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Abstract	
The	study	of	de	novo	gene	birth	has	opened	the	doors	for	evolutionary	biologists	to	approach	

old	questions	about	the	origin	of	innovation	in	different	ways	and	from	new	perspectives.	The	

knowledge	that	sequences	that	have	not	previously	exposed	to	selection	may	become	genes	with	

essential	roles	in	different	organisms	has	driven	research	to	understand	the	requirements	for	

newly	expressed	sequences	to	become	genes.	There	are	still	many	questions	that	we	have	just	

begun	to	answer	about	what	makes	a	functional	gene,	how	likely	it	is	for	a	non-coding	sequence	

to	become	one,	how	common	is	this	phenomenon	in	nature,	and	how	do	novel	genes	become	

essential	 for	an	organism.	In	this	thesis,	 I	present	three	projects	that	aim	to	explore	some	of	

these	questions.		

In	chapter	 Q	 I	 revisit	a	study	published	 in	GHQR	where	the	authors	constructed	a	 library	of	

random	 sequences	 in	 E.	 coli,	 in	 order	 to	 quantify	 the	 likelihood	 that	 a	 random	 sequence	

expressed	in	a	cell	could	provide	a	fitness	advantage	for	it.	I	was	able	to	successfully	replicate	

the	 results	 of	 this	 study	 starting	with	 a	 diluted	 sample	 of	 the	 library,	 and	 I	 designed	 a	new	

analysis	pipeline	 that	allowed	me	 to	examine	 the	behaviours	of	different	 sequences	at	much	

greater	depth.	I	confirmed	in	these	analyses	that	E.	coli	cells	are	very	tolerant	to	the	expression	

of	random	DNA	sequences,	and	found	that	length—but	not	intrinsic	disorder,	GC	content	or	

aggregation	probability—is	a	determinant	factor	of	whether	a	sequence	has	an	apparent	positive	

effect	on	the	fitness	of	the	cells.	Chapter	G	presents	an	attempt	to	recreate	the	random	sequence	

experiment	in	a	eukaryotic	cell	line.	Its	aim	was	to	test	whether	a	similar	proportion	of	random	

sequences	are	well	tolerated	by	the	eukaryotic	cells	despite	the	different	cellular	complexity	level.	

In	general,	the	results	indicate	that	eukaryotic	cells	are	at	least	as	tolerant	to	the	expression	of	

random	sequences	as	the	bacteria.	In	contrast	with	the	results	in	bacteria,	however,	no	specific	

feature	of	the	sequences	correlates	with	its	tolerability.	Finally,	in	chapter	V	I	expressed	three	

putative	de	novo	genes	identified	in	mouse	in	a	human	continuous	cell	line.	The	selected	genes	

are	 young,	 taxonomically	 restricted	 to	 species	of	 the	genre	Mus,	 and	have	 transcription	and	

proteomic	 evidence.	 Interestingly,	 expression	of	 the	novel	 genes	had	no	major	 effect	 on	 the	

transcriptome	 of	 the	 cells,	 implying	 that	 they	 would	 also	 be	 tolerated	 in	 a	 human	 cellular	

background.	

The	combined	results	presented	in	this	thesis	add	to	the	mounting	evidence	that	cells	are	

much	more	tolerant	to	the	expression	of	new	sequences	than	previously	thought.	This	insight	

generates	new	questions	about	the	birth	of	genes	that	should	be	explored	in	the	future.	
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Zusammenfassung1	
Die	 Untersuchung	 der	 de	 novo	 Evolution	 von	 Genen	 hat	 der	 Evolutionsbiologie	 neue	

Möglichkeiten	 eröffnet,	 um	 klassische	 Fragen	 über	 den	 Ursprung	 biologischer	 Innovation	 neu	

anzugehen.	 Sequenzen,	 die	 zuvor	 keiner	 Selektion	 ausgesetzt	 waren,	 können	 möglicherweise	

wesentlichen	neuen	Genen	werden.	Diese	Erkenntnis	erlaubt	es	jetzt	die	Voraussetzungen	dafür	zu	

verstehen,	wie	dieser	Prozess	abläuft.	Es	gibt	dabei	noch	viele	Fragen,	deren	Beantwortung	jetzt	erst	

beginnt:	Was	macht	ein	funktionelles	Gen	aus,	wie	wahrscheinlich	ist	es,	dass	eine	nicht	kodierende	

Sequenz	zu	einem	Gen	wird,	wie	häufig	ist	dieses	Phänomen	in	der	Natur,	und	wie	werden	neuartige	

Gene	für	einen	Organismus	essenziell.	In	dieser	Arbeit	stelle	ich	drei	Projekte	vor,	die	darauf	abzielen,	

einige	dieser	Fragen	zu	untersuchen.	

In	Kapitel	T	greife	ich	eine	UVT$	veröffentlichte	Studie	auf,	in	der	die	Autoren	eine	Bibliothek	mit	

zufälligen	Sequenzen	in	E.	coli	konstruierten,	um	die	Wahrscheinlichkeit	zu	bestimmen,	dass	eine	

zufällige	Sequenz,	die	in	einer	Zelle	exprimiert	wird,	dieser	einen	Fitnessvorteil	verschaffen	könnte.	

Ich	 konnte	 die	 Ergebnisse	 dieser	 Studie	 erfolgreich	 replizieren,	 indem	 ich	mit	 einer	 verdünnten	

Probe	der	Bibliothek	begann	und	eine	neue	Analysepipeline	entwarf,	die	es	mir	ermöglichte,	das	

Verhalten	verschiedener	Sequenzen	in	einer	viel	größeren	Tiefe	zu	untersuchen.	Ich	bestätigte	in	

diesen	 Analysen,	 dass	 E.	 coli-Zellen	 sehr	 tolerant	 gegenüber	 der	 Expression	 zufälliger	 DNA-

Sequenzen	sind,	und	fand	heraus,	dass	die	Länge—nicht	aber	die	intrinsische	Unordnung,	der	GC-

Gehalt	 oder	 die	 Aggregationswahrscheinlichkeit—ein	 entscheidender	 Faktor	 dafür	 ist,	 ob	 eine	

Sequenz	einen	offenbar	positiven	Effekt	auf	die	Fitness	der	Zellen	hat.	In	Kapitel	U	wird	versucht,	das	

Experiment	mit	den	zufälligen	Sequenzen	in	einer	eukaryotischen	Zelllinie	zu	wiederholen.	Ziel	war	

es,	zu	testen,	ob	ein	ähnlicher	Anteil	an	Zufallssequenzen	von	den	eukaryotischen	Zellen	trotz	des	

unterschiedlichen	 zellulären	 Komplexitätsniveaus	 gut	 toleriert	 wird.	 Im	 Allgemeinen	 deuten	 die	

Ergebnisse	 darauf	 hin,	 dass	 eukaryotische	 Zellen	 mindestens	 genauso	 tolerant	 gegenüber	 der	

Expression	 von	 Zufallssequenzen	 sind	 wie	 die	 Bakterien.	 Im	 Gegensatz	 zu	 den	 Ergebnissen	 bei	

Bakterien	korreliert	jedoch	kein	spezifisches	Merkmal	der	Sequenzen	mit	ihrer	Verträglichkeit.	In	

Kapitel	"	schließlich	habe	ich	drei	mutmaßliche	de	novo-Gene,	die	in	der	Maus	identifiziert	wurden,	

in	einer	menschlichen	kontinuierlichen	Zelllinie	exprimiert.	Bei	den	ausgewählten	Genen	handelt	es	

sich	um	junge	Gene,	die	taxonomisch	auf	Arten	der	Gattung	Mus	beschränkt	sind	und	für	die	es	

transkriptions-	und	proteomische	Nachweise	gibt.	Interessanterweise	hatte	die	Expression	der	neuen	

Gene	keine	größeren	Auswirkungen	auf	das	Transkriptom	der	Zellen,	was	darauf	hindeutet,	dass	sie	

auch	in	einem	menschlichen	zellulären	Hintergrund	toleriert	werden	würden.	

Die	in	dieser	Arbeit	vorgestellten	Ergebnisse	ergänzen	die	zunehmenden	Belege	dafür,	dass	Zellen	

viel	 toleranter	 gegenüber	 der	 Expression	 neuer	 Sequenzen	 sind	 als	 bisher	 angenommen.	 Diese	

Erkenntnis	wirft	neue	Fragen	über	die	Entstehung	von	Genen	auf,	die	in	Zukunft	erforscht	werden	

sollten.

	
1	Text	kindly	translated	by	Prof.	Dr.	Diethard	Tautz.	
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1. Novel and de novo genes 

The	 mechanism	 of	 birth	 and	 death	 of	 genes	 is	 a	 topic	 that	 has	 interested	 evolutionary	

biologists	since	the	early	GHth	century	(Long	et	al.,	GHQV).	Looking	at	the	phenotypic	diversity	

and	 complexity	 of	 different	 organisms,	 it	 is	 evident	 that	 during	 the	 course	 of	 evolution	

innovations	have	appeared,	which	are	the	force	that	drives	evolution	(Chen	et	al.,	GHQV).	Gene	

content	of	different	organisms	 is	different	 and	genes	are	constantly	gained	and	 lost	 through	

evolution	(Snel	et	al.,	GHHG).	Comparisons	of	different	organisms’	genomes,	made	possible	by	

second-generation	sequencing	technologies,	have	shown	that	these	innovations	have	a	genetic	

basis,	with	new	genes	appearing	at	every	taxonomic	level,	which	are	exclusive	to	the	clade	under	

study.	 These	 genes	without	 homologs	 in	 other	 evolutionary	 lineages	 are	 often	 called	 in	 the	

literature	novel	 genes,	 orphan	 genes,	 or	 taxonomically	 restricted	 genes	 (Daubin	&	Ochman,	

GHHEa;	Khalturin	et	al.,	GHH^;	Schmitz	&	Bornberg-Bauer,	GHQR;	Tautz	&	Domazet-Loso,	GHQQ).	

There	are	different	mechanisms	through	which	novel	genes	may	arise	(Daubin	&	Ochman,	

GHHEb;	 Kaessmann,	 GHQH).	 The	most	 common	 and	 best-studied	 one	 is	 the	 duplication	 and	

divergence	of	pre-existing	genes.	In	this	process,	a	duplication	of	a	genomic	region	comprising	

one	or	several	genes,	or	parts	of	a	gene,	reduces	selective	constraints	on	in,	allowing	for	it	to	

accumulate	mutations	and	eventually	diverge	in	function	from	the	original	one.	The	study	of	

this	process,	ever	since	the	late	Q^_H’s	(Ohno	et	al.,	Q^_`),	led	to	our	current	knowledge	about	

the	dynamic	process	of	gene	birth	and	death	(Prince	&	Pickett,	GHHG).	Once	a	gene,	or	part	of	it,	

has	been	duplicated,	 the	accumulation	of	mutations	could	 lead	to	different	paths:	homology	

with	the	parental	gene	could	become	hard	to	identify;	the	gene	could	become	pseudogenised—

the	most	likely	outcome,	according	to	most	estimates	(Lynch	&	Conery,	GHHH)—,	or	the	copy	

could	facilitate	other	events	such	as	exon	shuffling	and	gene	fusion.	

Novel	 genes	 can	 also	 arise	 by	 other	 mechanisms	 such	 as	 horizontal	 gene	 transfer,	 exon	

shuffling,	 retroposition,	and	others	 (Chen	et	al.,	GHQV).	 Increasing	evidence	showing	that	 the	

process	of	gene	birth	is	highly	dynamic,	and	that	innovation	at	the	genetic	level	can	come	from	

many	 different	 sources,	 has	 led	 to	 the	 latest	 addition	 to	 the	 list	 of	 mechanism	 of	 gene	

origination:	de	novo	gene	birth	(Tautz,	GHQE).	De	novo	genes	are	a	subset	of	novel	genes	that	

originated	 from	previously	non-coding	 sequences	 (Cai	 et	 al.,	 GHH`;	Snel	 et	 al.,	 GHHG).	These	

sequences	 could	 be	 introns,	 intergenic	 regions,	 or	 frameshifts	 on	 coding	 regions	 (a	 process	

otherwise	known	as	overprinting).	

The	 possibility	 that	 genes	may	 arise	 de	 novo	 from	 previously	 non-coding	 sequences	 was	

disregarded	until	the	early	GHHHs.	Before	this,	the	common	view	was	that	evolution	was	only	

able	to	use	existing	“functional”	pieces	to	create	new	ones—an	idea	famously	stated	in	François	
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Jacob’s	 influential	 essay	 “Evolution	 and	 tinkering”	 (Jacob,	 Q^RR).	However,	 there	 is	 currently	

more	and	more	evidence	that	de	novo	gene	evolution	is,	not	only	possible,	but	also	an	important	

source	of	genetic	innovations.	Research	in	the	past	decade	has	identified	and	characterized	de	

novo	or	putative	de	novo	genes	in	rice	(Zhang	et	al.,	GHQ^),	Arabidopsis	(Li	et	al.,	GHQ_),	molluscs	

(Aguilera	et	al.,	GHQR),	Drosophila	(Gubala	et	al.,	GHQR;	Reinhardt	et	al.,	GHQV;	Zhou	et	al.,	GHH`),	

primates	(Carelli	et	al.,	GHQ`;	Ruiz-Orera	et	al.,	GHQg),	virus	(Sabath	et	al.,	GHQG)	and	bacteria	

(Daubin	&	Ochman,	GHHEa),	among	other	organisms	(Cai	et	al.,	GHH`;	Xiao	et	al.,	GHH^).	

Large	scale	searches	of	de	novo	gene	candidates	such	as	the	ones	mentioned	above,	were	made	

available	by	the	development	of	phylostratigraphy,	a	method	that	takes	advantage	of	the	large	

amount	of	sequencing	data	from	many	different	organisms	to	find	homologues	of	the	protein	

sequence	set	of	an	organism	(Domazet-Loso	et	al.,	GHHR).	Since	the	phylostratigraphy	method	

uses	sequence	similarity	to	find	potential	novel	gene	candidates,	it	is	not	possible	to	be	sure	that	

these	candidates	are	in	fact	de	novo,	or	whether	they	are	old	genes	that	have	diverged	beyond	

the	detection	limits	for	homology	search.	The	method	also	has	the	limitation	of	depending	on	

the	available	data,	which	decreases	its	power	when	sequencing	data	for	specific	clades	is	missing.	

It	is,	however,	extremely	useful	in	directing	efforts	and	serving	as	a	first	filter	to	find	true	de	novo	

genes.		

2. The process of de novo gene birth 

2.1 REQUIREMENTS FOR DE NOVO GENE BIRTH 

There	is	still	much	we	ignore	about	how	a	non-coding	sequence	can	become	a	protein-coding	

gene	 (Bornberg-Bauer	 &	 Heames,	 GHQ^).	 There	 is,	 however	 some	 consensus	 regarding	 the	

necessary	pieces.	The	first	one	is,	of	course,	the	non-coding	sequence	itself.	The	most	obvious	

sources	 for	non-coding	 sequences	 are	 introns	 and	 intergenic	 regions,	which	 are	 expected	 to	

evolve	 neutrally.	 Since	mutations	 in	 such	 regions	 accumulate	 in	 a	 neutral	 way,	 introns	 and	

intergenic	sequences	provide	a	close	to	random	sequence	space	in	which,	by	chance,	ORFs	may	

appear	and	be	expressed.	As	mentioned	above,	de	novo	genes	have	also	been	documented	in	

viruses	and	bacteria,	which	lack	these	non-coding	regions.	In	such	cases,	the	new	genes	appear	

through	the	process	of	overprinting	of	a	coding	region	in	which	a	new	reading	frame	overlapping	

the	first	one	is	generated	through	mutation	(Sabath	et	al.,	GHQG).		

The	second	and	third	pieces	necessary	 for	 the	birth	of	a	novel	gene	are:	an	ORF,	and	the	

different	elements	of	the	transcriptional/translational	machinery,	such	as	promoters	and	other	

regulatory	elements.	There	are	currently	two	complementary	models	to	explain	how	de	novo	

genes	acquire	these	elements:	ORF-first	and	RNA-first	(McLysaght	&	Guerzoni,	GHQg).	 In	the	

ORF-first	model,	a	new	gene	may	acquire	a	long	enough	ORF	through	random	mutations	first,	
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and	then	obtain	the	regulatory	elements	from	neighbouring	promoters	or	transposable	elements	

(ORF-first	model).	Intergenic	regions	at	certain	parts	of	the	genome	with	high	GC	content	are	

less	likely	to	code	for	stop	codons	(which	are	T/A	rich),	and	therefore	have	spurious	ORFs	that	

are	 long	 enough	 to	 be	 transcribed	 and	 translated.	 These	ORFs	 could	 be	 in	 turn,	 spuriously	

transcribed	and	translated,	even	without	the	necessary	regulatory	elements,	as	it	has	been	shown	

that	pervasive	transcription	of	the	genome	is	a	common	phenomenon	in	genomes	(Berretta	&	

Morillon,	GHH^;	Jacquier,	GHH^;	Neme	&	Tautz,	GHQ_).	These	spurious	transcripts	may	confer	a	

small	advantage	to	the	cells/organisms,	and	acquire	afterwards	the	transcriptional	machinery	

(promoters,	and	regulatory	sequences).	

Alternatively,	a	non-coding	region	of	the	genome	might	have	regulatory	elements	present,	

and	 be	 partially	 transcribed,	 or	 already	 functional	 as	 a	 non-coding	 RNA	 (RNA-first	model).	

Promoters	and	regulatory	 sequences	of	 the	 transcriptional	machinery	may	affect	non-coding	

regions	of	 the	genome	when	 they	are	moved	around	with	 transposable	elements,	or	when	a	

promoter	becomes	bidirectional,	or	through	readthrough	of	coding	genes	(Carelli	et	al.,	GHQ`;	

Ruiz-Orera	et	al.,	GHQg).	When	this	happens,	short	sequences	are	transcribed,	may	gain	longer	

ORFs	through	point	mutations	that	remove	stop	codons,	and	can	thus	become	new	protein-

coding	genes.	There	is	ample	supporting	evidence	for	both	models,	and	it	is	likely	that	de	novo	

genes	arise	through	a	combination	of	both	paths	(Schlotterer,	GHQg).	Once	a	long	enough	ORF	

becomes	transcribed,	it	can	be	translated.	Non-coding	transcripts	have	been	repeatedly	reported	

to	be	found	in	association	with	ribosomes	(Bazzini	et	al.,	GHQE;	Durand	et	al.,	GHQ^;	Ruiz-Orera	

et	 al.,	 GHQE;	 Ruiz-Orera	 et	 al.,	 GHQ`;	 Wilson	 &	 Masel,	 GHQQ).	 Furthermore,	 there	 is	 also	 an	

abundance	of	reports	of	functional	short	peptides	translated	from	ORFs	in	non-coding	genes	

(for	a	 review,	 see	 (Wang	et	al.,	GHQ^)),	and	non-coding	sequences	can	be	under	purifying	or	

positive	selection	(Bird	et	al.,	GHH_).	

Another	 possible	 mechanism	 for	 de	 novo	 gene	 birth,	 which	 provides	 simultaneously	 all	

necessary	pieces	is	known	as	the	“grow	slow	and	moult”	model	(Bornberg-Bauer	et	al.,	GHQg).	

According	to	this	model,	protein	domains	could	originate	de	novo,	not	as	individual	genes,	but	

as	new	parts	of	existing	ones.	This	was	show	in	a	study	of	insect	proteins,	where	the	authors	

found	evidence	of	“readthrough”	expression	at	the	V’	and	g’	ends	of	many	proteins,	which	could	

become	new	domains	in	the	repertoire	of	the	organism.	It	 is	 likely	that	this	mechanism	is	at	

work	together	with	the	other	ones.	

2.2 THE CONTINUUM BETWEEN NON-CODING SEQUENCES AND DE NOVO GENES 

Since	different	elements	required	for	the	formation	of	a	new	gene	do	not	have	to	be	gained	

simultaneously,	the	process	of	de	novo	gene	birth	occurs,	most	likely,	as	a	gradual	transformation	
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of	non-coding	sequences	into	coding	ones.	This	idea,	known	as	the	“protogene	model”,	was	first	

proposed	on	GHQG	(Carvunis	et	al.,	GHQG).	A	sequence	in	the	process	of	acquiring	the	elements	

required	for	transcription	and	translation,	and	in	the	process	of	becoming	fixed	as	a	gene	in	a	

population	is	known	as	a	protogene.	The	origination	process	described	above	would	generate	a	

continuum	of	molecules	ranging	from	short,	spurious	transcripts	to	translated	sequences	and	

finally	de	novo	genes.	Protogenes	do	not	have	yet	a	stable	expression,	nor	have	been	fixed	in	a	

population,	but	are	expressed	in	high	enough	levels	to	become	exposed	to	natural	selection	and	

the	corresponding	evolutionary	dynamics	in	populations.	They	may	undergo	a	very	rapid	and	

dynamic	gene	gain/loss	cycle,	with	only	few	of	them	becoming	fixed	and	established	as	protein	

coding	genes.	The	rest	become	pseudogenes,	and	go	back	to	being	non-coding	sequences	from	

which	other	de	novo	genes	may	arise.	

Given	that	protogenes	are	expressed	non-coding	sequences	that	are	being	filtered	through	

selection,	the	authors	of	the	model	suggested	that	they	should	exist	in	a	continuum	between	

intergenic-,	and	gene-like	characteristics.	This	hypothesis	is	supported	by	their	data	analysis	in	

Saccharomyces	 cerevisiae,	 where	 they	 identified	 protogenes	 and	 young	 genes	 using	 the	

phylostratigraphy	method	(Domazet-Loso	et	al.,	GHHR),	and	found	that	properties	such	as	length,	

intrinsic	disorder	score	(IDS),	hydropathicity	(amino	acid	composition),	codon	adaptation	index	

(CAI),	and	GC	content	had	intermediate	values	in	candidate	protogenes	compared	to	conserved	

genes	 and	 intergenic	 regions.	 The	 dynamics	 of	 de	 novo	 gene	 fixation	 in	 a	 population,	 and	

integration	into	metabolic	and	regulatory	networks	in	the	cell	are	not	yet	well	understood.	

Another	hypothesis	regarding	the	types	of	sequences	that	might	become	de	novo	genes	has	

been	proposed	in	contrast	to	the	protogene	model.	The	preadaptation	hypothesis	suggests	that	

de	novo	gene	birth	is	not	a	gradual	process,	but	rather	an	all-or-nothing	transition	to	expression.	

According	to	this	hypothesis,	young	genes	are	born	in	an	organism	when	non-coding	regions	

have	exaggerated	gene-like	properties.	These	“hopeful	monsters”	would	have	less	probabilities	

of	 being	 deleterious	 than	 random	 sequences	 due	 to	 their	 exaggerated	 gene-like	 properties,	

which	would,	naturally,	not	be	in	a	continuum	between	intergenic	regions	and	conserved	genes.	

Evidence	 to	 this	hypothesis	was	presented	by	Wilson	et	al.	 in	a	publication	 that	 studied	 the	

properties	 of	 mouse	 novel	 genes	 and	 found	 that	 young,	 novel	 genes	 are	 more	 intrinsically	

disordered	than	both	conserved	(old)	genes	and	intergenic	sequences	(Wilson	et	al.,	GHQR).	

3. Integration of novel genes into regulatory and interaction networks 

In	order	for	a	new	protein	coding	gene	to	have	a	function,	it	needs	to	integrate	itself	either	

to	the	regulatory	or	the	interactome	networks	of	an	organism.	It	is	likely	that	the	first	step	is	for	

genes	to	gain	regulatory	interactions.	New	regulatory	interactions	emerge	rapidly	within	a	few	
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million	years	while	protein-protein	and	protein-gene	interactions	emerge	slowly.	It	is,	of	course,	

more	 likely	 that	 a	 novel	 gene	 does	 not	 integrate,	 and	 just	 becomes	 pseudogenized	 instead	

(Abrusan,	GHQV).	

As	for	the	regulatory	interactions,	the	evidence	suggests	that	it	is	likely	that	de	novo	genes	

are	first	regulated	by	enhancers.	Novel	genes	in	mammals	have	been	found	to	be	preferentially	

closer	to	enhancers	than	to	promoters	(Majic	&	Payne,	GHGH).	Enhancers	can	evolve	from	many	

different	 sources	 including	 transposons,	 promoter	 switching,	 co-option,	 and	 even	 de	 novo	

(although	this	last	mechanism	has	not	been	well	studied)	(Rebeiz	&	Tsiantis,	GHQR).	Furthermore,	

enhancers	evolve	rapidly,	and	they	are	usually	derived	from	ancient	sequences.	Novel	promoters,	

on	the	other	hand,	evolve	from	novel	sequences.	(Villar	et	al.,	GHQg).	Later	in	the	process,	it	is	

possible	for	enhancers	to	become	promoters,	for	stronger	regulatory	interactions,	as	has	been	

documented	in	mammals	(Carelli	et	al.,	GHQ`).		

Young	genes	evolve	rapidly	and	are	exposed	to	less	selective	constraints	than	older	genes,	

similar	to	intergenic	sequences	(Heames	et	al.,	GHGH).	In	the	initial	stages	of	evolution	of	any	

gene,	rates	of	evolution	are	initially	fast,		and	then	slow	down	(Elena	et	al.,	Q^^_;	Goodman,	Q^`Q).	

Several	 authors	agree	 that	 future	 studies	 should	 focus	more	on	 the	 study	of	how	new	genes	

emerge,	using	functional	characterization	studies	and	experimental	evolution	approaches	(Light	

et	al.,	GHQE;	Schlotterer,	GHQg;	Schmitz	&	Bornberg-Bauer,	GHQR).	

3.1 FEATURES OF NOVEL AND DE NOVO GENES 

In	order	for	a	de	novo	gene	to	be	unequivocally	identified	as	such,	the	syntenic	non-coding	

region	in	closely	related	species	must	be	found	(McLysaght	&	Hurst,	GHQ_).	However,	this	usually	

proves	to	be	a	difficult	task	due	to	the	fast	divergence	of	non-coding	regions	and	detection	limits	

of	current	tools	(Light	et	al.,	GHQE).	This	difficulty	in	having	a	big	sample	of	unequivocal	genes	

to	analyse	has	also	interfered	with	estimations	of	the	frequency	in	which	de	novo	genes	appear,	

the	 probability	 that	 protogenes	 become	 genes	 integrated	 into	 cellular	 pathways,	 and	 the	

evolutionary	dynamics	in	play	in	this	process.	

One	more	aspect	of	de	novo	genes	that	has	received	considerable	attention	in	the	literature,	

is	the	characteristics	that	they	have	in	common.	In	general,	since	it	is	difficult	to	unequivocally	

identify	the	novo	genes,	researchers	have	focused	mainly	in	the	differences	between	novel	and	

ancient	(conserved,	core,	essential)	genes.	There	is	agreement	in	that	young	genes	are	shorter	

than	older	ones,	have	lower	transcription	levels,	are	expressed	in	a	tissue-specific	manner,	and	

evolve	rapidly	(Basile	et	al.,	GHQR;	Carvunis	et	al.,	GHQG;	Heames	et	al.,	GHGH;	Luis	Villanueva-

Canas	et	al.,	GHQR;	Schmitz	et	al.,	GHQ`).	There	are	also	some	features	for	which	no	consensus	
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exists	and	seem	to	be	dependent	on	the	lineage	or	species	of	study	(Van	Oss	&	Carvunis,	GHQ^).	

These	features	are	in	particular	GC	content,	intrinsic	disorder	and	aggregation	propensity.		

A	GHQR	study	found	that	GC	content	is	highly	correlated	with	intrinsic	disorder	since	amino	

acids	encoded	by	codons	with	high	GC	are	disorder	promoting.	In	most	organisms,	orphans	are	

more	disordered	than	older	genes.	(except	for	yeast,	which	has	low	GC	)	(Basile	et	al.,	GHQR).	A	

GHQ_	study,	reported	that	younger	genes	in	E.	coli	are	less	random	than	older	ones,	as	calculated	

by	randomness	tests,	they	have	lower	GC	content,	and	they	are	shorter	(Wang	et	al.,	GHQ_).	De	

novo	and	novel	domains	also	have	high	intrinsic	disorder	and	evolve	rapidly	in	insects	(Klasberg	

et	al.,	GHQ`).	

