
ai|z;| = (1 — m(p; —x;) — (L —m)x; | 1 — —.
=] = ( T)( (p ) —( ) ( (14_@0):1:0—0—(1—370)))]\]
(1.3b)
The term b?[x;] is calculated as the second moment of Az;, the expectation

((Az)?),

Blwe] = (1—7) (m$0+(1—m)x0 (1+ (1 + a0)(1 — 2a0) >) 1

(14 ag)zo + (1 — ) ) ) N?
(1.4a)
i) —(1—7)
(1 —2x;) 1
(m(pi Fot B+ (L= (1 i Tanm (1= m)) N
(1.4b)

For 7 — 0, the last terms in Eq (1.2) vanish, recovering the usual Fokker-
Planck equation of the neutral model without host death (Sloan et al., 2006),
while for 7 > 0 these additional terms describe the change due to host death,
where a new, microbe-free host appears.

Although individual hosts constantly change their microbiome through the
process of microbial death birth-immigration and host death, the collection
of transient host states becomes stationary at the population level. This
stationary distribution is found setting the time derivative of Eq (1.2) equal
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to zero,
0- [—ao[wo]q)o[a:o] + %d% [120) [%H} (B — Dolae]) (150)
0= dii |:—az’[l'i]q)i[$z‘] + %di [bf[xz]@[xzﬂ} + 7 (04,0 — Pi[z])  (1.5b)

The Fokker-Planck approximation has several benefits: It provides an
intuition of the stochastic process at the population level and the effect of host
death (7), a direct connection to models not considering finite host lifespans
(Sloan et al., 2006), and the possibility to frame the process in the broader
stochastic processes literature (Gardiner, 2004).

An alternative interpretation of the stochastic process is provided by
(Evans and Majumdar, 2011)

@Z[I'Z] = / q)i[xiytr”q—:o\ll[tr]dtr,
0

where ®;[x;] results from considering all the possible distributions of the
time-dependent death-birth process of microbes without host dynamics,
®;[zi, tr]|r=0, influenced by the distribution of death-birth time of hosts,
U[t,]. The distribution of these resetting events is given by

Ult,] =7e ™ (1.6)

This equation will help us to compare our model and individual-based simu-
lations.

Now we aim to solve Eq (1.5), where a major challenge arises from the
additional terms capturing the host death-birth events, which correspond to
a resetting of the local microbial community. Such resetting events are often
referred to as “catastrophes” in the Mathematics literature and research has
focused on finding closed form solutions of the corresponding discrete problem
derived from the master equation using first order transition probabilities
(Kyriakidis, 1994; Swift, 2001; Chao and Zheng, 2003). In physics, this is
called diffusion-drift with resetting and its Fokker-Planck approximation
and zero order transition probabilities have been used to find closed form
solutions and compute quantities of interest (Meylahn et al., 2015; Evans
and Majumdar, 2011). Our model considers density-dependent transition
probabilities, i.e. second order effects. Although these provide a well defined
system at the boundaries x; = {0, 1}, they complicate finding a closed form
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solution of ®;[x;] tremendously. Approximating the solutions numerically
using the finite differences and finite element methods (Kumar and Narayanan,
2006) is possible.

We solved this equation numerically to query the parameter space (Kumar
and Narayanan, 2006). However, we found our implementation could lead to
numerical errors that were large and inconsistent in some cases, especially as
7 — 0. As it proved more robust numerically (Fig Sup B.1, Fig Sup B.2 and
Fig Sup B.3), we used the master equation (see Appendix B.1) to produce
our figures instead,

A [, + 1] = T,8;[5, 1], (1.7)

where A®; is the change of the distribution during one time step. In this case
the distribution at a given time is represented by the vector <I71 [z, t], whose
entries correspond to the probability densities of z; € {0,1/N,2/N, ..., 1}.
Upon multiplying by the matrix of transition probabilities, T}, the time change
of the distribution is obtained. Because only transitions are considered, the
main diagonal of T} equals zero, while the upper and lower diagonals equal
Eq (1.1b) and Eq (1.1c), respectively. Host death is reflected in additional
non-zero probabilities, 7, at the first column for microbial taxa (i > 1) or last
column for unoccupied space (i = 0). The non-trivial stationary distribution
P, [z;] occurs for A, [T, t+1] = 0, corresponding to the eigenvector of T} with
eigenvalue zero. We used this method to compute the stationary distribution
in Python 3.6.

If numerical problems emerged solving Eq (1.7), we focused on solving
@;[fi,t + 1] = Riq;i[@,t] for q;i[fi,t + 1] = (I;Z»[fl-,t] instead. Here R;, the
probability matrix, is identical to T;, except at the main diagonal where it
equals Eq (1.1d). The stationary distribution corresponds to the eigenvector
of R; with eigenvalue one.

Stochastic simulations

To study the transient dynamics of colonization and test our stationary
estimation, we performed individual-based simulations. These were performed
for 500 hosts, N = 10%, two equally abundant microbial taxa in the pool of
colonizers, p; = ps = 0.5, and initially sterile hosts (o =1 and x; = 25 =0
as initial condition). We varied the values of migration (m) and rate of
occupation of empty space ().

Difference between models

To compare models considering finite (7 > 0) and infinite host lifespan (7 =
0), we calculated the total difference between their stationary distributions,



1.3. MODEL AND METHODS 19

D;[zi]|r>0 and D;[x;]|, =0, for all z;
1
9 Z “I)z‘[%”wo — &[] =0 (1.8)

This difference, ranging from 0 to 1, will equal zero only if for all z;, the
two distributions are identical, ®;[z;]|;~0 = ®;[x;]|,=0-

Probability of microbe-free, colonized and fully-colonized
hosts

To analyse when a particular microbial taxon will not be observed in a
host, i.e. its probability of non-colonization, we calculated

P {x < %] — ®,0], (1.9)

where 1/N is the minimum observation limit and Plz; > 1/N| =1 — P[z; <
1/N] is the probability of colonization by microbe i.

On the other hand, to analyse when a particular microbial taxon will fully
occupy a host, we calculated

N -1

Pz, >

} = d,;[1], (1.10)
where =1 is the maximum observation limit, and Plz; < (N — 1)/N] =
1 — Plz; > (N — 1)/N] is the combined probability of partial and non-
colonization.

Finally, the quantities P [zg < 1/N] and P [xo > (N — 1)/N], indicate the
probability of hosts full of microbes and the probability of hosts free of
microbes, respectively.

Alternative microbiome states

To assess the modality of the distribution ®,[z;], i.e. alternative micro-
biome states, we identified the maxima of the distribution of its numerical
solution for varying parameters. The distribution can be unimodal, with the
maximum located at one of the boundaries or between them, x; = {0, z}, 1},
or bimodal, by a combination of the former. We classified these states and
calculated the magnitude of their maxima.

Comparison between the model and simulated data

In order to evaluate our model, we compared it to stochastic simulations
(Fig Sup B.1, Fig Sup B.2 and Fig Sup B.3). As mentioned above, we
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simulated hosts individually. However, our model provides a population
description for overlapping generations. Therefore, we sampled single time
steps of the colonization trajectories according to Eq (1.6), which indicates
the probability of a host death-birth event through time. The distribution
of the simulated sampled set was then compared to our theoretical model
predictions.
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Figure 1.2: Individual-based simulations of colonization for two neutral micro-
bial taxa. The colonization trajectory of 50 microbe-free hosts is shown, with colors
indicating the time of sampling. Each trajectory is composed of 10* points, with the green
line indicating the mean and the dashed line indicating full colonization. Insets show
the distribution of x1/(x1 + z2) for time steps sampled according to a host death-birth
probability 7 = 1075 in Eq (1.6). (A) When hosts are colonized slowly, the trajectories
maintain a mean frequency given by the pool of colonizers (p;), but show an increased
standard deviation before full colonization, which decreases later to reach x; ~ p; at the
long-term equilibrium. (B) When hosts are colonized rapidly, the mean frequency across
many hosts is conserved, but the distribution becomes bimodal as a result of the fast
proliferation of the first colonizer, and a slower convergence to the long-term equilibrium.
The inset shows the distribution of taxon 1 over the simulated time. For finite host lifespans
and fast colonization, such dynamics can produce alternative microbiome states at the
population level (inset in B). Sampling was performed every 10 time steps in a simulation
of 107 time steps. Other parameters: N = 10%, m = 0.01, p; = ps = 0.5, and o = s = 0.
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Code availibility

The Python code for simulations, numerical solution of the model and fig-
ures is available at https://github.com/romanzapien/microbiome-hostspan.

1.4 Results

The dynamics of colonization affects the microbiome of
finite-living hosts, but not of infinite-living habitats

The formation of a microbiome goes through several stages. Analytically,
much of the focus has been on its long-term equilibrium, assuming hosts with
infinite lifespan. Much less is known about the transient stage. Fig 1.2 shows
two illustrative individual-based simulations, where hosts are colonized by
two neutral microbial taxa, going from a microbe-free to a microbe-occupied
state. The dynamics is qualitatively different depending on ay: For oy = 0,
the host is colonized by the two microbes at the same time, leading to a
unimodal distribution that is similar to the long term equilibrium even during
the transient. For ay < 0 empty space is occupied more rapidly compared to
the dynamics between microbes. This leads to a situation where one microbial
strain dominates the host until the host is fully colonized, leading to a bimodal
distribution in the colonization of hosts. Only on a much longer timescale,
this distribution is replaced by the unimodal distribution characteristic for
the long term equilibrium.

Given a low rate of external colonization (m — 0), the time required for
full colonization will be shorter than that to reach the long-term equilibrium.
Such difference will increase even further for rapid colonization, oy < O.
When considering a finite host lifespan (7 > 0), this difference in time-
scales will influence the expected microbiome composition. Interestingly, for
shorter lifespans, the host population might be multimodal and only partially
colonized (Fig 1.2B). Moreover, for sufficiently small external colonization
and short host lifespan, coexistence of colonized and microbe-free individuals
is expected (Fig Sup B.4).

From a microbial point of view, the results shown here occur in a completely
neutral context. They can also be generalized to cases with many microbial
taxa. A non-neutral dynamics of the microbes (a; # 0) will modify the
stationary distribution, i.e. they will not only depend on the frequency in
the pool of colonizers (p;) and host lifespan (via 7). Instead, asymmetries of
the multimodality and differential colonization are expected once a; # 0 is
assumed.


https://github.com/romanzapien/microbiome-hostspan

22 CHAPTER 1. COLONIZATION OF MICROBE-FREE HOSTS
A short host lifespan influences the microbiome

We quantified the change of the stationary distribution caused by a
finite host lifespan systematically. Using the stationary distribution of the
frequency, ®;[x;], we compared the predictions assuming hosts with infinite
lifespan (7 = 0) against those with hosts with finite lifespan (7 > 0). Such
comparisons were done for multiple migration probabilities (m), frequencies
in the pool of colonizers (p;), and rates of empty space occupation (o). As
explained in the Methods, Eq (1.8), we express the results as the difference
between the stationary distributions.

Fig 1.3 and 1.4 show the results of the microbial load (total microbial
frequency) and frequency of a particular microbe, respectively. Within the
range of m and 7 analysed, the difference is always greater than zero, indicating
the importance of 7 in our model and the predictions arising from it. Only
for 7 — 0, full agreement is expected.

Regarding the microbial load, infinitely living hosts (7 = 0) provide enough
time for them to be fully colonized and for the distribution of microbes to
reach an equilibrium. In contrast, a finite lifespan (7 > 0) might not allow
full colonization before host death. For a slow occupation of empty space
(ag = 0) the difference increases with shorter lifespan (large 7) and reduced
migration (small m), Fig 1.3A. In this case, the model with 7 = 0 predicts a
distribution centered at frequency 1 decaying towards 0, while the model with
7 > 0 predicts a sharp maximum centered at frequency 0 decaying towards 1.
In contrast, rapid occupation of empty space (g < 0) causes the difference to
decrease and to become increasingly independent of m (Fig 1.3B). This occurs
because the time for colonization, i.e. host lifespan, becomes more relevant
than migration, as successful migrants are increasingly likely to proliferate
within hosts.

For a specific microbial taxon, infinitely living hosts (7 = 0) allow the
frequency in the hosts to reach that in the pool of colonizing microbes (p;).
However, a restricted, finite lifespan (7 > 0) might not allow to reach this
value. In our model, the relevance of 7 increases with its magnitude, but not
independently of m. The maximum difference between the two distributions
occurs for short lifespan (large 7) and large migration (larger m) as p; — 0
(Fig 1.4B-C). In this region, the model with 7 = 0 predicts a distribution
centered at x; ~ p;, while the model with 7 > 0 predicts a distribution
centered at x; = 0 decaying towards 1. Finally, for a single colonizing taxon
(pi = 1, Fig 1.4A) the difference increases analogously to Fig 1.3A, i.e. the
difference increases for smaller migration and shorter lifespan.
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Figure 1.3: Microbial load. (A-B) The difference between models with finite (7 > 0)
and infinite (7 = 0) host lifespan is shown, Eq (1.8). (A) For a slow occupation of empty
space, the difference is maximal for small migration (m) and large 7 as the model with
7 = 0 predicts a distribution centred at frequency 1 decaying towards 0, whereas the
model with 7 > 0 predicts a distribution centred at frequency 0 decaying towards 1. For
a fixed 7 the difference is always greater for smaller m. Only for 7 > 10™* the difference
is maximal and independent of m. Finally, a smaller 7 always approximates the models;
nonetheless within the range analysed the difference is always greater than zero. (B)
A faster occupation of empty space decreases the difference and makes it increasingly
independent of m, as 7 dominates the predictions of the model. (C-D) The distributions
are classified according to their number of maxima (unimodal or bimodal) and location
(0 and 1). (C) A slow occupation of empty space results in microbe-free hosts being the
maximum for short host lifespans (large 7), fully colonized hosts for large migration (m)
and small 7, or microbe-free and microbe-occupied hosts simultaneously for small m and
7. The bimodality results from a limited migration preventing all the hosts from being
colonized but over a host lifespan sufficient for successful colonizers to occupy host fully.
(D) A faster occupation of empty space increases the bimodality region at the expense of
the unimodal cases. In this case, ag — —1 favours the microbe-occupied maximum. When
classifying the distributions, any probability smaller than 10~° was considered as zero.
Other parameters: N = 10*. We use Eq (1.5a) where no definition of p; and a; is required.
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Figure 1.4: Microbial taxon 1. p; indicates the frequency of microbial taxon 1 in
the pool of colonizers. (A-C) The difference between models with finite (7 > 0) and
infinite (7 = 0) host lifespan is shown, Eq (1.8). (A) A single colonizing taxon follows
the same pattern shown in Fig 1.3A. (B-C) The maximal difference of a less abundant
colonizing microbe changes in the direction of larger m. (D-F) The distributions are
classified according to their number of maxima (unimodal or bimodal) and location (0, 1,
and an internal maximum). (D) A single colonizing taxon mirrors Fig 1.3C, and bimodality
is prevalent. (E-F) Less abundant taxa have a decreased probability of colonization,
and an internal maximum emerges for large m and long host lifespan (small 7), whose
location is influenced by the frequency in the pool of colonizers (p;). When classifying the
distributions, any probability smaller than 10~ was considered as zero (Other parameters
N = 10* and ag = a; = 0). Fig Sup B.7 shows how the frequency z; changes as we
increase 7 for m = 1073,

Microbe-free, colonized hosts, and their coexistence are
expected

A major consequence of a host finite lifespan is the coexistence of hosts with
various degrees of colonization, including microbe-free hosts. We calculated the
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Figure 1.5: Probability of full colonization in the stationary distribution. The
probability of full colonization Plxg < 1/N] is shown, Eq (1.9), where 1/N is the minimum
observation limit. For short host lifespans (large 7), partial colonization is more common
than full colonization. (A) For long host lifespans (small 7) or large migration (m), m
has an effect on the probability, but this is lost as 7 is larger and m smaller. (B) A faster
occupation of empty space increases the probability of full colonization, but migration
(m) influence is now restricted to long host lifespans (small 7) and small m. Le. the host
lifespan (7) becomes the most relevant parameter. Other parameters: N = 10*. We use
Eq (1.5a) where no definition of p; and a; is required.

probability of full colonization in the stationary distribution, i.e. Plxg < 1/N]
(Eq (1.9)), for different parameters given a certain capacity for microbes (V).

Fig 1.5 shows the effect of m, 7, and ag on the probability of full coloniza-
tion. Different parameter combinations can result in the same probability of
full colonization. Partial colonization is the most likely state for short host
lifespans (large 7). Only for long living hosts (small 7), both death probability
7 and migration m are important, with m having a larger impact on the
distribution when it is larger (Fig 1.5A). Finally, a faster occupation of empty
space (g < 0) makes the probability of full colonization less dependent on m
and increases it for shorter living hosts (larger 7), i.e. the coexistence with
partially colonized hosts becomes less likely (Fig 1.5B).

The results shown in Fig 1.5 depend heavily on the capacity for microbes
of the host (N). Decreasing N causes the hosts to be fully colonized quicker;
thus partially colonized hosts will be observed for shorter host lifespans (larger
7), slower occupation of empty space (larger ), and less migration (smaller
m), Fig Sup B.5. The opposite is expected for larger N.

As shown by our calculations, Fig Sup B.6, we argue that even microbe-free
hosts might not be an experimental artefact, but an inherent outcome of the
host colonization process in some host-microbiome systems (Hammer et al.,
2017; Obadia et al., 2017), even under neutral (i.e. non-selective) conditions
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(Vega and Gore, 2017). This might be evident for short living hosts, but less
so for longer lifespans. In such case, its experimental observation might be
possible only for large samples of hosts.