4. Random sequences as a tool to study gene evolution 

Since	non-coding	sequences	are	expected	to	accumulate	mutations	in	a	neutral—i.e.,	a	nearly	

random—way,	random	sequences	could	be	used	as	a	proxy	to	study	de	novo	gene	evolution.	The	

hypothesis	that	random	sequences	could	be	the	origin	of	proteins	was	already	postulated	and	

explored	mathematically	in	the	early	Q^^Hs	in	the	context	of	the	ancestral	set	of	peptides	at	the	

origin	of	life	(White	&	Jacobs,	Q^^H,	Q^^V).	Random	sequences	have	proven	repeatedly	to	be	raw	

material	 from	which	 novel	 function	 can	 arise	 in	 experimental	 evolution	 experiments.	 Some	

examples	of	this	 include	the	evolution	of	 functional	ATP-binding	sequences	from	libraries	of	

random	sequences	and	phage	display	(Keefe	&	Szostak,	GHHQ);	increasing	phage	infectivity	from	

a	library	of	random	sequences	(Hayashi	et	al.,	GHHV);	an	experimental	evolution	experiment	to	

find	peptides	of	QEH	residues	with	DNA	binding	affinity	of	a	specific	sequence	(Nakashima	et	al.,	

GHHR);	 evolution	 of	 resistance	 to	 nickel	 in	 bacteria	 from	 a	 GH-mer	 peptide	 with	 QG	 random	

positions	(Stepanov	&	Fox,	GHHR);	and	the	evolution	of	antibiotic	resistance	genes	from	random	

sequences	(Knopp,	GHQ^;	Knopp	et	al.,	GHGQ).	

Some	studies	that	could	be	helpful	to	guide	our	efforts	in	understanding	this	complexity	have	

been	published	in	the	past	years.	These	studies	take	advantage	of	next	generation	sequencing,	

and	the	potential	of	synthetic	random	sequences	to	study	the	possibility	that	something	that	is	

inherently	non-coding	could	be	tolerated	and	even	used	by	living	cells.	One	study,	for	example,	

replaced	the	promoter	sequence	of	a	LAC	operon	in	Escherichia	coli	with	random	sequences	of	

the	 same	 length	 in	 order	 to	 determine	 which	 sequences	 could	 be	 used	 by	 the	 bacteria	 as	

promoters,	or	how	fast	new,	functional	promoters	could	evolve	from	them	(Yona	et	al.,	GHQ`).	

The	surprising	results	showed	that	QQ%	of	the	sequences	used	could	promote	the	transcription	

of	 a	 reporter	 gene	 from	 the	 beginning,	 and	 over	 gH%	 of	 the	 remaining	 sequences	 became	

functional	promoters	with	just	one	mutation.	A	similar	study,	done	in	Saccharomyces	cerevisiae,	
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showed	that	a	large	percentage	of	random	sequences	can	also	act	as	promoters	in	eukaryotic	

cells	(de	Boer	et	al.,	GHGH).	

A	GHQR	study	using	random	sequences	in	E.	coli	showed	interesting	features	of	the	expression	

of	random	sequences	(Neme	et	al.,	GHQR).	 In	their	paper,	 the	authors	 tried	to	experimentally	

address	the	question	of	what	is	the	likelihood	of	a	coding	sequence	to	have	a	biological	activity	

that	 might	 impact	 the	 fitness	 of	 a	 cell.	 The	 aim	 of	 the	 work	 was	 to	 test	 whether	 random	

sequences	 expressed	 in	 a	 bacterial	 cell	 could	 have	 an	 effect	 that	 gave	 an	 advantage	 or	

disadvantage	 to	 the	 cell	 in	 terms	of	 growth	 speed.	To	do	 this,	 the	 authors	 ligated	 a	 pool	 of	

random	QgHbp	sequences	generated	by	adding	equimolar	amounts	of	each	nucleotide	at	every	

synthesis	step	into	a	commercial	inducible	expression	vector	(pFLAG-CTC,	Sigma).	This	vector	

has	start	and	stop	codons	in	frame	of	the	restriction	site	used,	which	means	that	the	random	

sequences	were	flanked	by	a	constant	sequence	of	QG	bp	on	the	g’-end	and	V_	bp	on	the	V’-end.	

The	downstream	constant	 sequence	encodes	a	FLAG-tag	before	 the	 stop	codon.	The	pool	of	

vectors	was	used	to	transfect	E.	coli	(DHQHB)	to	generate	a	library	of	bacterial	cells.	Expression	

of	the	cloned	peptides	could	be	induced	by	adding	the	commonly	used	compound	isopropyl	β-

d-Q-thiogalactopyranoside	 (IPTG)	 to	 the	 culture	 media.	 The	 total	 number	 of	 sequences	

successfully	cloned	into	the	cells	was	not	clearly	reported	in	the	publication,	but	the	authors	

reported	 results	 for	 at	 least	 QHHH	 sequences	 coding	 for	 the	 full-length	 _g	 amino	 acid-long	

peptides	in	their	analyses.	

Comparisons	between	random	sequences	and	naturally	occurring	ones	have	also	shed	some	

light	on	what	we	could	expect	to	be	the	characteristics	of	de	novo	genes.	For	example,	in	a	study	

comparing	random	sequences	with	proteins	from	public	databases,	Angyan	et	al.	showed	that	

peptides	translated	from	random	sequences	with	GC	content	ranging	EH	to	_H	%	show	similar	

aggregation	propensity,	 intrinsic	disorder	and	transmembrane	domain	predictions	 to	human	

(Angyan	et	al.,	GHQG).	On	the	other	hand,	a	more	recent	study	found	that	natural	sequences	have	

longer	disordered	regions	than	random	sequences	(Yu	et	al.,	GHQ_).	A	study	on	random	peptide	

resistance	to	protease	degradation	also	showed	that	at	least	GH	%	of	random	peptides	obtained	

by	phage	display	show	stable	three-dimensional	folding	(Chiarabelli,	GHH_).	

5. About this thesis 

This	thesis	 is	the	compilation	of	three	projects	developed	in	order	to	address	some	of	the	

unresolved	questions	about	the	birth	of	de	novo	genes.	In	Chapter	Q	I	take	a	look	at	the	results	

of	the	GHQR	work	in	E.	coli	by	reproducing	the	experiment	with	the	library	of	random	sequences,	

and	combining	it	with	the	sequencing	data	of	the	GHQR	publication.	The	aim	was	to	address	in	

depth	some	of	the	questions	still	unanswered	about	the	likelihood	that	certain	sequences	might	
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be	favoured	over	others	to	be	retained	in	a	population,	and	about	the	molecular	features	that	

make	it	possible.	This	work	has	resulted	in	a	recent	publication.	

In	Chapter	G,	I	extended	the	question	about	what	we	can	quantify	of	the	effect	of	random	

sequences	 to	 eukaryotic	 cells.	Using	a	human	cell	 line,	 I	 generated	a	new	 library	of	 random	

sequences	in	a	heterologous	expression	system,	which—combined	with	an	amplicon	sequencing	

approach—allowed	me	to	track	the	changes	in	frequency	of	single	clones	in	the	library	through	

GH	cell	divisions.	

Finally,	in	Chapter	V	I	chose	several	candidates	from	a	list	of	putative	mouse	de	novo	genes	to	

express	 them	in	a	human	cell	 line	 in	order	 to	study	their	effect	on	the	transcriptome.	These	

candidates,	which	can	be	considered	in	effect	de	novo	mouse	sequences	expressed	in	the	human	

cells,	could	provide	further	indication	about	the	tolerance	of	the	cells	to	random	sequences	and	

how	they	could	interact	with	the	regulatory	networks	of	the	cells.	
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Chapter 1. The effects of sequence length and composition of random 
sequence peptides on the growth of E. coli cells 
The	work	done	for	this	chapter	has	been	accepted	for	publication	in	the	journal	Genes	for	the	special	issue	“How	do	New	
Genes	Originate	and	Evolve?”	(Editors	Manyuan	Long	and	Esther	Bethran)	and	it	is	also	available	as	a	pre-print	article	
on	bioRxiv	under	the	DOI:	https://doi.org/10.1101/2021.11.22.469569. 
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Abstract:	We	study	the	potential	for	the	de	novo	evolution	of	genes	from	random	nucleotide	

sequences	using	libraries	of	E.	coli	expressing	random	sequence	peptides.	We	assess	the	effects	

of	 such	 peptides	 on	 cell	 growth	 by	monitoring	 frequency	 changes	 of	 individual	 clones	 in	 a	

complex	library	through	four	serial	passages.	Using	a	new	analysis	pipeline	that	allows	to	trace	

peptides	of	 all	 lengths,	we	 find	 that	over	half	 of	 the	peptides	have	 consistent	 effects	on	 cell	

growth.	Across	nine	different	experiments,	around	Q_	%	of	clones	increase	in	frequency	and	V_	%	

decrease,	with	some	variation	between	individual	experiments.	Shorter	peptides	(`–GH	residues),	

are	more	likely	to	increase	in	frequency,	longer	ones	are	more	likely	to	decrease.	GC	content,	

amino	acid	composition,	intrinsic	disorder	and	aggregation	propensity	show	slightly	different	

patterns	 between	 peptide	 groups.	 Sequences	 that	 increase	 in	 frequency	 tend	 to	 be	 more	

disordered	with	lower	aggregation	propensity.	This	coincides	with	the	observation	that	young	

genes	with	more	disordered	structures	are	better	tolerated	in	genomes.	Our	data	indicate	that	

random	sequences	can	be	a	source	of	evolutionary	innovation,	since	a	large	fraction	of	them	are	

well	tolerated	by	the	cells	or	can	provide	a	growth	advantage.	
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Abstract: We study the potential for the de novo evolution of genes from random nucleotide sequences
using libraries of E. coli expressing random sequence peptides. We assess the effects of such peptides
on cell growth by monitoring frequency changes in individual clones in a complex library through
four serial passages. Using a new analysis pipeline that allows the tracing of peptides of all lengths,
we find that over half of the peptides have consistent effects on cell growth. Across nine different
experiments, around 16% of clones increase in frequency and 36% decrease, with some variation
between individual experiments. Shorter peptides (8–20 residues), are more likely to increase in
frequency, longer ones are more likely to decrease. GC content, amino acid composition, intrinsic
disorder, and aggregation propensity show slightly different patterns between peptide groups.
Sequences that increase in frequency tend to be more disordered with lower aggregation propensity.
This coincides with the observation that young genes with more disordered structures are better
tolerated in genomes. Our data indicate that random sequences can be a source of evolutionary
innovation, since a large fraction of them are well tolerated by the cells or can provide a growth
advantage.
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1. Introduction

New genes can arise by two alternative mechanisms [1–6]. The first is through dupli-
cation and/or recombination of existing genes or gene fragments, which later accumulate
mutations that render them different from their parental genes. The second is de novo evo-
lution from previously non-coding sequences. While this was long thought to be unlikely,
there is now plenty of evidence that the process has probably been active throughout evolu-
tion [7–13]. However, since it is difficult to distinguish de novo evolution from duplication
followed by divergence beyond sequence recognition [14], one can prove true de novo
evolution only for relatively recent events, where evolutionary time has not been enough
for accumulation of too many mutations [1]. Several dedicated studies on individual genes,
including functional analyses, have been published [15–19]. In addition to this, there are
well-documented cases of peptides with biological function derived from randomly synthe-
sized sequences [20–24]. Overall genome comparisons between recently separated species
have suggested that de novo evolved genes arise continuously with a high rate, but can
also get lost at high rates [25–28]. This dynamic transformation of non-coding sequences
into coding ones is very clear, especially in eukaryotes, where large parts of the non-coding
genome are transcribed. Comparisons between closely related mouse populations and
species revealed the transcription of these non-coding regions is subject to fast evolutionary
change, such that within a time span of 10 million years the whole genome can become
transcribed and thus subjected to evolutionary testing [8]. Hence, the raw material for de
novo evolution, namely transcripts from initially non-coding DNA regions, is abundantly
present.
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Based on these insights, we previously developed an experimental approach to ask
which fraction of random sequences has a potential biological function that could become
subject to further adaptive evolution [29]. We expressed a library of sequences with random
sequence composition in bacterial cells and monitored which sequences could provide a
growth advantage or disadvantage to the cell in the context of four growth cycles of the
whole library. The general experimental design for this experiment is shown in Figure 1.
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Figure 1. Experimental design to evaluate the fraction of bioactive sequences in a library of random sequences. A pool of
random 150 bp sequences generated by adding equimolar amounts of each nucleotide at every synthesis step was ligated
into a commercial inducible expression vector (pFLAG-CTC, Sigma). This vector has start and stop codons in frame of the
restriction site used for cloning, which means that the random sequences were flanked by a common sequence of 12 bp
on the 5’-end and 36 bp on the 3’-end with a FLAG-tag (grey boxes). The resulting 195 nucleotide and 65 amino acid
full sequences are shown. The pool of clones was used to transfect E. coli (DH10B) to generate a library of bacterial cells.
Expression of the cloned peptides was induced by adding isopropyl β-d-1-thiogalactopyranoside (IPTG) to the culture
media. Replicates were sampled every three h for a total of 12 h (3-h cycles, 12-h experiments) whereby one tenth of the
culture volume was used for seeding the culture at each passage. The overall experiment replicated the one described
in [29], where the analysis focused on full-length peptides only and also included experiments with 24-h growth cycles
(5-day experiments). Here we use a newly designed pipeline to analyze all experiments and all peptide lengths.

The experiments showed that a surprisingly large fraction of random sequences af-
fected cell growth, either by enhancing it, or by slowing it down. In the initial analysis,
between 11 and 25% of the sequences increased in frequency in all replicates of each experi-
ment, whereas 18 to 53%, decreased [29]. However, the study focused exclusively on the
full-length peptides in the library, although the design strategy with random synthesis of
the insert produces also a large number of truncated peptides with premature stop codons.

In the present study, we first reproduced the experiment, but with a lower con-
centration of starting library in an attempt to reduce the possible impact of very many
low-frequency clones on the overall mean fitness of the complex library. Plus, we designed
a new pipeline to analyze the new experiment, as well as all of the previous experiments.
This new pipeline allowed us to include the clones expressing truncated peptides and to
assess whether the expressed vector without insert could have a growth effect on the cells
harboring it.

The new goal of this project was to explore the possible effects of shorter peptides
in relation to the full-length peptides studied before. All peptides in the original analysis
have common C-terminal residues (FLAG-tag—see Figure 1), which may have contributed
to their stability and/or biological effects. Since naturally de novo evolved peptides would
not have such a common C-terminus, it is important to verify whether the same spectrum
of effects is also seen with peptides that have random C-termini. Furthermore, we wanted
to explore sequence features of the peptides that could make them more or less likely to
be tolerated by the cells and to be maintained in the population through several cycles
of growth. Finally, we wanted to address the critical points that were raised against our
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original experiment, where [30] and [31] suggested a vector effect driving the patterns of
peptides that rise in frequency. In this view, the vector itself would have a negative effect
due to expressing a 38 amino acid peptide (or a secondary RNA structure) under induction
conditions, which would be relieved when a "neutral" random sequence was replacing it,
giving the impression that the "neutral" sequence acts positively. While we had argued that
this effect could not fully explain the data that we had at that time [32], further analysis of
this question is certainly warranted.

2. Materials and Methods
2.1. Library and Replication Experiment

We used the original library described in [29] from a stock frozen in 20% glycerol. The
general design of the library and the experiment are depicted in Figure 1. In order to assess
whether there could be a complexity effect, we repeated the original experiment using a
100-fold dilution of the original library and a 1-day sampling schedule, with samplings
every 3 h for a total of 4 samplings in 12 h. This was done by seeding 5 µL from the stock
on 25 mL LB liquid medium with 500 µg/mL ampicillin, and allowed it to grow overnight
at 37 ◦C with constant shaking (250 rpm). After 16 h, 500 µL of the liquid culture were
transferred into five 5 mL tubes containing 4.5 mL of LB medium with 10−3 mol/L IPTG to
induce expression of the random sequences. For each cycle, 500 µL of culture from each
tube were used to seed a new replicate after 3 h of growth (37 ◦C, 250 rpm). From the
remaining bacterial culture for each replicate, 3 mL were collected and used for plasmid
extraction using a QIAprep Spin Miniprep kit (QIAGEN, Hilden, Germany). Extracted
plasmids were eluted in 30 µL of elution buffer and stored at -20 ◦C until use.

Amplicon sequencing of the library was performed using specific barcoded primers to
amplify a 356-nucleotide fragment including the random sequences in a one-step PCR using
PHUSION HF master mix (Invitrogen) (all primers used are listed in Supplementary Table
S1). The cycling program consisted of an initial denaturation at 98 ◦C for 30 s, followed by
25 cycles of 98 ◦C for 10 s, 65 ◦C for 20 s, and 72 ◦C for 1 minute. After a final elongation step
of 72 ◦C for 10 minutes, samples were purified using a Qiagen MinElute Gel Extraction kit.
Concentration of samples was calculated through relative quantification in an agarose gel,
using a Molecular Imager(R) Gel Doc(TM) XR+ System with the Image Lab(TM) Software
(Bio-Rad). Barcoded samples were pooled together in equal concentrations to obtain the
sequencing library. Sequencing was done using Illumina's MiSeq Reagent Kit v3 with
300 cycles to get overlapping 300-nucleotide paired-end reads.

Available data
In addition to sequencing data from the diluted library experiment described above,

we used the original fastq files for eight experiments described in [29]. The original
experiments were done following two different sampling schedules: either a 1-day course
with samplings every 3 h, or a 4-day course with samplings every 24 h. In either case, four
timepoints were sampled. The number of replicates, cycle duration, and experiment length
for each of the experiments are summarized in Table 1. In addition to three experiments
with 10 replicates of each type of sampling schedule, we used two 4-day experiments
with 5 replicates. One of them (experiment 7) was done with a treatment control without
induction with IPTG, while the other one (experiment 8) was sequenced more deeply
(5x more reads than the other experiments) to capture even rare clones present at low
frequencies in the population.
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Table 1. Clone performance in different experiments.

Exp 1
Cycle

Length/Experiment
Length (Replicates)

N 2 POS 3 NEG 3 NS 3

Range
Log2-Fold

Change
(Average)

Empty Vector
Log2-Fold
Change 4

1 3 h/1 day (n = 10) 5625 0.11 0.36 0.53 −8.0 to 2.7 (−1.1) 1.1

2 3 h/1 day (n = 10) 5606 0.17 0.43 0.41 −7.7 to 2.2 (−1.2) 0.5

3 3 h/1 day (n = 10) 5638 0.18 0.40 0.42 −7.8 to 2.7 (−1.1) 0.4

4 24 h/4 days (n = 8) 5623 0.14 0.30 0.56 −5.2 to 5.2 (−0.5) 0.1

5 24 h/4 days (n = 10) 5596 0.10 0.26 0.64 −5.4 to 5.0 (−0.6) −1.7

6 24 h/4 days (n = 10) 5632 0.26 0.41 0.32 −5.9 to 2.2 (−0.7) −1.1

7 24 h/4 days (n = 5) 5623 0.07 0.28 0.65 −7.2 to 4.0 (−0.9) −0.2

8 24 h/4 days (n = 5) 5689 0.27 0.46 0.27 −11.2 to 1.4
(−1.6) −0.4

9 3 h/1 day (n =
5)/diluted library 5651 0.16 0.32 0.51 −8.4 to 5.6 (−0.7) −0.7

All experiments
averages 5:

All clones 5621 0.16 0.36 0.48

Clones with 4aa ORF 200 0.04 0.73 0.18

Clones with 5aa ORF 221 0.02 0.52 0.44

Clones with 6aa ORF 209 0.06 0.37 0.56

Clones with FLAG
sequence 638 0.03 0.77 0.17

Clones with FLAG +
1 sequence 129 0.03 0.68 0.20

Clones with FLAG +
2 sequence 126 0.05 0.64 0.23

Clones 48+ aa
without FLAG 237 0.06 0.55 0.34

1 For experiments 1–8 we reanalyzed the original fastq data from [29], experiment 9 with a diluted starting library was done within the
framework of this study. 2 Number of clones detected among the 5701 unique sequence clones in the database for which at least 5 reads
were mapped in each experiment. 3 Fraction of clones in each category. POS and NEG were assigned when padj < 0.05; otherwise, the
clone was categorized as non-significant (NS). 4 All vector clone frequency changes were highly significant (padj < 0.01) in their respective
experiment, except for Exp 4 (padj > 0.05). 5 The distribution of values from the 9 experiments is not significantly different from a normal
distribution (Shapiro–Wilk test, p > 0.5).

2.2. Analysis Pipeline

First, the paired end reads for each experiment were trimmed using Trimmomatic
(v. 0.36), and merged using the software USEARCH10 (-fastq_mergepairs, -fastq_maxdiffs
30, -fastq_minmergelen 100) [33]. Since each read in a pair covers the entire random
sequence, up to 30 mismatches were allowed between the paired forward and reverse
reads. The fastq_mergepairs algorithm resolves discrepancies between the forward and
reverse reads by comparing the quality score for the conflicting position in each read. It
keeps the residue with the best quality score in the merged read. Merging the reads with
this algorithm reduces the percentage of sequencing errors kept in each read. Note that it
is not possible to account for PCR errors that have occurred during the library preparation.

To remove reads that do not belong to a PCR product from the plasmids in the library,
a custom Perl script was used to find and save all merged reads containing pre-defined
sequences up- and downstream of the random sequences on the pFLAG-CTC plasmid. The
pre-defined sequences were a 18 bp sequence around the start codon, and the FLAG-tag,
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including the stop codon. The reads thus selected are considered clean amplicon reads,
trimmed around the pre-defined sequences, and used for all subsequent analyses.

2.3. Database Generation

To generate a database of all unique sequences in the library that could be detected
by the amplicon sequencing approach, all clean reads from all available experiments
and replicates were first dereplicated using USEARCH10. Dereplication was done in
3 rounds. In the first round, the nucleotide sequences were sorted alphabetically, and the
-fastx_uniques option was used to remove duplicate sequences, keeping only one sequence
of each type in the database while keeping track of the number of total sequences of each
type with the -sizeout option. In this way repeated identical sequences were removed and
a “size” annotation was added to the read name indicating how many identical matches
were present in the clean read files. In the second round, all files with singletons removed
were merged into a single file of all amplicon sequences available, sorted, and de-replicated
again using the same exact-match method. This exact matching approach is prone to
enrichment of PCR or sequencing errors, since any two reads with even a single nucleotide
difference are kept as individual sequences in the database. Singleton reads—more likely
to be PCR or sequencing errors—were removed and a third dereplication round using a
clustering approach was implemented.

The third round of dereplication aimed to remove reads generated by PCR or sequenc-
ing artefacts. The clustering approach used is based on the one used for OTU validation in
microbiome analyses. Reads were sorted in decreasing order of size annotation, and the
-cluster_smallmem option of USEARCH10 was used with an identity cut-off of 0.97. The
clustering algorithm used by USEARCH is a greedy clustering approach. Here, sorting
by the size annotation means that high-frequency reads are used as centroids or seeds for
clusters first. This strategy relies on the assumption that reads found in high frequencies
are more likely to be real, and less-common, highly-similar reads are probably generated
through PCR or sequencing errors. The identity threshold of 0.97 allows less frequent reads
with, for example, up to 5 mismatches in the expected 195-nucleotide sequence to join the
high-frequency centroids forming the clusters. Using an additional filter of minimum clus-
ter size of 8 reads, commonly used in microbiome amplicon sequencing analyses, removes
other artefacts from the database. The resulting library of unique clusters (Supplementary
Figure S1, full database: SuppData_BACT_tableinfo.tsv and SuppData_BACT.tsv) was
used as the final database.

This database served also basis for the simulation of a 100.000 sequence library in R
by sampling A, T, G, and C using the calculated probabilities for each nucleotide at each
position (see below).

2.4. Sequence Features

Several parameters were used to characterize the sequences in the complete database,
as well as in the sequence groups generated after mapping of the reads to find changes
in frequency. ORFs were predicted using the program getorf form the EMBOSS suite [34]
using the full database as input (-minsize 12, -find 3). Only the first ORF was kept for
each sequence. Predicted ORFs were translated in the first frame using transeq from the
EMBOSS suite, and the first predicted peptide was kept for each ORF. Sequence length was
calculated for each read, as well as the predicted ORF and peptide using bash programs.

The number of peptides of each length depends on the probability of getting a stop
codon at each consecutive position, and not before. This is best described by the probability
function of a geometric distribution:

(1-p)(k-1)*p, (1)

where k is the number of trials, in this case, the number of positions or the length of the
sequence; and p is the probability of “success” or getting a stop codon. Multiplying this
probability distribution by the number of synthesized sequences, one gets the expected
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count of peptides of each length. The resulting expected distribution of peptide lengths
was used to confirm library quality (Supplementary Figure S2).

GC content was calculated as the percentage of guanine (G) and cytosine (C) in a
sequence relative to its length using custom Perl scripts. This was done for the complete
read, the random part of the sequence (obtained by trimming 12 nucleotides on the 5‘-end
and 33 nucleotides from the 3‘- end of the clean reads), and the predicted ORF. Amino
acid composition of the database and different sequence groups were calculated using
the Biostrings package (V 2.58.0) from Bioconductor in R. Lists of sequences from each
database formatted as AAStringSets were used as input for the letterfrequency function
and amino acid frequencies were plotted for each sequence correcting for length. For
the complete database, full-length predicted peptides were used, and frequencies were
calculated for each sequence independently in order to obtain frequency distributions. For
the group analysis, the flanking sequences were trimmed from the peptides and amino
acid frequencies were calculated for the complete set of random amino acids as a single
sequence.

Intrinsic disorder was calculated using the command line version of IUPred
(IUPred2A) [35] with the -short option. Intrinsic disorder scores were averaged for each
peptide to obtain single average disorder values. In addition to this, the fraction of residues
with a predicted disorder score equal to or larger than 0.5 was calculated, producing
comparable results (data not shown).

Protein aggregation propensity was calculated for all sequences in the database using
the program PASTA 2.0 on the web server of The BioComputing POS lab of the University of
Padua (Italy) (http://old.protein.bio.unipd.it/pasta2/ last accessed November 2021) [36].
For each sequence, free energy for the single-best pairing was obtained using the default
settings for peptides. The best-energy pairing for self-aggregation was obtained for each
sequence from the output files, and energies of -5 or less were considered indicative of a
high probability of aggregation.

2.5. Mapping of Reads to Full Database

Clean reads for all replicates and timepoints in each experiment were mapped to the
database using a global alignment-based method from the program USEARCH10 (option
-usearch_global). For consistency with the clustering analysis, alignments had a minimum
required identity of 0.97, minimum query coverage of 0.9, and maximum one hit, and
5 gaps. Hits were extracted from the search results and counted using custom bash scripts
to generate count tables for each replicate in each experiment.

2.6. Frequency Change Determination and Group Assignment

Raw count tables for each experiment were used as input for statistical analyses using
the package DESeq2 in R [37]. Count data of each experiment were analyzed independently
using cycle number as explanatory variable, and only sequences that had at least 5 reads
mapped in the whole experiment were kept.

DESeq2 was designed mostly for the analysis of RNASeq data, but is broadly ap-
plicable to a large range of data types that require to control for large dynamic range
and dispersion effects [37]. This makes different experiments better comparable between
each other. Based on the log2-fold changes provided by DESeq2 (full data in: Supp-
Data_DESeq2_ALLexp_Cycle4vs1.tsv) we classify the clones into NEG for negative changes
and POS for positive changes. In addition, we chose the multiple-testing corrected padj
value (provided by the program) as a cut-off to create a category of NS ("non-significant")
clones. For category assignment, a flag was added to each sequence on the database table
depending on whether its fold-change was positive ( 1) or negative ( 1), and significant
(padj 0.05) or non-significant (padj 0.05) for each experiment. For the overall assignments of
sequences to one of the three categories, category flags were compared across all experi-
ments, and a general flag (sign.most, in the database table) was assigned when at least the
strict majority of experiments had the same flag (5 or more).

http://old.protein.bio.unipd.it/pasta2/
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While p-values should normally not be used for a ranking between experiments, we
believe that errors created in this way are small, or at least smaller than the variances that
we see between the experiments anyway. A possible alternative for ranking the clones
would be to calculate their individual fitness effects in the background of the mean fitness
of the whole library, as suggested by [38]. However, these authors advise against using
their procedure under conditions where fitness distribution are broadly spread, as is the
case in our experiments (compare Figures 1 and 2 in [29]).
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Figure 2. Length distribution of all predicted peptides in the random sequence database and assignment to response groups.
Histogram of sequence lengths for each group of sequences. The colored bars represent the number of peptides of each
length assigned to each group in the experiments. Light blue: peptides showing a decrease in frequency (NEG); dark grey:
peptides showing no significant change in frequency (NS); orange: peptides showing an increase in frequency (POS). The
light grey bars in each panel represent the predicted peptide lengths of the complete database (compare suppl. Figure 2).
Dashed lines represent the kernel density estimates for each category.

3. Results
3.1. Replication with Diluted Library

In experiments with a complex library, all clones compete against each other, but rare
clones generate only few reads that cannot be reliably analyzed. Hence, these unaccounted
background clones can influence the behavior of the more frequent clones. In an attempt
to test this possibility, we repeated the experiment of [29], but with a starting stock that
was diluted by 100-fold compared to the previous ones and used a sampling schedule
with samplings every 3 h for a total of 4 samplings in 12 h. The further experimental steps
were conducted as described in [29]. The overall results showed that there was no major
difference compared to the previous results (see Table 1 below). The majority of clones
identified in the previous experiments could again be detected even with a 100-fold dilution.
Hence, we decided to do the in-depth analysis described below across all available data.

3.2. Characterization of the Sequences in the Random Clone Library

To analyze all experiments done with the given clone library, we first produced a
reference sequence database including all different sequences reliably detected in any of
the sequencing experiments. This required the establishment of a pipeline for filtering of
PCR and sequencing errors, which we conducted based on a common approach that is also
used in microbiome studies. We required that each sequence was represented by at least
eight reads, biasing against rare variants that can be generated in the PCR amplification
steps before sequencing.

The median number of paired-end reads per replicate was 284,875. On average, 79.3%
of them could be successfully merged, and both known plasmid-derived sequence regions
could be found in 96.44% (±1.46%) of those merged. The resulting database consisted of
5701 unique sequences with minimum cluster size of eight. This included 647 peptides
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with the FLAG-tag sequence, of which 25 were not full-length due to internal deletions.
There were 253 peptides that end with frameshift versions of the FLAG-tag sequence.
Furthermore, since for the random part of peptides of lengths 4, 5 and 6, there were only 1,
21, and 441 possible different amino acid sequences, respectively, different clones could
code for the same peptide. For example, the library includes 200 clones coding for the
shortest possible peptide (MKLS—derived from the vector, see Figure 1), where the first
triplet in the random sequence is a stop codon. Overall, the 5701 unique sequence clones
coded for 5234 different peptides.

The dereplication algorithms used to generate the database provided information
about the frequency of the different sequences in the library. The cluster size distribution
is shown in Supplementary Figure S1. It has a right skewed distribution (mean: 20,274,
median: 9870 sequences per cluster) with one extreme outlier with 4.2 × 107 sequences,
which corresponds to the vector plasmid without insert ("empty" vector).

The ORF length distribution in the database has the expected composition and features
of a random database of sequences, i.e., it follows largely the expected distribution of
predicted peptide lengths (Supplementary Figure S2). Deviations concern mostly the
longest sequence classes, due to the constant sequences derived from the vector. Note that
some of the longest classes were also partly derived from frameshift versions.

With respect to GC content, we found that the sequences in the databases did not
fully reflect a completely random synthesis. The mean and median GC content of the full
reads was 53.8%, and median GC content of the predicted ORFs was slightly higher (mean
53.04%, median 54.6%) with larger variance due to the shorter sequences (Supplementary
Figure S3A). A closer look to the GC content at every position in the database for reads
with exactly the designed sequence length revealed a generalized bias towards lower A
and higher G content at every position, remarkably larger on the 3’ end of the sequences
starting at position 36 (Supplementary Figure S3B). This is probably due to a bias during
library synthesis, with a presumptive new supply of chemicals in between. Still, given that
the length distribution of resulting peptides conformed mostly to the random expectation
(compare Supplementary Figure S2), we considered the library as being primarily made up
of random nucleotide sequences.

A relevant descriptor of the structural properties of an amino acid sequence is its
intrinsic disorder level. Intrinsically disordered proteins lack defined secondary and
tertiary structures, and naturally occurring genes have a higher intrinsic disorder than
random sequences [10,39–41]. In addition to intrinsic disorder scores, GC content [40] and
amino acid content are used as indicators of the disorder levels of proteins in a database of
sequences. Since large, hydrophobic amino acids are more likely to promote aggregation
or formation of secondary structures, they are called order-inducing amino acids. The
propensity of amino acids to induce order or disorder is one of the factors used for the
calculation of intrinsic disorder scores [42].

Intrinsic disorder for the proteins in the database was calculated as the average
intrinsic disorder score (IDS) of all residues in the peptide, using the -short setting of
IUPred2A (see Methods). Average IDS values have a right-skewed bimodal distribution
with the majority of sequences having an average IDS of 1.00 (Supplementary Figure S4A).
This was due to the large number of short sequences in the database that were very unlikely
to be able to make any secondary structures and were also under the limit of detection of
the software used. Grouping the sequences into length classes shows this effect clearly. The
mean of the distribution of average IDS shifts to smaller values for longer peptide lengths,
ranging from 0.947 for the shortest peptides with less than 10 residues, to 0.281 for those
with 48 or more residues (Supplementary Figure S4B). There is also a general correlation of
IDS with length (Supplementary Figure S4C), as well as with GC content (Supplementary
Figure S4D).
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3.3. Frequency Changes in Clones during the Growth Experiments

For all sequencing files from the experiments, 80–90% of clean reads were successfully
mapped to the database, allowing us to calculate frequency changes during the experiments.
Raw count tables were used to do enrichment analyses using DESeq2. Although this
algorithm was originally designed for the analysis of RNAseq sequencing data, it is also
frequently used for the analysis of amplicon sequencing data. The assumption behind this
is that the distribution of data in amplicon sequencing should follow a near-log normal
distribution, with many low frequency counts and few high-frequency ones. The overall
results of the DESeq2 analyses with respect to categorizing clones with positive (POS),
negative (NEG), or non-significant (NS) changes are summarized in Table 1.

There is some variation between single experiments, especially with respect to the
number of clones in the POS group. This is not directly related to the experiment type, i.e.,
the two experiments with the lowest fraction of POS clones (Exp 1 and Exp 7) have different
cycle times (3 h vs. 24 h). Similarly, the range of log2-fold changes for individual clones
varies considerably (Table 1). This suggests that even small variations in experimental
conditions can lead to somewhat different outcomes. However, for all experiments there
were always more NEG clones than POS clones. The average across all experiments shows
16% POS clones, 36% NEG clones, and 48% NS clones.

With the new pipeline, we could also trace the overall performance of the empty
vector in the different experiments using the log2-fold change values. In experiments 1 to 3
it went slightly up, in experiments 5 to 9 it went slightly down, and in experiment 4 there
was no significant change (Table 1). Only in experiment 5 the down trend was stronger than
the average in this experiment. Note, however, that the DESeq2 normalization procedure
penalizes against large count numbers in a way that could make negative trends stronger.
Overall, we concluded from these data that the peptide and RNA expressed from the vector
itself has no strong influence on growth.

We assessed also whether translation of the flanking sequences has a specific effect.
The first four amino acids (MKLS) of the peptides were coded by the vector (see Figure 1).
Of the clones that expressed only these first four amino acids due to a direct stop codon in
the random sequence only 4% were POS while 78% are NEG, indicating a negative effect of
this peptide compared to the overall clone performance (Table 1). Interestingly, this overall
negative effect is relieved when only one or two additional amino acids were translated,
with the percentage of NEG clones falling to 53% and 38%, respectively (Table 1). From
this analysis we concluded that the vector-derived, constant N-terminal amino acids of the
peptides have an overall negative effect on growth, which can be overcome by additionally
coded amino acids or the RNA sequence components in the clones.

The C-terminus of the full-length peptides was formed by three constant amino acids
plus the eight amino-acid FLAG tag sequence (see Figure 1). Of the different clones with
this translated FLAG tag sequence, only 3% were POS while 75% were NEG across most
experiments (Table 1), which would indicate a negative effect of this sequence. However,
we find also the two frameshift translation versions of this sequence among the clones
and both showed a similar excess of NEG versus POS effects (Table 1). This suggests that
it is not the FLAG tag sequence that acted negatively, but that longer peptides have a
generally higher likelihood of being in the NEG group. This is also supported by the fact
that peptides with a length of 48+, but without including any of the FLAG tag versions,
showed a similar bias towards NEG (Table 1) (see also the further analysis of the length
effects below).

3.4. Length, GC Content, and Amino Acid Composition Dependence

For the further analysis, we assigned each sequence in the database into the categories
POS, NEG, or NS, based on having consistent category assignments in the majority of
experiments (see Methods). Since most sequences ( 95%) fell consistently within one of
these three categories (with the remainder being inconsistent and therefore not further
analyzed), one can compare whether peptides of different length are equally represented
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in each of these groups. Figure 2 shows that this is not the case. The fraction of NEG clones
is particularly high for the shortest and the longest peptides. This is most likely caused by
the negative effects of the vector derived parts of the sequence, as discussed above. The
relative fraction of POS and NS clones is particularly high in the length classes between 8
and 20 amino acids.

The GC content distribution of ORFs in each of the groups is depicted in Figure 3. The
peaks are similar for all three classes at about 57% GC, slightly higher than the average for
the whole library, which is at 53% GC. The POS and NS peptides show broader distributions
than the NEG peptides, with a stronger shoulder towards lower GC contents. The NEG
peptides show a second peak at 42% GC, mostly driven by the negative effect of the shortest
clones with only the vector-derived peptide (see above).
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We also compared amino acid compositions of the peptides from the three clone
groups. For this analysis we excluded the vector derived parts of the sequences. The
overall frequencies for the whole database and the three groups of peptides are presented
in Supplementary Table S2. Figure 4 shows the differences for each group compared to the
database. The largest differences are found for A, G, and S in the comparison between the
POS and NEG groups. It is also notable that the frequency of 7 out of the 10 amino acids
considered to be more disorder-inducing is lower in the NEG group than in the database,
while 9 out of 10 of the order-inducing amino acids are depleted in the NS group. The POS
group shows in general the largest deviations from the database.
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promoting (right) [42].

3.5. Structural Features

The intrinsic disorder score (IDS) differs between the different clone groups, with the
NEG group showing a stronger bimodal distribution than the two other groups (Figure 5).
When breaking up the IDS in peptide length classes, it becomes clear that the highest IDS
were due to the shortest classes (1–17 amino acids), for which the IDS calculation is anyway
not very meaningful (compare also Supplementary Figure S4). The lowest IDS scores were
seen for the longest peptides (48+ amino acids), but otherwise there was no clear difference,
especially between the POS and NS groups of peptides (Figure 5).

There are generally few highly ordered sequences in the library (i.e., sequences with an
average IUPred2 score of less than 0.25). This could be due to the fact that highly ordered
sequences tend to aggregate, and are expected to be highly insoluble and detrimental to
the cells. In order to assess aggregation propensity, we used the software PASTA 2.0. It
calculates the free energy of predicted ß-strand intermolecular pairings for each sequence
and reports the lowest value for each peptide as the best pairing [36]. Lower aggregation
energies mean that it is easier for the peptides to form amyloids or to aggregate. In general,
aggregation energies lower than -5 pasta energy units (PEU) are considered evidence for
possible amyloid formation. Sequences in the NEG group show generally lower PEU
values than the two other groups with a peak at - 4 PEU and a distribution shifted towards
even lower values (Figure 6A). There is also a secondary peak at aggregation energies
higher than the other two groups (Figure 6A).
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Figure 5. Intrinsic disorder scores (IDS) for the three groups of peptides. Histograms of average IUPred2 scores (IDS)
colored by the length categories depicted to the right. OR Empirical cumulative distribution of average IUPred2 scores (IDS)
colored by the length categories.
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In order to see whether sequences of a particular length are driving the observed pat-
tern, we compared the data distribution for the different peptide length classes (Figure 6B).
Interestingly, the distributions showed different patterns between the groups of clones at
the highest and lowest length values, but more similar ones at the intermediate ones. The
secondary peak found in the NEG group at very high aggregation energies seems to be
generated mostly by the shortest peptides, and the shift towards negative values, by the
longest ones.

4. Discussion

Here we have performed an in-depth analysis of all available data from amplicon se-
quencing experiments of a library of E. coli cells expressing different randomly synthesized
sequences and grown for four expansion cycles to allow competition between clones. The
experiments, first described by [29], were set up to assess which fraction of random DNA
sequences expressed in a living organism has the potential of producing molecules that
have an effect on cell growth or fitness. This question is relevant for the study of the origin
of innovation in biological systems and, in particular, of de novo genes derived from more
or less random non-coding sequences.

The main goal of the present study was to broaden the analysis to all peptides in the
data, irrespective of their length. The authors in [29] had originally focused on the full-
length peptides only, with FLAG-tags derived from the vector sequences. The broadening
of the focus to all expressed peptides allowed us to investigate whether the constant
sequences flanking the random inserts in the library influenced the growth effects. In
addition to this, we wanted to test whether there are particular molecular or structural
features of the sequences driving their effect on the growth of the cells in this population.
Studies looking at young and novel genes in diverse species report that novel genes and
proto-genes can have distinct features such as ORF length or intrinsic disorder levels that
differentiate them from older genes and intergenic regions [10,12,39,41,43,44]. A possible
explanation for these observations is that certain features make sequences more likely to be
positively selected—or at least not selected against.

4.1. New Analysis Pipeline

The first step in our analysis was to ask whether amino acid sequences of different
lengths present in the population and not analyzed in the original publication show
similar behavior to the full-length (65 amino-acid-long) sequences that were the focus
of the [29] study. This required us to generate a new analysis pipeline that addressed
the three limitations of the original one. The first two—the incomplete removal of PCR
and sequencing errors from the database, and the resulting artificial redundancy—are the
result of using the predicted translation of the ORFs to generate the reference database
of clones, instead of the nucleotide sequences. This was done to take advantage of the
genetic code redundancy and to, at least partially, compensate for PCR and sequencing
errors. The strategy, however, was insufficient as can be seen from the finding in the
original publication of several very similar clones coding for peptides with only one or
a few substitutions—an extremely improbable event in a library composed of random
sequences of that length.

To compensate for such PCR and sequencing errors in this new analysis, we used a
dereplication approach that removes all singleton reads from each sequencing file before
joining them together and clustering them to a 97% identity. We used the full-length
merged and trimmed reads for database generation and mapping, which allowed us to
keep track of all clones that code for the same (shorter) peptides independently, which was
important to detect protein vs. RNA effects (see further discussion below). The database
generated was composed of more than 5000 reliably identifiable sequences predicted to
code for peptides of all expected lengths. Furthermore, from its composition, it is possible
to confirm that the library was indeed generated from random sequences, albeit with a
slight bias towards a higher guanidine content during the synthesis process.



Genes 2021, 12, 0 14 of 18

The final improvement to the pipeline was to change the algorithm used for mapping
the reads back to the database from a local to a global alignment strategy. This greatly
improved the speed and accuracy of the pipeline. Over 90% of all reads containing the
flanking sequences mapped back to our database of unique sequences in all experiment
replicates. This represents a 30–50% increase in mapped reads when compared with
the pipeline used for analyses in the [29] study. As a result of this, we found that the
change in frequencies can actually be much larger than what was initially reported. Some
sequences, for example, have a decrease in frequency between the first and the last cycle of
the experiments of up to 1000-fold.

4.2. Clone Effects

Having identified how the frequency of sequences changes in the available experi-
ments, we were able to classify the sequences in groups according to the direction of the
change. With the improved mapping pipeline, we found that over 80% of the sequences in
the database had consistent behavior in at least five of the nine experiments, suggesting that
the observed results were indeed an effect of the sequences and not due to chance or drift.
This is noteworthy, considering that the experiments were performed independently, by
different researchers, at different times, and have variations between sampling schedules,
seed size, sequencing depths, and number of replicates.

Over half of the sequences in the database were consistently assigned to be either
neutral (48%) or to go up in frequency (16%), suggesting that they are at least not very
deleterious to the cells expressing them. This large proportion of sequences tolerated
in a population of E. coli suggests that random sequences could also be expressed and
maintained in large numbers in natural populations, making them an abundant source for
possible evolutionary innovations.

We also specifically evaluated the vector effects that were suggested to have indirectly
caused the observed positive effect [30,31]. In dedicated experiments, [31] found that just
expressing the 38 amino acid peptides from the empty vector (i.e., without a cloned insert),
had a slightly negative effect on the exponential growth of the E. coli cells. By disrupting
this vector peptide with a potentially neutral peptide, one could generate an apparent
positive effect. However, we found in our analysis that this peptide behaves mostly like a
neutral peptide in the context of the full experiment, i.e., when not only focusing on the
exponential growth phase as done in [31], but taking all competition cycles into account.
While there is, on average, a small negative effect across experiments, it is not strong
enough to explain the growth of most POS clones as merely its relief. Hence, we conclude
that, in principle, the justified reservations about positive effects in our experiments [30,31]
are not warranted in the face of the full data shown here, as well as the arguments provided
previously [32].

4.3. Negative Effects of Vector Coded Amino Acids

Our data showed that the first four amino acids expressed by the vector had by
themselves a negative fitness effect on the cells, with 73% of clones encoding only the first
four residues, consistently decreasing in frequency in five or more experiments. A reason
for this might be that the second and third codons in the sequence—lysine (AAG) and
leucine (CTT), respectively—are not the most commonly used by E. coli for these amino
acids. Interestingly, this negative effect diminishes quickly when one or two additional
amino acids are translated. Hence, it is not of much concern for the overall experiment
with mostly longer peptides; although, it contributes to the observed bimodal distributions
of peptide length, intrinsic disorder, and aggregation propensity for the NEG peptides.

However, the same observation demonstrates that not only the coding part of a
random sequence is important, for its maintenance in a population. Over 20% of the clones
coding for the same peptide, but with different RNA sequences, show different growth
trends in at least five experiments. In other words, clones with the same coding peptide
had different effects on the growth trajectory of cells, due to the non-coding parts of their
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sequence. The authors in [29] had already shown that the RNA can have a different effect
on growth than the protein by introducing a stop codon in single clones, disrupting the
reading frame but keeping the rest of the sequence intact.

Systematic studies on replacing non-coding positions in an artificially expressed GFP
RNA in E. coli have also shown that even small differences in RNA sequence can have
differential fitness consequences for the cells [45], although this might be mostly caused by
perturbing co-translational protein folding [46]. On the other hand, transcription has also
been shown to contribute strongly to the metabolic burden that is caused by overexpressing
genes in E. coli [47]. It is thus expected that the clone effects that we find are a combination
of effects from the expressed RNA and protein together.

4.4. Protein Structure Correlations

Notwithstanding the possible fitness contribution of the RNA of the clones, we have
analyzed protein structural properties in the three different groups of peptides. The most
compelling difference between clones with POS or NEG responses is their length. Shorter
peptides in the length range of 8–20 aa are prevalent in the POS and NS groups, while
longer ones are prevalent in the NEG group. While it is generally known that newly
evolved genes are shorter than older genes [7,43,44], the differences we observe here are at
a much smaller scale than what is usually studied, since the ORF lengths of 4–65aa in our
database are often not even annotated. Interestingly, in a study on the phenotypic impact
of random sequences in Arabidopsis, [23] used also very short peptides (with cores of 6 or
12 random amino acids) and found a substantial fraction having an effect on the phenotype,
including possibly beneficial ones.

The NEG group of peptides showed on average lower intrinsic disorder and higher
aggregation propensity compared to the POS group. This is in line with the observation
that naturally occurring young genes are more likely to have higher intrinsic disorder [10],
which could be the reason why they are better tolerated by the cells [48].

We find no major differences in the three groups of peptides with respect to GC-content.
However, there are some differences with respect to overall amino acid composition. The
largest contrasts occur between POS and NEG peptides, whereby POS peptides have more
alanine and serine but less glycine. With its six codons, serine is a frequent amino acid
in the random sequences and it has a strong disorder promoting effect [42]. This could
explain the higher disorder tendency in the POS peptides. Alanine and glycine, on the
other hand, have both four codons and are therefore expected to occur equally frequently
in random sequences, and they have similar disorder promoting effects. It is therefore
unclear why alanine is more prevalent in POS and glycine is more prevalent in NEG clones.

An additional possible implication of the enrichment of serine in both the POS and
NS groups is its potential for evolution. Creixell et al. [49] found that serine is the fastest-
evolving amino acid and attribute this to fact that its six codons can be divided into two,
very different, groups (AGY and TCN). The fact that the codons are so different facilitates
non-synonymous substitutions, which allows evolution to explore a large sequence space
in a shorter period of time. If, as our data seem to show, sequences containing larger
fractions of serine are better tolerated by the cells, such sequences would be excellent
starting material for the evolution of new functional peptides.

5. Conclusions

Although no single determining feature of a sequence could be identified that would
earmark individual peptides as having potentially positive or negative effects on the cells,
some differences exist with respect to structural properties. In particular, we found that
shorter and more disordered peptides have a greater potential for being retained in a
population as a primary source for novel genes, supporting the conclusions by James
et al. on the general patterns of protein domain evolution [12]. Most importantly, our
data confirm that random sequences have the potential of being beneficial for the cell,
especially in the context of the complex competition between clones that we study in these



Genes 2021, 12, 0 16 of 18

experiments. However, we show in the accompanying paper [50] that individual candidate
POS clones can also provide a growth advantage in pairwise competition experiments,
although not necessarily with the same strength as seen in the bulk experiments. We
conclude that our experiments support the notion that random sequences are an abundant
source for generating evolutionary novelty.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12120000/s1, Supplementary files: Figure S1: Cluster size distribution of clones,
Figure S2: Predicted peptide length distribution of all clones in the library, Figure S3: GC content
analysis of clones in the library, Figure S4: Intrinsic disorder scores for peptides, Table S1: Amino
acid frequencies, Table S2: List of primers used, SuppData_BACT.tsv: results table for library
analysis; SuppData_DESeq2_ALLexp_Cycle4vs1.tsv: DESeq2 results table for individual experiments;
SuppData_BACT_tableInfo.tsv: Table legends.
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1.1 SUPPLEMENTARY RESULTS 

	

Supplementary	Figure	S-S.	Cluster	size	distribution	of	clones.	
Cluster	sizes	correspond	to	the	number	of	reads	across	all	experiments	assigned	to	each	of	the	UVWS	clones	in	the	database.	
Most	clones	had	between	SWX	and	SWU	reads	assigned	to	them	(mean	Y.WXxSWZ	reads,	median	\.\xSWX	reads).	There	is	a	
single	clone	with	Z.YXxSWV	reads,	which	corresponds	to	the	pFLAG-CTC	plasmid	without	an	insert.		

	

Supplementary	Figure	S-Y.	Predicted	peptide	length	distribution	of	all	clones	in	the	library.	
The	library	follows	the	expected	distribution	of	stop	codons	in	UVWS	random	sequences,	defined	as	the	probability	mass	
function	of	a	geometric	distribution	with	p	=	X/aZ	stop	codons	(black	line).	Only	the	first	ORF	in	each	sequence	was	
considered.	Minimum	peptide	length	corresponds	to	the	Z	residues	encoded	by	the	plasmid	and	insert	design	(MKLS).	
Residues	UU	to	aU	are	constant	 in	the	sequence	design	(ALVDYKDDDDK*),	which	should	result	 in	a	single	peak	 for	
sequences	of	 length	aU.	However,	 the	process	of	 library	 synthesis	or	 cloning	generated	 SVXU	 clones	with	unexpected	
sequence	lengths	(XW.ZX%	of	the	clones	in	the	library).	This	resulted	in	SVS	clones	with	predicted	peptide	lengths	between	
UU	and	aZ	residues	or	longer	than	aU	residues.	
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Supplementary	Figure	S-X.	GC	content	analysis	of	clones	in	the	library.	
A)	GC	content	distributions	calculated	over	the	complete	reads,	between	start	and	FLAG-tag	sequences	(this	includes	
the	flanking	sequences	of	the	plasmid,	with	a	GC	content	of	Za.Y%the	full	sequenced	reads	(purple),	the	ORFs	only	(red)	
and	 simulated	 random	 sequences	 (blue).	 The	ORF	GC	 distribution	 is	much	more	 broadly	 spread,	 due	 to	 increased	
variance	caused	by	very	short	ORFs.	B)	Fraction	of	each	nucleotide	along	the	positions	of	the	randomly	synthesized	
sequence	stretch.	

	

	

Supplementary	Figure	S-Z.	Intrinsic	disorder	scores	for	peptides	in	the	whole	library	in	four	different	representations	(A-
D;	see	main	text).	
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Average	intrinsic	disorder	scores	become	smaller	for	longer	peptides		(length	S-\	=	W.\ZV,	length	SW-SV	=		W.aVV,	length	
Sh-Y\	=	W.ZV\,	length	XW-ZV	=	W.XaY,	length	Zh+	=	W.YhS.	
	
Supplementary	Table	S-S.	Amino	acid	frequencies	for	the	database,	as	well	as	the	three	groups	of	peptides	

AA	 Database	 UP	 DOWN	 NS	

W	 B.B?R@	 B.B?ST	 B.B?TR	 B.B?CR	

F	 B.BA?B	 B.BA@V	 B.BA?C	 B.BAB@	

Y	 B.B??X	 B.B?B@	 B.B??X	 B.B??@	

I	 B.BAX@	 B.B?T@	 B.BA?V	 B.BABC	

M	 B.BXVC	 B.BXA@	 B.BXC@	 B.BXVA	

L	 B.BTXR	 B.BTVS	 B.BTXV	 B.BTXA	

V	 B.BRVB	 B.BRXC	 B.BRSR	 B.BR?V	

N	 B.BXRT	 B.B?BB	 B.BXTX	 B.BXRV	

C	 B.B@AX	 B.B@C?	 B.B@@X	 B.B@X@	

T	 B.B@@R	 B.B@??	 B.B@VB	 B.B@AS	

A	 B.BRR@	 B.BTCA	 B.BRCT	 B.BRTV	

G	 B.XXA@	 B.XBA@	 B.XXC?	 B.XXAC	

R	 B.XX@X	 B.XXXC	 B.XXC@	 B.XXXR	

D	 B.B?CR	 B.B?VS	 B.B?VS	 B.B?SS	

H	 B.B?@A	 B.B?VA	 B.B?AV	 B.B?VX	

Q	 B.B?C@	 B.B?RB	 B.B?VB	 B.B?SS	

K	 B.B?BV	 B.BXTB	 B.B?B@	 B.B?BX	

S	 B.BTB@	 B.BTS@	 B.BRV?	 B.BTVX	

E	 B.B?R?	 B.B?C@	 B.B?R?	 B.B?RC	

P	 B.BV@V	 B.BVVR	 B.BVXC	 B.BVRB	

	
Supplementary	Table	S-Y.	List	of	primers	used	

Primer	
Name	

Primer	Sequence	

pFLAG-CTC	
FWD-X	

AATGATACGGCGACCACCGAGATCTACAC	AACCGCAT	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-?	

AATGATACGGCGACCACCGAGATCTACAC	AAGGCCTT	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	T	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-A	

AATGATACGGCGACCACCGAGATCTACAC	AGAGTGTG	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	GT	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-@	

AATGATACGGCGACCACCGAGATCTACAC	CACAAGTC	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	CGA	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-V	

AATGATACGGCGACCACCGAGATCTACAC	CGTTCCTA	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	ATGA	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-C	

AATGATACGGCGACCACCGAGATCTACAC	GCTTGGAT	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	TGCGA	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-S	

AATGATACGGCGACCACCGAGATCTACAC	GTCAACAC	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	GAGTGG	CATCATAACGGTTCTGGCAAATATTC	
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pFLAG-CTC	
RWD-A	

CAAGCAGAAGACGGCATACGAGAT	AACCGGAA	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	A	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-B	

CAAGCAGAAGACGGCATACGAGAT	AGAGTGAC	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	TC	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-C	

CAAGCAGAAGACGGCATACGAGAT	CAACTGGT	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	CTA	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-D	

CAAGCAGAAGACGGCATACGAGAT	CGTTCGTT	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	GATA	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-E	

CAAGCAGAAGACGGCATACGAGAT	CTGTTCAC	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	ACTCA	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-F	

CAAGCAGAAGACGGCATACGAGAT	GCTTGCAA	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	TTCTCT	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-G	

CAAGCAGAAGACGGCATACGAGAT	GTCAACTG	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	CACTTCT	CTGTATCAGGCTGAAAATCTTCT	
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Chapter 2. Effects of random sequences expressed in a population of 
eukaryotic cells 

2.1 INTRODUCTION 

The	time	when	non-coding	parts	of	eukaryotic	genomes	were	considered	to	be	junk	DNA	is	

long	gone.	We	now	know	that	non-coding	sequences	have	functions	beyond	being	a	buffer	for	

the	 effects	 of	 mutation	 and	 transposable	 elements,	 and	 are	 also	 key	 for	 the	 regulation	 of	

expression	 of	 genes	 through	 various	mechanisms	 and	 for	 chromatin	 formation	 and	 stability	

(Bernardi,	GHQ^).	In	the	context	of	evolution,	there	are	different	levels	of	sequence	conservation	

between	different	non-coding	parts	of	the	genome,	which	supports	the	idea	that	they	can	have	

different	functions	(Bird	et	al.,	GHH_).	An	even	more	impressive	function	of	non-coding	regions	

of	 the	genome	became	evident	with	the	discovery	of	de	novo	genes.	We	now	know	that	 it	 is	

possible	that	non-coding	sequences	provide	raw	material	for	more	than	regulatory	sequences,	

and	that	they	may	also	be	the	source	of	new	coding	genes.		

Even	though	it	can	be	expected	that	ancestral	mechanisms	for	the	evolution	of	innovation	

are	conserved	across	all	organisms,	it	is	also	to	be	expected	that	different	mechanisms	could	be	

specific	 to	 different	 domains	 of	 life.	 There	 are	 several	 examples	 of	 phenomena	 that	 depend	

heavily	on	unique	features	of	an	organism,	as	it	 is	the	case	of	horizontal	gene	transfer,	being	

much	more	frequent	in	prokaryotes	than	eukaryotes	(Keeling	&	Palmer,	GHH`).	The	fact	that	

there	are	so	many	more	non-coding	sequences	in	eukaryotes	than	in	prokaryotes	suggests	that	

de	novo	gene	evolution	might	be	one	of	these	phenomena.	