Rapid proliferation of the first colonizer can result in
alternative microbiome states

We have noted previously the existence of multimodal distributions in the
transient colonization, and how these prevail in the stationary distribution
due to the finite lifespan of hosts (Fig 1.2). A particular microbial taxon might
either succeed or fail to colonize a host, leading to the coexistence of hosts
with alternative microbiome states. Moreover, in specific cases all possible
microbes could succeed or fail to colonize a host, allowing the coexistence of
microbe-free and microbe-occupied hosts. These extremes can have similar or
different magnitudes, as shown in Fig 1.5 and Fig Sup B.6.

Fig 1.3C-D shows the stationary distribution of microbial load for different
rates of empty space occupation, ag. Firstly, a large host death-birth proba-
bility (7) causes hosts to be rarely colonized; hence most remain microbe-free,
so g = 1 is the only maximum. Secondly, a large migration (m) and small
7 provides enough time for hosts to be fully colonized, so ¢y = 0 is the only
maximum. Finally, the processes of limited migration and long host lifespan
combine to define a region where bimodality is expected (Fig 1.3C). The mag-
nitude of the maxima and region of bimodality are influenced by «q (Fig 1.3D),
with ag — —1 favouring the microbe-occupied over the microbe-free state
(Fig 1.5 and Fig Sup B.6).

Similarly, Fig 1.4D-F shows the stationary distribution for various fre-
quencies of a microbial taxon in the pool of colonizers (p;) and ag = 0. A
qualitative description of the complete distributions (see Fig Sup B.7) is
shown. Again, bimodality is expected for small m and large 7. Many mi-
crobes do not colonize, but successful colonizers proliferate to occupy hosts
entirely. The bimodality region is shaped by p;. A single colonizer (p; = 1,
Fig 1.4D) mirrors Fig 1.3C. In contrast, p; < 1 has the effect of vanishing the
bimodality if m or 7 are larger (Fig 1.4E-F). Outside this region, a large 7
causes most hosts to be microbe-free, so x; = 0 is the only maximum. How-
ever, a larger m and smaller 7 make x; = 1 the single maximum if p; = 1, or
an internal maximum if p; < 1. Finally, the split into alternative states might
be reinforced if empty space is occupied more rapidly, ap < 0 (Fig 1.2 and
Fig Sup B.4). This results from a limited migration and rapid proliferation
of the first colonizer. Although the alternative states could be transient for
long-living hosts, they might persist for short-living ones.
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Figure 1.6: Probability of colonization of microbial taxon 1 in the stationary
distribution. p; indicates the frequency of microbial taxon 1 in the pool of colonizers.
The probability that a particular microbe is present, P[z; > 1/N], is shown, where 1/N
is the minimum observation limit. (A) A single microbial taxon colonizes for a large
combination of migration (m) and probability of host death-birth (7). The probability
increases with m and with longer lifespan (small 7). (B-C) For less abundant colonizing
microbes, the probability is reduced. Fig Sup B.8 shows the effect of p; on P[x; > 1/N].
Other parameters: N = 10% and og = o1 = 0.

By reducing the colonization probability, the finite host
lifespan makes the core microbiome context-dependent

Previous research has focused on defining the set of microbial taxa con-
sistently observed in a given host species. This is often called the core
microbiome. In our model, stochastic colonization reduces the probability of
observing a taxon in all hosts (Fig 1.6). Importantly, this is not caused by any
kind of selection or competition, but by migration (m), time for colonization
(via 7), capacity for microbes (N), and the frequency of a colonizing taxon
(p;) alone. Fig 1.6 shows the probability of observing a microbial taxon within
a host, P[z; > 1/N], for different values of m, 7, and a fixed N. For the
values of p; shown, the contour lines increasingly depend on 7 for larger
7. Successful colonization is more prevalent whenever m is larger and 7
smaller, for microbes down to a frequency of p; = 0.1. Nonetheless, even a
single colonizing taxon could not consistently be observed for some m and 7
(Fig 1.6A and Fig Sup B.8). Finally, a smaller microbial frequency in the pool
of colonizers (p;) reduces the overall colonization probability (Fig 1.6B-C,
smaller values are shown in Fig Sup B.8).

These results suggest that under neutral dynamics, the observed frequency
of microbes within hosts, i.e. the colonization probability, cannot be univer-
sally used to define a core microbiome, as the frequency of readily colonizing
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taxa depends on host and microbial features.

1.5 Discussion

Although microbes are ubiquitous in nature (Bar-On et al., 2018), including
the human body (Sender et al., 2016), it remains to be answered which
microbes not only transit from the environment to the hosts but also persist
in or on them. Our understanding of these processes relies on identifying the
factors underlying host colonization.

We have introduced a stochastic model along the lines suggested by (Miller
et al., 2018), where migration and death-birth processes of microbes within
hosts with finite lifespans can produce a range of colonization dynamics
and distinctly different microbiomes — even when there is no selection at all
(Fig 1.1). A key assumption in our model is the absence of inheritance of
microbes (van Opstal and Bordenstein, 2015), as hosts are colonized after
birth from the environment only. In this context, the microbiome is driven by
the frequency in the pool of colonizers. This frequency (which is constant in
our model) does not need to be the frequency of an environmental microbe,
but can more generally be a function of it. Several organisms including
D. rerio (Stephens et al., 2015), C. elegans (Vega and Gore, 2017), and D.
melanogaster (Obadia et al., 2017) might be colonized from the environment
only. Others have weak inheritance (Bjork et al., 2019), or might be microbe-
free prior to birth, like humans (Perez-Mutioz et al., 2017). Many host species
will also inherit their microbes from their parents.

Critical to colonization in our model is the magnitude of the microbial
migration from the environment to the hosts (m) (Miller et al., 2018). As
observed in the gut of D. rerio (Burns et al., 2017), microbial migration could
overwhelm other host selective and non-selective processes. In addition, we
have combined the host lifespan with a constant microbial cell doubling time
(Gibson et al., 2018) to define 7 as the parameter of timescale separation
between hosts and microbes. This serves as an indicator of the relevance
of a host population dynamics for the microbiome dynamics. In agreement
with (Stephens et al., 2015), we observe that a limited migration imposes
a bottleneck on the colonizers, which combined with a finite host lifespan
might produce complicated colonization patterns (Fig 1.2 and Fig Sup B.4).
The parameters m and 7 have allowed us not only to classify the stationary
colonization distributions (Fig 1.3-1.4), but also to quantify the relevance of
the finite host lifespan in our model (Fig 1.3-1.4).

The parameters m and 7 can be inferred from data. Alternatively, prior
knowledge of the host lifestyle can give us intuition. For example, given the
short lifespan of C. elegans a large 7 is expected; while its feeding mechanism
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might pose a bottleneck, suggesting a small m. In principle, m can range
from 0 (no environmental microbes going in) to 1 (only external migration
and no internal reproduction). This range is spanned by previous studies that
estimated this parameter for multiple species (Burns et al., 2016; Adair et al.,
2018; Sieber et al., 2019).

Sloan et al. (Sloan et al., 2006) developed a neutral model to estimate the
equilibrium distribution of a microbiome in an infinite-living habitat. Several
studies have fit this model to data of different host species (Burns et al., 2016;
Adair et al., 2018; Sieber et al., 2019). However, based on our results for hosts
with varying lifespans, we predict that Sloan et al.’s model will perform poorly
for hosts with short lifespans, e.g. D. rerio, D. melanogaster, and C. elegans,
impeding comparisons of neutrality between host species (Fig 1.3-1.4). On
top of that, the average microbiome of all sampled hosts might be a transient
state, not the long-term equilibrium that is assumed when fitting the model.
These problems are expected to be even more pronounced for low frequency
microbial taxa (Fig 1.6 and Fig Sup B.8), and small host populations samples.

As going from a microbe-free to a colonized state might affect the ex-
pected stationary distribution in hosts with finite lifespans, we included the
occupation of empty space by microbes in our model explicitly. Then, we
computed the probabilities of observing microbe-free (Fig Sup B.6), fully
colonized hosts (Fig 1.5), and their coexistence (Fig 1.3). Interestingly, there
is building evidence of individuals with microbe-free guts coexisting in D.
melanogaster (Obadia et al., 2017), C. elegans (Vega and Gore, 2017), and
caterpillars where a microbe-free state might be prevalent (Hammer et al.,
2017) — supporting our results. We argue that in such host species, both a
low microbial migration and short host lifespan might be causative (Hammer
et al., 2019).

We have also observed alternative microbiome states. In other words,
subsets of hosts whose microbiome is dominated by different microbial taxa
(Fig 1.2). Our results suggest this might occur for low microbial migration and
short host lifespan (Fig 1.4). Recently, (Vega and Gore, 2017) have observed
alternative microbiome states occurring in C. elegans when this is colonized
by two neutral Escherichia coli strains. The implications of our results go
beyond colonization, as they predict priority effects (Sprockett et al., 2018),
life history (Martinez et al., 2018), and timing to be important conditions for
any host control mechanism. Furthermore, we provide a generative process
for the emergence of different microbiome states in the gut (Arumugam et al.,
2011), that does not rely on selection, interaction networks or environmental
change (Gibson et al., 2016; Gonze et al., 2017). Our results support the
current view that the enterotypes often discussed are indeed states contained
in a continuum of colonization (Costea et al., 2018).
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Finally, we have addressed the issue of identifying a core microbiome. In
contrast to the present interest on identifying this subset of microbes (Bjork
et al., 2018), we argue that intrinsic features of the colonization process might
impede finding a consistent subset. Specifically if the observed frequency
within hosts is the criterion (Fig 1.6). More informative, however, would
be distinguishing potential from factual colonizers, with members of the
latter depending on the context where the colonization happens. We stress
the relevance of regarding the colonization and coexistence ahead of the
coevolution of hosts and microbes. Let alone, their organismic nature and
implications (Bordenstein and Theis, 2015; Moran and Sloan, 2015).

As a consequence of the neutral assumption (fitness oy; = 0 in Eq (1.1)
for ¢ > 1), our results extend to microbiomes with an arbitrary number of
taxa. Although we first illustrate the process with two of them (Fig 1.2),
analogously to (Vega and Gore, 2017), we move on to focus on the perspective
of a single taxon (z; in Eq (1.3b), Eq (1.4bb), and Eq (1.5b)). In this view,
the collection of other taxa can be arbitrarily complicated. This is particularly
important in conditions leading to alternative microbiome states, where the
frequency in the pool of colonizers, p;, becomes extremely relevant. While
symmetric p; across taxa will result in as many alternative states as taxa,
asymmetries will make those with larger p; appear more prominent, giving
the impression of a reduced number of alternative states (Costea et al., 2018).

Future empirical work could focus on characterizing the prevalence of
effects associated with the short lifespan - slow immigration regime (Fig 1.2).
Although this depends on the timescale of the microbial dynamics also
(resulting from the quality of the host as a habitat), host life-history might
provide direction (Fig 1.1B). For example, a short lifespan together with
a reduced amount of microbes reaching the gut, indicate the potential of
observing such regime in nematodes (Vega and Gore, 2017) and some insects
(Obadia et al., 2017; Hammer et al., 2017, 2019). Moreover, different tissues
within a host might provide different conditions. Other hosts might be subtler.
As our model indicates, different life-histories might lead to similar results
(contours in Fig 1.3-1.6).

We have presented a minimal neutral model. More complex processes
could build upon it. Among others, the influence of the prenatal microbiome
on the dynamics and stationary distribution in a neutral context is largely
unknown (Zeng et al., 2015; Van Vliet and Doebeli, 2019; Roughgarden,
2020). Additionally, after an initial stochastic assembly, hosts might actively
influence their microbiome via immunity and development (Stephens et al.,
2016). This might have general or taxa specific effects. Particularly relevant
as well, is the role that first colonizers (Fig 1.2) might have in modifying the
internal host, influencing the arrival of upcoming microbes (Koenig et al.,
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2011). This could reinforce the difference between alternative microbiome
states, at taxonomic and functional levels. Finally, as reported in some hosts
(Nyholm and McFall-Ngai, 2004), non-smooth changes of the microbiome
could occur. These changes, of intrinsic (e.g. microbial succession (Koenig
et al., 2011), host and metabolic rhythms (Thaiss et al., 2014)) or extrinsic
(e.g. diet change (Koenig et al., 2011), disease, and antibiotics (Bokulich
et al., 2016)) origin might be more akin to a Lévy walk (Gardiner, 2004).

Although previous models have studied signatures of ecological neutrality
and selection in microbiome data (Li and Ma, 2016; Sala et al., 2016), as
well as its evolution (Zeng et al., 2015, 2017), they have not described the
ecological effects that we have described here. We share Roughgarden et al.’s
(Roughgarden et al., 2018) view that an eco-evolutionary approach is needed,
but our results emphasize that colonization in a neutral context might already
be sufficient to unify important and disconnected experimental observations,
often implictly attributed to selection. Non-neutral processes might then
build on top of such patterns.

1.6 Conclusion

We have introduced a stochastic model of the colonization of microbe-free
hosts. After considering the environmental colonization and finite lifespan of
hosts, our model recapitulates patterns reported experimentally. Namely, the
coexistence of microbe-free and partially colonized hosts, as well as alternative
microbiome states; both depending especially on the host lifespan. Crucially,
our observations occur under non-selective conditions at the level of microbes
or hosts. The model and results presented here aim to provide a null model
for studying the host-microbiome formation by assuming the neutrality of
microbial taxa — without ruling out that also selection will be important for
these processes in nature. But even in the absence of any selective differences,
our model explains a wide range of recent observations in microbiomes, from
the observation of non-colonized hosts to alternative microbiome states.
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CHAPTER 2

Parental transfer of microbes to newborns

In Chapter 1 I assumed that newborn hosts only get microbes from the
environment. Although this might be true for some host species, more
generally, newborns could get microbes from their parents. In this Chapter,
I consider this possibility and its effect on the microbiome composition. I
investigate changes in the total microbial load and on single microbial taxa.

This Chapter, available as a preprint (Zapién-Campos et al., 2021a), has
been submitted for peer-review under the title On the effect of inheritance
of microbes in commensal microbiomes, coauthored by Florence Bansept,
Michael Sieber, and Arne Traulsen. The authors’ contributions are detailed
at the end of the thesis.

2.1 Abstract

Our current view of nature depicts a world where macroorganisms dwell
in a landscape full of microbes. Some of these microbes not only transit but
establish themselves in or on hosts. Although hosts might be occupied by
microbes for most of their lives, a microbe-free stage during their prenatal
development seems to be the rule for many hosts. The questions of who the
first colonizers of a newborn host are and to what extent these are obtained
from the parents follow naturally. We have developed a mathematical model
to study the effect of the transfer of microbes from parents to offspring.
Even without selection, we observe that microbial inheritance is particularly
effective in modifying the microbiome of hosts with a short lifespan or limited
colonization from the environment, for example by favouring the acquisition
of rare microbes. Thus, we suggest that in an eco-evolutionary context, the
impact of microbial inheritance is of particular importance for some specific
life histories.

33
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2.2 Introduction

Microbial life is ubiquitous in the biosphere (Thompson et al., 2017). The
human body is no exception, as first described by van Leeuwenhoek in the 17th
century. We are among the many macroorganisms where diverse microbiomes
— microbial communities living in or on hosts — have been observed (Colston
and Jackson, 2016; Hammer et al., 2019). As part of their life cycle, members
of the microbiome may migrate between hosts and the environment. The
migration process has been studied using experimental (Johnke et al., 2020)
and theoretical approaches (Miller and Bohannan, 2019; Sieber et al., 2021).
However, some microbes have been found exclusively in hosts (Johnke et al.,
2020; Almeida et al., 2019). How do such microbes persist in the population?

One possibility is the vertical transfer of microbes from parents to offspring
(McDonald and McCoy, 2019). Although there is ample literature about
transmission of endosymbionts (e.g. Buchnera and Wolbachia in insects
(Bright and Bulgheresi, 2010)), less is known about extracellular — possibly
transient — microbes. Quantifying the low microbial loads in newborns
(Eisenhofer et al., 2019) and deciphering the true origin of microbes (Perez-
Munoz et al., 2017) remains experimentally challenging (Funkhouser and
Bordenstein, 2013; Russell, 2019). A few experimental studies have explored
the vertical transfer of the microbiome in specific species across the tree of life
— including sponges (Bjork et al., 2019), mice (Moeller et al., 2018), cockroach
eggs (Renelies-Hamilton et al., 2021), and wheat seedlings (Ozkurt et al.,
2020). For many others, including humans, there is an ongoing debate on when
and how inherited microbes are obtained (Perez-Mufioz et al., 2017). Together,
these studies suggest there is no universal reliance on microbial inheritance
across host species, raising the possibility that even if such associations matter
to the host, certain life-history traits may limit their inheritance (Russell,
2019; Bruijning et al., 2020). Relevant traits may include, among others, the
extent of environmentally acquired microbes and host lifespan.

Previous theoretical work has studied microbial inheritance in the context
of symbiosis — where microbes affect the host fitness. In these models,
depending on whether the interaction is positive (mutualism) or negative
(parasitism) the presence of symbionts is promoted or impeded, respectively.
Using multilevel selection arguments, Van Vliet and Doebeli have shown that
a symbiosis that is costly for microbes can be sustained only when the host
generation time is short and the contribution of inheritance exceeds that of
environmental immigration (Van Vliet and Doebeli, 2019). Following up, in
addition to individual inheritance (single contributing parent), Roughgarden
analyzed scenarios of collective inheritance (multiple contributing parents)
(Roughgarden, 2020); while Leftwich et al. found a weak influence of the host



2.3. MODEL AND METHODS 35

reproductive mode (sexual or asexual) and mate choice (based on symbiont
presence) on the symbiont occurrence (Leftwich et al., 2020). If these host-
symbiont interactions persist over evolutionary timescales, they are said to
lead to phylosymbiosis — where microbiomes recapitulate the phylogeny of
their hosts (Lim and Bordenstein, 2020).

Not all co-occurrences between hosts and microbes reflect a fitness im-
pact, however. As suggested by Bruijning et al., the selection on the host-
microbiome pair and the microbial inheritance might change with the envi-
ronment (Bruijning et al., 2020). Moreover, despite taxonomic differences,
functional equivalence of microbes in localized host populations could prevail
(Renelies-Hamilton et al., 2021). Microbes might not always influence host
fitness (Bruijning et al., 2020) nor benefit from influencing it (Leftwich et al.,
2020). In this context where there is no active selection of the microbes by
the host, the role of microbial inheritance remains largely unexplored (Zeng
et al., 2015).

Using a stochastic model, we study the effect of microbial inheritance on
the commensal microbiome — microbes living in hosts but not affecting their
fitness. First, we introduce different models of inheritance representative of
diverse host species. Then we discuss their effect on microbes present in both
hosts and environment, or only present in hosts. We see that inheritance
might influence the within-host occurrence and abundance in some cases.
However, within the same microbiome, microbial types could be affected
differently — while inheritance causes some microbes to increase in frequency,
others decrease from it. Moreover, the effects may be transient, rendering life
history parameters crucial. Altogether, we highlight the potential and limits
of microbial inheritance to modify the composition of commensal microbiomes
under different life-history scenarios.

2.3 Model and methods

Consider the host-microbiome system depicted in Fig. 2.1A. A population
of hosts is colonized by a set of microbes, and each microbial taxon 7 has
a constant frequency p; in the environment. The total number of microbes
a host can contain is finite and given by N. Each newborn empty host
inherits a set of microbes from its parent, chosen at random within the host
population. The inherited sample, taken off the parental microbiome, is drawn
according to a probability distribution (Fig. 2.1B). After this initial seeding,
only the death, immigration and replication of microbes can modify the host
microbiome. Through these processes, the microbial populations within the
host can decrease or increase by one individual each time step. After one
microbe is selected to die, migration from the pool of colonizers occurs with
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Figure 2.1: Host-microbiome dynamics and microbial inheritance in our model.
(A) Dark blobs indicate hosts, coloured- and empty-circles indicate microbes and empty-
space, respectively. Within the hosts, microbes go through a death and immigration-birth
process, with new residents migrating from the pool of colonizing microbes with probability
m or replicating within a host with probability 1 — m. For microbes, each host is an
identical habitat. The host population is at a dynamic equilibrium, every timestep there
is a probability 7 that a host death occurs, immediately followed by the birth of a new
one. The newborn obtains a sample of its parent microbiome according to a probability
distribution. (B) The probability distribution of the fraction of the parental microbiome
inherited vary across host taxa — among others, influenced by development, reproduction
and delivery mode. Certain hosts might not transfer microbes (eg. C. elegans (Zhang et al.,
2017) or D. melanogaster (Blum et al., 2013)). Others might provide minimal (eg. humans
(Perez-Munoz et al., 2017)) or large fractions of their microbes (eg. fragmentation of some
sponges, corals, fungi and plants (Cancino and Rodger, 1985; Frey and Kiirschner, 2011)),
while others might be centred around a fixed value (eg. seeds of plants (C)Zkurt et al.,
2020)). In our model, we control this probability distribution through the parameters a;
and b; in Eq. (2.4).

4. Continuous death and 3. Followed by the birth of
birth-immigration of microbes a partially colonized host

probability m, while duplication of a resident microbe, or non-replacement,
occurs with probability 1 — m. This process ends with the host death, which
occurs with probability 7 at each time step. We assume that the number of
hosts does not change, so that a host death is followed by the birth of a new
empty host, for which the process described above is repeated.

Transition probabilities

Our aim is to describe the dynamics of the microbiome load and composi-
tion, focusing in particular on how a certain microbial taxon experiences it.
Within a specific host, the frequency of the i-th taxon is denoted by z; (for
i > 1), and of the remaining other microbes by 0; = >_.; ¥;. The frequency
of available space is then given by x¢o = 1 —x; —0;. The transition probabilities
from state {z;,0;} that are due to the microbial dynamics are given by the
product of the probability of host survival, 1 — 7, by the probability of death
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of a certain microbial type followed by an immigration or birth event. These
events produce changes in the frequencies of magnitude % First, microbial
taxa can replace each other when a microbe dies and is replaced by another
one,

O.
Tt = (1—1)ay 1—p; l1—-m)———— 2.1
2= e () O m ) @

07 = (1—1)o; (mpi +(1- m)%xof—xﬂ) . (2.1b)
In Eq. (2.1a), a microbe of type i dies and is replaced by another microbe,
either by immigration from the environmental pool or by replication within
the same host. Similarly, in Eq. (2.1b), a microbe of another type dies and is
replaced by a microbe of type i.
Alternatively, microbes may occupy previously available space, such that
the microbial abundance increases,

0.
To+ — (1— l—p)+(1—m)—2 2.1
R G R g ICET)

.1'4
Ty, = (1— i+ (1—m)————— ). 2.1d
L G e ER AT
Finally, microbes may decrease in abundance, when a microbe selected for
death is not replaced,

TS = (1-7)x ((1 - m)&) (2.1¢)

QLo + T; + 0;

0i— GoTo
- = (1—-7)o <(1 m) P 0¢> . (2.1f)
In these equations, ag controls the establishment of microbes in hosts —
the ability to occupy available space — going from fast for ag = 0, to slow
if o is positive. For oy > 1 and without migration, microbes cannot be
maintained in hosts.
The transition probabilities due to the hosts dynamics are given by the
product of the probability of host death and birth of an empty host (7), by
the probability to inherit certain microbes,

1
TAA;Z =T Z H— 1wi [Al‘l, xl(p)]wi[Aoi, ng)], (22)
p

where 1/(H — 1) is the probability of choosing a parent p in the population

(») (p)

of H — 1 potential parents, and w;[Az;, z;”’] and w;[Ao;, 0;"’] are the proba-

bilities of transfer of Ax; and Ao; microbes from the parent to the offspring,
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respectively. Because the frequencies within the parent are :ng ) and o§p ), the
probability to transfer more microbes than the parent can provide is zero.
Finally, for completeness, the probability of staying in state {x;, 0;} without
host death is
TS =1-Tyt =TT —To =Ty, —Tg =T —, (2.3)

X XTi;—

where the last term includes all possible transitions due to parental transfer
of microbes, [ fTAA;’;dAiidAéi =T.

Distribution of inherited microbes

In our model, parents can seed the microbiome of their offspring. A sample
of the parental microbiome is vertically transmitted according to a probability
distribution function, Eq. (2.2). In addition to the case without inheritance,
which we have previously analyzed elsewhere (Zapien-Campos et al., 2020), at
least three qualitatively distinct cases may be observed (Fig. 2.1B), depending
on host development, reproduction, and mode of delivery.

Firstly, inheritance could be low. For example in animals, newborns
get microbes attached to epithelia or fluids during delivery (Perez-Munoz
et al., 2017; McDonald and McCoy, 2019). These represent a small fraction
of the parental microbiome, leading to distributions centred at frequency
zero decaying towards one. Secondly, certain hosts, including some sponges,
corals, fungi and plants (Cancino and Rodger, 1985; Frey and Kiirschner,
2011), are able to reproduce by fragmentation, where a breaking body part
generates a new individual. Such fragments could carry a faithful microbiome
composition, leading to distributions centered at frequency one decaying
towards zero. Finally, hosts that produce embryos that can disperse, eg.
seeds, might transfer a microbiome sample contained within these physical
structures (Ozkurt et al., 2020).

We modelled such diverse parental microbiome samplings (Az;) using
the beta distribution for the probability w;[Ax;, a:z(p )] to inherit Az; microbes
from parent p. This probability distribution can take arguments in the range

from zero to the current frequency of a microbe in the parent p, x§p ),

a; b;
1 Azx; Ax;
. ) (p) _ 7 __1,
wilAw, @] = Bla; +1,b; + 1] (x(m) (1 x@’)) ’ (2.4)

i

where B is the beta function (Gradshteyn and Ryzhik, 1994), 1/B a normal-
ization constant, and a; and b; are shape parameters. The expected value
of our beta distribution is % The special case of a;,b; = 0 leads to a
uniform distribution, where the parental microbes are distributed randomly
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between parent and offspring. Other combinations of a;,b; > 0 produce
different unimodal distributions (Fig. 2.1B). The case of a; > b; skews the
distribution towards full inheritance of the parental microbes, Ax; = ml(p ) all
the i-th microbes from the parent could be transferred to the offspring. The
case of a; < b; skews the distribution towards non-inheritance of microbes of
type ¢ to offspring, Ax; = 0. Finally for a; = b;, the distribution is symmetric
and the parental microbes are likely to be equally distributed between parent
and offspring. In most of our analyses a; and b; are the same for all microbial
taxa. Only for non-neutral, asymmetric inheritance, we will set different a;
and b; for the focal taxon (z;) and the set of others (0;). To illustrate the
effect of a; and b;, on average, an offspring inherits ~ 9% of the parental
microbes of taxon 1 for a; = 0 and b; = 9, while only ~ 1% is inherited for
[ 0 and b1 = 99.

Throughout the results, we focus on distributions with a maximum at
microbial frequency zero decaying towards :vgp ), which we call ‘low inheritance’
(Fig. 2.1B). In our model, the low inheritance and the ‘full inheritance’
scenarios (distributions with maximum at frequency :ng ) decaying towards
zero) are equivalent. This stems from the fact that the number of microbes is
conserved, so that inheritance happens through the splitting of the parental
microbiome between the parent and the offspring. Thus, since in our model,
the probability to die of a host does not depend on its age, the splitting of
microbes in the low inheritance scenario - where a small fraction is transmitted
- and in the full inheritance scenario - where most of the microbiome is
transmitted - are equivalent. Finally, we address under which circumstance a
‘seed-like inheritance’ leads to different results.

Stochastic simulations

In order to simulate the microbiome dynamics of individual hosts we
formulated the model as a stochastic differential equation. We solved this
equation numerically using the Euler-Maruyama method (Gardiner, 2004).
Starting from state x = {z;,0;} at time ¢ the new state after an interval At
is given by

x[t + Af] = x[t] + A[x[t]] At + B[x[t]]AW[A4], (2.5)

where A[x][t]] is the vector of expected changes of x, the deterministic contribu-
tion; while B[x[t]] is a matrix that has the property B[x[t]|” B[x[t]] = V[x[t]],
where V[x[t]] is the covariance matrix of the change of x. Further, AW is a
vector of uncorrelated random variables sampled from a normal distribution
with mean 0 and variance At, the stochastic contribution. That AW is nor-
mally distributed arises from the time independence and identical distribution
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of the noise. A detailed description connecting Eq. (2.1) and Eq. (2.5) is
provided in Appendix C.1.

For most of their life, hosts are independent of each other, only newborns
are influenced by others when they acquire their initial microbiome. A given
host lives for a duration sampled from an exponential distribution 7e~"*, with
mean 1/7. We solve Eq. (2.5) for that interval. Immediately after a host dies,
the microbiome of a newborn is assembled according to Eq. (2.2). We repeat
these steps for all hosts until the total simulation time is reached.

As a result of stochasticity, each host trajectory is different. We look
into the statistical description of the microbiome composition across the host
population.

Code availability

The simulation code in Python is available at
https://github.com /romanzapien /microbiome-inheritance

2.4 Results

Inheritance can increase the occurrence of microbes in
hosts with low microbial loads

Without microbial inheritance, which will be our reference case throughout,
any microbe occurring inside a host has to have migrated from the environment
during the host lifespan. As a result, a low environmental migration or short
host lifespan can be limiting (Zapien-Campos et al., 2020). The transfer of
microbes from parents to offspring during birth could increase the probability
of observing any microbes in hosts, P[x; + 0; > Oliun.. We quantified the
change in the probability of occurrence relative to its microbe-free birth
condition P[x; + 0; > 0y .,

AP[.CEZ “+0; > 0] = P[.’BZ +0; > O]inh. — P[l’l +0; > O]HO inh. - (26)

Using this observable, we investigated the role of life history in modulating
the effect that inheritance has on the microbiome. We quantified this for a
single microbial taxon, z;, as well.

Fig. 2.2 shows a condition where, in the absence of inheritance, hosts are
not fully occupied by microbes. This results from a short host lifespan (7)
and low microbial immigration from the pool of colonizers (m). We tested
the effect of the ‘low inheritance’ mode (Fig. 2.1B) for increasing rates of
establishment of microbes (ay — 0) and other life-history parameters.

Inheritance impacts the occurrence of microbes by increasing the number
of hosts with at least one colonizing microbe (Fig. 2.2B). The effect is most
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Figure 2.2: Microbial occurrence in hosts under microbial inheritance. (A)
Starting from a condition where all hosts are initially empty, the microbial occurrence
increases through time. At first sight, this increase is largely independent of o and the
inheritance of microbes. A closer look at equilibrium abundance reveals that inheritance
increases the occurrence, in this case, regardless of how rapidly hosts are occupied («p).
(B) The increase results from a distribution of microbial load across the host population
where the microbe-free state is less common. A microbial load of 10™® corresponds to 1
microbe per host. In (C-E), single parameters are modified from the case shown in (A-B)
(with parameters m = 1072, 7 = 10~%, and N = 10, indicated by the triangles in (C-E)).
(C) A large migration from the pool of colonizers, m — 1, hinders any effect of inheritance
on occurrence as hosts are readily colonized. The change peaks and decreases for smaller
m, as for m — 0 hosts are less likely to be colonized. The change can even be negative
for slowly occupied hosts where the few colonizing microbes are lost to stochasticity. (D)
The gain from inheritance is maximal for intermediate values of host death probability, 7
Long living hosts, 7 — 0, are colonized even without inheritance. Short living hosts, 7 — 1,
are less likely to be colonized and thus transmit microbes through inheritance. (E) The
carrying capacity for microbes of a host, IV, and «g do not alter the gain from inheritance.
Points and bars in (C-E) indicate the average and standard deviation of 6 simulation pairs,
with vs. without inheritance, with 10* hosts each. Offspring receive 9% of their parent’s
microbiome on average, a; = 0 and b; = 9 in Eq. (2.4). The whole distributions are shown
in Fig. Sup. C.2.

prominent in scenarios where without inheritance, most of the hosts are
microbe-free. However, the maximum increase occurs at intermediate immi-
gration and host lifespans (Fig. 2.2C-D). For high immigration, m — 1, hosts
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are readily occupied by microbes, so inheritance brings no change. Similarly
for a long host lifespan, 7 — 0. On the other hand, if immigration is limited,
m — 0, or host lifespan short, 7 — 1, microbes never occur in hosts, so
parents cannot transmit microbes to their offspring.

Inheritance might decrease the occurrence if the transfer — which splits
the parental microbiome between parent and offspring — makes microbes
more susceptible to stochastic fluctuations. This occurs if the microbial
frequency of the parent is already low — for example when migration is
limiting and microbes proliferate slowly (Fig. 2.2C). This phenomenon might
be pronounced for individual taxa. Our analyses from the perspective of
a single taxon (Fig. Sup. C.1) found multiple instances where inheritance
might decrease the occurrence (Fig. Sup. C.1C-F), but also have a larger
effect in situations where the occurrence increases. Additionally, the effect
on single taxa depends strongly on the carrying capacity for microbes, N
(Fig. Sup. C.1F compared to Fig. 2.2E). Competition for space favours taxa
according to their frequency in the pool of colonizers, p; (Fig. Sup. C.1C).
Abundant taxa outcompete rare ones as space is more limited, but only until a
point, after which there is no benefit — they readily occur without inheritance.
In other words, in microbiomes composed by many taxa, the taxon-level
effect of inheritance in terms of occurrence is relative to their environmental
abundance.

Inheritance can increase the abundance in hosts, but
mostly of those abundant in the environment

Modifying the presence of taxa is not the only effect — inheritance also alters
the microbiome composition considerably. Using the distribution of microbial
frequencies in hosts, we quantified the change in the average frequencies as
compared to its microbe-free birth condition,

AE[.%Z + Oi] =F [xl + Oi]inh. —F [.’EZ + Oi] (27)

no inh. *

Similarly to Eq. (2.6), we quantified this observable for a single microbial
taxon, x;, as well.