That	de	novo	genes	can	be	found	in	eukaryotic	organisms,	and	that	they	are	functional	and	

even	essential	for	the	correct	function	of	some	physiological	processes	in	some	cases	has	been	

well	documented	(For	a	review,	see	(Van	Oss	&	Carvunis,	GHQ^)).	Given	the	abundance	of	non-

coding	sequences	in	eukaryotes	compared	to	prokaryotes,	it	is	not	surprising	that	most	studies	

of	 de	 novo	 genes	 have	 been	 done	 in	 eukaryotic	 organisms.	 One	 could	 even	 argue	 that	 this	

mechanism	of	gene	birth	should	be	studied	in	eukaryote	models	where	it	is	more	likely	to	occur,	

just	due	to	the	abundance	of	raw	material.	In	this	way,	de	novo	genes	have	been	identified	and	

characterised	in	different	eukaryote	model	organisms	including	yeast	(Li	et	al.,	GHQE;	Vakirlis	et	

al.,	 GHQ`),	 plants	 (Arendsee	 et	 al.,	 GHQE;	Xiao	 et	 al.,	 GHH^),	 fruit	 flies	 (Heames	 et	 al.,	 GHGH),	

nematodes	 (Prabh	&	 Rodelsperger,	 GHQ^),	mice	 (Xie	 et	 al.,	 GHQ^)	 and	 primates	 (Guerzoni	 &	

McLysaght,	 GHQ_;	 Knowles	 &	McLysaght,	 GHH^).	Many	more	 studies	 have	 identified	 young,	

taxonomically	restricted	genes	as	de	novo	gene	candidates	in	an	even	wider	range	of	organisms	

(Schmitz	et	al.,	GHGH;	Wang	et	al.,	GHGH;	Wissler	et	al.,	GHQV).	The	protogene	model	proposed	to	
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explain	 the	process	 of	de	novo	 gene	birth	was	based	on	 a	 study	of	 the	 yeast	 Saccharomyces	

cerevisiae	(Carvunis	et	al.,	GHQG).		

The	 likelihood	 that	 a	 sequence	 that	 has	 accumulated	 mutations	 neutrally,	 and	 could	

therefore	be	considered	almost	a	random	sequence,	can	be	tolerated	by	a	eukaryotic	cell	when	

it	is	expressed	or	becomes	otherwise	functional	is	unknown.	As	described	in	the	first	chapter	for	

bacteria,	random	sequences	have	the	potentials	of	being	a	useful	tool	to	understand	how	de	novo	

genes	 are	born	 in	 eukaryotes.	An	 interesting	 study	of	 random	sequences	 in	 yeast	promoters	

showed	 that	 even	 short	 (`H	nucleotides)	 random	sequences	have	 the	potential	of	 serving	as	

promoters	in	yeast.	The	study	presented	in	Chapter	Q	of	this	thesis,	connected	to	the	previous	

study	by	Neme	et	al.	GHQR	(Neme	et	al.,	GHQR),	and	similar	studies	using	random	sequences	in	

bacteria	(Chiarabelli,	GHH_;	Keefe	&	Szostak,	GHHQ;	Knopp	et	al.,	GHGQ;	Tretyachenko	et	al.,	GHQR)	

have	shown	that	a	significant	fraction	of	random	sequences	could	be	not	only	well	tolerated,	but	

even	 beneficial	 for	 bacterial	 cells.	 Beyond	 the	 study	 exploring	 the	 likelihood	 that	 a	 random	

sequence	can	function	as	a	promoter	in	yeast	(de	Boer	et	al.,	GHGH),	there	are	no	studies	yet	that	

have	 systematically	 looked	 at	 the	 possible	 functionality	 of	 random	 sequences	 in	 other	

eukaryotes.	The	complexity	of	eukaryote	systems	has	probably	been	a	deterrent	to	performing	

large	 scale	 studies	of	 their	 tolerance	 to	 the	expression	of	 random	sequences.	However,	 from	

studies	such	as	the	mouse	(Neme	&	Tautz,	GHQ_),	we	know	that	most	of	the	genome	is	being	

transcribed	at	some	point,	this	being	one	argument	for	the	existence	of	de	novo	genes	in	the	first	

place.	So,	tolerance	of	eukaryotic	cells	to	random	sequences	is	expected	to	be	at	least	as	high	as	

in	the	bacteria.		

With	this	hypothesis	in	mind,	in	this	chapter,	I	describe	the	effects	of	expressing	artificial	

random	 sequences	 in	 a	 eukaryotic	 cell	 line.	 Specifically,	 I	 quantify	 the	 proportion	 of	 cells	

expressing	specific	clones	in	a	library	of	random	sequences,	and	how	it	changes	over	time.	This	

study	 has	 three	 main	 goals:	 First,	 it	 aims	 to	 test	 whether	 eukaryotic	 cells	 respond	 to	 the	

expression	of	random	sequences	like	bacteria.	Second,	to	identify	which	molecular	features	of	

the	 sequences—if	 any—drive	 different	 effects	 of	 the	 random	 sequences	 on	 the	 cells.	 By	

answering	these	questions,	 it	aims	to	provide	a	better	understanding	of	different	factors	that	

could	allow	an	ORF	from	a	non-coding	sequence	to	remain	through	generations	as	standing	

variation	in	a	population	of	eukaryotic	cells.		

The	experimental	system	used	for	this	study	is	a	library	of	random	sequences	expressed	in	a	

human	cell	line:	HEKG^V.	Each	cell	in	the	library	is	modified	to	express	a	single	QRE	nucleotide-

long	sequence	with	QgH	random	nucleotides	flanked	by	two	constant	codons	at	the	g’	end,	and	

a	 _-histidine	 tag	 at	 the	 V’	 end.	 Each	 random	 sequence	 acts	 as	 a	 barcode,	 and	 this	makes	 it	
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possible	 to	 quantify	 the	 relative	 number	 of	 cells	 in	 the	 population	 expressing	 it	 using	 an	

amplicon	sequencing	approach.	In	this	way,	one	can	monitor	how	the	proportion	of	individual	

sequences	changes	over	time.	The	library	of	random	sequences	was	cultured	with	doxycycline	

to	 induce	 expression	 of	 the	 peptides	 over	 a	 period	 of	 GH	days,	 sampled	 every	 E`	hours	 and	

sequenced	 to	determine	 the	proportion	of	 cells	 containing	each	sequence.	The	experimental	

design	is	similar	to	that	used	before	in	E.	coli	(Neme	et	al.,	GHQR),	but	using	a	eukaryotic	model	

allowed	me	to	incorporate	the	complexity	and	specific	genomic	features	of	eukaryotes.	Other	

important	improvements	of	this	study	include	the	targeted	genome	integration	of	the	expression	

construct,	a	Kozak	sequence	to	facilitate	translation,	shorter	leading	sequences	on	the	g’-end	of	

the	random	sequence,	and	codon-optimised	flanking	sequences	on	both	sides	of	the	random	

sequence	using	frequently	used	codons	in	the	human	genome	(Figure	G-Q).	

	

Figure	Y-S.	Experimental	design.	
The	constant	sequence	flanking	the	random	part	of	the	oligonucleotides	are	depicted,	 including	the	Kozak	sequence	
before	the	start	codon	and	the	a-x	histidine	tag	before	the	stop	codon.	

I	used	the	Flp-In™	T-REx™	G^V	cell	line	(FITRG^V,	ThermoFisher	Scientific).	Flp-In™	T-REx™	

is	a	protein	expression	system,	selected	for	this	study	because	of	three	key	features:	it	permits	

the	 generation	 of	 stable	 expression	 cell	 lines;	 the	 expression	 construct	 is	 integrated	 into	 a	

specific	target	site	on	the	genome;	and	expression	is	inducible	with	a	Tet-On	system	(Figure	G-G).	

The	FITRG^V	is	generated	by	 inserting	two	plasmids	 into	the	genome	of	the	commonly	used	

HEKG^V	cell	line:	the	first	one—pcDNA™_/TR—stably	expresses	the	tetracycline	repressor	gene	

(tetR)	 and	 a	 Blasticidin	 resistance	 gene;	 the	 second	 one—pFRT/lacZeo—contains	 a	 Zeocin	

resistance	gene	with	an	FRT	recombination	site	inside.	The	provider	of	the	cell	line	provides	no	

information	about	the	location	of	either	plasmid	in	the	genome.	The	recombination	of	these	

plasmids	into	the	genome	can	happen	in	any	region,	and	requires	testing	to	make	sure	that	it	is	

a	single	insertion	without	detrimental	effects	to	the	cells,	and	in	a	transcriptionally	active	site.	

The	commercial	cell	line	has	already	been	tested	by	the	provider	so	that	it	fulfils	these	conditions.		
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Figure	Y-Y.	Flp-In™	T-REx™	system.	From	the	provider’s	Core	Kit	manual.	

For	 the	 generation	 of	 the	 library,	 the	 oligonucleotides	 with	 the	 random	 sequences	 were	

inserted	in	the	multiple-cloning	site	of	a	third	plasmid—pcDNAg/FRT/TO.	It	contains	a	strong	

CMV	 promoter	 with	 two	 tetracycline	 operator	 (TetO$)	 sequences,	 an	 FRT	 site	 for	 targeted	

recombination	with	the	one	already	on	the	genome,	and	a	Hygromycin	B	resistance	gene	(hygB)	

without	a	start	codon.	This	plasmid	was	co-transfected	with	a	pOGEE	plasmid,	which	contains	

a	 FLP	 integrase	 gene.	 The	 integrase,	 expressed	 transiently	 in	 the	 cells	 after	 transfection,	

mediates	DNA	recombination	between	the	FRT	site	already	on	the	genome,	and	the	one	in	the	

plasmid	with	the	 insert	 to	be	expressed.	Successful	 recombination	resulted	 in	 the	hygB	gene	

gaining	a	start	codon	from	the	pFRT/lacZeo	plasmid,	which	gave	the	cells	Hygromycin	resistance	

for	selection	of	successful	clones.		

Amplicon	sequencing	of	the	library	at	each	timepoint	was	done	using	specific	primers	on	the	

pcDNAg/FRT/TO	plasmid.	Changes	in	frequency	were	calculated,	and	sequences	were	assigned	

to	three	groups	according	to	the	direction	of	the	frequency	change	in	the	population:	UP,	if	they	

increased	 significantly	 (p<H.Hg),	DOWN,	 if	 they	decreased,	or	NS,	 if	 they	had	no	 significant	

change.	In	general,	the	percentages	of	sequences	in	each	group	are	within	the	range	of	those	

observed	 in	E.	 coli	 (See	Chapter	 Q).	However,	 unlike	bacteria,	 it	 seems	 that	 length	 is	 not	 an	

important	factor	for	whether	a	sequence	is	better	tolerated	by	the	cells.		

A	puzzling	result	of	this	study	is	that	it	appears	that	some	feature	of	this	library	prevents	the	

tetracycline	 induction	 system	 from	 functioning	 correctly.	 In	 other	 words,	 the	 library	 is	

permanently	expressed	regardless	of	the	presence	of	tetracycline/doxycycline	in	the	medium.	

These	observations	represent	a	first	empirical	approach	at	understanding	how	eukaryotic	cells	

react	to	the	expression	of	novel	protein	sequences	and,	therefore,	attempt	to	shed	some	light	

over	the	way	in	which	de	novo	genes	can	be	kept	in	populations	of	cells	as	standing	variation	

that	might	become	useful	for	eukaryotic	organisms.		
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2.2 RESULTS 

The	main	challenge	of	this	study’s	experimental	design	was	to	achieve	stable	and	inducible	

expression	of	the	random	sequences	in	eukaryotic	cells	by	integrating	the	expression	construct	

into	their	genome.	HEKG^V	cell	lines	are	very	well	known	and	widely	used	in	research,	which	

means	that	there	is	plenty	of	information	available	about	most	of	them,	including	genomic	and	

transcriptomic	 resources	 (Lin	 et	 al.,	 GHQE).	 However,	 Flp-In™	 T-REx™	 G^V	 cells	 have	 been	

genetically	modified	by	the	provider,	and	there	is	little	information	made	public	about	how	they	

differ	from	the	parental	cell	line.	I	characterised	the	cell	line	before	generating	the	library	with	

random	 sequences	 using	 the	 following	 assays:	 First,	 I	 generated	 a	 cell	 line	 with	 inducible	

expression	of	GFP	to	use	as	expression	control;	second,	I	titrated	the	tolerance	of	the	cells	to	the	

selection	antibiotic	hygromycin	B	with	an	antibiotic	kill	curve.	Third,	I	generated	growth	curves	

for	the	non-transfected	Flp-In™	T-REx™	G^V	cells	and	the	GFP	control.	Next,	I	determined	the	

minimum	effective	dose	of	doxycycline	needed	to	induce	expression;	and,	finally,	I	sequenced	

their	genome	in	order	to	identify	the	location	of	the	FRT	site	for	recombination.		

2.2.1 GFP CONTROL CELL LINE 

A	GFP	control	plasmid	was	successfully	generated	by	introducing	a	GFP	sequence	into	the	

pcDNAg/FRT/TO	plasmid.	Efficiency	of	transfection	was	`H	%	to	^H	%	with	all	methods	used.	

However,	efficiency	of	integration	into	the	genome	was	very	low	every	time	from	H.HHHHEg	%	

to	 H.HHHHR^	 %.	 Cells	 transfected	 with	 the	 GFP	 control	 plasmid	 are	 morphologically	

indistinguishable	from	non-transfected	cells.	Expression	of	GFP	is	detectable	in	less	than	Q%	of	

cells	even	without	an	induction	reagent	(Figure	G-V).	

	

Figure	Y-X.	Inducible	expression	of	GFP	in	FITRY\X	cells.	
A–B.	Cells	with	no	addition	of	doxycycline	to	the	medium.	C–D.	Induction	of	expression	with	SW	ng/mL	doxycycline.	
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2.2.2 HYGROMYCIN B KILL CURVE 

The	 hygromycin	 B	 kill	 curve	 was	 done	 as	 described	 in	 the	 methods	 section	 for	 six	

concentrations	 between	 QHH	 and	 `HH	 µg/mL	 of	 the	 antibiotic.	 Cells	 were	 killed	 completely	

within	one	week	even	at	the	lowest	concentration	used.	Given	the	sensitivity	of	the	cells	to	the	

antibiotic,	and	following	the	recommendations	of	the	provider	in	the	protocol,	I	decided	to	use	

the	lowest	concentration	for	the	selection	of	transfectants	in	all	experiments:	QHH	µg/mL.	

2.2.3 GROWTH CURVES 

The	growth	curve	shown	in	Figure	G-EA	shows	some	characteristic	features	of	the	cell	line.	

Doubling	times	vary	with	cell	density	from	V_	to	Q_	hours	in	the	lowest	and	highest	densities,	

respectively,	with	an	average	of	G_	hours	in	normal	culture	conditions.	Furthermore,	as	long	as	

the	media	 is	 being	 refreshed	 daily,	 the	 cells	 do	 not	 show	 contact	 inhibition	 as	 it	 would	 be	

expected,	even	when	they	have	reached	over	QHH	%	confluence.		

	

Figure	Y-Z.	Growth	curves	FITRY\X	cells.	
A.	Cells	growing	in	medium	with	Blasticidin	and	Zeocin,	before	transfection.	B.	GFP-control	cells.	C.	Cells	transfected	
with	an	empty	pcDNAU/FRT/TO	plasmid.	Transfected	cells	are	grown	 in	medium	with	Blasticidin	and	Hygromycin.	
Growth	curves	B	and	C	were	generated	with	data	partially	generated	by	Jun	Ishigohoka	under	my	supervision.	

Additional	growth	curves	were	generated	for	two	controls,	one	transfected	with	the	empty	

plasmid	 (pcDNAg/FRT/TO)	 and	 one	 transfected	 with	 a	 plasmid	 for	 GFP	 expression	

(pcDNAg/FRT/TO/GFP).	 These	 growth	 curves	 were	 obtained	 following	 normal	 culture	



Section	II.	Using	random	sequences	and	a	eukaryotic	expression	system	to	study	de	novo	gene	birth	
	

	 #$	

conditions	without	refreshing	the	medium	for	cells	after	they	have	reached	QHH	%	confluence.	

Cells	transfected	with	the	empty	vector,	which	has	the	FRT	insertion	site	but	does	not	have	an	

insert	to	be	expressed	in	the	cells,	show	the	same	growth	pattern	as	the	original	cell	line,	with	

similar	doubling	times	at	similar	concentrations.	However,	without	refreshing	of	the	medium,	

the	cells	quickly	reach	confluence,	and	a	stationary	phase	followed	by	cell	death	(Figure	G-E.B).	

On	the	other	hand,	cells	transfected	with	GFP	grow	slower	than	non-transfected	cells	and	the	

empty	 vector	 control,	 even	without	 induction	 of	 expression	 (Figure	 G-E.C).	 Absence	 of	GFP	

expression	was	confirmed	through	cell	counting	using	a	Countess	II-FL	equipped	with	a	green	

filter,	and	with	FACS	cell	sorting.	In	both	cases,	less	than	Q%	of	cells	express	GFP	in	the	absence	

of	doxycycline.	

2.2.4 DOXYCYCLINE DOSE DETERMINATION 

The	effect	of	doxycycline	in	protein	expression	was	quantified	using	the	GFP	control	cell	line.	

The	results	of	the	doxycycline	curve	can	be	seen	in	Figure	G-g	and	Table	G-Q,	which	show	the	

results	of	two	independent	tests	of	the	reagent	on	the	cells.	Similar	GFP	expression	could	be	

seen	under	the	microscope	for	doxycycline	concentrations	of	QH	and	gH	ng/mL	added	directly	to	

the	growth	medium.	Higher	concentrations,	over	QHHng/mL,	have	a	negative	effect	on	vitality	of	

the	cells,	evident	by	the	change	in	morphology	of	the	culture.	

	

Figure	Y-U.	Effect	of	doxycycline	on	GFP	expression	and	cell	morphology.	



De	novo	evolution	of	genetic	function	from	random	sequences	
	

	#b	

Left:	 Bright-field.	 Right:	 Cells	 observed	 under	 blue	 light.	 Concentrations	 up	 to	 UW	 ng/mL	 of	 doxycycline	 have	 no	
noticeable	negative	effects	on	the	cell.	Higher	concentrations,	over	SWW	ng/mL	decrease	cell	viability	and	cause	changes	
in	cell	morphology.	

Detailed	quantification	of	the	effect	of	doxycycline	on	expression	showed	that	addition	of		

amounts	as	small	as	Q	ng/mL	already	induced	expression	in	over	half	of	the	cells.	The	fraction	of	

cells	expressing	GFP	was	above	`H	%	for	all	concentrations	above	V	ng/mL.	For	concentrations	

between	QH	ng/mL	and	gH	ng/mL,	the	fraction	increases	to	^Q–^`	%	in	all	samples	(Table	G-Q).	

Based	on	these	results,	I	decided	to	use	QH	ng/mL	of	doxycycline	as	the	lowest	effective	dose	at	

which	over	^H	%	of	the	cells	express	GFP	while	preserving	their	viability.	

Table	Y-S.	Expression	of	GFP	in	FITRY\X	cells	with	different	concentrations	of	doxycycline.	
Highlighted	is	the	selected	concentration	for	the	experiments.	

Doxycycline	(ng/mL)	 Fraction	of	cells	expressing	GFP	 Vitality	(%)	

B	 B.BB	 XBB	

X	 B.VT	 TV	

A	 B.RB	 TA	

V	 B.TS	 TV	

XB	 B.TX	 TV	

AB	 B.TR	 T?	

2.2.5 LOCATION OF FRT SITE IN THE FITR293 GENOME 

Whole	genome	sequencing	of	the	control	GFP	cell	line	yielded	an	average	coverage	of	VRX.	

By	 selecting	discordant	 reads	mapping	 to	 the	pFRT/lacZeo	plasmid	 I	was	able	 to	 identify	 its	

insertion	site	into	chromosome	QG,	located	in	the	ERCQ	gene	(ENSGHHHHHH`G`Hg),	most	likely	

inside	an	intron.	The	ERCQ	has	VH	exons,	Gg	splice	variants,	Qg	of	which	could	be	affected	by	the	

introduction	of	the	plasmid.	The	region	is	H.g	Mb	long.	The	longest	transcript	is	^	kb	and	it	is	

not	affected	by	the	insertion,	which	is	likely	to	be	between	positions	Q.GHH.^Vg	and	Q.GGG.`gR	

(Human	genome	assembly	GRChV`.pQV).	It	was	not	possible	to	identify	reads	mapping	exactly	

to	the	insertion	site	of	the	plasmid	because	the	provider	of	the	cell	line	does	not	provide	detailed	

information	about	the	restriction	enzyme	used	to	linearize	the	pFRT/lacZeo	plasmid,	and	there	

are	 homologous	 sequences	 in	 the	 pFRT/lacZeo	 and	 the	 pcDNAg/FRT/TO	 plasmids,	 which	

causes	ambiguities	in	the	mapping	of	the	paired	reads.	

2.2.6 GENERATION OF A LIBRARY OF RANDOM SEQUENCES IN FITR293 CELLS 

A	pool	of	 random	sequences	as	described	 in	Figure	G-Q	was	cloned	 into	pcDNAg/FRT/TO	

plasmids	(see	Methods,	page	^Q).	The	pool	of	plasmids	was	successfully	used	for	transfection	of	

the	FITRG^V	cells.	The	cells	are	morphologically	 indistinguishable	 from	the	parental	cell	 line	

and	they	have	approximately	the	same	doubling	time,	judging	from	the	time	required	between	
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passages.	Some	signs	of	stress,	such	as	large,	granulated	cells	were	visible	after	all	transfections,	

regardless	of	the	insert.	

The	starting	library	was	sequenced	using	Illumina	MiSeq.	The	sequences	were	dereplicated	

(Methods,	page	^R)	to	obtain	a	database	of	all	unique	sequences	present	in	the	library	of	cells.	

The	resulting	database	was	composed	of	VRH`	different	clones.	The	distribution	of	predicted	

peptide	lengths	in	the	library	matches	the	expected	distribution	of	a	library	of	random	sequences	

of	this	length	(Figure	G-_).	This	means	that	it	matches	the	expected	probability	of	obtaining	stop	

codons	at	every	position	in	the	sequence	without	having	obtained	a	stop	codon	in	the	previous	

positions,	defined	as	the	probability	mass	function	of	a	geometric	distribution	with	p=V/_E.	

	

Figure	Y-a.	Distribution	of	predicted	peptide	lengths	in	the	library.	
The	black	line	corresponds	to	the	probability	mass	function	of	a	geometric	distribution	with	p=X/aZ,	considering	the	
probability	of	having	a	stop	codon	at	each	position	without	having	one	in	any	previous	one	in	the	sequence	before.	

Other	molecular	features	of	the	nucleotide	and	predicted	peptide	sequences	also	match	the	

expected	distributions	of	values	 for	random	sequences.	For	example,	GC	content	of	both	the	

full-length	reads	and	the	corresponding	predicted	ORFs	is	narrowly	distributed	around	gH%,	

with	means	of	E^.R	and	gQ.^,	respectively	(Figure	G-RA).	When	looking	at	the	average	frequency	

of	each	nucleotide	at	each	position	only	in	the	random	part	of	the	sequence,	there	is	a	slight	bias	

towards	a	higher	content	of	thymine	in	all	positions,	closer	to	H.V`	instead	of	the	expected	H.Gg.	

This	bias	results	in	a	slightly	lower	frequency	of	adenine	and	guanine,	but	does	not	seem	to	be	

strong	enough	to	affect	other	features	of	the	library.	
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Figure	Y-V.	GC	content	of	sequences	in	the	library	of	random	sequences.	
A.	GC	content	distribution	for	full-length	reads	(blue,	mean	=	Z\.VY%)	and	predicted	ORFs	in	the	database	(red,	mean	=	
US.\Z%).		B.	Average	frequency	of	nucleotides	at	each	position	of	the	random	part	of	the	sequence	(SUW	nucleotides).	

The	 main	 two	 features	 studied	 for	 the	 predicted	 peptides	 were	 intrinsic	 disorder	 and	

aggregation	propensity.	Intrinsic	disorder	was	calculated	as	the	average	intrinsic	disorder	score	

of	all	residues	in	a	sequence,	calculated	with	the	-short	option	of	IUPredGA.	Disorder	scores	are	

calculated	based	on	features	of	each	amino	acid	and	their	predicted	interactions.	Length	is	an	

important	 factor	 in	 these	 calculations	 and	 the	 software	 used	 cannot	 reliably	 assign	disorder	

scores	for	peptides	shorter	than	VH	residues.	However,	this	analysis	provides	a	good	idea	of	the	

correlation	 between	 length	 and	 intrinsic	 disorder,	 and	 of	GC	 content	 and	 intrinsic	 disorder	

(Figure	G-`).	

In	 the	 case	 of	 aggregation	 energy,	 a	 commonly	 used	 predictor	 of	 the	 likelihood	 that	 a	

sequence	will	aggregate	in	the	cell	and	form	amyloids,	there	is	also	a	clear	correlation	with	length	

(Figure	G-^).	More	sequences	in	the	longest	peptide	length	categories	are	predicted	to	be	prone	

to	aggregation.	

	



Section	II.	Using	random	sequences	and	a	eukaryotic	expression	system	to	study	de	novo	gene	birth	
	

	 aT	

	

Figure	Y-h.	Intrinsic	disorder	of	predicted	peptides	in	the	database,	binned	by	length.	
A.	Distribution	of	average	intrinsic	disorder	scores.	B.	Boxplot	of	average	intrinsic	disorder	scores	for	peptides	in	each	
length	category.	C.	Correlation	between	peptide	length	and	intrinsic	disorder.	D.	Correlation	between	GC	content	and	
intrinsic	disorder.	

	

Figure	Y-\.	Distribution	of	aggregation	energies	for	predicted	peptides	in	the	database.	
Aggregation	energies	are	calculated	with	the	software	PASTAY.W,	and	expressed	as	"pasta	aggregation	units"	(PEU).	
Peptides	with	PEU	of	-U	or	lower	are	considered	to	be	prone	to	aggregation.	
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2.2.7 SAMPLING AND SEQUENCING 

For	the	experiment,	 the	 library	was	passaged	three	times	after	 thawing,	before	seeding	QH	

flasks	with	the	same	number	of	cells.	Flasks	Q	to	g	were	assigned	to	the	control	group,	which	was	

passaged	without	addition	of	doxycycline	to	the	medium.	Flasks	_	to	QH	were	assigned	to	the	

induced	treatment	group,	and	doxycycline	was	added	to	these	flasks	at	each	passage	to	a	final	

concentration	of	QH	ng/mL.	The	resulting	QH	populations	were	maintained	in	parallel	passaging	

them	every	two	days	for	a	total	of	QH	passages.	At	every	passage,	samples	of	the	population	were	

obtained	 and	 flash	 frozen	with	 liquid	nitrogen	 to	 be	 preserved	until	DNA	 extraction.	As	 an	

indirect	control	of	protein	expression,	a	population	of	GFP-control	cells	was	assigned	to	each	

group	and	treated	in	the	same	way	as	the	library.	GFP	expression	was	visually	confirmed	for	the	

induced	group	at	each	time	point	throughout	the	experiment,	while	no	expression	was	detected	

in	the	control	group.		

All	samples	were	sequenced	in	one	Illumina	NextSeq	run.	Samples	had	on	average	_^_,RR^	

paired-end	reads.	Unfortunately,	sequencing	failed	for	four	samples:	three	in	the	control	group	

at	the	first	time	point	(replicates	G,	V	and	E),	and	one	in	the	induced	group	at	the	fifth	time	point	

(replicate	_).	Three	samples	were	available	from	time	point	H	(seeding),	and	they	were	used	as	

controls	 for	 the	 initial	 analyses	 instead	 of	 the	 failed	 control	 samples,	 effectively	 replacing	

replicates	G,	V,	and	E	of	the	control	group	in	time	point	Q	with	samples	Q,	G,	and	V	of	time	point	

H.	Merging,	trimming	and	selection	of	valid	reads	was	done	for	all	sequencing	files	successfully.	

Between	`g	%	and	^G	%	of	reads	were	accepted	after	trimming,	and	over	^^	%	of	all	trimmed	

forward	reads	contained	the	defined	flanking	sequence	(clean	reads).	

2.2.8 MAPPING AND DESEQ2 ANALYSES 

On	average,	`_	%	of	clean	forward	reads	were	successfully	mapped	to	the	database	(SD	=	

V._	%).	The	remaining	QE%	(SD=	V.g	%)	were	not	found	in	the	original	database	sequenced	with	

MiSeq,	suggesting	that	the	library	was	not	sequenced	to	saturation.	This	could	be	because	the	

coverage	 in	 the	MiSeq	 sequencing	 was	 not	 high	 enough	 for	 detection	 of	 clones	 with	 lower	

frequencies.	Mapped	reads	were	used	to	generate	count	tables,	which	were,	in	turn	used	to	find	

the	fold-change	of	each	clone	in	the	database	throughout	the	experiment.	