When looking at the distribution of microbial loads and frequencies in
hosts, the effect of the ‘low inheritance’ mode (Fig. 2.1B) is two fold — while
hosts with small frequencies might experience the largest increase in microbes,
hosts with large frequencies can see the largest decrease of microbes (Fig. 2.2B
and Fig. Sup. C.2). Thus, at both microbial load and single taxon levels,
hosts with small and large frequencies become rarer. Inheritance makes
hosts resemble each other to a greater extend (see the reduced spread of the
distributions in Fig. Sup. C.2 and Fig. Sup. C.3). This is equivalent to the
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Figure 2.3: Average microbial load in hosts under microbial inheritance. (A)
Starting from a condition where all hosts are initially empty, the average frequency of
microbes in hosts increases through time before reaching an equilibrium. In this particular
case, inheritance makes such equilibrium abundance larger only when hosts are occupied
rapidly, ay — 0. This increase results from a host distribution where higher microbial
loads are more common (Fig. 2.2B). The cases shown in (A), with parameters m = 1072,
7 =10"% and N = 10°, are indicated by the triangles in (B-D). A single parameter is
varying in (B-D). (B) Changes of migration from the pool of colonizers, m, have minimal
effect (notice the scale). As m — 1, more microbes colonize the hosts. Still the average
microbial load only increases if the loss of microbes to inheritance is less than the gain from
proliferation. (C) The effect of changes to host death probability, 7, are much larger and
maximal at intermediate 7. A faster occupation of hosts makes the effect of inheritance
larger for shorter living hosts, 7 — 1. (D) In contrast to the occurrence (Fig. 2.2E),
changes in the carrying capacity for microbes, IV, have a larger intermediate effect. Faster
occupation of hosts makes the effect peak for larger N. Points and bars in (B-D) indicate
the average and standard deviation of 6 simulation pairs, with vs. without inheritance,
with 10* hosts each. Offspring receive 9% of their parent’s microbiome on average, a; = 0
and b; =9 in Eq. (2.4). The whole distributions are shown in Fig. Sup. C.2.

effect of increased immigration, which also tends to make microbiomes similar
to one another, but increased inheritance does not favour the preservation of
the diversity from the pool of colonizers — in contrast to immigration.

An increase in the average load is observed for some conditions (Fig.
Sup. C.2). Analogously to the occurrence, such increase peaks at intermediate
host death probabilities 7; but also at intermediate carrying capacities N
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(Fig. 2.3C-D). The limited time for host colonization impedes any inheritance
(1 — 1), while for 7 — 0 or small N, hosts are fully occupied even without it.
The relative effect of inheritance is less for large V. A faster occupation of
available space (ag — 0) displaces the effect to larger host death probabilities
and capacities for microbes. Finally, because the main limitation is the short
host lifespan (7), the influence of immigration (m) is minimal (see the scale
in Fig. 2.3B and Fig. Sup. C.4C).

Although higher loads might be reached with inheritance if space is limited
(Fig. Sup. C.2C), abundant taxa might increase at the expense of rare ones
(Fig. Sup. C.3D and Fig. Sup. C.4D-E). Such reduction is exacerbated by the
fast occupation of available space cg — 0. Interestingly, this might happen as a
result of longer host lifespans as well, if hosts are rapidly occupied by inherited
microbes. Such condition favours abundant taxa in the pool of colonizers.
Instead, if the occupation is slower, rare taxa increase in frequency, derived
from the added benefits of inheritance and a more influential immigration

A particularly relevant question is whether the frequency of a taxon in
a specific host (x;) can be larger than in the pool of colonizers (p;) — i.e.
a benefit is obtained from the host association. We observe this even in
the absence of inheritance (Fig. Sup. C.3), where stochastic colonization
results in some host containing frequencies larger than in the pool (p;). The
average frequency across hosts, however, can be larger only when the space
limitation increases the competition. In this context, inheritance may, in fact,
decrease the chances of such outcome, by relating the hosts to each other

(Fig. Sup. C.3C-D).

Preferential inheritance can temporally lead to specific
taxa overrepresentation

A potential mechanism to increase the average frequency of taxa beyond
their frequency in the pool of colonizers (p;), is preferential inheritance. The
asymmetry in inheritance could stem from differences in microbial properties,
but also a host’s direct or indirect influence. We studied such possibility by
manipulating the distribution of the sample inherited, Eq. (2.4). Focusing on
a ‘low inheritance’ mode, we decreased the inheritance of other taxa relative
to taxon 4, from equal if offspring receive 9% of every taxa on average, to
preferential if they receive 9% of taxon i but 1% of others.

For the same parameters as before (Fig. 2.4), we observe no effect if the
host lifespan is limiting. In this case, regardless of the frequency in the pool of
colonizers (p;), preferential inheritance does not alter the average frequency of
the i-th taxon in hosts (Fig. 2.4A), similarly for the probability of immigration
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Figure 2.4: Effect of asymmetric inheritance on the average frequency of a
taxon in hosts. Cases without inheritance and inheritance are compared. Inheritance
is symmetric if offspring receive 9% of their parent’s microbiome on average (a; = 0 and
b; = 9). Inheritance is asymmetric if offspring receive 9% of taxon 1 and 1% of other taxa
(a; =0and by =9, bjx1 =99 in Eq. (2.4)). Available space within hosts is occupied more
easily for ag — 0. Single parameters are modified from the condition p; = 1072, m = 1072,
7 =10"% and N = 10°. (A-B) The average frequency increases for larger abundances
in the pool of colonizers (p;), immigration (m), and ag — 0. An asymmetric inheritance
has no effect, as hosts are not fully occupied within their lifetime (Fig. Sup. C.2 and Fig.
Sup. C.3). (C) Longer host lifespans, 7 — 0, increase the average frequency and effect of
asymmetric inheritance. The gain is maximal at intermediate 7. Inheritance has more
influence before hosts are fully occupied. After this, hosts resemble the colonizers pool.
(D) The average frequency increases with competition for space (smaller N). While the
symmetry of inheritance decreases the average frequency as a result of the reduced initial
microbiome variability, asymmetry increases it. Each simulation included 10* hosts.

m (Fig. 2.4B). This holds even for fast occupation of available space, g — 0.
Only for longer host lifespan, 7 — 0, preferential inheritance leads to an
increase (Fig. 2.4C). Besides the almost exclusive occupation of hosts by
the i-th taxon (T; — 1), the maximum effect is constrained to intermediate
7. This is because the effect of preferential inheritance is transitory for
longer living hosts, after which they continue approaching their long term
equilibrium, Z; — p;. For faster occupation of available space the gain spans a
wider range and shorter host lifespans (7 — 1). For hosts with short lifespan
and limited immigration (in our example 7 = 10~* and m = 1072), the gain
from preferential inheritance is largest for decreasing carrying capacity for
microbes, N (Fig. 2.4D).

As shown in Fig. 2.4D, inheritance itself might not benefit all microbial
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taxa. For some taxa, only preferential inheritance can lead to larger frequencies
than without inheritance.

Persistence of lineage taxa in hosts

An extreme case of reliance on microbial inheritance are microbes present
in hosts but absent from the environment (p; = 0) (Thompson et al., 2017;
Almeida et al., 2019). We refer to these as lineage taxa. We investigated
the conditions allowing their persistence under different life-history scenarios
(Fig. 2.5).

Within a host, lineage taxa go through the stages sketched in Fig. 2.5A.
Depending on the context, after host birth, their frequency might either
decrease or increase. If decrease occurs, in a neutral context this trend will
not change during the host life. In fact, events of microbiome inheritance
will further decrease the frequency in the parent. We found that on average,
lineage taxa increase while the inequality

m
rit+o, <1-—

T (2.8)
holds (Fig. 2.5C and Appendix C.1). Therefore, lineage taxa increase before
reaching carrying capacity, favoured by their fast proliferation (ag — 1), but
restricted by migration (m). Because the microbial load increases through time
(x; + 0; — 1), alongside the initial state, Eq. (2.8) limits the time of increase.
Note that on average, the maximum frequency of lineage taxa is 1—m/(1—ay).
From this point on, a decrease driven by the immigration of environmentally
present microbes (m) and stochasticity follows. For sufficiently long time,
such decrease may lead to their extinction (Fig. 2.5B).

There is a trade-off between the duration of the increase and the maximum
frequency of lineage taxa. While small initial microbial loads lead to long
durations but small frequencies (as a result of immigration, Eq. 2.8), the
opposite is true for high initial loads abundant in lineage taxa. Once increase
stops, the time to extinction is proportional to the lineage taxa frequency,
Fig. 2.5B. Putting these two times together, the extra time from the increase
is behind the subtle effect of the initial microbial load on the total extinction
time, Fig. 2.5D. A reduced migration (m — 0) and fast occupation of
available space (ap — 0) simultaneously increase the frequency and time
before extinction.

Looking at the population level, a condition for persistence emerges —
namely, an increase of frequency in each host followed by transfer to offspring
of a frequency at least equal to that received at birth. This is possible only
while the frequency in the parent is larger than initially, Fig. 2.5A. The largest
frequencies are expected at intermediate time. In this context, host lifespan,
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Figure 2.5: Persistence of lineage taxa in hosts. A microbial taxon is initially present
in hosts z1(0) > 0, but not in the pool of colonizers, p; = 0. (A) The frequency within a
host decreases through time. For some conditions, Eq. (2.8), there is a period of increase.
If the taxon is transmitted to offspring before the gain is lost, this might persist in the host
population (although extinction within the parent occurs sooner). (C) Low immigration
(m — 0) and fast occupation of available space (ag — 0) allow increase and prolong the
time before extinction, Eq. (2.8). Large initial available space (x; + 0; — 0) and lineage
taxon fractions (x1/(x1 + 01) — 1) also prolong this time. (B) After the increase stops
(x7), the average time to extinction is shorter for large immigration (m — 1) and a smaller
fraction of the taxon. (D) At the host population level, lines indicate the death probability
after which most hosts lose the lineage taxon (705), Eq. (2.9). The early increase shown
in (A) only occurs within the darkened area. The distribution of microbes inherited,
Fig. 2.1B and Eq. (2.4), affects the initial load and fraction of lineage taxa in offspring.
Asymmetric inheritance in low microbial loads might preserve lineage taxa as well as
symmetric inheritance in high loads. We set N = 10°. Each point corresponds to 10*
simulated hosts.

and thereafter the probability of host death (7) become fundamental. From
the distribution of host death events, Te~™, we see most hosts die early on,
potentially while lineage taxa are still abundant; 7 — 0 results in longer living
hosts — those more likely to lose lineage taxa. We estimated the probability
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of host death at which a fraction z of hosts loses the taxa,

S _tllnu ) (2.9)
where ¢, the time at which lineage taxa remain present in a fraction z of the
host population, is obtained from the distribution of extinction times. Based
on the former observations (Fig. 2.5D), our model predicts that regardless
of the distribution of inherited microbes (Fig. 2.1B), preferential inheritance
of lineage taxa in small microbial loads might favour their persistence as
effectively as large but non-preferential microbial loads.

When the distribution of inherited microbes matters

We proposed that a finite set of shapes captures most of the possible
microbial inheritance distributions (Fig. 2.1B) — low, high, and seed-like inher-
itance — all characterized by the most likely microbiome fraction transferred
to the offspring. So far, we have focused on the impact of low inheritance on
the microbiome (Fig. 2.2-2.5). As mentioned before, because we enforce the
conservation of microbes in our model, i.e. the microbes are transferred from
the parent host to the offspring, the outcome of low and high inheritance is
equivalent: although the parental microbiome is distributed differently, the
outcome is indistinguishable at the host population level, because hosts are
indistinguishable.

When referring to certain life-histories, other distribution shapes may alter
the impact of inheritance. To find out differences between the effect seed-like
inheritance and our former results (where we assumed low inheritance) we
compared the occurrence and average microbial frequencies.

We found most changes are minimal, however, differences appear for
extreme parameters. A seed-like inheritance might better guarantee the
occurrence of microbes in extremely adverse life-histories — e.g. rare environ-
mental migration (m — 0) and short host lifespan (7 — 1) simultaneously
(vertical axis on Fig. Sup. C.5A-B). Exceptions could arise for a slower
occupation of available space (ag). For individual microbial taxa, changes
are greater in occurrence as well (Fig. Sup. C.6); however, derived from
the competition for limited space (N), the effect of a seed-like inheritance is
case-specific. Moreover, both maximum increase and maximum decrease occur
at intermediate m (Fig. Sup. C.6B) and 7 (Fig. Sup. C.6C). In microbiomes
composed of taxa with different environmental frequencies (p;), while some
taxa gain, others lose from inheritance (Fig. Sup. C.6A).

Under less adverse conditions, seed-like inheritance might allow larger
microbial loads. That is the case when either host lifespan (horizontal axis
on Fig. Sup. C.5A) or migration (Fig. Sup. C.5B) is limiting. The gain from
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a seed-like inheritance can be large, especially for a small carrying capacity
for microbes N (Fig. Sup. C.5C). The consistent microbial transfer and
reduced variation are beneficial. Nonetheless, at the single taxon level, gains
are minimal (Fig. Sup. C.6). At this level, a limiting carrying capacity for
microbes, where competition increases, might even lead to a decrease (Fig.
Sup. C.6D). In this case, the variation provided by the low inheritance mode
is more beneficial.

In summary, regardless of the distribution of microbes inherited (Fig. 2.1B),
life-history seems intrinsically linked to the effect of microbial inheritance on
the microbiome composition.

2.5 Discussion and conclusion

The impact of microbial inheritance on host-associated microbial commu-
nities is largely unknown. In this work, we explored its potential effects under
diverse life-history scenarios, including multiple distributions of microbes
inherited (Fig. 2.1). Using a model free of selection — i.e. without microbial
fitness differences or effect on host fitness — we shed light on the condi-
tions where microbial inheritance may influence the microbiome composition,
showing its impact but also its limits.

Our work emphasizes the role of life-history over host-microbe associations
(Fig. 2.2-2.3). Even without symbiotic benefits, the inheritance process itself
might alter the microbiome composition (Leftwich et al., 2020). Using a
discrete generation model, Zeng et al. considered microbial inheritance in
neutral associations over evolutionary timescales — specifically, its effect on
the microbial diversity and the distribution of frequencies (Zeng et al., 2015) .
Our results, however, highlight the relevance of within-generation probabilistic
events — environmental colonization, host lifespan, or carrying capacity for
microbes — as ecological drivers to constrain inheritance.

A crucial constraint is the host lifespan. Similarly to Van Vliet and Doebeli,
but without any impact on the host fitness, we observe that the environmental
acquisition of microbes makes the effects of inheritance transient (Fig. 2.2D,
2.3C and 2.4C) (Van Vliet and Doebeli, 2019). Short-living hosts (relative
to the microbial timescale) could influence their commensal microbiome
over their whole lives, while long-living hosts only during the first stages of
development. The rapid proliferation of inherited microbes or isolation from
the environment might prolong the period of influence. This is in contrast
to Van Vliet and Doebeli, where selection within isolated hosts acts against
costly symbiosis, reducing the period of mutualists presence.

We observed that the effect of inheritance may differ between taxa. Mi-
crobiomes assembled entirely from the environment are prone to variation
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when migration between hosts is rare (Zapien-Campos et al., 2020; Bruijning
et al., 2020). Inheritance might increase the presence of certain microbes,
but in contrast to environmental migration, inheritance reduces the variation
between hosts and potentially their microbial diversity. This reduction, which
especially affects rare taxa, is more pronounced if the carrying capacity is
limited (Fig. Sup. C.1 and Sup. C.4), where competition is larger. Bruijning
et al. have observed that under selection, such decreased variation and diver-
sity could be detrimental for adaptation to changing environments (Bruijning
et al., 2020).

Initially, we assumed no distinction between microbial taxa — only their
frequency determined the population dynamics (Eq. 2.1). This could be
modified in at least two ways. First, fitness differences could influence the
birth and death rates of microbes. Although this is certainly relevant, it
diverts from our focus on inheritance. Instead, we addressed a possibility
crucial for inheritance — the asymmetric transfer of microbes (Fig. 2.4).
Such asymmetry could emerge from differences in microbial capabilities at
play during the transfer process, including oxygen tolerance (Moeller et al.,
2018) (obligate anaerobes tend to be transmitted vertically) and sporulation
(Browne et al., 2016) (spores might allow the transfer of oxygen-sensitive
bacteria). Alternatively, hosts could selectively transfer certain microbes to
their offspring (Bright and Bulgheresi, 2010). Interestingly, we observe that
inheritance alone is not always beneficial; some taxa might only benefit when
transferred asymmetrically (Fig. 2.4).

We have emphasized the importance of looking at rare taxa. Such is
the case of lineage taxa (Fig. 2.5), microbes absent from the environment
that only propagate by inheritance. Our results indicate the importance
of modelling the stochasticity and conservation of microbes — only in this
way did we appreciate that inheritance can lead to stochastic loss (Fig. 2.2-
2.3) and that persistence of lineage taxa may be prolonged by asymmetric
inheritance (Fig. 2.5D). Because microbial frequencies are often small, the
omission of stochastic effects from models could lead to misestimate the
impact of inheritance.

Vertical transfer of microbes might occur in the most diverse host species
(Funkhouser and Bordenstein, 2013; Bruijning et al., 2020), with only a few
exceptions (Hammer et al., 2019). A great diversity of reproduction and
delivery modes might, in turn, determine the distribution of their inheritance —
namely the number of microbes transferred and its probability. A comparison
of two qualitatively distinct distributions (low and seed-like inheritance in
Fig. 2.1B), indicates they might influence the presence and frequency of
microbes differently (Fig. Sup. C.5). A consistent cargo in seeds might
guarantee the presence of certain microbes in plants (()zkurt et al., 2020), who
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might sometimes benefit from being the first colonizers (Zapien-Campos et al.,
2020). In contrast, greater variation might be expected for mammals, where
changing amounts of microbes are obtained from epithelia during delivery
(Perez-Munoz et al., 2017; Funkhouser and Bordenstein, 2013). Overall, these
intrinsic differences might affect the ecological and evolutionary dynamics of
hosts and microbes.

We found that microbial inheritance is effective only for some life-histories.
While it has been shown that symbiosis (Van Vliet and Doebeli, 2019) and
fidelity of inheritance (Bruijning et al., 2020) can evolve driven by selection,
our results suggest the evolution of life-history traits itself, independent of
symbiosis, can impact the relevance of microbial inheritance. Interestingly, the
emergence of symbiosis could lead to selection acting on the more evolvable
and impactful traits — not only the fidelity of inheritance (Bruijning et al.,
2020).

Investigating microbial inheritance experimentally poses technical chal-
lenges (Perez-Munoz et al., 2017). However, developments using diverse host
species (Moeller et al., 2018; Bjork et al., 2019; Renelies-Hamilton et al.,
2021; Ozkurt et al., 2020), suggest that our predictions could be tested exper-
imentally. Firstly, that inheritance is more influential at intermediate host
lifespan, environmental migration, or carrying capacity (Fig. 2.2-2.3). Related
host species with diverse life histories could be compared (Song et al., 2020);
alternatively, control could be increased using model organisms amenable to
manipulate such traits (Bosch et al., 2019). Secondly, that the maximum
lineage taxa frequency changes with life-history (Eq. 2.8), could be tested
using germ-free or gnotobiotic hosts (Ozkurt et al., 2020). Finally, the effect
of distinct distributions of microbes inherited (Fig. 2.1) could be surveyed.

Our approach simplifies the complexity of natural microbiomes. A natural
step forward would be considering fitness differences among microbes. These
could interact with inheritance to preserve or out-compete certain microbes.
Secondly, the host population structure could be included. In such a scenario,
subpopulations characterized by different microbiomes could emerge (Leftwich
et al., 2020). Moreover, critical connectivity might be needed for inheritance
to be effective. Finally, we did not account for specific reproductive ages (or
development). This might be particularly relevant because, as we have shown,
the effect of inheritance erodes through time.

Microbial inheritance can influence the occurrence and abundance of
microbes within the host-associated commensal microbiome. Even the persis-
tence of microbes absent from the environment could be facilitated in some
cases. These findings extend to diverse scenarios of inheritance representative
of different host species. However, inheritance is not a silver bullet, instead
life-history in terms of environmental immigration, early microbial prolifera-
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tion, and host lifespan limit its magnitude and temporal extent. Only certain
naturally occurring host-microbiome pairs might meet such conditions to
exploit its benefits.



CHAPTER 3

General death-birth models with immigration

In Chapters 1 and 2 I assumed that microbes are neutrally adapted to their
host habitat. Although in this way, I focused on a single ecological driver,
neutrality is undoubtedly a strong assumption. In this Chapter, I relax the
neutral assumption for the growth and death rates to investigate its effect on
the occurrence and abundance of microbes in a simpler model.

This Chapter, available as a preprint (Zapién-Campos et al., 2021b), has
been submitted for peer-review under the title The effect of microbial selection
on the occurrence-abundance patterns of microbiomes, coauthored by Michael
Sieber and Arne Traulsen. The authors’ contributions are detailed at the end
of the thesis.

3.1 Abstract

Theoretical models are useful to investigate the drivers of community
dynamics. Notable are models that consider the events of death, birth, and
immigration of individuals assuming they only depend on their abundance —
thus, all types share the same parameters. The community level expectations
arising from these simple models and their agreement to empirical data have
been discussed extensively, often suggesting that in nature, rates might indeed
be neutral or their differences not important. But, how robust are these model
predictions to type-specific rates? And, what are the consequences at the level
of types? Here, we address these questions moving from simple to diverse
communities. For this, we build a model where types are differently adapted
to the environment. We adapt a computational method from the literature
to compute equilibrium distributions of the abundance. Then, we look into
the occurrence-abundance pattern often reported in microbial communities.
We observe that large immigration and biodiversity — common in microbial
systems — lead to such patterns, regardless of whether the rates are neutral
or non-neutral. We conclude by discussing the implications to interpret and
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test empirical data.

3.2 Introduction

Theoretical models have been instrumental in understanding ecological
systems. Historically, a handful of puzzling natural observations have moti-
vated their development — from the limits of exponential growth by Malthus
(Malthus, 1798) to the competition of species by Lotka and Volterra (Lotka,
1932; Volterra, 1928).

The stark difference of the frequencies of species within communities is
one such observation. While few species are very abundant, many others
barely appear in community surveys (McGill et al., 2007). Two hypotheses
have dominated the scientific discussions. On one hand, it is proposed that
biotic interactions and environmental filtering make trophically similar species
occupy different niches, which allows differences in abundance while preserving
diversity. This is known as niche theory (Chase et al., 2003). Alternatively,
Hubbell and others (Rosindell et al., 2012) have emphasized that even if
niche differences are discounted, so only species’ abundances matter, random
fluctuations can lead to the patterns of abundance and diversity observed in
nature. This is known as neutral ecological theory (Hubbell, 2001).

Despite their stringent assumptions, neutral models often predict patterns
observed in communities as different as the tropical rainforest of Barro
Colorado island (Hubbell, 2001) and host-associated microbiomes (Burns
et al., 2016; Adair et al., 2018; Sieber et al., 2019). With time, neutral models
have become null hypotheses used to discard the need for complex mechanistic
explanations in data at the community level (Rosindell et al., 2012).

But how does a neutral model work? In a neutral model the death and
birth of individuals account for changes in community composition. However,
because each rate is identical for all types, after some time, stochastic drift
leads to the extinction of all but one type (Vellend, 2010). Thus, to preserve
diversity, an external source of individuals by immigration or speciation is
needed. Here, neutral theory builds upon island biogeography. In this theory,
MacArthur and Wilson (Macarthur and Wilson, 1967) have modelled the
community composition of small habitats (“islands”) connected by migration
to a larger habitat (“mainland”). In neutral models, a local community
commonly receives individuals from an external and larger community (Kessler
and Shnerb, 2015). Such community can itself undergo internal changes or,
by separation of time scales, assumed to be constant (Hubbell, 2001; Kessler
and Shnerb, 2015).

Early on, neutral models have been used in macroecology to address the
patterns of diversity and abundance of species (Hubbell, 2001; Rosindell et al.,
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2012). More recently, driven by developments in sequencing technologies, the
study of patterns of occurrence and mean frequency in microbial communities
has become possible (Nemergut et al., 2013). At this scale, ecological drift also
seems to greatly influence the community dynamics, leading to hypothesize
that many microbial taxa could be classified as neutral (Sloan et al., 2006;
Sieber et al., 2019). However, few taxa, referred to as non-neutral, have
occurrences and frequencies different than neutrally expected. It has been
suggested that the last group might include, among others, pathogens and
symbionts (Sieber et al., 2019).

At least two possibilities could lead to deviations from neutrality. Either
different processes from those in the neutral model are necessary, or, alterna-
tively, not all the parameters of the model are actually neutral. Both of these
lead to develop models of selection (Vellend, 2010). Although many such
models have been developed from niche theory assumptions, fewer have been
developed from a neutral theory basis (Rosindell et al., 2012; Zhou and Ning,
2017). A direct connection from neutral to selective models would allow to
comparing their patterns while acknowledging that both might be operating
simultaneously. Indeed, the role of non-neutral processes can only be rejected
after ensuring that they can not produce “neutral” patterns (Zhou and Ning,
2017), especially in data.

Neutral and niche models have been connected in several ways (Gravel
et al., 2006; Haegeman and Loreau, 2011; Kessler and Shnerb, 2015). Some
authors have assumed that the rate of types are solely determined by the
environment, finding that neutrality might overshadow the niche structure
effect (Chisholm and Pacala, 2010), depending on diversity, dispersal, and
niche overlap (Gravel et al., 2006). Alternatively, using Lotka-Volterra models
with immigration, the effect of competitive interactions has been studied.
Early models focused on intraspecific (Volkov et al., 2005) or interspecific
(Allouche and Kadmon, 2009) competition. Later on, both were considered
simultaneously. Haegeman and Loreau tuned the niche overlap using sym-
metric interactions to investigate the success behind the neutral assumption
(Haegeman and Loreau, 2011). Kessler and Shnerb classified the dynamics
emerging from interspecific interactions, finding that the neutral case links
all classes (Kessler and Shnerb, 2015). Focusing on intraspecific interactions,
Gravel et al. studied the influence of immigration, suggesting a continuum
from competitive to stochastic exclusion (Gravel et al., 2006). Throughout
these studies, diversity, community size, and environmental fluctuations seem
to have great relevance, as pointed out by Chisholm and Pacala and Fisher
and Mehta.

This previous research has proven useful to bridge neutral and selective
theories. The link has been instrumental to consider migration, speciation,
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and stochastic demography key components in ecology. Along this line and
motivated by the particularities of microbial communities, large community
size and taxa diversity (Sloan et al., 2006; Costello et al., 2012; Nemergut
et al., 2013), here we investigate the commonly observed occurrence-abundance
pattern in neutral and non-neutral contexts. Similarly to Sloan et al. and
Allouche and Kadmon, we model death, birth, and immigration within a
community, but in contrast to these neutral models, type-specific growth and
death rates are determined by the environment.

3.3 Results

A spatially-implicit death-birth model with immigra-
tion

We consider a set of local communities connected by immigration to
a larger community which contains multiple types of individuals. While
local communities change as a result of the death, birth, and immigration
of individuals, the larger community changes on a much longer time-scale
— so immigration to local communities can be assumed to be constant. To
derive a dynamical equation of a local community composition, we account
for the events that change the frequency z; of each type ¢ = 1, ..., S within
each local community. Individuals die with a rate proportional to the product
x;¢; of their frequency and their death rate ¢;. Additionally, they are born
proportional to the product z;f; of their frequency and their growth rate
fi — or arrive with a fraction of the immigration rate m that reflects their
frequency p; in the external environment. Combining these processes, we
obtain

dl’i

T fizi — ¢ixi + mp;. (3.1)
Assume for now an equal death rate for all types, ¢; = ¢, so only f;, m,
and p; are free parameters. To hold the community size constant, we use
>_idxi/dt =0 to find ¢ = f +m, where f =} z;f; is the average growth
rate of a randomly selected individual. In this way

Wi — i~ )+ mloi— ) (32

Without immigration, m = 0, Eq. (3.2) shows that only types whose
growth rate is larger than the average increase. After sufficient time, only the
type with the largest growth rate remains. Coexistence is only possible in
the neutral case, where all types have the same growth rate, f; = f. There,
the initial frequencies remain unchanged. Immigration, m > 0, creates an
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equilibrium that resembles the external composition, p;, that for sufficiently
large immigration might promote coexistence, especially if types with small
growth rate migrate more. Similar results are obtained if we assume equal
growth rate for all types, f; = f in Eq. (3.1) instead. In the general case,
growth and death rates have opposing effects.

Eq. (3.1) provides useful insights about the dynamics and equilibria;
however, only a stochastic model would allow us to compute observables such
as the occurrence frequency and the variance. To develop such a model, we
track the vector of absolute abundances instead, n, and list the transition
rates that change it. The increase of type ¢ by one individual occurs at the
expense of the decrease of type 7,

Rm—n+e —ej) = (bj%(fmi + mp;). (3.3)

Here e; and e; are vectors whose i-th or j-th element equals one and zero
elsewhere. The carrying capacity of the community is given by N. The master
equation accounts for changes in the probability of observing the community
composition n through time,
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where P(n,t) is the probability density of community composition n at time
t.

In this work, we investigate the probability distribution at equilibrium,
i.e. the state where the master equation equals zero. In this case, the influx
and outflux to each state balance each other, ending up with a system of
equations that can be solved to find P(n). For communities composed of
two types (S = 2), a detailed balance analysis (Gardiner, 2004) leads to a
recurrence equation of the arbitrarily denoted type 1

(n1 1,1)

Rn—n+e —ey)
(1 II Rn+el—eg—>n)7 (3:5)

satisfying Zév P(ny) = 1. In this case, the transition rates are simplified to
the single variable nq, using no = N —ny and ps =1 — py.
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For communities with more than two types (S > 2) analyses are more
challenging, as all possible compositions must be considered. This is particu-
larly true for microbial communities, where many types interact (10 to 10*
taxa are common) in large communities (10° to 10 individuals). Although
a recurrence equation exists (Allouche and Kadmon, 2009), the exponential
increase in the number of states and transitions with S and N, make its
computation unfeasible. This is a problem common to microscopic and even
mesoscopic descriptions, which has been deemed “the curse of dimensionality”
(Xu and Chou, 2018). In neutral models, the equality of rates allows to reduce
analyses to a single dimension — that of a focal type (Sloan et al., 2006).
However, unless density dependence is neglected, non-neutral models are
inherently multidimensional, as transitions depend on the current community
composition.

A potential way forward is to acknowledge that, typically, rather than
being interested in the probability of every possible community, we are
interested in marginal probabilities. In other words, the added probabilities
over various dimensions. Methods of model reduction have been developed
towards this aim. Based on various assumptions, these methods sacrifice
“microscopic” information in the interest of specific observables. Jahnke
introduced the model reduction by conditional expectations (MRCE), where,
while selected types are described stochastically, others are modeled using a
mean-field approximation (Jahnke, 2011). The MRCE is derived from the
Bayes theorem, by which P(n,t) is given by the product of two probabilities,
one for some chosen types and one for the conditional probability of the others.
Then, the probabilities of the others are replaced by expected abundances.
Because of the last point, the method is particularly suited to systems where
types have peaked distributions and large populations — a situation that can
be akin to some microbial communities.

In this paper we combine the MRCE method (Jahnke, 2011) with a
detailed balance analysis (Gardiner, 2004) to compute the marginal probability
distribution of types within a microbial community. For each distribution at
equilibrium, we extract the probability of occurrence, P(n; > 1), the mean
frequency E(n;)/N, and compare them in situations of neutrality versus
non-neutrality.

To apply the MRCE method, we adapt our model to the convention in
(Jahnke, 2011). First, we split the vector of abundances n € Z* into a focal
type i, n;, and the set of others, n; € 75~1,j # i, for which the marginal
probability, P(n;) ~ P(n;), and the expected abundance conditioned on
the focal type, (n;|n;) ~ 3., n;P(nj|n;), are approximated. Then, each
transition rate is factored as the product of rates of the focal type and other
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types,
R(n —n-+e; — ej) = Rj(nZ)RJ_(ﬁﬂn,) (36&)

7

In our model, R (n;) = fin; + mp;, Ry (7;|n;) = j?vj, ; (n;) = ¢ixt and
Rj(ﬁ]mz) = f;n; +mp;. With these transformations, the equilibrium is given
by the simplified master equation of the focal type i,
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and a set of equations for the expected abundance of the others conditioned
on the abundance of the focal type (n;|n;),
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We solve this system of equations in the range of n; =0,...., N, starting
from n;, = N. By definition P(N + 1) = 0, so no probability flux to or
from N + 1 occurs. Then, the influx from n; = N implies R} (i;|N) = 0,
specifically (n;|N) = 0. We end up with a simplified system of equations for

= N. To compute P(N — 1) and (d,|N — 1) from this, we assume without
loss of generality P(N) = ¢,, where ¢, is a positive constant. Consecutive
P(n; —1) and (fij|n; — 1) are computed iteratively. Finally, the normalization
S P(n;) = 1 is enforced.

A reliable numerical method is needed to solve Eq. (3.7a-3.7b). The large
difference between the magnitudes of P(n; — 1) and (fi;|n; — 1) can cause
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numerical problems. To avoid them, we extract P(n; — 1) from Eq. (3.7a)
and substitute it in Eq. (3.7b) — note that all else are known values. The
resulting system of equations is solved for (n;|n; — 1), and these substituted
in Eq. (3.7a) to compute P(n; — 1). Caution is needed in cases that lead to a
normalized P(N) = 0, especially if computations are performed in a machine
with limited float representation. In this case, we find the n; = n} closest to
n; = N that while declaring P(n; > n}) = 0 and P(n}) = ¢, allows for the
iterative solution.

Compared to the fully stochastic model that scales with N, here, we solve
N(S — 1) equations for the marginal probability of each type, i.e. N(S? —S)
equations for the community. This model reduction allows us to approximate
the equilibrium of large communities with many interacting types more
rapidly.

The neutral expectation

We start by considering the neutral case — a situation where the rates
of all types are equal (f; = ¢; = 1 for all 7 in {1,...,S}). In contrast to
the deterministic model at equilibrium, Eq. (3.2), the frequencies of single
stochastic realizations change through time, driven by the probabilistic nature
of events. As a result, a distribution of frequencies centered at the value set
by the source of immigrants (p;) emerges. The spread of this distribution
inversely depends on the magnitude of the immigration, m.

As shown in Fig. 3.1A large immigration drives the equilibrium distribu-
tion towards its mean value, p;. On the contrary, without or little immigration,
the distribution splits. Thus, the frequencies zero (no individuals of the i-th
type) and one (only individuals of the i-th type) are the most probable,
decaying towards intermediate frequencies. This is a consequence of noisy
fluctuations that, for a single realization, lead to the extinction of all but
one type. Whether the frequency one or zero is most likely depends on the
proximity of the initial state.

The mean frequency of the stochastic model identically corresponds to
the frequency of the deterministic model. As shown in Fig. 3.1B, regardless
of the total immigration, the mean frequency of a type increases linearly with
the fraction of migrants of its kind.