Count	 tables	 for	 each	 time	 point	 were	 compared	 to	 time	 point	 number	 Q	 using	 an	

experimental	design	formula	in	DESeqG.	An	initial	multifactorial	analysis,	combining	Time	and	

Treatment	as	explanatory	variables	(Analysis	Q,	design	=	~Treatment	+	Time),	revealed	that	only	

RE	clones	(G	%)	in	the	library	behave	differently	between	the	control	and	the	induced	groups	

(Table	 G-G,	 Analysis	 Q).	 EH	 out	 of	 those	 RE	 clones	 can	 be	 detected	 as	 significantly	 different	

between	treatments	even	when	comparing	the	first	G	timepoints,	i.e.,	they	showed	differences	
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from	the	start	of	the	experiment.	When	analysing	the	samples	in	the	induced	and	control	groups	

separately,	however,	one	can	see	that	over	E`	%	and	EH	%	of	clones	differ	in	frequency	in	the	

cell	population	between	the	last	and	the	first	time	point	of	the	experiment,	respectively	(Table	

G-G,	Analyses	G	and	V).	Interestingly,	this	means	that	regardless	of	the	addition	of	doxycycline,	

almost	half	of	the	clones	have	a	consistent	frequency	change	across	replicates	(see	section	below).	

Table	Y-Y.	Summary	of	results	for	different	DESeqY	analyses.	
Analyses	were	done	for	SW	time	points	(TWS–TSW)	with	U	replicates	per	time	point,	except	for	TWU-a	(Induced).	The	results	
of	analysis	including	both	time	and	treatment	as	explanatory	variables	are	highlighted.	

	 Analysis	 No.	of	
replicates	

No.	of	
clones	

%	Non-
Significant(")	 %	Significant(")	 %	UP(")	 %	DOWN(")	

X	 Time	+	Treatment	 TT	 ASBR	 TR.BB	 ?.B	 B.SR	 X.?X	

?	 Group:	Induced	 @T	 ACSB	 VX.VV	 @R.@V	 XX.CC	 AC.SR	

A	 Group:	Control	 VB	 ACCB	 VT.VT	 @B.@X	 V.TR	 A@.@A	

@	
Time	only	(mixed	
treatments)	(")	 TT	 ASBR	 VB.XA	 @T.RS	 C.RR		 @?.TT	

(S)	padj	<	W.WU.	Significant	fold	change	between	TSW	and	TS	of	the	experiment.	
(Y)	For	analyses	combining	both	treatments,	minimum	padj	required	for	assignment	was	W.WS.		

Out	of	the	QR`H,	QER^,	and	Q`E^	significant	clones	detected	in	analyses	G,	V	and	E,	respectively	

(Table	G-G),	QH`^	clones,	corresponding	to	_Q	%,	RE	%	and	g^	%,	are	found	in	all	analyses	with	

the	same	trend	of	change	in	frequency.	There	are	only	_	clones	that	show	contradictory	trends	

between	the	treatments.	From	the	remaining	clones,	`V_	are	found	in	analysis	E	and	at	least	one	

of	the	others	(Figure	G-QH).	

	

Figure	Y-SW.	Comparison	between	significant	clones	detected	in	the	different	analyses.	
The	total	number	of	clones	in	each	category	is	shown	on	the	bar	plot	on	the	left.	The	intersections	between	the	different	
groups	are	represented	by	the	bottom	plot,	and	the	number	of	clones	in	each	intersection	is	shown	on	the	top	bar	plot.	

Regardless	of	the	reason	for	the	lack	of	a	major	difference	between	control	and	induction,	it	

is	safe	to	say	that	the	samples	without	induction	do	not	serve	their	purpose	as	a	control.	However,	

it	is	still	possible	to	analyse	these	samples	as	a	parallel	experiment	with	constitutive	sequence	

expression.	With	this	in	mind,	the	two	experiments,	with	and	without	doxycycline,	were	further	
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analysed	in	parallel,	and	also	combining	all	samples	as	replicates	at	each	time	point	(Table	G-G).	

The	clones	could	be	assigned	to	three	different	groups	depending	on	whether	they	increased,	

decreased	or	did	not	change	significantly	in	frequency	between	the	first	and	last	time	points	of	

the	experiment.	The	groups	were	called	UP,	DOWN	and	Non-Significant	(NS),	respectively,	and	

a	flag	was	added	to	each	clone	in	the	database	to	indicate	the	group	assignment.	Between	VE	%	

and	 EV	%	 of	 the	 sequences	 decrease	 in	 frequency	 in	 the	 population	 during	 the	 experiment,	

between	_	%	and	QG	%	increase	in	frequency,	and	between	EH	%	and	gH	%	show	no	significant	

changes	for	each	of	the	groups	of	samples	analysed.	Interestingly,	these	percentages	of	clones	

assigned	 to	each	group	are	within	 the	 range	of	 those	assigned	 to	each	group	 in	 the	bacteria	

library	experiments	described	in	chapter	Q.	

The	analyses	of	all	samples	combined	(Analysis	E	in	Table	G-G),	regardless	of	the	treatment,	

shows	 that	 there	 are	 some	 clones	 changing	 in	 frequency	 throughout	 the	 experiment.	 The	

progression	in	the	change	of	frequency	of	clones	can	be	seen	in	Figure	G-QQ,	where	the	mean	base	

counts	for	each	gene	are	plotted	against	the	logG	of	the	fold	change,	and	coloured	if	the	fold	

change	is	significant	in	either	direction.	As	time	progresses,	the	changes	in	fold	change	increase	

in	magnitude,	which	indicates	that	the	trends	used	for	the	group	assignment	are	real.	

	

Figure	Y-SS.	Base	mean	counts	vs.	logY	fold-change	plots.	



Section	II.	Using	random	sequences	and	a	eukaryotic	expression	system	to	study	de	novo	gene	birth	
	

	 a#	

Shown	here	are	timepoints	Y,	Z,	a	and	SW	compared	to	timepoint	S	combining	all	samples	regardless	of	treatment.	Purple:	
Significant,	positive	change	in	frequency.	Blue:	Significant,	negative	change	in	frequency.	Black:	Non-significant	change	
in	frequency.	padj<W.WU.	

Using	the	group	assignment	flag,	it	was	possible	to	compare	some	molecular	features	of	the	

sequences	in	each	group	against	the	full	database.	Interestingly,	unlike	the	clear	correlation	of	

length	with	group	assignment	that	was	observed	for	the	bacteria	library	(see	chapter	Q),	none	of	

the	features	evaluated	seem	to	be	a	determining	factor	for	assignment	of	a	sequence	to	a	specific	

group.	For	all	features	studied—length,	GC	content,	average	intrinsic	disorder,	and	aggregation	

propensity—the	distributions	of	sequences	are	indistinguishable	of	each	other	(Figure	G-QG).		

	

Figure	Y-SY.	Features	of	sequences	in	each	group.	
A.	 Sequence	 length	 distribution	 in	 each	 group.	B.	Average	 intrinsic	 disorder	 scores	 for	 sequences	 in	 each	 group.	C.	
Aggregation	energies	for	all	sequences	in	each	group	and	D.	divided	by	length	categories		
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2.2.9 POSSIBLE REASONS FOR THE LACK OF REGULATION OF THE INDUCTION 

In	 principle,	 there	 are	 two	 possible	 reasons	 for	 getting	 such	 similar	 results	 between	 the	

induced	and	uninduced	samples:	either	induction	did	not	work	in	this	system	and	the	changes	

of	frequency	are	the	product	of	drift,	or	expression	of	all	sequences	was	permanently	induced	

and	the	changes	of	frequency	are	a	result	of	an	effect	of	each	peptide	on	the	cell	that	expresses	

it.	The	 first	 explanation	 is	unlikely,	 given	 that	 the	 sensitivity	of	 the	 cells	 to	doxycycline	was	

previously	confirmed	using	a	GFP	control	cell	line,	where	even	Q	ng/mL	of	doxycycline	in	the	

medium	was	enough	to	induce	expression	of	GFP	in	at	least	gH	%	of	the	cells	(See	Figure	G-V).	

Furthermore,	a	GFP	control	cell	line	was	generated	as	a	positive	control	in	a	transfection	at	the	

same	time	as	the	library.	Two	flasks	of	this	cell	line—one	with	and	one	without	doxycycline—

were	maintained	 throughout	 the	 experiment,	 passaged	 at	 the	 same	 time	 and	with	 the	 same	

reagents,	and	visually	inspected	for	GFP	expression	at	each	passage.	GFP	expression	could	be	

confirmed	at	every	time	point	only	in	the	flask	with	doxycycline	added.		

Following	the	counts	of	individual	clones	in	different	replicates	throughout	the	experiment	

indicates	that	the	observed	changes	in	frequency	are	not	only	the	product	of	drift	(Figure	G-QV).	

All	replicates	follow	the	expected	trends	both	for	the	clones	identified	as	significantly	different	

between	treatments	(Figure	G-QV,	A	and	B)	and	the	ones	that	behave	the	same	in	both	treatments	

(Figure	G-QV,	C	and	D).	

	

Figure	Y-SX.	Example	trajectories	of	clones	in	the	library.	
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A–B	Top	two	significant	clones	with	different	effects	between	treatments	(p-adjusted	<W.WU).	C–D	Top	two	significant	
clones	increasing	and	decreasing	in	frequency	through	the	experiment	regardless	of	treatment	(p-adjusted	<W.WU).	

Relative	 measurements	 of	 the	 random	 	 sequences’	 RNA	 levels	 supports	 the	 more	 likely	

alternative,	that	the	sequences	are	permanently	expressed.	Cells	were	incubated	with	different	

concentrations	of	doxycycline	to	induce	expression	of	the	library,	total	RNA	was	extracted	from	

each	sample,	retrotranscribed	and	amplified	using	specific	primers	binding	VR	bp	upstream	the	

random	sequence	and	directly	on	 the	_	x	Histidine	 tag	downstream	 the	 random	part	of	 the	

sequences.	This	experiment	was	done	independently	of	the	time	course	experiment.	The	amount	

of	RNA	was	normalised	before	retrotranscription,	and	three	different	housekeeping	genes	were	

used	as	 reference	 for	 the	amount	of	cDNA.	The	results	 indicate	 that	expression	 levels	of	 the	

random	 sequences	 in	 the	 library	 do	 not	 change	 as	 expected	 with	 the	 addition	 of	 different	

concentrations	 of	 doxycycline	 (Figure	 G-QE).	 In	 particular,	 the	 signal	 detected	 without	

doxycycline	added	suggests	an	unexpectedly	high	baseline	expression	of	the	library	clones.	

	

Figure	Y-SZ.	RT-PCR	of	the	random	sequence	library	(EukLib)	and	three	housekeeping	genes	(TBP,	Actin	B	and	GAPDH).	
Cells	were	cultured	with	four	different	concentrations	of	doxycycline	(UW,	XW,	SW,	or	W	ng/mL),	RNA	was	extracted	for	
cDNA	synthesis	and	PCR.	Cneg:	Negative	control	using	water	instead	of	DNA	as		template.	

A	common	source	of	error	for	these	types	of	experiment	is	contamination	of	the	medium	with	

tetracycline	or	doxycycline	and	a	common	source	for	this	is	the	FBS.	However,	all	reagents	used	

throughout	this	experiment	were	certified	tetracycline-free,	and	such	a	contamination	would	

have	been	detected	in	the	GFP	control	cell	line	with	amounts	as	small	as	Q	ng/mL	(Figure	G-V).	I	

have	thus	discarded	this	hypothesis	as	a	possible	explanation	of	the	results.	

A	second	possible	source	of	error	in	the	correct	functioning	of	the	induction	in	the	system	

are	mutations	 introduced	 into	 the	 plasmid	by	 the	 bacteria	 in	which	 they	 are	 amplified.	 If	 a	

mutation	 has	 altered	 the	 tetR	 binding	 site	 on	 the	 CMV	 promoter,	 repression	 would	 be	

diminished	or	completely	nullified.	In	order	to	test	this	hypothesis,	I	sequenced	both	the	empty	

plasmid	and	the	library	plasmid	used	for	transfection	of	the	cells.	In	both	cases,	I	was	able	to	
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confirm	that	the	plasmid	sequence	had	not	been	altered	in	the	process	of	amplifying	the	plasmid	

in	E.	coli.	

The	third	hypothesis	explored	is	the	possibility	that	more	than	one	plasmid	got	inserted	into	

the	genome	of	the	cell,	either	by	successive	recombination	with	the	FRT	site,	or	by	spurious	

recombination	 into	 other	 sites.	 The	 presence	 of	 multiple	 competing	 binding	 sites	 for	 the	

repressor	tetR	could	reduce	the	strength	of	repression	and	allow	for	“leaky”	expression.	Some	

evidence	supporting	this	hypothesis	was	the	presence	of	higher	molecular	weight	products	of	

the	amplicon	sequencing	PCR	for	some	of	the	samples.	To	test	this,	I	isolated	single	cells	from	

the	population	through	cell	sorting,	allowed	them	to	grow	as	populations	of	a	single	clone	and	

sequenced	their	inserts	with	the	Sanger	method.	From	the	chromatograms,	I	confirmed	that	Gg	

out	of	 the	_^	 clones	 that	 could	be	 isolated	 could	 contain	 two	or	more	 inserts	 (Figure	G-Qg).	

However,	it	can	also	not	be	excluded	that	the	sorting	that	should	have	created	single	cells	did	

not	fully	work	as	expected,	although	precautions	were	applied	(see	Methods).	

	

Figure	Y-SU.	Example	of	single	clone	sequencing	results.	
Cells	with	a	single	plasmid	insertion	into	the	genome	yield	a	“clean:	chromatogram	with	clear	peaks	at	each	position.		

It	is	hard	to	determine	whether	the	high	fraction	of	clones	(V_	%)	with	multiple	insertions	

reflects	their	real	frequency	in	the	population	due	to	the	low	survival	rate	of	the	sorted	Flp-In	T-

REx	G^V	cells.	These	cells	did	not	grow	well	at	very	low	densities,	and	the	recovery	rate	from	the	

single	cell	sorting	was	extremely	low	(about	QE	%).	It	is	expected	that	depositing	a	single	cell	in	

a	well	of	a	^_-well	plate	would	impose	a	great	stress	on	them.	
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2.3 DISCUSSION 

The	goal	of	this	study	was	to	use	a	library	of	random	sequences	expressed	in	a	eukaryotic	cell	

line	to	determine	their	tolerance	to	the	expression	of	novel	RNA	and/or	peptides.	The	random	

artificial	sequences	would	allow	us	to	get	an	idea	of	the	fate	of	sequences	that	have	not	been	

under	 selection,	 or	 have	 been	 under	 weak	 selective	 pressures,	 as	 is	 the	 case	 of	 non-coding	

regions	of	the	genome.		

I	successfully	generated	a	library	of	random	sequences	in	a	Flp-In™	T-REx™	G^V	(FITRG^V)	

cell	 line,	derived	 from	HEKG^V	cells,	 commonly	used	as	a	heterologous	expression	 system.	 I	

chose	the	FITRG^V	cell	line	because	of	the	possibility	to	integrate	the	expression	plasmid	into	

the	genome	and	to	induce	the	expression	of	the	library	with	the	addition	of	doxycycline.	Given	

that	there	is	little	information	publicly	available	about	the	cell	line	itself,	my	first	task	was	to	

characterise	 it.	 I	generated	growth	curves	 for	 the	original	cell	 line,	as	well	as	 for	each	of	 the	

derived	cell	lines	that	I	transfected.	This	showed	that	all	transfected	cells	grow	at	a	slower	rate	

than	the	original	cell	line,	but	there	is	not	much	variation	between	the	different	inserts	used	for	

transfection.	Whole	genome	sequencing	of	the	cells	showed	that	the	FRT	site	that	serves	for	the	

targeted	insertion	into	the	genome	for	this	particular	lot	is	located	in	a	transcriptionally	active	

region	 and	 does	 not	 seem	 to	 truncate	 any	 existing	 gene.	Using	 a	 GFP	 plasmid,	 I	 generated	

control	cell	lines	for	my	experiments	that	allowed	me	to	standardise	and	visually	monitor	the	

induction	of	 expression	using	doxycycline.	 Sequencing	 the	 library	 showed	 that	 it	has	 all	 the	

features	 expected	 from	 a	 random	 sequence	 library	 and	 the	 expected	 correlation	 between	

nucleotide	 features	 such	 as	 GC	 content	 and	 length	 with	 peptide	 features	 such	 as	 intrinsic	

disorder	and	aggregation	propensity.	

Through	sampling	and	sequencing	of	the	library	during	a	time-course	experiment	of	about	

EH	cell	divisions,	I	was	able	to	monitor	clones	expressing	different	sequences	as	their	frequency	

changed	through	the	experiment.	Assigning	clones	to	groups	according	to	this	change	resulted	

in	 three	 groups	 of	 sequences,	 increasing,	 decreasing	 or	 not	 changing	 significantly	 in	 the	

population.	The	percentage	of	sequences	assigned	to	each	group	was	comparable	to	what	was	

reported	for	bacteria	in	Neme	et.	al	GHQR	and	chapter	Q	of	this	thesis.	It	is	notable	that	nothing	

indicates	that	there	is	a	correlation	between	the	assignment	of	a	sequence	to	a	specific	group	

and	 its	 length,	 GC	 content,	 intrinsic	 disorder,	 or	 aggregation	 propensity.	 Furthermore,	 it	 is	

interesting	 that	 over	 half	 of	 the	 sequences	 are	 kept	 in	 the	 populations	 without	 significant	

changes	in	frequency	throughout	the	experiment.		

An	unexpected	result	of	this	study	is	that	the	repression	of	expression	mediated	by	the	TetON	

system	in	the	cell	line	does	not	seem	to	work	for	this	library.	External	sources	of	error,	such	as	
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reagents	and	manipulation,	were	tested	and	rejected	as	possible	causes.	Therefore,	it	must	be	a	

property	of	the	library	itself	causing	the	permanent	expression.	

One	possibility	is	that,	due	to	the	scaling	up	of	transfection	to	obtain	as	many	different	clones	

as	possible	using	large	amounts	of	plasmid,	more	than	one	plasmid	was	inserted	into	the	genome	

of	the	cells.	A	preliminary	analysis	sorting	individual	cells	and	sequencing	them	indicates	that	

this	could	be	the	case.	Since	the	repression	of	expression	depends	on	Tet	repressor	molecules	

binding	 to	 the	 CMV	 promoter,	 multiple	 insertions	 diminish	 repression	 by	 decreasing	 the	

number	 of	 available	 Tet	 repressor	 molecules	 in	 the	 cell.	 This	 could	 result	 in	 incomplete	

repression,	or	permanent	induction	of	expression	of	up	to	a	third	of	the	clones	in	the	library.	

Unfortunately,	with	the	available	data	it	is	not	possible	to	rule	out	the	possibility	that	this	result	

is	an	artifact	product	of	more	than	one	cell	inadvertently	sorted	into	the	same	well.	However,	

this	 effect	 alone	 is	 insufficient	 to	 explain	why	 only	 G	%	 of	 the	 sequences	 show	 a	 difference	

between	the	induced	and	non-induced	samples.	

The	puzzling	inability	of	controlling	expression	in	this	system	requires	further	study	in	order	

to	rule	out	all	possible	causes.	Here,	I	will	discuss	two	more	hypotheses	that	could	explain	these	

results,	but	that	would	require	further	testing	and	follow-up	studies.	The	first	one	is	that	the	

peptides	expressed	by	some	of	the	clones	could	be	affecting	the	system	by,	for	example,	binding	

to	 the	 tetR	 molecules	 and—either	 directly	 or	 allosterically—reducing	 their	 affinity	 to	 the	

binding	site	on	the	promoter	(Goeke	et	al.,	GHQG;	Klotzsche	et	al.,	GHHg).	This	would	require,	

first,	that	the	clones	produce	enough	of	these	molecules	to	affect	most	of	the	culture;	second,	

that	the	cell	expressing	such	molecules	somehow	released	them	into	the	medium;	and	third,	

that	the	other	cells	somehow	uptake	the	peptides	 into	the	nucleus	of	the	cell.	Although	it	 is	

unlikely	that	all	of	these	conditions	are	fulfilled,	it	would	be	simple	to	test	this	hypothesis	by	

either	“transplanting”	conditioned	medium	where	the	library	is	growing	to	a	culture	of	the	GFP	

cells,	or	spiking	the	library	culture	with	GFP	cells	directly.		

A	second	and,	admittedly,	more	speculative	hypothesis	is	that	random	sequences	could	be	

encoding	 regulatory	 sequences	 that	 initiate	 their	 own	 transcription.	 Experiments	 done	 in	

bacteria	and	yeast	have	shown	that	random	sequences	can	easily	act	as	promoters	and	initiate	

transcription	of	reporter	genes	(de	Boer	et	al.,	GHGH;	Yona	et	al.,	GHQ`).	In	the	case	of	yeast,	a	

striking	`V	%	of	all	random	sequences	used	in	the	experiment	yielded	expression	of	a	reporter	

gene,	and	the	authors	of	the	study	suggest	that	the	proportion	could	be	even	higher	in	mammals,	

where	 promoters	 are	 more	 variable.	 There	 are	 also	 well	 documented	 cases	 of	 regulatory	

sequences	shifting	between	being	promoters	and	enhancers	(Carelli	et	al.,	GHQ`).	
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If	it	is	true	that	most	random	sequences	can	initiate	their	own	transcription,	even	at	low	levels,	

the	results	presented	here	can	be	explained.	It	would	also	mean	that	the	effect	of	sequences	as	

short	as	the	ones	presented	here	is	strong	enough	to	drive	changes	in	frequency	in	a	population	

of	cells.	Traditional	analyses	of	transcriptomes	tend	to	remove	very	short	transcripts	from	their	

analyses	due	to	the	likelihood	of	spurious	transcription.	However,	this	most	likely	results	in	loss	

of	 relevant	 information	 to	understand	physiologic	 and	 evolutionary	processes.	Although	 the	

importance	of	studying	short	proteins	has	been	stressed	in	several	publications	(Mackowiak	et	

al.,	GHQg;	Orr	et	al.,	GHGH;	Storz	et	al.,	GHQE),	we	still	have	ways	to	go	in	order	to	reach	a	full	

understanding	of	the	mechanisms	that	drive	evolution	of	shorter	sequences.	

The	hypothesis	presented	here	would	also	help	to	explain	findings	of	pervasive	expression	of	

most	of	the	genome	in	mice,	humans,	yeast	and	fruit	flies	(Berretta	&	Morillon,	GHH^;	Jacquier,	

GHH^).	Expression	of	short	sequences	that	could	have	a	negative	effect	on	the	cells	would	expose	

them	to	selection	to	be	removed	from	the	genome.	Simultaneously,	the	high	tolerance	of	the	

cells	 to	 random	 sequences	 would	 allow	 them	 to	 accumulate	 mutations	 in	 a	 neutral	 way.	

Although	these	two	claims	might	sound	initially	contradictory,	the	vast	sequence	space	occupied	

by	even	short	sequences	would	permit	selection	to	act,	while	keeping	the	total	set	of	sequences	

close	to	being	random	through	accumulation	of	neutral	mutations.	A	good	example	of	this	is	

the	fact	that	random	sequences	assigned	to	each	group	in	this	experiment	seem	to	be	a	random	

sample	 of	 the	 starting	 population.	 The	 sheer	 size	 of	 the	 possible	 combinations	 of	 unique	

sequences—G.HExQH%&,	in	our	study—combined	with	the	robustness	of	the	cells	to	disruptions	

and	the	lower	information	content	of	regulatory	sequences	in	eukaryotes	makes	the	probability	

of	rare	events	much	larger	than	it	would	be	otherwise.	

The	 results	 presented	 here	 open	 the	 door	 to	 further	 research	 possibilities	 and	 improved	

models	of	the	birth	of	de	novo	genes.	It	is	important	to	be	aware,	however,	that	there	are	several	

points	that	should	be	evaluated	carefully,	and	could	be	improved	in	future	research,	which	will	

be	discussed	below.	

First,	it	is	necessary	to	test	similar	expression	systems	in	other	types	of	cells	or	organisms.	

HEKG^V	cells	have	been	shown	to	have	genomic	instabilities	that	result	in	mutations	or	changes	

in	 the	 expression	profile	 that,	 in	 turn,	 generate	 changes	 in	 expression	profiles	 and	 even	 the	

phenotype	of	the	cells	(Stepanenko	&	Dmitrenko,	GHQg).	Although	they	are	commonly	used	for	

heterologous	expression	of	proteins,	they	are	far	from	being	a	model	organism	for	experimental	

evolution.	The	stress	of	transfection,	even	with	methods	that	have	large	viability	rates,	can	also	

cause	differences	in	transcriptome	and	genotype,	which	could	be	biasing	the	results.	
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Another	possible	source	of	bias	is	the	fact	that	the	starting	population	of	cells	in	the	library	

is	not	a	completely	homogeneous	one.	The	fact	that	expression	could	not	be	regulated	with	the	

TetON	system	inevitably	resulted	in	a	heterogeneous	starting	population	in	which	not	all	clones	

were	found	in	the	same	proportion.	This	is	unlikely	to	have	altered	the	results	presented	here,	

since	individual	clones	across	replicates	show	a	consistent	behaviour	and	variance	of	expression	

levels	is	not	large	enough	to	attribute	the	trends	to	drift.		However,	it	does	mean	that	clones	that	

had	a	strong	negative	effect	on	the	cells	could	not	be	detected,	since	they	must	have	decreased	

in	frequency	beyond	detection	in	the	first	amplification	round	of	the	cells	

Further	consideration	should	also	be	given	to	the	design	of	the	random	sequences	inserted	

in	the	cells.	In	this	study,	I	included	a	Kozak	sequence	and	optimized	codons	in	the	flanking	

sequences	according	to	human	codon	usage.	It	would	be	interesting	to	see	whether	a	sequence	

design	without	a	Kozak	sequence	has	any	effects	on	the	patterns	found	here.		

As	 far	as	 I	know	this	 is	 the	 first	experimental	 study	of	 the	effect	of	expression	of	 random	

sequences	on	eukaryotic	cells.	It	is	of	course	only	a	preliminary	analysis	that	cannot	encompass	

the	 complexity	 of	 eukaryotic	 organisms.	 But	 it	 shows	 that	 organisms	 at	 different	 levels	 of	

complexity	might	have	different	strategies	to	deal	with	the	expression	of	non-coding	sequences.	

The	types	of	sequences	tolerated	by	bacteria	(see	Chapter	Q)	and	by	eukaryotic	cells	are	different,	

with	bacteria	being	seemingly	more	tolerant	to	shorter	sequences.	It	is	difficult	to	know	whether	

this	tolerance	is	maintained	at	the	organism	level	in	multicellular	organisms,	particularly	those	

with	 adaptive	 immune	 systems	 (Bekpen	 et	 al.,	 GHQ`).	 However,	 the	 variation	 provided	 by	

random	 sequences	 could	 be	 a	 rich	 source	 of	 innovation.	 The	 results	 shown	 in	 this	 chapter	

suggest	that	eukaryotic	cells	are	very	robust	to	the	expression	of	random	sequences,	as	expected	

from	cells	that	have	long	non-coding	regions	frequently	transcribed	spuriously.	
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Chapter 3. Expression of mouse de novo genes in a human cell line 

3.1 INTRODUCTION 

After	 the	 discovery	 of	 de	 novo	 genes,	 their	 study	 has	 continued	 towards	 functional	

characterization	of	potential	or	confirmed	candidates.	A	few	examples	of	this	are	the	study	of	

MDFB	in	S.	cerevisiae	(Li	et	al.,	GHQE),	fish	anti-freeze	glycoproteins	in	codfish	(Baalsrud	et	al.,	

GHQ`);	the	discovery	of	the	effect	of	the	genes	saturn	and	goddard	in	Drosophila	(Gubala	et	al.,	

GHQR;	 Lange	 et	 al.,	 GHGQ);	 and	 several	 examples	 of	 orphan	 in	Arabidopsis,	 such	 as	 the	 ones	

described	in	(Arendsee	et	al.,	GHQE).		

More	 recently,	 Xie	 and	 others	 identified	 QQH	 orphan	 genes	with	 translation	 evidence	 and	

possible	de	novo	origins,	and	characterised	the	important	role	of	one	of	them	in	regulating	the	

oestrous	cycle	of	the	house	mouse	(Xie	et	al.,	GHQ^).	A	follow	up	study	using	knock-out	mice	for	

two	other	 candidates	 in	 the	 list	 found	 that	 these	novel	genes	are	 involved	 in	 transcriptional	

pathways	 related	 to	 development	 (Xie	 et	 al.,	 GHGH).	 Functions	 of	 orphan,	 taxonomically	

restricted,	and	de	novo	genes	are	varied	and	difficult	to	predict	from	sequence	alone.	This	is	true	

in	particular	for	de	novo	genes,	given	their	lack	of	sequence	homology	to	any	functional	protein.	