Besides the mean frequency, one of the simplest, but most informative
observables is the occurrence frequency of individuals of a given type in the
community. In other words, the probability of observing at least one individual
of that type, P(n; > 1). Immigration increases this probability up to the point
where the type is always observed in the community (Fig. 3.1C). Importantly,
this probability does not increase linearly with the fraction of migrants.
Instead, an S-shaped curve is observed, where changes of immigration of rare
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Figure 3.1: Expected equilibrium of a type if rates in the community are neutral.
(A) If the immigration is very small, the population either goes extinct or reaches fixation. A
larger immigration reduces the variation in frequency, centered at its fraction of immigrants
(here p; = 0.5). (B) The mean frequency increases with the fraction of immigrants p;, but
is independent of the immigration rate m. (C) Also the occurrence frequency increase with
the fraction of immigrants (p;), but in an S-shaped manner that depends on m. Deviations
from these patterns have been suggested to indicate non-neutral rates (Sieber et al., 2019).
The community size is N = 103.

or abundant types do not modify their occurrence.

Using two simple observables, the mean frequency and the occurrence
frequency, we can describe the state of types within a community. In the fol-
lowing, we relax the assumption of neutrality — not enforcing equal growth and
death rates. Then, we contrast both observables to their neutral expectation.

Immigration lessens the effect of growth and death dif-
ferences

To understand the effect of non-neutral rates, we start from a community
composed of only two types. Furthermore, we assume only one of them has a
non-neutral rate, either f; or ¢;. In this way, we aim to see the effect in the
neutral and non-neutral fractions of the community.

For a growth rate below one (f; < 1) or a death rate above one (¢, > 1),
the non-neutral type has a reduced mean frequency that preserves its linear
relationship to the fraction of immigrants (Fig. 3.2A-B and Fig. 3.3A-B).
However, in contrast to the neutral expectation, immigration does play a role,
as large migration can reduce the changes occurring in the internal community
dynamics (compare panels A to B in Fig. 3.2-3.3). In this context, the neutral
type (fo = ¢2 = 1) benefits from the reduced proliferation of its partner, thus,
gaining in frequency, especially if most immigrants belong to the neutral type.

A similar picture arises for the occurrence pattern. While the non-neutral
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Figure 3.2: Effect of non-neutral growth rates on the equilibrium of a commu-
nity with two types. One of two types has non-neutral growth rate (f; # fo = 1), but
the death rate is neutral (¢; = ¢o = 1). In contrast to its all-neutral (f; = fo = 1) expec-
tation, a lower growth rate of the non-neutral type (f1 < f2) reduces its mean frequency
and occurrence. The change can be of several orders of magnitude. Inversely, a larger
growth rate of the non-neutral type (f; > f2) increases its mean frequency and occurrence.
The effect of growth rate differences on the internal dynamics is reduced if immigration is
larger, especially for slowly growing types. Immigration is (A, C) m/N = 102 and (B,
D) m/N =107}, with community size N = 103.

type occurs less frequently, the neutral type thrives, occurring more often
than when both types are neutral (Fig. 3.2C-D and Fig. 3.3C-D). The change
can be as severe as losing all non-neutral individuals from the community
(panel C in Fig. 3.2-3.3). Crucially, large total immigration can prevent this
(compare panels C to D in Fig. 3.2-3.3), even if most migrants are of the
neutral type.

Once the roles are reversed, so the non-neutral growth rate is above
one (f; > 1) or the death rate below one (¢; < 1), the mean frequency
and occurrence patterns mirror the previous results (Fig. 3.2 and Fig. 3.3).
Although changes produced by non-neutrality in growth (f; # 1) or death
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Figure 3.3: Effect of non-neutral death rates on the equilibrium of a community
with two types. One of two types has non-neutral death rate (¢1 # ¢2 = 1), but neutral
growth rate (f; = fo = 1). Differences in death rates modify the mean frequency and
occurrence of both types. A larger immigration reduces differences to the all-neutral
(¢1 = ¢2 = 1) expectation in a similar fashion to differences in growth rate (Fig. 3.2).
Immigration is (A, C) m/N = 1072 and (B, D) m/N = 107!, with community size
N =103

(p1 # 1) rates are qualitatively similar, they show quantitative differences.

We conclude that even for the simplest community (one with two types),
just one non-neutral rate is enough to change the community occurrences
and abundances substantially from their all-neutral expectation. This is more
visible through the mean frequency (as changes of several orders of magnitude
are possible) and for communities with little external migration — where the
internal dynamics is more important.

Neutral and non-neutral patterns are similar at the com-
munity level but full of differences at the level of types

Communities with two types might occur in vitro. However, in nature,
communities are much more diverse, especially for microbes. We have pro-
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Figure 3.4: Occurrence-abundance pattern in general non-neutral communities.
(A) The non-neutral pattern of a diverse community largely resembles neutral patterns,
see Fig. 3.1C. (B) However, the change from neutrality of each type can be large (blue
arrows), shown here for m/N = 1073 . In general, the mean frequency does not equal the
fraction of immigrants p;, assuming otherwise underestimates the change from neutrality
(yellow arrows). (C) Similar to a community with two types, Fig. 3.2-3.3, the overlap
to the neutral expectation increases when immigration, m, is increased to m/N = 1071,
The growth and death rates, f; and ¢;, were sampled from a normal distribution with
mean 1 and standard deviation 0.1, where P(f; < 0.8) = P(f; > 1.2) ~ 0.023 and
P(¢; < 0.8) = P(¢; > 1.2) ~ 0.023. The fractions of migrants p; range from 10=* to 10~}
and have a G =~ 0.6, Eq. (3.8), indicating intermediate immigration asymmetry. Except
from the immigration rate m, all rates in (B-C) are equal. The community size is N = 103.

duced random instances of such diverse communities, sampling growth and
death rates, f; and ¢;, from a normal distribution with mean one and a
desired standard deviation. Similarly, we have produced random fractions of
migrants, p;, just conditioned on the Gini index of the community,

1
G:m;m_pﬂ. (3.8)

This number that indicates the asymmetry in immigration between types from
zero to one, allow us to compare communities quantitatively, regardless of
their number of types S. As an example, for G = 0 the fractions of migrants
are identical for each type, while for G = 1 the source pool only contains a
single type.

Using these parameters, we have computed the occurrence and abundance
frequency of all types in a certain community. Interestingly, the community
patterns that we observe are very similar to those expected from neutrality
(Fig. 3.4A compared to Fig. 3.1C) — even if asymmetries of growth, death,
and immigration increase (Fig. 3.5). In particular, large immigration together
with high biodiversity consistently lead to these patterns (Fig. 3.5). This
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Figure 3.5: Occurrence-abundance pattern for different levels of asymmetry in
the parameters. A pattern is robust to various asymmetries in the immigration, p;, and
growth and death rates, f; and ¢;. Each community has forty types. For low symmetry in
immigration, the types span the range more widely. Colors from dark to light indicate how
non-neutral a type is, quantified as the geometric distance from (f;, ¢;) = (1,1). Types
overlap regardless of their non-neutrality. The fractions of immigrants, p;, have a G =~ 0.3
(A-B) or G = 0.6 (C-D). The growth and death rates, f; and ¢;, were sampled from a
normal distribution with mean 1 and standard deviations 0.1 (A, C) or 0.2 (B, D). In
the last case, P(f; < 0.8) = P(f; > 1.2) = 0.159 and P(¢; < 0.8) = P(¢; > 1.2) = 0.159.
Immigration is m/N = 107!, with community size N = 103.

indicates that neither neutrality nor non-neutrality, but large immigration
and biodiversity are behind these patterns.

Even when neutral and non-neutral patterns are similar at the community
level, we observe large differences at the level of types. While in the “all-
neutral” case, the mean frequency equals the fraction of migrants, E(n;)/N =
pi, this is not the case in a non-neutral scenario (Fig. 3.4B-C). Neither is
for the occurrence frequency. The distance from the neutral expectation
of each type is not simply related to the level of non-neutrality of its own
parameters. Rather, neutral and non-neutral types fall on, above, or below the
neutral expectation (Fig. 3.5), highlighting the inherent multidimensionality
determining the equilibrium of these communities.
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Figure 3.6: Effect of growth, death, and immigration at the level of types. (A)
The community shown corresponds to Fig. 3.5C, with G ~ 0.6 for p;, and f; and ¢; drawn
from AN (1,0.1). Two types are spotted by circles, one that falls on the neutral expectation
and the other distant from it. Single parameters are modified in (B-D) for both types.
Arrows in the colorbars indicate their original values. (B) For large fractions of migrants,
pi, non-neutral types are indistinguishable from the neutral expectation; only for small
fractions they are below it. (C) Different growth rates, f;, lead non-neutral types to fall
on, above, or below the neutral expectation. Changes are especially abrupt for the type
with less immigration. (D) Different death rates, ¢;, mirror the effect of changing growth
rates qualitatively. Immigration is m/N = 107!, with community size N = 103.

To investigate the effect of single parameters at the level of types, we
chose two representative types — one close to the neutral expectation, and
another one distant from it (Fig. 3.6A). Our results show that types do not
remain on or far from the neutral expectation. Rather, the relative magnitude
of their growth and death rate, f; and ¢;, is crucial to observe simultaneous
decrease or increase in occurrence and mean frequency (Fig. 3.6C-D). In
particular, types with a smaller fraction of immigrants, p;, experience more
abrupt changes. Only large fractions of immigrants allow to overcome the
effect of growth and death rate differences, leading to large occurrence and
mean frequency at the level of types (Fig. 3.6B).

To test neutrality the niche structure must be known
first

So far we have used our model to compute observables based on known
parameters. However, we can invert this process to infer parameters from
simulations or experimental data.

Particularly relevant is the possibility of testing niche structure in data
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(Sloan et al., 2006; Burns et al., 2016; Adair et al., 2018; Sieber et al., 2019).
Our model indicates care is needed to quantify the true difference from
neutrality (Fig. 3.4B-C). In fact, the comparison of the selective case to the
neutral case can only be inferred after fitting all parameters of the general
model (m, p;, f;, and ¢; for all 7). This is in contrast to the — often used —
method by Sloan et al. for neutral conditions, where only the immigration
rate m is fitted, while all growth and death rates are assumed f; = ¢; = 1,
and the fraction of migrants p; equalled to the mean frequency E(n;)/N. Our
results indicate these assumptions on the data are unfounded and lead to
underestimate niche structure (Fig. 3.4B-C), especially in large communities
with many types. Moreover, the consistent occurrence-abundance pattern
that we observe (Fig. 3.5), and often reported in data (Burns et al., 2016;
Adair et al., 2018; Sieber et al., 2019), emerges from a general death-birth
processes with immigration, Eq. (3.3), not just from a neutral process (where
fi = ¢; = 1 for all 7). Niche structure — and thus neutrality — can not be
discarded or confirmed if certain parameters are fixed a priori (Sloan et al.,
2006).

The large number of parameters to be fitted requires large datasets. For a
community with S types, 35 + 1 parameters must be fitted, thus requiring at
least 35 + 1 data points. The 25 data points obtained from the occurrence
and mean frequencies are not sufficient. We propose to include additional
observables that can be readily computed from data (Grilli, 2020). These
might include, but not be limited to, raw and central moments of the frequency.
From this set of observables, available Bayesian methods (Gelman et al., 2013)
can be used to infer the parameters using Eq. (3.7a-3.7b).

In Fig. 3.7, we show two potential observables, the variance and the
second moment of the distribution. In a community with two types, S = 2,
both observables reflect the differences in growth, f;, and death rates, ¢;.
Only some variances overlap for distinct rates. In this sense, the second raw
moment might provide more information to discriminate them. A set of similar
observables could allow to characterize the rates of empirical communities.
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Figure 3.7: Variance and second raw moment of the frequency. A community
with two types is considered. (A-B) One type has non-neutral growth rate (f; # fo = 1)
but neutral death rate (¢1 = ¢2 = 1), or (C-D) a neutral growth rate (f; = fo = 1) but
non-neutral death rate (¢; # ¢ = 1). (B, D) f; > 1 and f; < 1 lead to a second raw
moment above or below the neutral expectation, respectively. This moment increases
continuously with the fraction of migrants, p;, while the variance reaches a maximum at
intermediate p; (A, C). In contrast to the second raw moment, the variance of different
growth and death rates overlaps. Differences in death rates mirror the effect of growth
rate differences qualitatively. Immigration is m/N = 107!, with community size N = 103.

3.4 Discussion

Understanding the drivers of communities is one of the main objectives of
ecological research. In this work, we have used a stochastic death-birth model
with immigration to investigate the equilibrium distribution of communities.
Comparing cases where changes only depend on the abundances to cases
where types have different birth or death rates, we have identified conditions
leading to a robust occurrence-abundance pattern — often reported empirically.

Our approach acknowledges the intrinsic density dependence of commu-
nities, Eq. (3.3), but simultaneously allow us to compute the equilibrium
distribution of large and diverse communities, Eq. (3.7a-3.7b). Combining a
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method of model reduction (Jahnke, 2011) and a detailed balance analysis
(Gardiner, 2004), we asked questions directly linked to empirical observations.
In contrast to studies emphasizing biotic interactions (Volkov et al., 2005;
Allouche and Kadmon, 2009; Haegeman and Loreau, 2011; Kessler and Shnerb,
2015), our model can be classified with studies that focus on the differential
adaptation to the environment (Gravel et al., 2006; Chisholm and Pacala,
2010). As some of these studies, our results highlight the central role of
immigration and biodiversity in community ecology (Chisholm and Pacala,
2010; Fisher and Mehta, 2014).

We tested the reliability of our approach by reproducing known results of
neutral adaptation (Sloan et al., 2006). Namely, that the mean frequency of
a type equals its immigration and that the occurrence frequency increases
in an S-shaped manner with the mean frequency, Fig. 3.1. These results
already capture the important role of immigration but discard the frequency
dependent effects of other types — for which biodiversity might be important.

The match between community level patterns of neutral models and
empirical data has been documented extensively (Rosindell et al., 2012; Burns
et al., 2016; Adair et al., 2018; Sieber et al., 2019). Still, some empirical
evidence is at odds with neutral theory (O’Dwyer et al., 2015; Davies et al.,
2011). The mismatch with evolutionary history — including phylogenetic trees
(O’Dwyer et al., 2015; Davies et al., 2011), is one of them. It has been observed
that mild differences in adaptation lead to full agreement (Rosindell et al.,
2015) — indicating the need to consider models with differential adaptation,
even if this is mild.

Here, we considered a general death-birth model where large immigration
consistently led to a robust occurrence-abundance pattern. Interestingly,
evidence suggests that large immigration might indeed be common in var-
ious environmental and host-associated microbiomes (Sieber et al., 2019).
Others that deviate from the occurrence-abundance pattern have small im-
migration (Sieber et al., 2019). Such seems to be the case in Caenorhabditis
elegans, where active destruction of microbes during feeding results in reduced
immigration to the gut microbiome (Vega and Gore, 2017).

A second observation is that with differential adaptation, biodiversity
takes a central role. In contrast to the simplest community of two interacting
types (Fig. 3.2-3.3), diverse communities promote an occurrence-abundance
pattern that resembles the neutral case (Fig. 3.5). With biodiversity, less
extreme occurrences and mean frequencies are observed (compare Fig. 3.2-3.3
to Fig. 3.5). Our results agree with research showing that in the limit of
high biodiversity, various neutral and non-neutral patterns converge at the
community level (Chisholm and Pacala, 2010).

Previous research has speculated about the ecological role of types based
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on their location in the occurrence-abundance curve (Sieber et al., 2019) — the
motivation being the possibility to identify microbial taxa actively involved
in biotic interactions. Our results indicate that such direct identification from
occurrence-abundance curves remains challenging, mainly because neutral
and non-neutral types can overlap (Fig. 3.6). We propose a way forward,
based on the inclusion of new observables computed from data (Grilli, 2020)
(Fig. 3.7) combined with robust fitting approaches (Gelman et al., 2013).

Our focus at the level of types revealed the difficulty of assessing niche
structure and neutrality from empirical data. While niche and neutral patterns
can be indistinguishable at the community level, at the level of types, big
differences are observed (Fig. 3.5-3.6). Commonly, in microbial ecology,
models have been tested at the community level, where, embraced by a
principle of parsimony, neutral interpretations have been suggested (Burns
et al., 2016; Adair et al., 2018; Sieber et al., 2019). Our model suggests this is
indeed sensible for community level questions. However, for questions at the
level of types — including that of ecological roles — general models including
differential adaptation can not be avoided. In this case, no parsimonious
preference can be given to neutral hypotheses.

The last observation calls for a broader discussion on terminology. As
defined by Fisher and Mehta, a community is “statistically neutral” if its
distribution can not be distinguished from a distribution constructed under the
assumption of ecological neutrality. We must note, however, that ecological
neutrality implies statistical neutrality, but statistical neutrality does not
necessarily imply ecological neutrality (Fisher and Mehta, 2014). As our
results indicate, a reference to large immigration and biodiversity, rather than
neutrality, is more accurate and prevents misleading interpretations, that in
their worst form, could lead to unfounded generalizations or hold research
questions back. On the contrary, our results suggest that numerous questions
about neutrality, adaptation, and ecological roles, in microbial ecology and
elsewhere are yet to be answered.

Although we mainly focused on microbial communities, our work can
be framed in the larger macro-ecological literature. There, a substantial
number of models have linked neutral and niche theories (Volkov et al.,
2005; Allouche and Kadmon, 2009; Haegeman and Loreau, 2011; Kessler
and Shnerb, 2015; Gravel et al., 2006; Chisholm and Pacala, 2010). Heated
debates have occurred; however, they have benefited from a close revision of
the assumptions on the models and a careful discussion of their implications
(Chisholm and Pacala, 2010; Rosindell et al., 2012, 2015). The observation of
asymptotically equivalent patterns for neutral and non-neutral rates is one of
their main results (Chisholm and Pacala, 2010). We believe microbial research
can be guided along this line while offering powerful methods to investigate
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general ecological questions (Grilli, 2020). In particular, the possibility to
work, in vivo and in vitro, with large and diverse communities in much shorter
time scales (Prosser et al., 2007).