Furthermore,	 these	 genes	 tend	 to	 have	 low	 expression	 levels,	meaning	 that	 their	 effects	 on	

phenotype	are	likely	to	be	small	(Schmitz	et	al.,	GHGH).	

Despite	knowing	that	at	least	some	de	novo	genes	are	functional	and	may	play	important	roles	

in	the	organisms	where	they	are	found,	there	is	still	much	that	we	ignore	about	how	these	genes	

are	integrated	into	their	metabolic	and	regulatory	networks.	As	mentioned	before	in	this	thesis,	

accurate	identification	of	de	novo	genes	is	made	difficult	by	the	need	to	find	syntenic	non-coding	

regions	in	related	species	that	might	already	have	long	times	of	divergence	between	them,	and	

without	population	genomic	data,	it	is	not	possible	to	tell	whether	nascent	genes	have	already	

been	fixed	in	a	population.	Lacking	clear	boundaries	in	the	continuum	between	the	birth	of	a	

gene	and	its	integration	into	the	genetic	repertoire	of	a	species,	makes	it	difficult	to	study	the	

process	(Vakirlis	et	al.,	GHQ`).	

When	looking	at	the	function	of	novel	genes	from	an	evolutionary	perspective,	one	could	

expect	protein	or	RNA	products	of	novel	genes	to	interact	with	already	existing	regulatory	and	

metabolic	networks	in	the	organism,	and	to	provide	a	fitness	benefit	that	would	help	it	become	

fixed	in	a	population.	In	reality,	it	is	not	clear	how	these	sequences	interact	with	other	extant	

genes	or	even	if	they	initially	provide	any	fitness	advantage	to	the	cells.	Investigation	into	how	

young	 genes,	 protogenes	 or	 orphan	 genes	 integrate	 into	 cellular	 networks	 suggest	 that	 this	

process	occurs	 fairly	rapidly,	within	QE	MY	(Abrusan,	GHQV).	Recent	work	has	also	found	that	
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putative	de	novo	genes	in	mouse	are	preferentially	located	near	enhancer	sequences,	which	may	

facilitate	their	integration	into	regulatory	networks	(Majic	&	Payne,	GHGH).	

Bioinformatics	 approaches	 to	 understanding	 how	 de	 novo	 genes	might	 interact	 with	 the	

regulatory	and	metabolic	networks	of	an	organism	are	limited	by	our	knowledge	of	the	complex	

interactions	and	regulatory	feedback	loops	of	an	organism.	In	the	case	of	model	organisms	with	

smaller	genomes,	such	as	E.	coli	or	S.	cerevisiae,	it	could	be	possible	to	generate	predictions	using	

machine	learning	or	other	computational	approaches.	However,	for	organisms	with	larger,	more	

complex	genomes,	it	might	be	impossible	to	predict	what	a	new	sequence	does,	or	even	if	it	has	

any	function	at	all.	Attempts	to	experimentally	characterize	de	novo	genes	are	still	far	between,	

and	it	is	expected	that	much	more	should	be	done	in	this	area	in	coming	years	(Bornberg-Bauer	

&	 Heames,	 GHQ^;	Wu	 &	 Zhang,	 GHQV).	With	 this	 in	mind,	 in	 this	 chapter	 I	 have	 started	 to	

investigate	the	effects	of	individual	novel	sequences	being	expressed	in	a	eukaryotic	cell	line.	

To	achieve	this,	I	selected	candidates	from	a	list	of	putative	de	novo	genes	from	mouse	(Xie	

et	al.,	GHQ^),	amplified	them	from	biological	material,	and	inserted	them	for	expression	into	a	

human	cell	line—HEKG^V	cells	using	the	Flp-In	T-REx	system	(for	a	complete	description	of	the	

expression	system,	see	Chapter	G).	Given	that	 these	genes	are	already	expressed	 in	mice	and	

appear	to	be	well	tolerated,	it	is	to	be	expected	that	the	expression	of	these	foreign	sequences	

would	be	well	tolerated	by	the	human	cell	line.	Using	a	transcriptomics	approach,	I	investigated	

whether	the	young	genes	from	mice	have	any	effect	on	the	transcriptome	of	the	cells	that	might	

indicate	interactions	with	their	regulatory	of	metabolic	networks.	

Only	V	of	the	chosen	genes	could	be	analysed	for	this	project,	but	I	found	that	the	expression	

of	these	mouse	de	novo	genes	was	indeed	well	tolerated	by	the	human	cells,	while	the	effects	on	

the	transcriptome	were	remarkably	small.	For	the	three	sequences	that	were	cloned,	less	than	g	

genes	could	be	identified	as	differentially	expressed.	

The	 results	 presented	 in	 this	 chapter	 provide	 some	 insight	 into	 what	 could	 happen	 to	

protogenes	in	an	intermediate	step	of	the	process	towards	becoming	a	gene.		
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3.2 RESULTS 

3.2.1 SELECTION OF CANDIDATES AND GENERATION OF FITR293 CELL LINES 

Initially,	ten	candidate	genes	out	of	a	list	of	putative	de	novo	genes	identified	in	mouse	(Xie	

et	al.,	GHQ^)	were	selected	to	be	amplified	from	mouse	samples	and	transfected	into	the	FITRG^V	

cells.	Selected	candidates	were	chosen	from	those	that	have	the	shortest	ORFs,	between	QEE	and	

gHQ	nucleotides	long,	to	match	the	short	lengths	that	emerging	de	novo	genes	are	expected	to	

have.	All	selected	candidates	have	proteomics	evidence	associated	to	them	in	the	mouse	and	

diverse	levels	of	intrinsic	disorder	and	hydrophobicity.	They	also	have	transcriptomic	evidence	

in	a	wide	range	of	tissues	and	developmental	stages	in	the	mouse.	Each	candidate	was	assigned	

a	code	Mdng	(Mouse	de	novo	gene)	that	will	be	used	throughout	the	rest	of	this	chapter	(Table	

V-Q).	

Table	X-S.	List	of	selected	candidate	genes.	Modified	from	(Xie	et	al.,	YWS\).	
Highlighted	rows	correspond	to	genes	successfully	transfected	into	FITRY\X	cells	for	this	project.	

Code	 Gene_ID	 Strand	
Coding	
exon	
number	

Exon	
number	

ORF	
length	

Protein	
length	 ISD	 Hydrophobic	

clusters	
Amplified	
from	

Mdng%&	
ENSMUSG%%
%%%%-.%/-	 -	 1	 1	 22&	 &2/	 %.4&	 %.1.4-	 Testis	cDNA	

Mdng%.(")	
ENSMUSG%%
%%%%-1&=&	

+	 &	 .	 -%&	 &4/	 %./&	 %..??2	 Head	cDNA	

Mdng%1	
ENSMUSG%%
%%%%-2%-/	 -	 &	 1	 2/&	 &-/	 %.%-	 %./-=	 Head	cDNA	

Mdng%2	
ENSMUSG%%
%%%%41.-2	

+	 &	 &	 144	 &..	 %.%&	 %.=&?/	 Embryo	
cDNA	

Mdng%-	
ENSMUSG%%
%%%%/2.&-	 -	 &	 &	 111	 &&&	 %.4%	 %.1-&2	

Embryo	
cDNA	

Mdng%4	
ENSMUSG%%
%%%%/=222	

-	 &	 1	 &22	 2=	 %.&4	 %.444/	 Testis	
cDNA	

Mdng%/($)	
ENSMUSG%%
%%%%/=-&=	 -	 1	 1	 2.?	 &21	 %.11	 %.-%1-	

Oviduct	
cDNA	

Mdng%=	
ENSMUSG%%
%%%%/=42%	

-	 .	 1	 &4-	 --	 %..&	 %.-=&=	 Embryo	
cDNA	

Mdng%?	
ENSMUSG%%
%%%%/.?=1	 -	 .	 .	 1??	 &11	 %.2.	 %.2-&&	

Testis	
cDNA	

Mdng&%	
ENSMUSG%%
%%%%/?.4&	 +	 2	 2	 24-	 &--	 %.1%	 %.2&.?	 Testis	cDNA	

Mdng&&	
ENSMUSG%%
%%%%-22-%	 +	 &	 1	 ./1	 ?&	 %.%&	 %.=4=&	

Embryo	
cDNA	

Mdng&.	
ENSMUSG%%
%%%%-4%=?	 +	 &	 &	 24-	 &--	 %.1.	 %.2.-=	 DNA	

Mdng&1	
ENSMUSG%%
%%%%/1%%%	 +	 &	 .	 1%1	 &%&	 %.%2	 %.4=1.	

Embryo	
cDNA	

Mdng&2	
ENSMUSG%%
%%%%?24?%	 -	 .	 .	 1%1	 &%&	 %.-=	 %.21-4	 Testis	cDNA	

(S)	Gene	characterized	in	(Xie	et	al.,	YWYW).	
(Y)	Gene	characterized	in	(Xie	et	al.,	YWS\).	

Using	available	DNA	and	RNA	samples,	specific	primers	were	used	to	amplify	all	candidates	

from	mouse	tissues	specified	in	Table	V-Q,	and	from	mouse	genomic	DNA	directly	in	the	case	of	

MdngQG,	which	 has	 only	 one	 coding	 exon,	 and	 for	which	 no	 appropriate	 cDNA	 sample	was	

available.	A	second	PCR	step	was	done	in	order	to	add	restriction	enzyme	sites	to	the	amplified	

products	 for	 cloning	 and	 amplification	 of	 the	 plasmids	 in	 E.	 coli.	 Purified	 plasmids	 were	



De	novo	evolution	of	genetic	function	from	random	sequences	
	

	$a	

sequenced	 and	 seven	 of	 them,	 containing	 the	 gene	 sequence	 without	 mismatches	 to	 the	

reference	mouse	genome	(MdngQ,	G,	_,	R,	QH,	QQ,	and	QG)	were	used	for	transfection	of	FITRG^V	

cells.	Mismatches	between	the	cloned	sequences	and	the	reference	genome	could	be	artefacts	

produced	during	the	two	separate	PCR	amplifications	done	to	obtain	enough	product	for	cloning.	

Sequences	obtained	were	compared	with	reported	SNP	data	 from	mouse	populations	on	 the	

MGD	website	(Bult	et	al.,	GHQ^)	[accessed	on	GHGQ.Hg.Gg],	but	no	matches	were	found.	

Due	to	low	success	rate	of	transfection,	likely	caused	by	difficulties	during	seeding	of	the	cells	

in	^_-well	plates	(see	Methods),	only	three	out	of	the	R	candidates	yielded	viable	clones.	The	

remaining	results	and	discussion	in	this	chapter	will	deal	with	these	three	clones:	MdngG,	MdngR,	

and	MdngQH.	Coincidentally,	MdngR	corresponds	to	the	selected	candidate	GmBDEDE	used	for	

in-depth	analysis	in	(Xie	et	al.,	GHQ^),	and	MdngG	corresponds	to	gene	AFDEEEGFHIRik	for	which	

knock-out	mice	were	generated	for	RNAseq	analyses	in	(Xie	et	al.,	GHGH).	It	is	worth	noting	that,	

even	 though	 I	 could	 only	 generate	 cell	 lines	 for	 the	 expression	 of	 three	 out	 of	 the	 fourteen	

candidates,	 the	 fact	 that	 it	 was	 possible	 to	 amplify	 all	 but	 one	 of	 the	 products	 from	 cDNA	

provides	further	support	to	the	transcription	of	these	genes	in	different	tissues	or	developmental	

stages.	

Taking	a	closer	look	at	the	three	candidate	mouse	genes	inserted	in	the	FITRG^V	cells	(Table	

V-G),	there	are	no	BLAST	hits	for	the	nucleotide	sequences	of	MdngG	and	R	besides	the	gene	

itself	in	Mus	musculus.	For	MdngQH,	a	hit	could	be	found	with	low	coverage	but	high	identity	in	

a	syntenic	region	of	the	rat	genome	on	chromosome	Qg	(location:	chrQg:	GH,RRG,`VG-GH,RRG,^E`,	

assembly	Rnor__.H).	ENSEMBL	 (Howe	et	 al.,	 GHGQ)	 reports	orthologues	of	 all	 three	genes	 in	

other	mouse	species,	but	no	hits	were	found	with	the	BLAST	search.	Phenotypes	associated	with	

MdngG,	reported	in	(Xie	et	al.,	GHGH)	include	anomalies	 in	heart,	kidney	and	seminal	vesicle	

morphology	in	knockout	mice,	while	no	associated	phenotypes	have	been	reported	for	the	other	

two	 genes.	 Finally,	 all	 candidates	 were	 compared	 with	 the	 CAMP	 (antimicrobial	 peptide	

database)	through	CAMPsign	(Waghu	et	al.,	GHQ_),	which	runs	a	BLAST	on	a	database	of	known	

antimicrobial	peptides.	No	hits	were	found	for	any	of	the	candidates.	

Table	X-Y.	Selected	genes	for	which	expression	cell	lines	were	successfully	generated.	

	 MdngI	 MdngJ	 MdngKL	

Protein	ID	 ENSMUSPBBBBBBCTTX?		 ENSMUSPBBBBBXBX@AX		 ENSMUSPBBBBBXBS@VS		

Transcript	ID	 ENSMUSTBBBBBBCV@CV		 ENSMUSTBBBBBXBVRBV		 ENSMUSTBBBBBXXXR?C.A	

Gene	ID	 ENSMUSGBBBBBBVAXRX		 ENSMUSGBBBBBBSRVXR		 ENSMUSGBBBBBBST?CX		

Location	(GRCmAT)	
chrXA:	@R,CCS,B@C-
@R,CCR,AAV	 chr@:	XAR,VTR,ABA-XAR,CBX,?SV	 chrX@:	@C,CXC,T?@-@C,C?X,BCV	

Gene	Name	 ARABBBVF?@Rik	 GmXABAB			 GmXV?XS	

BLASTn	hits	 Only	self	 Only	self	 Self-hit	
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Rattus	norvegicus	(TA.@%	
identity,	@?%	coverage)	

ENSEMBL	
orthologues	

Mus	musculus	castaneus	
Mus	spretus	
Mus	caroli	

Mus	spretus	
Mus	caroli	

Mus	spretus	
Mus	caroli	
Mus	pahariand	
Mus	spicilegus	

Associated	
phenotypes	

Enlarged	heart,	abnormal	
kidney	morphology		
(enlarged	kidney),	abnormal	
seminal	vesicle	morphology	

None	 None	

Domain	prediction	
(INTERPRO)	

A	disordered	regions	 None	 None	

The	 three	 cell	 lines	 generated	 with	 the	 mouse	 de	 novo	 genes	 were	 morphologically	

indistinguishable	from	the	control	ones	transfected	with	GFP	and	the	empty	pcDNAg/FRT/TO	

vector.	Their	growth	speed	did	not	differ	noticeably	from	the	control	or	the	non-transfected	cells,	

with	doubling	times	of	around	GE	hours	for	cultures	seeded	at	GH%	confluence.	Presence	of	the	

inserted	genes	in	the	cells	was	confirmed	by	sequencing	the	specific	PCR	products	from	genomic	

DNA	extractions.	Correct	function	of	induction	of	expression	when	adding	doxycycline	to	the	

medium	was	confirmed	visually	for	the	cells	transfected	with	GFP,	and	via	relative	quantification	

using	RT-PCR	for	one	of	the	candidate	genes,	MdngQH	(Figure	V-Q).	For	this,	RNA	was	extracted	

from	 cells	 exposed	 to	 E	 different	 concentrations	 of	 doxycycline,	 diluted	 to	 the	 same	

concentration	 in	 all	 samples,	 and	 retrotranscribed.	 Specific	 primers	 were	 used	 to	 amplify	

MdngQH	and	G	housekeeping	genes,	and	the	results	visualised	in	an	agarose	gel.	Although	this	

approach	is	not	strictly	quantitative,	 it	does	provide	an	indication	that	there	is	a	low	level	of	

basal	 expression	 even	 without	 the	 addition	 of	 doxycycline	 to	 the	 medium,	 and	 that	 the	

expression	levels	increase	with	the	addition	of	doxycycline.	

	

Figure	X-S.	Relative	quantification	of	candidate	gene	MdngSW.	
Doxycycline		was	added	to	a	final	concentration	between	W	and	UW	ng/mL,	RNA	was	extracted	and	retrotranscribed,	and	
specific	primers	were	used	on	the	cDNA	to	amplify	the	candidate	gene	and	two	housekeeping	genes	(Actin	B	and	GAPDH).	
Increased	expression	of	the	candidate	gene	can	be	seen	with	higher	concentration	of	doxycycline.	

3.2.2 MOUSE DE NOVO GENES EXPRESSED IN FITR293 CELLS 

Cells	from	each	of	the	V	cell	lines,	and	from	the	original	FITRG^V	cells	without	transfection,	

were	 seeded	 in	 GE	 replicate	 wells.	 Doxycycline	 was	 added	 to	 QG	 of	 those	 wells	 to	 a	 final	
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concentration	 of	 gH	 ng/mL.	 Cells	 were	 sampled	 V_	 hours	 after	 seeding,	 and	 total	 RNA	was	

extracted	and	used	for	RNAseq	in	a	single	Illumina	NextSeq	run.	After	generating	fastq	files,	

merging	the	results	of	the	sequencing	lanes	and	trimming	reads,	between	`E._G	and	^g.Rg	%	

paired	reads	were	accepted	for	analysis.		

An	average	of	g	million	reads	were	obtained	for	each	replicate	sample.	However,	batch	effects	

were	identified	from	the	sequencing	output.	Replicates	g	to	`	of	all	treatments,	corresponding	

to	columns	g	to	`	on	the	sequencing	plates,	had	QH	times	less	reads	for	all	cell	lines.	In	addition	

to	this,	replicates	Q	and	G	of	MdngQH	corresponding	to	the	control	group	have	between	QH	and	

QHH	times	more	reads	than	all	other	samples	in	the	run	(Figure	V-G).		

	

Figure	X-Y.	Total	number	of	reads	per	replicate.	

Sequencing,	trimming,	mapping	and	gene	assignment	results	are	summarized	in	Table	V-V.	

In	order	 to	 get	 rid	of	 the	batch	 effects,	 replicates	 g	 to	`	 for	 all	 samples	were	 removed	 from	

downstream	 analyses,	 and	 replicates	 Q	 and	 G	 of	 the	MdngQH	 treatment	 were	 subsampled	 to	
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reduce	the	number	of	reads	by	QH-fold	to	match	the	average	of	all	other	files.	After	removing	

these	outliers,	the	average	number	of	reads	was	g.R	million	(±	Q.`	million).	

Table	X-X.	Summary	of	Trimming,	Mapping	and	Alignment	results	for	reads	after	removal	of	outliers.	

	
Mean	
number	of	
reads	(SD)	

Mean	
Trimmed	Read	
Pairs	(%)	

Mean	
Alignment	
(%)	

Mean	
Concordant	
Reads	(%)	

Mean	
Assigned	
Reads	(%)	

FITR?TA-CTR	
V.R	x	XB^C	

(±?.C	x	XB^C)	 TX.VV	 TS.CV	 RR.RR	 CR.BB	

FITR?TA-DOX	
@.R	x	XB^C	

(±X.?	x	XB^C)	 TX.BA	 TS.SX	 RT.?S	 CR.R?	

Mdng?-CTR	
V.V	x	XB^C	

(±X.V	x	XB^C)	 T?.AX	 TS.RR	 RR.AS	 CC.RB	

Mdng?-DOX	
V.@	x	XB^C	

(±X.R	x	XB^C)	 T?.XV	 TS.CS	 RR.T?	 CT.C@	

MdngS-CTR	
V.C	x	XB^C	

(±X.S	x	XB^C)	 T?.@B	 TS.C@	 RR.RC	 CR.TR	

MdngS-DOX	
C.S	x	XB^C	

(±X.V	x	XB^C)	 TA.AX	 TS.TX	 RT.RS	 CT.TA	

MdngXB-CTR	
V.B	x	XB^C	

(±?.B	x	XB^C)	 T?.@T	 TS.R@	 RT.XC	 CT.XB	

MdngXB-DOX	
C.A	x	XB^C	

(±X.T	x	XB^C)	 T?.AA	 TS.RR	 RT.@S	 CR.TR	

Total	 UWWYSYS	 \Y.YW	 \V.VV	 h\.SW	 ah.Vh	

When	mapping	 the	 reads	 to	 the	 human	 genome	 (Homo	 sapiens	 assembly	 GRChV`)	 the	

recombined	plasmids’	expected	sequence	from	the	Flp-In™	T-REx™	system	was	added	as	an	extra	

chromosome,	and	each	mouse	de	novo	gene	was	inserted	at	the	plasmid’s	multiple-cloning	site.	

Overall	alignment	rate	was	over	^E	%	for	all	samples	and	over	`E	%	of	all	aligned	pairs	were	

aligned	concordantly	exactly	one	time	(one	best	hit	with	both	reads	in	the	expected	direction).	

To	assign	the	mapped	reads	to	the	corresponding	human	genes	and	the	genes	on	the	plasmid,	

the	GTF	 file	downloaded	 from	ENSEMBL	with	gene	annotations	 for	 the	human	genome	was	

joined	with	a	GTF	annotation	file	generated	for	the	artificial	plasmid	construct.	Although	most	

reads	 were	 mapped	 with	 the	 approach	 described	 above,	 only	 between	 g^	 and	 R_.G	 %	 of	

alignments	could	be	unambiguously	assigned	 to	annotated	genes.	This	 is	 likely	 to	be	due	 to	

multiple	mapping	of	reads	to	paralogs,	or	the	pervasive	transcription	of	intergenic	sequences.	

Paired-end	reads	for	each	sample	were	also	mapped	to	the	plasmid	construct	separately	in	

order	to	confirm	that	the	induction	of	expression	worked	correctly.	Results	of	this	mapping	were	

as	expected,	with	clear	differences	in	the	expression	of	the	MNDGs	between	the	non-induced	

and	 induced	 treatments	 (Figure	 V-V).	 Thus,	 confirming	 that	 the	 induction	 of	 the	 expression	

worked	 for	all	 samples	at	 least	at	 the	 level	of	 transcription.	Leaky	expression	of	 the	genes	 is	

expected	and	can,	indeed,	be	observed	from	our	results	as	well.	Low	basal	levels	of	expression	

can	be	detected	for	all	genes,	in	particular	for	MdngQH,	while	expression	after	induction	with	

doxycycline	increases	g.`,	E.G,	and	G.E	times,	respectively	for	MdngG,	R	and	QH.	
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Figure	X-X.	Number	of	raw	counts	assigned	to	each	Mdng	in	the	different	replicates.	
A	clear	difference	in	expression	levels	can	be	observed	between	the	control		samples	(CTR)	and	the	ones	with	addition	of	
Doxycycline	(DOX)	

3.2.3 FEW DIFFERENTIALLY EXPRESSED GENES FOLLOWING EXPRESSION OF MDNG 

Having	confirmed	that	the	induction	of	expression	worked	well	in	all	cell	lines	generated,	I	

studied	the	effect	of	the	expression	of	the	mouse	de	novo	genes	on	the	transcriptome	of	the	cells.	

Using	the	count	tables	generated	for	each	sample,	I	performed	a	differential	gene	expression	

analysis	using	DESeqG.	Having	identified	batch	effects	likely	caused	during	library	preparation	

and	 sequencing,	 replicates	were	 included	 in	 the	 experimental	design	 formula	 to	 account	 for	

effects	due	to	location	of	the	samples	in	the	plates.		

	

Figure	X-Z.	Plot	of	principal	components	S	and	Y,	explaining	ZX	%	and	SX	%	of	variance	between	samples.	
CTR:	 Control	 samples,	 DOX:	 Induced	 samples	 with	 doxycycline.	 Shapes	 correspond	 to	 each	 cell	 line.	 Samples	 and	
treatments	separate	along	PCY,	most	clearly	for	MdngY	and	MdngV.	MdngSW	and	FITRY\X	samples	cluster	together.		
There	is	a	high	level	of	variance	between	replicates	along	PCS.		

Samples	from	different	cell	lines	and	treatments	were	distinguishable	from	each	other	in	a	

PCA	for	MdngG	and	MdngR,	while	MdngQH	tends	to	be	more	similar	to	the	non-transfected	cells	

(Figure	V-E).	This	analysis	also	revealed	that	there	is	considerable	variance	between	replicates	of	

the	same	cell	line	and	treatment.	
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Results	of	the	differential	gene	expression	analyses	are	shown	in	Figure	V-g.	There	were	very	

few	differentially	expressed	genes	following	the	expression	of	the	“foreign”	mouse	de	novo	genes	

in	the	human	cell	line	(Table	V-E).	

	

Figure	X-U.	MA	plots	of	the	four	cell	 lines	comparing	gene	expression	before	and	after	addition	of	doxycycline	to	the	
medium.	
Blue	dots	are	differentially	 expressed	genes	 (padj<W.WU).	A.	Non-transfected	Flp-In	T-REx	Y\X	cell	 line.	B.	MdngY.	C.	
MdngV.	D.	MdngSW.	For	the	Mdng,	the	gene	with	the	highest	fold-change	corresponds	to	the	Mdng	itself.	

First,	looking	at	the	non-transfected	FITRG^V	cells	to	identify	the	effect	of	doxycycline	on	the	

cells,	 only	 one	 gene	 shows	 significant	differential	 expression	between	 the	 induced	 and	non-

induced	treatments:	UQCRFSQ	(Ubiquinol-cytochrome	c	reductase,	ENSGHHHHHQ_^HGQ),	part	

of	the	mitochondrial	electron	transport	chain	which	drives	oxidative	phosphorylation.	It	shows	

a	small	H.`-fold	change	in	the	cells	to	which	doxycycline	was	added,	and	no	other	DEGs	could	

be	identified.	
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For	all	 three	Mdng	 the	most	 significantly	differentially	expressed	gene	 is	 the	Mdng	 itself,	

followed	in	second	or	third	place	by	the	UQCRFSB	gene	found	to	be	repressed	by	the	addition	of	

doxycycline.	In	all	cases,	the	fold	change	of	the	UQCRFSB	gene	is	comparable	to	that	in	non-

transfected	cells.	Cells	expressing	MdngG	and	MdngQH	have	a	small	increase	in	expression	of	a	

lncRNA	 associated	 with	 X	 chromosome	 inactivation—XIST	 (X	 Inactive	 Specific	 Transcript).	

There	are	other	effects	on	mitochondrial	genes	associated	with	transcription	and	respiration.	

For	MdngQH,	there	is	also	a	DEG	associated	with	iron	metabolism.	

Table	X-Z.	Complete	list	of	differentially	expressed	genes	for	the	four	cell	lines	evaluated.	
Normalised	 counts	 are	 base	mean	 counts,	 Fold	 change	 is	 Y^logYfoldChange,	 and	 padj	 is	 BH-corrected	 p-value,	 as	
obtained	from	DESeqY	results.	Highlighted	are	the	mouse	de	novo	genes	themselves.	

Type	 Gene	ID	 Gene	Symbol	 Gene/Protein	name	 Mean	
counts	

Fold	
change	

Adjusted	
p-value	

FITR?TA	
ENSGBBBBBX
CTB?X	 UQCRFSS		 Ubiquinol-cytochrome	c	reductase,	

Rieske	iron-sulfur	polypeptide	X	 XARR.?S	 B.R@	 S.?AE-BA	

Mdng?	

ENSMUSGWWW
WWWUXShS		 MdngY	 RIKEN	cDNA	AhXWWWUFYZ	gene	 Z\h.Sa	 ZS.ha	 W.WWE+WW	

ENSGBBBBBX
CTB?X	 UQCRFSS		 Ubiquinol-cytochrome	c	reductase,	

Rieske	iron-sulfur	polypeptide	X	 X@TV.V?	 B.R?	 R.X?E-XX	

ENSGBBBBB?
?TRBS	 XIST	 X	Inactive	Specific	Transcript	 VXBS.RA	 X.XR	 @.RXE-BS	

ENSGBBBBBX
CSTSR	 SRRMY	 Serine/arginine	repetitive	matrix	

protein	?	 A?@R.@?	 X.XX	 X.@?E-B?	

ENSGBBBBBX
TRR@B	 MT-NDX	

Mitochondrially	encoded	
NADH:ubiquinone	oxidoreductase	
core	subunit	A	

XCCA.SA	 B.TB	 X.@TE-B?	

MdngS	

ENSMUSGWWW
WWWVhUSh		 MdngV	 GmSXWXW	 \aX.Sa	 SX.UZ	 U.\aE-ZS	

ENSGBBBBB?
XBBR?	 MT-RNRY	 Mitochondrially	Encoded	XCS	

rRNA	 TRVR.XR	 B.RT	 X.R?E-BC	

ENSGBBBBBX
CTB?X	 UQCRFSS		 Ubiquinol-cytochrome	c	reductase,	

Rieske	iron-sulfur	polypeptide	X	 XCV?.C@	 B.RC	 A.BXE-BV	

ENSGBBBBB?
AXVBB	 RPSSh	 Ribosomal	protein	SXR	 R@C@.SS	 X.X?	 @.SAE-B?	

ENSGBBBBBX
TRRB@	

MT-COS	(COI,	
COXS,	MTCOS)	

Mitochondrially	encoded	
cytochrome	c	oxidase	I	 XCRS?.R?	 B.TB	 @.SAE-B?	

MdngXB	

ENSMUSGWWW
WWWV\YaS		 MdngSW	 GmSUYSV	 XWV.US	 Y.VU	 V.aYE-aW	

ENSGBBBBBX
CTB?X	 UQCRFSS		 Ubiquinol-cytochrome	c	reductase,	

Rieske	iron-sulfur	polypeptide	X	 XV@T.@R	 B.R?	 A.BAE-BR	

ENSGBBBBB?
?TRBS	 XIST	 X	Inactive	Specific	Transcript	 CB@V.V@	 X.XT	 X.?RE-BA	

ENSGBBBBBB
RSBRC	 FTL	 Ferritin	light	chain	 XVXT.S@	 B.RV	 X.?RE-BA	

	

3.2.4 HIGH SAMPLE DISPERSION IMPEDES IDENTIFICATION SOME DEGS 

Since	 there	 have	 been	 reports	 that	 high	 dispersion	 in	 RNAseq	 samples	 may	 make	 the	

identification	of	differentially	expressed	genes	difficult	(Ching	et	al.,	GHQE;	Xie	et	al.,	GHGH),	I	

took	a	look	at	the	dispersion	fitted	by	DESeqG	for	the	samples	(Figure	V-_).	Samples	for	all	genes	

have	 considerably	 large	 dispersions,	 as	 high	 as	 H.g	 for	 genes	 with	 small	 count	 numbers.	

According	to	the	power	analyses	reported	in	(Xie	et	al.,	GHGH),	this	means	that	these	data	do	not	
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provide	sufficient	statistical	power	to	reliably	identify	differentially	expressed	genes	with	fold	

changes	below	Q.V	 for	genes	with	 less	 than	around	gQG	counts.	 Indeed,	 the	only	differentially	

expressed	genes	with	a	lower	number	of	counts	that	could	be	identified	for	this	study	are	the	

Mdng	themselves,	which	have	much	larger	fold-changes.	

	

Figure	X-a.	Fitted	dispersion	for	count	data	of	genes	with	more	than	U	mean	counts.	
Dispersion	values	calculated	by	DESeqY	are	related	to	mean	and	variance	of	counts	for	each	gene.	
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3.3 DISCUSSION 

In	this	chapter,	I	generated	V	cell	lines	based	on	human	HEKG^V	cells,	expressing	putative	

mouse	 de	 novo	 genes,	 and	 performed	 a	 transcriptomics	 analysis	 on	 them.	 The	 goal	 was	 to	

identify	the	effects	that	a	completely	new	gene	can	have	over	the	transcriptome	of	a	different	

organism.	This,	in	turn,	could	help	us	obtain	a	better	understanding	of	the	way	in	which	novel	

genes	that	begin	to	be	expressed	in	a	cell	could	interact	with	its	transcriptional	and	regulatory	

networks.	By	inserting	novel	genes	from	mouse	in	a	human	cell	line,	one	could	study	the	effect	

of	sequences	that	are	already	known	to	be	tolerated	by	a	eukaryotic	cell.	Such	a	sequence	could	

be	used	as	a	proxy	for	a	de	novo	gene	in	the	early	stages	of	birth,	but	after	having	passed	the	

filters	 imposed	by	selection	on	toxic	ORF	products.	Given	the	stable	expression	of	the	tested	

genes	in	mouse	species,	my	expectation	was	that	their	expression	of	the	novel	genes	would	not	

have	a	negative	impact	on	the	human	cells.	

Indeed,	that	is	what	I	found	from	the	results	presented	in	this	chapter.	The	transformed	cells	

showed	no	morphological	differences	or	slower	growth	and	the	expression	of	the	mouse	genes	

had	an	almost	negligible	effect	on	the	transcriptome	of	the	cells.	In	all	cases	there	were	V	or	less	

differentially	expressed	genes	besides	the	mouse	gene	itself	and	UQCRFSQ,	which	was	identified	

as	differentially	expressed	in	all	cells	to	which	the	inducer,	doxycycline,	was	added.	It	 is	well	

known	that	doxycycline	affects	protein	synthesis	in	prokaryotes,	and	in	eukaryotes;	including	

mitochondria	protein	synthesis	 in	 the	 latter	 (Nguyen	et	al.,	GHQE;	Sanchez	et	al.,	GHGH).	The	

effects	were	found	even	at	the	low	dosage	used	for	 induction	in	this	study.	Two	of	the	other	

differentially	expressed	genes—MT-COB	and	MT-NDD,	downregulated	in	the	MdngG	and	MdngR	

cells,	respectively—are	mitochondrial	genes,	also	part	of	the	oxidative	phosphorylation	pathway.	

RPSBF	and	MT-RNRH,	are	a	riboprotein	and	a	mitochondrially	encoded	rRNA,	respectively.	

There	 are	 V	 genes	out	of	 the	`	 that	were	 found	 to	be	differentially	 expressed	 in	 the	 cells	

expressing	Mdng	that	do	not	seem	to	be	related	to	any	known	effect	of	the	antibiotics	used.	The	

first	one	was	found	to	be	slightly	upregulated	in	cells	expressing	MdngG	and	MdngQH:	XIST	(X	

Inactive	Specific	Transcript),	a	lncRNA	that	has	known	functions	in	X	chromosome	inactivation,	

inflammation	and	stress	responses	(Wang	et	al.,	GHGQ).	The	second	one,	SRRMH,	was	upregulated	

in	MdngG	cells,	and	it	is	part	of	the	spliceosome	(Ilik	et	al.,	GHGH).	Finally,	MdngQH	cells	showed	

decreased	 expression	 of	 FTL	 (Ferritin	 light	 chain),	 a	 gene	 involved	 with	 iron	 metabolism	

(Muhoberac	&	Vidal,	GHQ^).	

All	differentially	expressed	genes,	besides	the	Mdng	themselves,	have	very	small	fold	changes.	

It	is	interesting	that	all	the	DEGs	detected,	except	for	XIST	and	FTL,	could	be	related	to	effects	

of	 the	 antibiotics	 used	 for	 induction	 of	 expression	 of	 selection,	 as	 responses	 to	 stress.	 The	



Section	II.	Using	random	sequences	and	a	eukaryotic	expression	system	to	study	de	novo	gene	birth	
	

	 b#	

information	provided	by	 the	 transcriptomics	 analyses	 alone	 is	 not	 enough	 to	 derive	 reliable	

conclusions	about	the	effect	of	the	mouse	genes	on	the	HEKG^V	cells.	The	dispersion	of	the	data	

among	 different	 replicates	 was	 also	 higher	 than	 what	 is	 required	 to	 detect	 differentially	

expressed	genes	with	small	fold	changes,	so	it	is	uncertain	whether	the	effects	of	the	genes	are	

completely	absent	or	just	below	the	power	of	detection.	Besides	the	batch	effects	found	in	this	

analysis,	this	dispersion	could	also	be	due	to	the	cells	being	in	different	stages	of	the	cell	cycle.	

No	attempt	to	synchronise	the	cell	cycle	was	done	in	this	experiment.	

In	either	case,	this	work	has	shown	that	novel	genes	from	a	eukaryotic	organism	could	be	

well	tolerated	by	another	one.	If	one	tries	to	extrapolate	the	results	to	the	process	of	de	novo	

gene	birth,	 these	 examples	 could	provide	 information	 about	 the	 behaviour	 of	 protogenes	 in	

intermediate	stages	of	their	way	to	becoming	a	gene.	In	this	scenario,	such	protogenes	would	

not	provide	any	initial	fitness	advantage,	but	they	would	be	kept	in	a	population	without	having	

a	significant	effect	on	the	cells.	This	behaviour	gives	support	to	the	hypothesis	that	they	could	

be	retained	and	even	fixed	in	the	population	as	“frozen	accidents”	(Schmitz	et	al.,	GHQ`).	

Another	interesting	implication	of	these	results	is	that	these	genes	expressed	in	HEKG^V	cells	

are	 unlikely	 to	 interact	 with	 central	 nodes	 in	 the	 regulatory	 networks	 of	 the	 cells—usually	

composed	by	older	genes	(Abrusan,	GHQV).	Given	the	long	divergence	times	between	mice	and	

human,	the	lack	of	an	effect	of	the	Mdng	expression	on	the	transcriptome	of	the	HEKG^V	cells	

could	be	explained	if	they	only	interact	with	younger	genes.	

The	 results	presented	 in	 this	 chapter	 agree	with	evidence	 that	novel	 (random)	 sequences	

expressed	in	a	cell	are	well	tolerated	(Tretyachenko	et	al.,	GHQR),	and	could	provide	some	support	

to	the	hypothesis	that	de	novo	genes	that	stay	in	a	population	are,	in	principle,	neutrally	evolving,	

and	could	be	the	result	of	“frozen	accidents”	or	neutral	ORFs	that	escaped	the	initial	purging	by	

selection	(Ruiz-Orera	et	al.,	GHQ`;	Schmitz	et	al.,	GHQ`;	Wu	&	Zhang,	GHQV).	

The	studies	already	published	about	MdngG	(Xie	et	al.,	GHGH)	and	MdngR	(Xie	et	al.,	GHQ^)	

have	shown	that	these	genes	do	have	an	effect	on	the	transcriptome	of	mice.	Unfortunately,	I	

had	some	difficulties	during	the	transfection	and	selection	of	the	cells,	which	resulted	in	a	very	

low	efficiency	of	generation	of	the	cell	lines.	Given	the	small	sample	of	genes	studied	here,	it	is	

difficult	to	generalize	these	results.	Several	further	studies	are	necessary	to	improve	and	refine	

the	results	presented	here.	First,	it	would	be	useful	to	attempt	the	transfection	of	murine	cells	

with	the	Mdng	in	over-expression	assays,	for	example,	in	order	to	confirm	that	we	are	not	only	

observing	a	lack	of	response	in	the	system.	Second,	it	would	be	interesting	to	see	whether	the	

effects	are	as	small	when	using	other	candidates	for	transfection,	and	maybe	also	with	control	

genes	that	are	older	and	probably	better	interconnected	in	the	protein	interaction	or	regulatory	
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networks	of	the	human	cells.	Also,	one	could	expect	that	by	synchronising	cell	cycle	stages,	for	

example	by	treatment	with	a	double	thymidine	block	(Chen	&	Deng,	GHQ`),	one	could	reduce	

the	dispersion	of	the	data	and	thus	make	the	assay	more	sensitive	to	specific	changes.	
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Materials	and	methods	used	in	specific	chapters	in	Section	II	are	indicated	with	the	chapter	

number	in	square	brackets.	If	no	number	is	indicated,	methods	were	used	in	all	chapters.	

1. Nucleic acid extraction and purification 

For	plasmid	extraction	and	purification,	bacteria	were	grown	overnight	in	g	mL	LB	medium	

(VR	̊ C,	GgH	rpm).	V	mL	of	culture	were	centrifuged	and	plasmid	DNA	was	purified	using	QIAprep	

spin	miniprep	kit	(QIAGEN,	Cat.	No.	GRQH_)	following	the	provider’s	protocol,	and	re-suspended	

in	the	provided	buffer.	

Total	 genomic	DNA	was	 extracted	 from	 frozen	 cell	 pellets	 using	DNeasy	blood/tissue	kit	

(QIAGEN,	Cat.	No.	_^gHE)following	the	provider’s	protocol.	For	cells	growing	in	^_-well	plates,	

cells	were	lysed	directly	on	the	plate	after	removal	of	growth	medium,	transferred	to	a	^_-deep-

well	plate,	and	DNA	was	extracted	using	an	automated	TECAN	Freedom	Evo	QgH	system	with	

the	Stratec	Invisorb	DNA	Tissue	HTS	^_	kit	(STRATEC,	Cat.	No.	RHVG^HHVHH).	

RNA	 was	 extracted	 from	 frozen	 cell	 pellets	 using	 TRIzol	 Reagent	 (Invitrogen,	 Cat.	 No.	

Qgg^_HQ`),	resuspended	in	nuclease-free	water,	and	treated	with	DNase	I	(Promega,	Cat.	No.	

MHVHVS).	For	extraction	from	plates	in	Chapter	V,	cells	growing	in	QG-well	plates	were	directly	

lysed	in	the	well	after	removal	of	growth	media	using	buffer	RLT	plus,	and	RNA	was	extracted	

using	RNeasy	^_	plus	kit	(QIAGEN,	Cat.	No.	REQ`Q).	

Purification	of	PCR	products	was	done	either	directly	from	the	PCR	reaction	using	QIAquick	

PCR	Purification	Kit	 (QIAGEN,	Cat.	No.	 G`QHE),	 or	 from	excised	 agarose	 electrophoresis	 gel	

bands	using	QIAquick	Gel	Extraction	Kit	(Cat.	No.	G`RH_).	

Nucleic	acid	content	of	single	samples	was	quantified	using	a	NanoDrop	spectrophotometer,	

for	single	samples.	For	samples	extracted	in	plates,	DNA	content	was	measured	using	Quant-iT	

PicoGreen	dsDNA	Reagent	(Invitrogen,	Cat.	No.	PQQE^g)	with	a	TECAN	fluorescence	microplate	

reader.	

2. Sequencing 

2.1 SANGER SEQUENCING 

Sanger	sequencing	was	done	for	confirmation	of	PCR	and	plasmid	miniprep	products	using	

specific	primers	(see	list	below).	Sequencing	reactions	were	prepared	using	purified	templates	

and	sequenced	in	an	ABI	Genetic	Analyzer	VQVHXL	or	VgHHXL.	

2.2 AMPLICON SEQUENCING [CH1, CH2] 



De	novo	evolution	of	genetic	function	from	random	sequences	
	

	%V	

In	Chapter	Q,	amplicon	sequencing	of	the	library	samples	at	each	timepoint	was	performed	

using	specific	barcoded	primers	to	amplify	a	Vg_	bp	fragment	including	the	random	sequences	

in	a	one-step	PCR	using	PHUSION	HF	master	mix	(Invitrogen).	The	cycling	program	consisted	

of	an	initial	denaturation	at	^`	˚C	for	VH	seconds,	followed	by	Gg	cycles	of	^`	˚C	for	QH	seconds,	

_g	̊ C	for	GH	seconds,	and	RG	̊ C	for	Q	minute.	After	a	final	elongation	step	of	RG	̊ C	for	QH	minutes,	

samples	were	purified	using	a	Qiagen	MinElute	Gel	Extraction	kit.	Concentration	of	samples	was	

calculated	through	relative	quantification	in	an	agarose	gel,	using	a	Molecular	Imager	Gel	Doc	

XR+	System	with	the	Image	Lab	Software	(Bio-Rad).		

In	Chapter	G,	a	sample	of	the	library	was	first	sequenced	using	the	Illumina	MiSeq	to	obtain	

the	library.	After	the	time-course	experiment,	all	samples	from	each	timepoint	were	sequenced	

together	 using	 the	 Illumina	 NextSeq	 with	 shorter	 read	 lengths.	 In	 either	 case,	 amplicon	

sequencing	primers	were	designed	for	two-step	PCR-based	sequencing	(see	list	below).		The	first	

PCR	for	the	amplicon	sequencing	was	performed	in	triplicate,	using	Qg	Hot	Start	High-Fidelity	

GX	Master	Mix	(Cat.	No.	MHE^ES,	NEB),	with	the	following	cycling	program:	initial	denaturation	

at	^`	˚C	for	VH	seconds,	followed	by	GE	cycles	of	^`	˚C	for	QH	seconds,	_G	˚C	for	VH	seconds,	and	

RG	˚C	for	GH	seconds,	with	a	final	elongation	cycle	at	RG	˚C	for	G	minutes.	PCR	products	were	

pooled,	 visualized	 on	 a	 gel	 and	 purified	 using	 double	 sided	 selection	 with	 SPRIselect	

(Beckmann-Coulter,	Cat.	No.	BGVVQ`).	The	second	PCR	was	done	with	indexed	Illumina	primers,	

and	the	following	cycling	conditions:	initial	denaturation	at	^`	˚C	for	VH	seconds,	followed	by	g	

cycles	of	^`	˚C	 for	 QH	seconds,	_H	˚C	 for	VH	seconds,	and	RG	˚C	 for	GH	seconds,	with	a	 final	

elongation	cycle	 at	 RG	 ˚C	 for	G	minutes.	The	products	were	purified	using	AmpureXP	beads	

(Beckmann-Coulter,	Cat.	No.	A_V``Q).		

For	both	chapters,	each	barcoded	sample	was	quantified,	and	then	pooled	together	in	equal	

concentrations	to	obtain	the	sequencing	library.	The	final	pool	was	measured	with	the	Agilent	

Bioanalyzer	using	 the	Agilent	DNARgHH	kit	and	measuring	with	 the	 fluorescence	NanoDrop	

VVHH	using	the	Qubit	ds	DNA	BR	Assay	Kit.	Finally,	the	pool	was	diluted	to	a	final	concentration	

of	 QH	 pM	 for	 the	MiSeq,	 or	 Q.`	 pM	 for	 the	NextSeq,	 and	 sequenced	with	 QH	%	or	 Q	%	PhiX,	

respectively.	Paired-end	sequencing	was	done	using	Illumina's	MiSeq	Reagent	Kit	vV	to	get	VHH	

bp	(CHQ)	or	GgH	bp	reads,	or	NextSeq	gHH	to	get	QgH	bp	reads.	

2.3 WHOLE GENOME SEQUENCING [CH2] 

There	is	no	information	provided	by	the	manufacturer	regarding	where	the	FRT	site	is	located	

in	the	genome	of	the	cells.	In	order	to	make	sure	that	the	integration	of	the	plasmids	will	not	

occur	 in	a	 functional	part	of	 the	genome,	 the	genome	of	Flp-In	T-REx	G^V	cells	 successfully	

transfected	 with	 a	 pcDNAg/FRT/TO/GFP-stop	 plasmid	 was	 sequenced.	 Cells	 were	 cultured	
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under	normal	conditions,	QxQH'	cells	were	collected	in	microcentrifuge	tubes	and	centrifuged.	

Supernatant	was	removed	and	DNA	was	extracted	from	the	flash	frozen	pellet.	Libraries	were	

prepared	using	Illumina	TruSeq	Nano	kit,	and	sequenced	in	an	Illumina	NextSeq	with	paired-

end	reads	of	QgH	nucleotides.	

After	generation	of	fastq	files	using	the	bclGfastq	software	from	Illumina,	reads	were	trimmed	

as	described	below	and	mapped	to	the	human	genome	and	the	three	plasmids:	pcDNA_™/TR,	

pFRT/lacZeo,	and	pcDNAg/FRT/TO/GFP-stop	using	BowtieG.	Reads	mapped	to	 the	plasmids	

were	extracted	and	pairs	that	were	mapped	to	both	a	plasmid	and	the	genome	were	extracted	to	

identify	the	location	of	the	insertion	of	each	plasmid	in	the	genome.	

2.4 RNASEQ [CH3] 

Library	 preparation	 was	 done	 following	 Illumina’s	 TruSeq	 Stranded	 mRNA	 Sample	

Preparation	HS	protocol.	

2.5 READ CONVERSION AND QUALITY CONTROL 

Reads	 were	 demultiplexed	 from	 base	 call	 (BCL)	 files	 using	 the	 software	 bclGfastq	

(vG.GH.H.EGG).	The	resulting	fastq	files	were	examined	using	FastQC	(v.H.QQ.`).	Reads	from	all	

sequencing	experiments	were	trimmed	using	Trimmomatic	 (v.	H.V_).	For	samples	sequenced	

with	 NextSeq,	 reads	 from	 multiple	 lanes	 were	 merged	 with	 the	 script	 mergelanes.sh	

(https://github.com/stephenturner/mergelanes).	

3. Library and plasmid generation [CH2, CH3] 

3.1 CLONING INTO PCDNA5/FRT/TO PLASMIDS 

pcDNAg/FRT/TO	 plasmids	 used	 for	 transfection	 of	 the	 Flp-In	 T-REx	 G^V	 cells	 were	 cut	

simultaneously	with	two	restriction	enzymes	for	directional	cloning—specified	below	for	each	

insert—and	shrimp	alkaline	phosphatase	(NEB,	Cat.	No.	MHVRQS)	was	added	to	the	restriction	

reaction	in	order	to	avoid	re-ligation	of	empty	plasmids.	

Specific	 PCR	 products	 used	 as	 inserts	 were	 purified	 as	 described	 above	 and	 cut	 also	

simultaneously	 with	 the	 same	 restriction	 enzymes	 as	 the	 plasmid.	 Reaction	 times	 and	

temperatures	were	determined	according	to	the	pair	of	enzymes	used.	When	heat	inactivation	

was	possible,	the	restriction	mix	was	incubated	at	the	temperature	required	by	the	enzyme	with	

the	 highest	 inactivation	 temperature.	 Otherwise,	 the	 restricted	 plasmid	 and	 inserts	 were	

purified	as	indicated	above.	

Ligation	was	 done	 in	 all	 cases	 using	 TE	DNA	 ligase	 (NEB,	MHGHGS),	 for	 Q	 hour	 at	 room	

temperature	 (approximately	 GQ	 ˚C).	 Ligation	 ratios	 of	 vector	 to	 insert	were	 V:Q	 unless	 stated	
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otherwise,	 and	 the	 appropriate	 amounts	 were	 calculated	 using	 the	 NEBioCalculator	

(http://nebiocalculator.neb.com/)	tool	online.	

Ligation	products	were	used	to	transform	chemocompetent	E.	coli	(JMQH^,	Promega,	Cat.	No.	

LQHHQ)	following	the	provider’s	protocol.	QHH	µL	of	the	transformed	cells	were	plated	onto	LB-

agar	plates	with	QHH	mg/mL	ampicillin	and	allowed	to	grow	overnight	at	VR	˚C.	The	remaining	

cells	were	used	to	inoculate	liquid	cultures	in	LB	broth	with	gHµg/mL	ampicillin	for	miniprep	

or	midiprep	plasmid	 extraction.	 For	 long	 term	 storage,	 gHH	 freezing	 in	 Gg%	glycerol.	 Single	

colonies	were	picked	from	the	plates,	re-suspended	in	gH	µL	of	nuclease-free	water	and	lysed	by	

heating	to	^`	˚C	for	g	minutes.	Lysates	were	used	as	templates	for	colony	PRC	using	DreamTaq	

polymerase	Green	PCR	Master	Mix	(ThermoFisher,	Cat.	No.	KQH`G).	PCR	products	were	visually	

inspected	in	agarose	gels,	and	products	with	the	expected	size	were	purified	and	used	for	Sanger	

sequencing.		

3.2 EUKARYOTIC LIBRARY (EUKL) [CH2] 

A	random	sequence	 library	was	designed	 to	have	 sequences	with	a	 region	of	 QgH	 random	

nucleotides	flanked	by	predetermined	features.	On	the	g’	end	of	the	random	region	all	sequences	

have	a	HindIII	 restriction	site	 for	cloning,	and	a	Kozak	sequence	 including	a	start	codon	 for	

transcription	 and	 translation	 initiation.	 The	 selected	 Kozak	 sequence	 is	 one	 of	 the	 most	

commonly	used	in	human	cells	according	to	the	literature	(REF).	On	the	V’	end	of	the	random	

region,	a	histidine	tag	(_xHis-Tag)	for	protein	detection,	a	stop	codon	and	a	NotI	restriction	site	

for	cloning	were	included.	In	order	to	increase	the	probability	of	successful	expression	of	the	

tags	in	a	human	cell	line,	care	was	taken	to	use	histidine	codons	with	a	mid-	to	high-	frequency	

of	 use	 in	 human	 genes.	 The	 full	 length	 of	 the	ORF	 designed	 in	 the	 library	 is	 QREbp	 (g`aa),	

including	the	QgHbp	(gHaa)	random	region.	

The	 oligonucleotide	 pool	 for	 the	 library	 was	 ordered	 from	 metabion	 GmbH	 as	 a	 single	

stranded	oligo	and	amplified	using	specific	primers.	To	avoid	enrichment	of	partial	sequences	

or	PCR	errors,	only	the	reverse	primer	was	added	for	an	initial	long	amplification	cycle	with	VH	

seconds	annealing	at	gg˚C	and	GH	minutes	extension	at	RG	˚C,	 following	 the	addition	of	 the	

forward	 primer	 another	 long	 amplification	 cycle	 with	 annealing	 temperature	 of	 _H	 ˚C	 was	

followed	by	 six	 two-step	 amplification	 cycles:	 ^`	 ˚C	 for	 QH	 seconds,	 and	RG	 ˚C	 for	 Q	minute.	

Products	with	the	right	size	were	purified	from	an	agarose	gel,	cut	using	HindIII-HF	and	NotI-

HF	(NEB)	and	ligated	into	a	pcDNAg/FRT/TO	plasmid.	The	ligated	plasmids	were	cloned	into	

chemo-competent	 E.	 coli	 JMQH^	 (Promega).	 Transformed	 bacteria	 were	 allowed	 to	 grow	

overnight	in	LB	agar	plates	and	gH	mL	LB	liquid	medium	with	gH	µg/mL	ampicillin.	g	mL	of	the	
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culture	were	used	the	next	day	to	freeze	stocks	in	glycerol.	The	complete	remaining	volume	was	

used	in	a	midiprep	assay	to	obtain	purified	plasmids	for	transfection	of	the	eukaryotic	cells.	

3.3 CONTROL GFP PLASMID 

pcDNAg/FRT/TO	 GFP	 was	 a	 gift	 from	 Harm	 Kampinga	 (Addgene	 plasmid	 #	 Q^EEE	 ;	

http://nGt.net/addgene:Q^EEE	;	RRID:Addgene_Q^EEE).	The	GFP	in	this	plasmid	does	not	have	

a	stop	codon	so	I	designed	specific	primers	to	amplify	the	GFP	sequence	(see	list	below),	and	

add	a	stop	codon	while	keeping	the	HindIII	and	BamHI	restriction	sites	for	re-cloning	into	the	

empty	pcDNAg/FRT/TO	plasmid.	

3.4 MOUSE DE NOVO GENE (MDNG) PLASMIDS [CH3] 

DNA	and	RNA	samples	for	the	amplification	of	the	candidate	genes	were	kindly	provided	by	

Dr.	Chen	Xie	(MPI	for	Evolutionary	Biology).	cDNA	was	obtained	from	the	available	mouse	RNA	

samples	using	RevertAid	First	Strand	cDNA	Synthesis	Kit	(ThermoFisher,	Cat.	No.	KQ_GG).	PCR	

conditions	were	optimised	 for	 each	primer	pair	until	 specific	bands	 could	be	obtained.	PCR	

products	were	sequenced	with	Sanger.	Purified	and	confirmed	PCR	products	for	the	candidate	

genes	were	cut	using	HindIII	and	BamHI	(NEB,	Cat.	No.	RVQHEM	and	RVQV_M),	and	ligated.	

4. Cell culture [CH2, CH3] 

Cells	were	counted	using	a	Countess	II-FL	cell	counter,	and	collected	by	centrifugation	at	GgH	

x	g	for	g	minutes,	unless	otherwise	stated.	

4.1 CELLS 

Flp-In	 T-REx	 G^V	 cells	 were	 grown	 in	 complete	 medium	 (CM)—DMEM	 High-glucose,	

pyruvate	(Gibco,	Cat.	No.	EQ^__HgG)	supplemented	with	QH%	tetracycline-free	FBS	(PAN	Biotech,	

Cat.	No.	 PVH-V_HG,	 Lot	No.	 PH`HVQRTC)—and	 antibiotics	 at	 VR	 ˚C	with	 g	%	COG.	 For	 non-

transfected	cells,	Zeocin	and	Blasticidin	were	added	to	final	concentrations	of	QHH	µg/mL	and	Qg	

µg/mL,	respectively;	for	transfected	cells,	Hygromycin	to	a	final	concentration	of	QHHµg/mL	was	

added	instead	of	Zeocin.	Cells	were	allowed	to	grow	to	up	to	`H	%	confluence	before	passaging	

according	to	the	manufacturer’s	instructions.	Routinely,	cells	were	passaged	in	a	Q:E	to	Q:QH	ratio.	