Finally, we should mention some limitations of our work. A limitation of
origin is that we considered a differential adaptation to the environment as
the sole source of non-neutrality. Certainly, this is not true in nature, where
types take part in numerous symbiotic interactions (Kessler and Shnerb, 2015).
Therefore, any empirical application of our model should be preceded by
evidence of little to no symbiosis. A technical limitation is that we have only
approximated the stochastic dynamics (Jahnke, 2011). Our results should be
more robust in large communities where types have limited variance (Jahnke,
2011). Interestingly, large immigration — which appears to be common in
microbial communities (Sieber et al., 2019) — might lead to satisfying this
condition.

Although we provided a focused analysis of the occurrence-abundance
pattern at equilibrium, future work could study its dynamics (Zapien-Campos
et al., 2020) and derive exact equations for these and other observables (Grilli,
2020). In addition, identifying neutral and non-neutral types remains an open
problem. The development of methods for parameter inference from data
(Grilli, 2020) seems the way forward.

3.5 Conclusion

Here, we presented a general death-birth model with immigration. Using
a method of reduction for the stochastic model, we analysed the equilibrium
distribution of abundances for communities equally or differently adapted
to the environment. We observe that the community pattern of occurrence-
abundance, often reported empirically, is consistently observed in conditions
of large immigration and high diversity, regardless of the adaptation to the
environment. However, at the level of types, differences in adaptation still
lead to large changes.

Code availability

The data generated and analysed in this chapter can be simulated from
the Python code available via GitHub at
https://github.com /romanzapien/occurrence-abundance.git.
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CHAPTER 4

Closing remarks

4.1 Summary

This thesis compiles my work on the topic of host-associated microbiomes.
Each chapter presented a theoretical model where the microbiome composition
was analysed. Throughout, I relied on the birth, death, and immigration of
microbes as the main ecological drivers. Then, in each chapter, a certain
ecological driver, characteristic of host association, was investigated:

e In Chapter 1, I showed the effect of host lifespan — first focusing on the
early colonization of microbe-free newborns and then at equilibrium.
We observed a large influence of host lifespan in short living hosts
and in those with limited environmental immigration — where host
subpopulations with distinct microbiome compositions can coexist.

e In Chapter 2, I showed the effect of parental transfer of microbes to
newborns. We observed that the life-history traits — microbial immigra-
tion, host lifespan, microbial carrying capacity, and the composition of
the source of migrants — all determine the effect of the parental trans-
fer of microbes. Still, the “microbial inheritance” could be a reliable
mechanism of influencing the microbiome for many host species.

e Finally, in Chapter 3, I relaxed the assumption of neutral adaptation
in a simpler death birth-immigration model. We observed that large
immigration and high biodiversity — both common in microbial commu-
nities — lead to a robust occurrence-abundance pattern at the community
level. This pattern is almost indifferent to the differential adaptation of
microbes to their habitat, so external drivers outplay local drivers.

Up to this point, each chapter has addressed ecological questions in iso-
lation. In the upcoming paragraphs, I turn isolated results into general
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statements — some of these were hypotheses that became asseverations, while
others were surprising results that challenge the intuition.

4.2 QOverarching conclusions

Some ecological processes are specific to host-associated microbes

A pressing question in microbial ecology is whether theories developed
in a macroecological context can be applied to microbes. Similarly to Grilli
(2020), this thesis shows that applying them is possible. Nonetheless, other
drivers — prominent in the microbial context — will often be needed. I have
illustrated this in Chapters 1 and 2, where the host lifespan and the parental
transfer of microbes can greatly influence the microbiome composition.

In addition, it has been argued that the microbiome could sometimes
become a host trait (Van Vliet and Doebeli, 2019; Bruijning et al., 2020).
Interestingly, compared to genetically encoded traits, the microbiome com-
position could be modified during the life of the host. A possible way of
modifying it is what I called in Chapter 2 “microbial inheritance”. Our
results indicate that host manipulation is possible. By transferring microbes
to newborns, hosts can influence not only the presence, Fig. 2.2, but also the
abundance of certain microbes, Fig. 2.3 — promoting diversity and preventing
extinctions, Fig. 2.5. Nonetheless, not all host species are equally capable of
doing this, as life-history traits play a crucial role, Fig. 2.2-2.3. In changing
environments, this plastic microbiome composition could be beneficial for the
hosts (Bruijning et al., 2020).

Although I investigated salient ecological drivers of a host association —
host lifespan and microbial inheritance — many others are yet to be investi-
gated. Future work could dwell upon comparisons between environmental
and host-associated habitats in the context of homeostasis, rhythms, and
directional migration — e.g., in the digestive tract.

Stochasticity without selection can give rise to empirical patterns

Possibly the most remarkable result of all models in this thesis is how
besides the strong assumption of neutral adaptation, these can lead to diverse
ecological dynamics and equilibria. As I highlight in the discussion within
each chapter, the predictions even match empirical observations.

The first observation is the emergence of distinct microbiome compositions
within the host population. In Chapter 1, this was a consequence of the
microbiome changing in two time-scales: a fast time-scale of colonization
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where individual microbiomes greatly differ, and a second time-scale, where the
microbiomes slowly converge to the composition of the source of immigrants,
Fig. 1.2.

A second observation is the relevance of bottlenecks. In my models, the
immigration of microbes is the first bottleneck. This can differ greatly between
host species (Sieber et al., 2019), creating ample variation of the microbiome
composition, Fig. 1.2, 1.3, and 1.5. The second bottleneck is the transfer of
microbes from parents to newborns. This could also differ greatly between
host species, Fig. 2.1, potentially influencing the long-term composition of the
microbiome. In the absence of microbial “inheritance”, or mechanisms like
immunity, targeted nutrients, or physiological adaptations, the microbiome
dynamics is largely self-determined. Bottlenecks can be a less sophisticated
way to tighten or loosen control over the microbiome.

A final observation is that, interestingly, ecological drift is relevant in
large communities. As my results show, bottlenecks can have long-lasting
consequences, even if a community is large at present. Moreover, the timing
of bottlenecks can be extremely important — e.g., the moment of host death
in Chapter 1 and the moment of parenting in Chapter 2.

Maps of life-history traits to identify patterns across host species

I have argued previously that some ecological drivers are specific to
the microbiome ecology. The added complexity might seem overwhelming;
however, identifying general patterns in nature might still be possible.

One way is to create maps of possible life-history traits. This idea is similar
to that of a morphospace — where existing organisms are located upon a space
where axes indicate the value of traits (Mitteroecker and Huttegger, 2009). I
have used this approach in Chapter 1, where axes indicated immigration and
host lifespan, Fig. 1.1. For microbial immigration, hosts are separated into
those highly connected to the environment and those highly isolated. For host
lifespan, hosts are separated in long-living, like humans, and those with a short
life, like D. melanogaster and C. elegans. Based on empirical observations
(Sieber et al., 2019; Gibson et al., 2018), I have located some representative
species and related them to their predicted microbiome composition, Fig. 1.3-
1.6.

In Chapter 2 the microbiome size emerged as another relevant trait. This
is because, commonly, individual microbial taxa have a low frequency — thus,
their presence is always challenged. On one extreme, limited available space
leads to extreme competition; on the other, enough available space allows
microbial coexistence, Fig. Sup. C.1.

The composition of the source of migrating microbes was another trait.
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Balanced immigration can alleviate the fierce competition for space — pre-
venting extinctions within the hosts, Fig. 3.5. In all chapters, I assumed a
constant source of immigrants. An interesting possibility is to investigate the
coupling between the microbiomes of hosts and the source of migrants.

The life-history traits mentioned above are just a set of those that could
be potentially important. Future studies could be guided by a trait map,
allowing the identification of general microbiome patterns across host species.

Distinct ecological processes can lead to the same patterns

A major finding is that care is needed to attribute results to specific
ecological drivers. First, in Chapter 1 I showed how multiple values of
microbial immigration and host lifespan could lead to the same qualitative
and quantitative results, Fig. 1.3-1.6. Then, in Chapter 3 I showed how large
microbial immigration and high biodiversity could dominate the effect of the
growth and death rates, Fig. 3.5.

Although in this thesis I emphasized the level of populations, other authors
have focused on the community level — even reaching different conclusions
with the same data. One example is the occurrence-abundance pattern in
Chapter 3, which in my case indicates the importance of large immigration
and biodiversity, not that adaptation is neutral (Sloan et al., 2006). What
might be clear at one ecological level might not be at another.

In a context where multiple ecological drivers are at play, this careful
analysis will be important — especially if not only models but also empirical
data are analysed. In fact, whether the quality of empirical data can be
sufficient to distinguish between the ecological drivers is an open question.
Extra control could be gained in laboratory settings.

Models are useful to investigate otherwise infeasible questions

At the moment, various questions about the ecology and evolution of
host-associated microbiomes are not experimentally feasible (Koskella et al.,
2017). The work in this thesis shows how mathematical models offer an
option. The constructive approach of modeling leads to question assumptions,
as well as the interaction between drivers of the dynamics. Nonetheless, solid
theories in biology can only be built together with empirical evidence. As
laboratory technologies improve, the results in this thesis could be tested.

The rich ecological theory has come to be thanks to the dialogue between
mathematical and empirical studies. I see this as the way forward for micro-
biome research. Which, as might be clear at this point, still has numerous
questions to answer.
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4.3 Open questions

The results presented in this thesis include just a couple of the ecological
processes that might be relevant in host-associated microbiomes. Many pro-
cesses are yet to be studied, and additional questions have emerged.

Are there analytical results at hand?

An open question is whether analytical results can be obtained for the eco-
logical processes studied here. Although we simplified the complexity of real
hosts and microbes — particularly the host lifespan and the parental transfer
of microbes — analytical solutions seemed out of reach. Future research could
aim to obtain such solutions, that similarly to macro-ecology, could allow
an extensive application to empirical studies (Allouche and Kadmon, 2009;
Ofiteru et al., 2010).

What will data inference tell us?

An interesting possibility is applying the models presented here to fit
empirical data. For this, not only reliable inference methods are needed, but
also rich datasets where the processes here described have been characterized.
The fitting of data would allow us to contrast the predictions shown here, shed
light on the relevant ecological drivers in nature, and inform the development
of future microbiome models.

What is the effect of more realistic life-history traits?

Although I considered simple mechanisms of host reproduction, host lifes-
pan, and microbiome inheritance, nature is more complicated. In fact, as
argued in Chapters 1 and 2, because the timing of host death and host repro-
duction had a strong influence, the assumption of how they operate might
have a central role. In addition, microbial immigration and the carrying
capacity for microbes are two traits that evidence suggests could change
throughout the life of a host (Burns et al., 2016).

What is the effect of selection on the more complicated models?

Neutral adaptation is undeniably a strong assumption. As remarked in
Chapter 3, different ecological processes can lead to similar patterns. It is,
therefore, interesting to consider how different would the findings of Chap-
ters 1 and 2 be without neutrality. Specifically, how influential are the host
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lifespan and the parental transfer of microbes to newborns in this context.
Moreover, selection does not stop with microbes — as Van Vliet and Doe-
beli (2019) show, selection acting at the level of hosts can be highly influential.

What is the effect of including evolutionary processes?

The models presented here are ecological. Although I made reference to
evolutionary implications, the possibility of including evolutionary processes
explicitly — such as mutation and diversification — remains open. Apart from
changes in the microbes, an interesting possibility is to allow the host traits
to evolve — e.g., the amount of microbial immigration, the host lifespan, and
the parental transfer of microbes to newborns. Other models have shown
such possibilities in scenarios where selection plays an important role in the
multilevel selection of the host-microbiome pair (Van Vliet and Doebeli, 2019;
Bruijning et al., 2020).

Towards a theory of host-associated microbiomes?

All in all, the results presented here build upon an eco-evolutionary theory
of host-associated microbiomes. To achieve such theory, more processes have
to be investigated empirically and mathematically. In doing so, this theory
could inform the larger ecological and evolutionary theories, from which
microbiology has greatly benefited (Costello et al., 2012).

Is there a better level to address microbiome questions?

Possibly the most recurrent question to empirical and theoretical scientists
is if there is a level at which microbiomes can be better understood. In this
thesis, I have presented models which build from the bottom-up, assuming
hosts as habitats and only tracking the identity of microbes without consid-
ering functional traits. Others have suggested a different way, in which a
top-down approach emphasizes the collective functioning of microbes giving a
secondary role to their identities (Louca et al., 2016). It is yet to be seen how
both approaches complement each other and how they can allow a dialogue
between empirical and theoretical approaches.

In summary, an exciting future lies ahead for microbiome research — and
microbiology at large: a future of revisionism, where our understanding of
biological concepts will be constantly tested. This thesis introduced me to
the topic — specifically to the ecology of host-associated microbiomes. I look
forward to future developments with great excitement.
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On reproducibility and code availability

The work presented in this thesis is theoretical — thus, the main subject of
study is models and equations. However, in addition, source code has been
essential to solve them or simulate the ecological processes presented here
(Fig. 0). The software pipelines that I developed using open source languages
can be readily used by interested readers to reproduce our results.

Rather than being a source of extra work, developing publicly available
software guided the progression and organization of the projects presented
here, allowing a more accessible and clear technical communication.

The source code to generate data and produce figures is available via the
following public online repositories:

1. Chapter 1. Stochastic colonization of microbe-free hosts.

https://github.com/romanzapien/microbiome-hostspan.git

2. Chapter 2. Parental transfer of microbes to newborns.

https://github.com /romanzapien /microbiome-inheritance.git

3. Chapter 3. General death-birth models with immigration.

https://github.com/romanzapien/occurrence-abundance.git

Each repository can be pulled from its source. Within each of them, the
directories are organized in simulations, numerics, and code for figures. For
simulations and numerics, the source code is separated in the following way:

1. Source code. Low-level code constructively leads to top-level functions.
2. Parameters. Data will be generated based on the values specified here.

3. Execute. Top level functions produce the main results. Roughly, a top
level function is equivalent to a figure or figure panel.
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For the code for figures the data generated by simulations or numerics is
gathered to produce the final figures presented in this thesis.

Each repository provides a detailed annotation of the code and an indica-
tion of the programming language versions used to run the code.
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Supplementary material of Chapter 1

B.1 Supplementary methods

Derivation of the Fokker-Planck approximation with re-
setting

Define a Markov process in the discrete state space {0, 1, ..., N}, where
N is the maximum capacity for microbes within a single host. Let n; be the
number of individuals of the i-th microbial taxon for i = {1,..., M} and ny
the amount of unoccupied space. The probability of being in state n; at time
t + 1 is given by the sum of the probabilities to go in, out and remain in n;
at time ¢,

O;[n;, t + 1] ZP 0; — n;|P;l0;, 1],
where ®;[0;, t] is the probability of being in state o; at time ¢, and P;[o; — n;] is
the probability of transitioning from state o; to n,;. Taking out the probability
of remaining at n; we get
O;[n;, t + 1] = Py[n; — n;|®;[n;, t] Z Pilo; — n;]P;[os, 1]
027577/1
However P;[n; — n;] =1 — Zo,#n, P;[n; — o;]. Therefore

O;[n;, t + 1] — Oyny, t] = Z Pin; — 0;]®;[n;, t] + Z P;lo; — n;|P;]os, t]
0iF#N; 0;#Nn;

Dividing by At and taking the continuous time limit, we find the time
continuous master equation

aq) 17
[ = Z Ti[n; — 03] P;i[n;, t] + Z Tilo; — n;| D404, 1],
0;7#N; 0iFN;
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where T;[n; — o;] and T;[o; — n;] are transition rates. This equation contains
transitions to and from neighbouring states of n;, i.e. n; — 1 and n; + 1, but
also to and from non-neighbouring states due to resetting events.

The next derivation steps focus on approximating the neighbouring tran-
sitions locally around n,;. However, because the resetting events are non-
neighbouring transitions, we have to treat them separately. To do this, we
assume that each T;[n; — o;] and T;[o; — n;] can be linearly separated in
contributions due to resetting and non-resetting events.

Define R; as the only state towards which the resetting occurs, so the
master equation for this state is

0®;|R;, t
OOt - S TR 0l Re ]+ Y Tolos = BRI o
¢ 0;#R; 0i#R;
+ ) 7o,
0 #R;

where T} [0; — R;| are transition rates from neighbouring o; to R;, and 7 is
the transition rate from non-neighbouring o; to R; (which we assume to be
independent of 0;). We can rewrite this as

P[RR,
W:— " TR — 0] ®[Rit] + Y Tylo; = Ri|i[0;,1]
¢ 0;#R; 0;#R;

For any other state n} := n; # R;, the master equation is

8@ 1]
i ZT*n — 0;]®;[n], t] —7P;[n] t—{—z iloi = ;@504 1],
0 F#NY oiFn;

where T[nf — o;] are transition rates from n} to neighbouring 0;. We can
combine both master equations in the following way

8(I> 0%;[n;, t]
. Z T [ni — 03] ®ini, t] + Z T7o; — ni]®;]0;, t]
0;#n; 0 FN;
+7 ((5n¢,Ri - q)z[nlv t]) )

where d,, g, is the Kronecker delta (1 for n, = R; and 0 in all other cases), and
7®;[n;, t] and 76, g, are the non-neighbouring outflux and influx, respectively.

Now we can approximate the neighbouring transitions contained in the
sums. We define x; = n;/N and r; = R;/N, which are approximately
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continuous in the large N limit. With this the sums are replaced by integrals

. [

% T /Ti* [z = i + Azi) ;[ 1] dAz;
+ /Tz* [z + Az; — x;]®;[x; + Axy, t]dAx;
+T7 (5%7” — @Z[l’“ t]) s

where 0, ,, is 1 for z; = r; and 0 otherwise. We focus on the interval Az;
around x; to obtain the Taylor expansion of the influx, f THx; + Ax; —

2 2
T4

1

Realizing that the magnitude of the zeroth order term equals the outflux,

truncating the expansion at the second order and putting terms together, we
find

ot T O
+ 18_2 (q;.[w {] /(AJ;.)?T,*[;U — x; — A:c-]dAx-)
283712 AEZE i (g v g ¢

+7 (690¢,Ti - (I)i[xh t])

Which simplifies to

-2 (_ai[xiJcpi[xi,t] oo i (b?[mi]CIDi[xi,t]))

+T (5£Ei,Ti - (Pl[xut]) ) (S].l)

0

N | —

where a;[z;] and b?[z;] are the expected change and squared-change of w;,
respectively. These quantities are derived in the main text based on the
process of death, birth and immigration of microbes. Although, the change
of x; depends on all k # i. Derived from our assumptions, a;[z;] and b?[z;]
contain all the information of a host microbiome from the j-th microbial taxon
or unoccupied space (i = 0) perspective.
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Importantly, host death, expressed by 7(04,,, — ®;[z;,t]), has opposite
effects on microbes and unoccupied space. For a microbial taxon the frequency
resets to zero, r; = 0, while for unoccupied space it resets to one, ro = 1.
Eq (S1.1) is the same as Eq (2) in the main text.

A numerical solution of the stationary model, Eq (5) in the main text,

can be found using the boundary conditions %0([)()] = ‘1370([)1] =0 and ij—;;g()] =
wz_;p] = 0, alongside ®[1] = 1 for unoccupied space and ®;[0] = 1 for microbes

(Kﬁmar and Narayanan, 2006), enforcing the normalization condition

1
0

B.2 Supplementary figures
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1.04 L3

m=10-7 M=107

0.0 A~ A 1 ity 3
10-¢ 10°° 1074 1073 107° 10°° 1074 1073

prob. of host death (1) prob. of host death (1)

Figure Supplementary B.1: Comparison between simulations and the model:
probability of microbe-free hosts in the stationary distribution. The Plzy >
(N —1)/N] is shown, Eq (1.10). Lines show the model prediction, while triangles show
the average over the steady state of 500 host samples according to Eq (1.6). The match
spans several magnitude orders of migration (m) and probability of host death-birth events
(7). The probability increases for shorter host lifespans (larger 7) and less migration to
the hosts (smaller m). The rate of occupation of empty space («g) has a larger effect on
cases where migration is limited and the host lifespan is long (small 7). Simulations were
computed as explained in the Methods. Other parameters: N = 10*. We use Eq (1.5a)
where no definition of p; and a; is required.
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Figure Supplementary B.2: Comparison between simulations and the model:
probability of full colonization in the stationary distribution. The P[zy < 1/N]
is shown, Eq (1.9). Lines show the model prediction, while triangles show the average
over the steady state of 500 host samples according to Eq (1.6). The match spans several
magnitude orders of migration (m) and probability of host death-birth events (7). The
probability increases for longer host lifespans (smaller 7) and larger migration to the hosts
(larger m). The rate of occupation of empty space (o) has a larger effect on cases where
migration is large and the host lifespan is long (small 7). Simulations were computed
as explained in the Methods. Other parameters: N = 10*. We use Eq (1.5a) where no
definition of p; and a; is required.
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Figure Supplementary B.3: Comparison between simulations and the model:
probability of colonization of microbial taxon 1 in the stationary distribution.
p1 indicates the frequency of microbial taxon 1 in the pool of colonizers. Lines show
the model prediction, while triangles show the average over the steady state of 500 host
samples according to Eq (1.6). The match spans several magnitude orders of migration
(m) and probability of host death-birth events (7). The probability increases for longer
host lifespans (smaller 7) and larger migration to the hosts (larger m). Simulations were
computed as explained in the Methods. Other parameters: N = 10* and ag = a7 = 0.
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Figure Supplementary B.4: Individual-based simulations of colonization for two
neutral microbial taxa: limited migration. Except for m = 1074, all parameters are
equal to those in Fig 1.2. (A) The limited migration and slow empty space occupation
impedes the host from being colonized completely. (B) When empty space is occupied
rapidly, although the mean is conserved, the distribution becomes sharply bimodal as a
result of the fast proliferation of the first colonizer, and a slow convergence to the long-term
equilibrium, which within the time-range simulated is not reached. For finite host lifespans,
such dynamics can produce alternative microbiomes and partial colonization of hosts in
the equilibrium.
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Figure Supplementary B.5: Probability of full colonization in the stationary
distribution: smaller microbiome size. Except for N = 103, all parameters are equal
to those in Fig 1.5. The smaller capacity for microbes of a host makes full colonization
more likely, and migration (m) has increased influence for larger 7.
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Figure Supplementary B.6: Probability of microbe-free hosts in the stationary
distribution. The P[zo > (N — 1)/N] is shown, Eq (1.10). (A) Migration (m) is the
main driver of the microbe-free state, but still interacting with the probability of host
death-birth (7). The microbe-free state prevails for small m, increasing in the direction of
a short host lifespan (large 7). (B) Although a faster occupation of empty space decreases
its probability, microbe-free hosts are still expected. Moreover the host lifespan (via 7)
becomes more relevant. Other parameters: N = 10%. We use Eq (1.5a) where no definition
of p; and a; is required.
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Figure Supplementary B.7: Probability density of microbial taxon 1 as a function
of host death. The cross-section of Fig 1.4 where m = 1073 is shown. (A). If there are
only microbes of type 1 in the pool of colonizers (p; = 1), small 7 implies that there is a
single maximum at ;1 = 1 — the hosts tend to be fully occupied. Bimodality is observed for
7-1078 <7 <1079 - some hosts are occupied, but some remain empty. For large 7, hosts
tend to remain empty and the distribution has a single maximum at x; = 0. Black lines
indicate the boundaries separating them (see Fig 1.4). (B) If the microbe is present in the
pool of colonizers at p; = 0.5, no bimodality is observed. For small 7 the frequencies are
representative of the pool of colonizers and for large 7 most hosts do not contain microbe 1.
(C) If the microbe is rare in the pool of colonizers, p; = 0.1, the distribution has a single
peak at 1 = 0. This occurs for all values of 7 shown here, because there is not enough time
in the host to reflect the small number of microbe 1 individuals in the pool of colonizers
(any probability smaller than 10~ was considered as zero, N = 10* and ag = a1 = 0).
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Figure Supplementary B.8: Probability of colonization of microbial taxon 1 as
a function of its frequency in the pool of colonizers. The results of multiple proba-
bilities of host death-birth events () are shown. Overall, the probability of colonization
increases with the frequency in the pool of colonizers (p), but decreases as the host lifespan
shortens (larger 7). A smaller migration (m) decreases the probability. Other parameters:
N =10* and oy = oy = 0.
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APPENDIX C

Supplementary material of Chapter 2

C.1 Supplementary methods

Deterministic and stochastic components of the model

We have introduced a model of the microbiome dynamics where we track
the frequencies of a taxon ¢, x;, and the set of other taxa, o;; together, the
vector x = {z;,0;}. In Eq. (2.5) we expressed the model in the form of a
stochastic differential equation — that describes the microbial dynamics within
a host during its lifespan— where the deterministic, A[x], and stochastic, B[x],
contributions were introduced. Changes have magnitude % The deterministic
part is given by the expected change of x that results from the transition
probabilities in Eq. (2.1),

0i— 0; i+ 0;
MW= [ L | e
The stochastic part is related to the matrix of covariant change of x:
Vi = 11 [T;’j; + T§é+++ T§;;i_+ T - —(T;;f + 7;;;;) }
N21—r7 —(T3= +T7) TyT +Tor + 10 + T
(52.2)

B[x] is the matrix that satisfies B[x|T B[x] = V[x]. This is calculated an-
alytically (Allen, 2007) after defining the quantities w = y/det(V[x]) and

d= />, Vi, i + 2w,

Vix] +wl

Blx] = —— (S2.3)

where [ is the identity matrix.

Note that Eq. (S2.1) and Eq. (S2.2) refer to the lifetime of a single host,
therefore we divide by 1 — 7 to remove it from each transition probability.
We had introduced 1 — 7 in Eq. (2.1) to explain the effect of host death at

the population level.
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Condition for deterministic increase of lineage taxa

We start from the definition of A[1], Eq. (S2.1). This equation indicates
the deterministic change of frequency of a lineage taxon (x;) as a function of
x;, other microbes frequency (0;), and parameters of migration (m), frequency
in the pool of colonizers (p;), and how rapidly available space is occupied
(). Asking under which condition A[1] > 0, leads to

To, + T, >Tor + Ty

Using the definition of the transition probabilities in Eq. (2.1) and simplifying,
we find

o (0 Yo (mraom (1 2 )
oo + T; + 0; QoTo + x; + 0;

where we used the fact that lineage taxa are absent from the pool of colonizers,
p; = 0. Simplifying and solving for x; + 0; = 1 — x¢, we find

m
T, +o0;, <1-—

S2.4
o (52.4)

Thus, the growth of lineage taxa stops before the microbial load, x; + o;,
reaches frequency 1, as this is constrained by migration, m, and how rapidly
available space is occupied, ay.
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C.2 Supplementary figures
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Figure Supplementary C.1: Occurrence of a microbial taxon in hosts under
microbial inheritance. We repeat the analysis from Fig. 2.2, but instead of load, x; + 0;,
we look into a single microbial taxon, x;. (A) Starting from a condition where all hosts
are initially empty, the microbial occurrence increases through time. In this particular
case, inheritance increases the occurrence if hosts are colonized rapidly, cy — 0. (B)
The hosts now contain the taxon in small frequencies. The cases shown in (A-B), with
parameters p; = 1072, m = 1072, 7 = 1074, and N = 10°, are indicated by the triangles
in (C-F). (C) Changes are small for other frequencies in the pool of colonizers, p;, but
those at intermediate values benefit the most from inheritance. (D) The maximum change
occurs for intermediate migration from the pool of colonizers, m. For m — 1 the taxon
colonizes hosts even without inheritance. Instead for m — 0 the taxon does not colonize
the hosts. (E) Larger changes occur for intermediate host death probabilities, 7, and fast
colonization. Long living hosts, 7 — 0, contain the taxon even without inheritance. Short
living hosts, 7 — 1, are less likely to be colonized by the taxon within their lifetime. (F) In
contrast to the microbial load (Fig. 2.2E), for a single taxon the maximum change occurs
at intermediate capacities for microbes, N. The change can be negative once inheritance
favours more abundant taxa competing for limited space (see C-F). Points and bars in
(C-F) indicate the average and standard deviation of 6 simulation pairs, with vs. without
inheritance, with 10* hosts each. Offspring receive 9% of their parent’s microbiome on
average, a; = 0 and b; = 9 in Eq. (2.4). The whole distributions are shown in Fig. Sup.
C.3.
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Figure Supplementary C.2: Microbial load distribution across a host population,
with or without microbial inheritance. The microbial load is the set of all microbes.
In contrast to the difference between distributions, Figs. 2.2 and 2.3, here the distributions
are shown. The cases without and with inheritance are indicated by x and e, respectively.
Single parameters are modified from the condition m = 1072, 7 = 1074, and N = 10°. The
probability of occurrence and frequencies within hosts increase for (A) larger migration from
the pool of colonizers, m — 1, and (B) longer host lifespan, 7 — 0. (C) While occurrence
is constant at 1, frequencies increase for smaller capacities for microbes, N. Inheritance
might increase both observables for certain parameter combinations and percentiles of the
distribution (compare e to x). The increase is evident for small percentiles. Decrease
might occur for large percentiles. Only for 7 < 2- 1077 all hosts reach carrying capacity
within their lifetime. Each simulation included 10* hosts and parameters a; = 0 and b; = 9
for inheritance, Eq. (2.4) — offspring receive 9% of their parent’s microbiome on average —
and ag = 0.1 for available space occupation.
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Figure Supplementary C.3: Frequency of a microbial taxon distribution across
the host population, with or without inheritance. In contrast to the difference
between distributions, Figs. Sup. C.1 and C.4, here the distributions are shown. The cases
without and with inheritance are indicated by x and e, respectively. Single parameters
are modified from the condition p; = 1072, m = 1072, 7 = 1074, and N = 10°. (A) The
probability of occurrence and frequency within hosts increase for higher abundances in
the pool of colonizers, p; — 1, and (B) larger migration from the environment, m — 1.
For p; — 0, hosts with larger frequencies than in the pool of colonizers (x1; > p;) might
occur stochastically. In contrast to microbial load (Fig. Sup. C.2), inheritance might
decrease the frequencies for (C) long host lifespans, 7 — 0, and, (D) smaller capacities
for microbes, N, where hosts are fully colonized. The reduced variability of the early
microbiome, makes hosts with initially large frequencies of the microbial taxon less likely.
Even if low frequencies increase, the average frequency decreases as a result. Inheritance
increases the average frequency for intermediate values of 7 and IV, where hosts are partially
colonized (Fig. Sup. C.2 B-C). Each simulation included 10* hosts and parameters a; = 0
and b; = 9 for inheritance, Eq. (2.4) — offspring receive 9% of their parent’s microbiome on
average — and «ag = 0.1 for the available space occupation.
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Figure Supplementary C.4: Average frequency of a microbial taxon in hosts
under microbial inheritance. We repeat the analysis from Fig. 2.3, but instead of load,
x; + 04, we look into a single microbial taxon, ;. (A) Starting from a condition where
all hosts are initially empty, the average frequency of microbes in hosts increases through
time before reaching an equilibrium. In this particular case, inheritance makes the average
slightly larger if hosts are occupied more slowly, g = 0.5. Although more hosts harbour
the taxon, no change occurs for ay = 0.1, as inheritance reduces the variability between
individuals. The cases shown in (A), with parameters p; = 1072, m = 1072, 7 = 1074,
and N = 10°, are indicated by the triangles in (B-E). (B) No changes occur for multiple
frequencies in the pool of colonizers, p;, and (C) migrations from the pool of colonizers, m.
(D) The largest changes occur for intermediate host death probabilities, 7. For long living
hosts, 7 — 0, the change produced by inheritance can be negative. (E) Similarly for small
capacities for microbes, IV, where inheritance causes abundant taxa to outcompete others.
Points and bars in (B-E) indicate the average and standard deviation of 6 simulation pairs,
with vs. without inheritance, with 10* hosts each. Offspring receive 9% of their parent’s
microbiome on average, a; = 0 and b; = 9 in Eq. (2.4). The whole distributions are shown
in Fig. Sup. C.3.
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Figure Supplementary C.5: Difference in microbial load between ‘low’ and ‘seed-
like’ inheritance. A positive difference indicates the observable is larger for seed-like
inheritance (Fig. 2.1B). For both, low and seed-like inheritance, offspring receive 9% of
their parent’s microbiome on average (a; = 0 and b; = 9 for low inheritance, and a; = 9 and
b; = 99 for seed-like inheritance in Eq. (2.4)). Low inheritance corresponds to data shown
in Fig. 2.2 and Fig. 2.3. Single parameters are modified from the condition m = 1072,
7=10"% and N = 10°. (A) For low migration from the pool colonizers, m — 0, seed-like
inheritance increases the microbial occurrence (a exception stems from a slower occupation
of available space, ag = 0.5). For m — 1, it mildly increases the average microbial load. (B)
For low host death, 7 — 0, this inheritance mode increases the average load importantly.
For 7 — 1, it only affects the occurrence, even decreasing it. (C) For varying carrying
capacity (N), larger average loads are obtained for small N. Each point corresponds to
the difference of observables calculated from simulations with 10 hosts. The scale of axes
is logarithmic, but linear within [-1073,107?] for the average load, and [-1072,1072]
for the occurrence.
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Figure Supplementary C.6: Difference in the frequency of a microbial taxon
between ‘low’ and ‘seed-like’ inheritance. A positive difference indicates the observ-
able is larger for seed-like inheritance (Fig. 2.1B). For both, low and seed-like inheritance,
offspring receive 9% of their parent’s microbiome on average (a; = 0 and b; = 9 for low
inheritance, and a; = 9 and b; = 99 for seed-like inheritance in Eq. (2.4)). Low inheritance
corresponds to data shown in Fig. Sup. C.1 and Fig. Sup. C.4. Single parameters are
modified from the condition p; = 1072, m = 1072, 7 = 10~%, and N = 10°. (A-C) A
seed-like inheritance primarily modifies the occurrence for various values of frequency in
the pool of colonizers (p;), migration (m), and host death (7). (D) For varying values of
the carrying capacity for microbes (IV), the main change is on the occurrence, however, for
small N a decrease of average frequency is observed. A decrease or increase of occurrence
is not clearly attributable to the rate of host colonization (ag). Each point corresponds to
the difference of simulations with 10* hosts. The scale of axes is logarithmic, but linear
within [—1073,107?] for the average frequency, and [-1072,1072] for the occurrence.
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