For	passaging	a	TRg	flask	(Rg	cm$	growth	area),	cells	were	washed	once	using	QHmL	DPBS	(PAN	

biotech,	Cat.	No.	PHE-V_gHH).	V	mL	of	H.Hg	%	trypsin	(Gibco,	Cat.	No.	GgVHHHgE)	were	used	to	

detach	the	cells	with	incubation	at	VR	˚C	for	g	minutes,	and	g	mL	of	complete	medium	were	

added	to	stop	the	reaction.	G	mL	of	the	resulting	cell	suspension	were	transferred	directly	into	a	

new	flask	with	QG	mL	of	fresh	growth	medium	to	obtain	a	Q:E	passage	ratio.	The	quantities	of	

reagents	were	scaled	up	or	down	as	necessary	for	containers	of	different	size.	
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4.2 GROWTH CURVES [CH2] 

Growth	curves	were	obtained	by	counting	three	replicate	wells	of	cells	seeded	in	a	QG-well	

plate	(growth	surface	of	V.gcmG).	For	the	Flp-In	T-REx	G^V	cells,	optimal	seed	number	was	first	

determined	by	testing	four	different	seed	numbers	(gEV,	Q.gEE,	_EE,	and	Q.`EE	cells)	in	wells	with	

three	replicates	each.	Subsequent	growth	curves	were	done	seeding	Q.gEE	cells	in	each	well.	Cells	

from	three	replicate	wells	were	trypsinized	daily	for	one	week,	and	counted	with	trypan	blue	for	

quantification	of	cell	viability.	Medium	was	refreshed	as	needed	by	replacing	two	thirds	of	the	

volume	for	fresh	medium	whenever	there	was	a	change	in	pH	visible	by	the	change	in	coloration	

of	 the	medium	 from	pink	 to	orange	or	 yellow.	Growth	curves	were	made	by	 calculating	 the	

number	of	live	cells	per	square	centimetre	of	growth	surface.	

4.3 TRANSFECTION 

Using	 a	 control	 plasmid	 expressing	 GFP	 (pmaxGFP®	 Vector,	 Lonza),	 I	 confirmed	 in	 a	

preliminary	experiment	that	transfection	of	these	cells	can	be	achieved	with	high	efficiencies	of	

up	 to	 `H%	 using	 either	 nucleofection,	 Fugene_	 reagent	 (Promega,	 Cat.	 No.	 EG_^V)	 or	

LipofectamineVHHH	reagent	(ThermoFisher,	Cat.	No.	LVHHHHH`).	At	the	same	time,	I	calculated	

low	efficiency	rates	of	integration	of	the	plasmid	into	the	genome	(H.HHV_	%–H.HH_V	%)	with	

either	method.	Cells	were	cultured	under	normal	conditions	until	they	reached	RH	%	confluence	

before	 transfection.	 On	 the	 day	 of	 transfection,	 medium	 was	 replaced	 with	 CM	 without	

antibiotics	or	Opti-MEM	(Gibco,	VQ^`gH_G)	at	least	one	hour	before	the	experiment.	

For	 the	 eukaryotic	 library	 (CHG),	 three	TRg	 flasks	 (estimated	 QxQH^R	 cells/flask)	were	 co-

transfected	using	VH	µL	LipofectamineVHHH	 reagent	with	either	GH,	gH	or	`H	µg	of	plasmid,	

distributed	between	the	library	plasmid	(pcDNAg/FRT/TO/Lib)	and	the	Flp	integrase	plasmid	

(pOGEE)	in	a	Q:^	ratio.		

For	 the	 Mdng	 candidates	 (CHV),	 cells	 growing	 in	 a	 ^_-well	 plate	 were	 transfected	 with	

plasmids	that	had	the	expected	insert.	Transfection	was	done	in	E	replicate	wells	for	each	insert,	

adding	H.G	ug	of	total	plasmid	per	well,	in	the	same	ratios	as	indicated	above,	and	using	Fugene_	

reagent	in	a	V:Q	ratio	to	the	total	amount	of	DNA.	

4.4 SELECTION OF TRANSFECTANTS 

Cells	 that	 do	 not	 integrate	 a	 pcDNAg/FRT/TO	 plasmid	 at	 the	 FRT	 site	 do	 not	 acquire	

resistance	to	Hygromycin	and	are	killed	in	the	course	of	one	to	two	weeks	after	passaging.	For	

all	inserts,	cells	were	cultured	under	normal	conditions	with	the	transfection	reagent	complex	

for	 E`	 hours	 and	 then	 passaged	 in	 a	 Q:E	 ratio,	 with	 selection	 antibiotics	 (Blasticidin	 and	

Hygromycin)	added	to	the	medium.	Selection	medium	was	refreshed	every	three	to	four	days	by	
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replacing	two	thirds	of	the	medium	in	the	container	with	fresh,	pre-warmed	selection	medium.	

When	 individual	 colonies	 of	 attached	 and	 dividing	 cells	 with	 normal	morphology	 could	 be	

detected	 under	 the	microscope,	 cells	 were	 trypsinized	 and	 collected	 in	 a	 new	 TRg	 flask	 for	

amplification	and	freezing.	

4.5 INDUCTION OF EXPRESSION 

The	 minimum	 amount	 of	 doxycycline	 needed	 to	 induce	 expression	 was	 determined	 by	

generating	an	induction	curve.	Eight	different	concentrations	of	doxycycline	(H,	Q,	QH,	GH,	VH,	gH,	

QHH,	VHH	ng/mL)	were	added	to	cells	transfected	with	the	pcDNAg/FRT/TO	plasmid	containing	

GFP.	Doxycycline	was	added	at	the	moment	of	seeding,	and	cells	were	monitored	for	E	days,	to	

control	for	changes	of	morphology,	and	quantify	expression	levels	through	RNA	extraction	and	

RT-PCR.	Quantification	of	the	number	of	cells	expressing	GFP	was	done	using	a	Countess	II	FL	

cell	counter	with	a	green	filter.	Viability	of	the	cells	was	also	quantified	using	trypan	blue.	

4.6 SINGLE CLONE ISOLATION [CH2] 

Cells	grown	in	normal	conditions	were	trypsinized	and	re-suspended	in	CM	with	antibiotics.	

The	suspension	was	strained	into	a	g	mL	Falcon™	round-bottom	polystyrene	test	tube	with	cell	

strainer	 cap.	 A	 sterile	 Corning™	Stripwell™	 Microplate	 was	 prepared	 with	 QgH	 µL	 of	 room-

temperature	medium	in	each	well.	The	cell	suspension	was	sorted	into	the	strips	using	a	Bio-

Rad	SVe™	Cell	Sorter	with	the	purity	setting	to	ensure	that	only	one	cell	was	sorted	per	well.	The	

sorted	cells	were	kept	in	an	incubator	under	normal	conditions	for	G	weeks	or	until	colonies	

could	be	detected	under	the	microscope.		

Wells	where	cells	could	be	detected	were	trypsinized	and	passaged	into	a	new	^_-well	plate	

with	CM	and	antibiotics.	When	confluence	reached	RH-^H%	in	all	wells,	medium	was	removed	

and	cells	were	lysed	in	the	plate	for	DNA	extraction.	Extracted	DNA	was	used	as	template	for	

PCR	with	primers	on	the	flanking	regions	of	the	random	sequences,	and	the	purified	product	

used	for	Sanger	sequencing.	The	presence	of	each	clone	in	the	database	was	confirmed	using	

BLAST.	

5. Time-course experiment with E. coli library [CH1] 

I	had	access	to	a	sample	of	the	original	library	produced	by	Neme	et	al,	GHQR.	Transformed	E.	

coli	DHQHB	cells	were	available	as	frozen	gHH	µL	stocks	in	GH%	glycerol.	In	order	to	assess	the	

strength	of	the	effect	observed	in	the	GHQR	study,	I	repeated	the	experiment	using	a	QHH-fold	

dilution	of	 the	original	 library	and	a	one-day	sampling	schedule,	with	samplings	every	 three	

hours	for	a	total	of	four	samplings	in	QG	hours.	I	seeded	g	µL	from	the	stock	on	Gg	mL	LB	liquid	

medium	with	gHH	µg/mL	ampicillin,	and	allowed	it	to	grow	overnight	at	VR	˚C	with	constant	
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shaking	(GgH	rpm).	After	Q_	hours,	gHH	µL	of	the	liquid	culture	were	transferred	into	five	g	mL	

tubes	containing	E.g	mL	of	LB	medium	with	Q	mM	IPTG	to	induce	expression	of	the	random	

sequences.	For	each	cycle,	gHH	µL	of	culture	from	each	tube	were	used	to	seed	a	new	replicate	

after	 three	 hours	 of	 growth	 (VR,	 GgH	 rpm).	 From	 the	 remaining	 bacterial	 culture	 for	 each	

replicate,	V	mL	were	collected	and	used	for	plasmid	extraction.	Extracted	plasmids	were	eluted	

in	VH	µL	of	elution	buffer	and	stored	at	-GH	˚C	for	amplicon	sequencing.	

5.1 E. COLI AVAILABLE DATA [CH1] 

In	addition	to	sequencing	data	from	the	diluted	library	experiment	described	above,	I	had	

access	 to	 the	original	 fastq	 files	of	 the	eight	experiments	described	 in	Neme	et	al.	GHQR.	The	

original	experiments	were	done	following	two	different	sampling	schedules:	either	a	one-day	

course	with	samplings	every	three	hours,	or	a	four-day	course	with	samplings	every	GE	hours.	In	

either	 case,	 four	 timepoints	 were	 sampled.	 The	 number	 of	 replicates,	 cycle	 duration	 and	

experiment	 length	 for	 each	 of	 the	 experiments	 are	 described	 in	 the	 Table	 Q,	 as	 well	 as	 the	

equivalency	 for	 the	 experiments	 mentioned	 in	 Neme	 et	 al.,	 GHQR.	 In	 addition	 to	 three	

experiments	 with	 QH	 replicates	 of	 each	 type	 of	 sampling	 schedule,	 there	 are	 two	 E-day	

experiments	with	g	replicates.	One	of	them	was	done	with	a	treatment	control	without	induction	

with	IPTG,	while	the	other	one	was	sequenced	g	times	to	capture	even	rare	clones	present	at	low	

frequencies	in	the	population.	Finally,	I	included	the	sequencing	data	from	the	diluted-library	

experiment	described	above.	

Table-	A.	Available	data.	Amplicon	sequencing	of	random	sequence	library	in	E.	coli.	

Experiment	
Number	

Cycle	length/	
Experiment	length	 No.	of	replicates	 Description	(Experiment	Name	in	

Neme	et	al.	ILKJ)	

X	 A	hours/	X	day	 XB	 (EX)	

?	 A	hours/	X	day	 XB	 (E?)	

A	 A	hours/	X	day	 XB	 (EA)	

@	 ?@	hours/@	days	 XB	 (E@)	

V	 ?@	hours/@	days	 XB	 (EV)	

C	 ?@	hours/@	days	 XB	 (EC)	

S	 ?@	hours/@	days	 V	 Samples	with	and	without	IPTG	
(Induction	control)	

R	 ?@	hours/@	days	 V	 Re-sequenced	V	times	(Deep	
sequencing)	

T	 A	hours/	X	day	 V	 Diluted	library	

6. Eukaryotic library time-course experiment [CH2] 

The	experiment	was	done	starting	from	a	frozen	aliquot	of	the	library	with	V.g	million	cells.	

The	aliquot	was	thawed	and	seeded	in	a	TRg	flask	with	QE	mL	of	CM.	After	`H	%	confluence	was	

reached,	cells	were	passaged	into	two	TQgH	flasks	with	GH	mL	of	CM,	plus	antibiotics	(Blasticidin	
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and	Hygromycin)	and	allowed	to	grow	again	to	at	least	RH	%	confluence.	Cells	were	trypsinized	

and	collected	in	a	single	tube,	counted,	and	used	to	seed	ten	TRg	flasks	with	VxQH^_	cells	each.	

Doxycycline	was	added	to	a	final	concentration	of	QH	ng/mL	to	five	of	these	flasks	at	the	seeding	

stage.	At	each	subsequent	passage	every	two	days,	one	fourth	of	the	population	of	each	flask	was	

seeded	into	a	new	one,	and	the	remaining	cells	were	divided	in	four	aliquots	to	be	used	in	DNA,	

RNA	 and	 protein	 extractions,	 and	 for	 freezing.	 Aliquots	 were	 centrifuged,	 supernatant	 was	

removed,	 and	pellets	were	 either	 flash	 frozen	 in	 liquid	nitrogen	or	 re-suspended	 in	 freezing	

media	and	frozen	as	routinely.	Sampling	was	done	for	QH	timepoints.	Samples	were	divided	in	G	

^_-well	plates	and	DNA	extraction	was	done	as	stated	above.	

7. Random sequence Analysis Pipeline [CH1, CH2] 

7.1 DATABASE GENERATION [CH1, CH2] 

For	Chapter	 Q,	 and	 the	 preliminary	MiSeq	 sequencing	 experiment	 in	Chapter	 G,	 trimmed	

reads	for	each	experiment	were	merged	using	the	software	USEARCHQH	(-fastq_mergepairs,	-

fastq_maxdiffs	VH,	-fastq_minmergelen	QHH).	Since	each	read	in	a	pair	covers	the	entire	random	

sequence,	up	to	VH	mismatches	are	allowed	between	the	paired	forward	and	reverse	reads.	The	

fastq_mergepairs	algorithm	resolves	discrepancies	between	 the	 forward	and	reverse	 reads	by	

comparing	the	quality	score	for	the	conflicting	position	in	each	read.	It	keeps	the	residue	with	

the	best	quality	score	in	the	merged	read.	Merging	the	reads	with	this	algorithm	reduces	the	

percentage	of	sequencing	errors	kept	in	each	read.	Unfortunately,	it	is	not	possible	to	account	

for	PCR	errors	that	have	occurred	during	the	library	preparation.	

To	remove	reads	that	do	not	belong	to	a	PCR	product	 from	the	plasmids	 in	the	 library,	a	

custom	Perl	script	was	used	to	find	and	save	all	merged	reads	containing	pre-defined	sequences	

up-	 and	 downstream	 the	 random	 sequences	 on	 the	 pFLAG-CTC	 plasmid.	 The	 pre-defined	

sequences	were	a	Q`bp	sequence	around	the	start	codon,	and	the	FLAG	tag,	including	the	stop	

codon.	The	reads	thus	selected	are	considered	clean	amplicon	reads,	trimmed	around	the	pre-

defined	sequences,	and	used	for	all	subsequent	analyses.		

For	each	sequence	in	each	of	the	two	libraries,	ORFs	were	predicted	using	getorf	from	the	

EMBOSS	suite.	The	ORFs	used	were	those	between	a	start	and	a	stop	codon	(-find	V)	with	the	

default	minimum	size	changed	to	QG	nucleotides—the	length	of	the	constant	start	sequence	of	

the	bacteria	library—or	V	nucleotides—a	single	amino	acid	in	the	case	of	the	eukaryotic	library.	

The	first	ORF	found	for	each	sequence	was	taken	as	the	transcription	product	of	the	sequence.	

If	no	starting	codons	could	be	found	in	the	sequence,	the	ORF	was	assigned	as	a	missing	value	

to	 the	 database.	 ORFs	 were	 translated	 in	 the	 first	 frame	 using	 the	 program	 transeq	 from	

EMBOSS,	and	assigned	as	the	predicted	peptides	for	each	sequence.	GC	contents	for	both	the	
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full	read	and	the	ORF	were	calculated	using	custom	Perl	scripts,	and	intrinsic	disorder	scores	

were	calculated	for	the	predicted	peptides	using	IUPRED	with	both	the	short	and	long	options.	

To	generate	a	database	of	all	unique	sequences	in	the	library	that	could	be	detected	by	the	

amplicon	sequencing	approach,	all	clean	reads	from	available	experiments	and	replicates	were	

merged	and	dereplicated	using	USEARCHQH.	Dereplication	was	done	in	three	rounds.	In	the	first	

two	rounds,	sequences	were	sorted	alphabetically,	and	the	-fastx_uniques	option	was	used	to	

keep	only	one	sequence	of	each	type	in	the	database,	and	removing	singleton	reads	from	the	file,	

while	keeping	track	of	the	number	of	total	sequences	of	each	type	with	the	-sizeout	option.	The	

first	 round	was	done	on	each	 individual	 sequencing	 file,	 and	 the	 second	one	was	done	on	a	

combined	file	merging	all	de-replicated	files	from	the	first	round.	In	this	way	repeated	sequences	

are	deleted	and	an	annotation	is	added	to	the	read	name	indicating	how	many	exact	matches	

were	present	in	the	clean	read	files.	This	exact	matching	approach	is	prone	to	enrichment	of	

PCR	or	sequencing	errors,	since	any	two	reads	with	even	a	single	nucleotide	difference	are	kept	

as	individual	sequences	in	the	database.	Singleton	reads–more	likely	to	be	PCR	or	sequencing	

errors–were	 removed	 and	 a	 third	 dereplication	 round	 using	 a	 clustering	 approach	 was	

implemented.	

The	third	round	of	dereplication	aimed	to	remove	reads	generated	by	PCR	or	sequencing	

artefacts.	 The	 clustering	 approach	 used	 is	 based	 on	 the	 one	 used	 for	 OTU	 validation	 in	

microbiome	 analyses.	 Reads	 were	 sorted	 in	 decreasing	 order	 of	 size	 annotation,	 and	 the	 -

cluster_smallmem	option	of	USEARCHQH	was	used	with	an	-id	of	H.^R.	The	UCLUST	algorithm	

used	 by	 USEARCH	 is	 a	 greedy	 clustering	 approach.	 Here,	 sorting	 by	 size	means	 that	 high-

frequency	reads	are	used	as	centroids	for	clusters	first.	This	strategy	relies	on	the	assumption	

that	reads	found	in	high	frequencies	are	more	likely	to	be	real,	and	less-common,	highly-similar	

reads	are	probably	generated	 through	PCR	errors.	The	 identity	 threshold	of	H.^R	allows	 less	

frequent	 reads	 with	 up	 to	 g	 mismatches	 in	 the	 Q^g-nucleotide	 sequence	 to	 join	 the	 high-

frequency	centroids	forming	the	clusters.	Using	an	additional	filter	of	minimum	cluster	size	of	

`	reads,	commonly	used	in	microbiome	amplicon	sequencing	analyses,	removes	chimeras	and	

other	 artefacts	 from	 the	 database.	 The	 resulting	 libraries	 of	 unique	 clusters	 (full	 database,	

BACT_DB.fa,	and	EUK_DB.fa)	are	considered	to	contain	the	sequences	of	all	clones	present	in	

each	library.	

7.2 DATABASE QUALITY CONTROL [CH1, CH2] 

In	order	to	make	sure	that	the	database	generated	contains	all	clones	actually	present	in	the	

library,	and	that	they	correspond	to	the	expected	content	of	a	random	database	of	sequences,	I	

evaluated	what	percentage	of	the	original	reads	were	lost	in	the	database	generation	process.	To	
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do	this,	I	followed	the	percentage	of	reads	kept	and	correctly	merged	after	trimming,	percentage	

of	reads	containing	both	forward	and	reverse	primers,	and	the	percentage	of	reads	that	were	

included	 in	 the	 de-replication	 and	 clustering	 steps.	 Other	 parameters	 computed	 were	 the	

percentage	 of	 clones	 reported	 in	 the	 GHQR	 analysis	 that	 could	 be	 mapped	 back	 to	 the	 new	

database	for	the	bacteria	library,	and,	most	importantly,	agreement	of	the	distribution	of	the	

length	of	the	predicted	ORFs	to	the	expected	distribution	of	unique	ORFs	obtained	from	a	set	

of	random	sequences,	as	described	below.	

7.3 SEQUENCE FEATURES [CH1, CH2] 

Several	parameters	were	used	to	characterise	the	sequences	in	the	complete	database,	as	well	

as	in	the	sequence	groups	generated	after	mapping	of	the	reads	to	find	changes	in	frequency:	

Sequence	 length	was	 calculated	 for	 each	 read,	 as	well	 as	 the	 predicted	ORF	 and	 peptide	

encoded	by	them	using	bash	programs	during	the	database	generation.	The	number	of	peptides	

of	each	length	will	depend	on	the	probability	of	getting	a	stop	codon	at	each	consecutive	position,	

and	not	before.	This	is	best	described	by	the	probability	function	of	a	geometric	distribution	(Q-

p)^(k-Q)*p,	where	k	is	the	number	of	trials,	in	this	case,	the	number	of	positions	or	the	length	of	

the	sequence;	and	p	is	the	probability	of	“success”	or	at	getting	a	stop	codon.	Multiplying	this	

probability	distribution	by	the	number	of	synthesised	sequences,	we	get	the	expected	count	of	

peptides	of	each	length.	In	addition	to	this,	it	is	possible	to	predict	the	possible	number	of	unique	

sequences	 of	 each	 length	 using	 the	 exponential	 function	 GH^k,	 to	 describe	 the	 number	 of	

possible	unique	combinations	of	the	GH	amino	acids	in	a	sequence	of	length	k.	

GC	content	was	calculated	as	percentage	of	either	the	full	read	or	of	the	predicted	ORF	using	

custom	Perl	scripts	as	the	percentage	of	guanine	(G)	and	cytosine	(C)	in	a	sequence	relative	to	

its	 length.	 Amino	 acid	 composition	 of	 the	 database	 and	 different	 sequence	 groups	 were	

calculated	using	the	Biostrings	package	from	Bioconductor	in	R.	Lists	of	sequences	from	each	

database	 formatted	as	AAStringSets	were	used	as	 input	 for	 the	 letterfrequency	 function	and	

amino	acid	frequencies	were	plotted	for	each	sequence	correcting	for	length.	

Intrinsic	disorder	was	calculated	using	the	command	line	version	of	IUPred	(IUPredGA)	with	

the	“short”	option.	Intrinsic	disorder	values	were	averaged	for	each	protein	to	obtain	a	single	

average	disorder	 value	per	protein.	 Since	 very	 short	proteins	 are	 very	 likely	disordered–they	

cannot	 produce	 any	 secondary	 structures–a	 simple	 ratio	 of	 order-inducing	 versus	 disorder-

inducing	amino	acids	was	also	calculated	as	a	descriptor	of	sequences	that	might	be	more	prone	

to	 aggregating.	 Higher	 ratios	 of	 order-inducing,	 polar	 or	 very	 charged,	 amino	 acids	 might	

increase	the	chances	of	aggregation	even	for	short	peptides.	
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Protein	aggregation	propensity	was	calculated	for	each	sequence	using	the	program	PASTA	

G.H	on	the	web	server	of	The	BioComputing	UP	lab	of	the	University	of	Padua	(Italy).	For	each	

sequence,	free	energy	for	the	best	pairing	was	obtained	using	the	default	settings	for	peptides.	

The	best	energy	pairing	for	self-aggregation	was	obtained	for	each	sequence,	and	energies	of	-g	

or	less	were	considered	indicative	of	a	high	probability	of	aggregation.	

7.4 MAPPING OF READS TO FULL DATABASE [CH1, CH2] 

For	chapter	Q,	clean	reads	for	all	replicates	and	timepoints	in	each	experiment	were	mapped	

to	the	BACT	database	using	a	global	alignment-based	method	from	the	program	USEARCHQH	

(option	-usearch_global).	Since	the	NextSeq	reads	were	shorter	and	the	overlap	was	too	short	

for	 merging,	 for	 chapter	 G,	 trimmed	 forward	 reads	 were	 mapped	 onto	 their	 corresponding	

database.	 For	 consistency	with	 the	 clustering	 analysis,	 alignments	 had	 a	minimum	 required	

identity	of	H.^R,	minimum	query	coverage	of	H.^,	and	maximum	one	hit	and	g	gaps.	Hits	were	

extracted	from	the	search	results	and	counted	using	custom	bash	scripts	to	generate	count	tables	

for	each	replicate	in	each	experiment.	

7.5 FREQUENCY CHANGE DETERMINATION [CH1, CH2] 

Raw	count	tables	for	each	experiment	were	used	as	input	for	statistical	analyses	using	the	

package	DESeqG	in	R.	The	analysis	was	performed	using	the	standard	DESeqG	pipeline	normally	

used	for	differential	expression	analysis	of	RNAseq	samples.	Sequences	with	less	than	g	reads	

mapped	to	them	were	excluded	from	the	analysis.	Count	data	of	each	experiment	were	analysed	

independently	using	cycle	number	as	explanatory	variable.	

Since	 replicates	 are	 not	 independent	 between	 timepoints,	 a	 design	 formula	 including	 an	

effect	from	cycle,	plus	an	effect	by	replicate	was	used	in	the	fitting	the	data.	Since	no	differences	

were	found	between	the	design	formula	with	timepoint	and	replicate,	and	the	design	formula	

with	only	Cycle,	the	latter	was	used	for	analysis.	Contrasts	were	set	between	each	timepoint	and	

timepoint	number	Q.	Results	were	visualised	as	MA	plots	generated	by	plotting	the	logarithm	of	

the	 normalised	 base	 counts	 against	 the	 logarithm	base	 two	 of	 the	 fold-change	 predicted	 by	

DESeqG.	For	plotting,	significant	data	points	(padj<H.Hg)	were	colour-coded	according	to	the	

direction	of	their	change	in	frequency.	

7.6 GROUP ASSIGNMENT [CH1, CH2] 

Using	the	result	tables	generated	by	DESeqG	for	the	contrasts	set	between	the	last	cycle	of	

each	 experiment	 with	 the	 first,	 sequences	 were	 divided	 in	 three	 categories	 for	 downstream	

analyses.	Categories	were	assigned	according	to	the	fold-change	in	frequency:	non-	significant,	

significant	 and	 with	 a	 positive	 fold	 change	 (increase	 in	 frequency),	 and	 significant	 with	 a	
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negative	fold	change	(decrease	in	frequency).	For	simplicity,	the	three	categories	are	called	non-

significant,	 positive	 and	 negative	 throughout	 this	 document.	 Sequences	 were	 considered	

significant	if	they	had	an	adjusted	p-value	(padj)	lower	than	H.Hg	as	calculated	by	the	program.	

Fold-change	was	considered	positive	when	larger	than	one	and	negative	when	lower	than	-Q.	For	

category	assignment,	a	flag	was	added	to	each	sequence	depending	on	whether	its	fold-change	

was	positive	(>	Q)	or	negative	(<	-Q)	and	significant	(padj	<	H.Hg),	or	non-significant	(padj	>	H.Hg)	

for	each	experiment.		

Control	and	induced	samples	were	analysed	both	independently	and	together	including	an	

interaction	term	for	treatment	and	time	point.	The	results	table	containing	average	counts	for	

each	 sequence	was	used	 to	determine	 the	magnitude	 (fold-change)	 and	 significance	of	 their	

frequency	change	(p-value	adjusted	for	multiple	testing,	padj	>	H.Hg).	

According	to	the	DESeqG	results,	individual	sequences	in	the	library	were	assigned	to	groups	

depending	on	whether	they	increased,	decreased	or	did	not	change	significantly	in	frequency	

between	the	first	and	last	timepoint	of	the	experiment.	

7.7 CROSS COMPARISON BETWEEN EXPERIMENTS [CH1, CH2] 

Category	flags	were	compared	for	all	sequences	in	the	database	across	experiments,	and	kept	

when	the	majority	of	experiments	had	the	same	flag	(n=(number	of	experiments)/G	+Q).	Category	

assignment	was	done	for	comparisons	of	all	experiments	available,	and	independently	for	the	

two	types	of	sampling	schemes,	i.e.,	every	V	hours	or	every	GE	hours,	to	differentiate	between	

sequence	effects	and	effects	due	to	the	experimental	design.	

7.8 DATABASE SIMULATIONS 

Simulations	of	random	databases	were	generated	in	R	by	sampling	with	replacement	the	four	

nucleotides	 with	 equal	 probabilities.	 Sequence	 features	 were	 determined	 for	 the	 simulated	

databases	in	the	same	way	as	for	the	experimental	database.	

8. RNAseq experiment [CH3] 

8.1 MOUSE DE NOVO GENES (MDNG) EXPERIMENTAL DESIGN [CH3] 

Candidate	genes	were	selected	from	the	list	of	putative	de	novo	genes	from	(Xie	et	al.,	GHQ^),	

with	length	as	the	main	selection	criterion.	From	the	shortest	sequences,	care	was	taken	to	select	

candidates	with	higher	levels	of	expression,	and	a	diversity	of	intrinsic	disorder	and	aggregation	

propensity	scores.	Selected	genes	were	amplified	from	available	genetic	material	and	plasmids	

obtained	as	described	above	were	used	for	transfection	of	Flp-In	T-REx	G^V	cells.	



De	novo	evolution	of	genetic	function	from	random	sequences	
	

	TVU	

Using	the	cell	lines	produced,	a	transcriptomics	experiment	was	set	up	with	two	treatments:	

Induced	samples	using	gH	ng/mL	of	doxycycline	to	induce	expression	of	each	candidate	gene,	

and	a	control	group	with	no	additives	to	the	growth	medium.	In	addition	to	the	candidate	genes,	

the	original,	non-transfected	FITRG^V	cell	line	was	also	included	in	both	treatments	in	order	to	

assess	 the	 effect	 of	 doxycycline	 alone	 on	 the	 cells.	 Twelve	 replicates	 were	 seeded	 for	 each	

treatment	and	each	cell	line	in	QG-well	plates.	Sampling	was	done	V_	hours	after	induction	of	

expression	with	doxycycline.	RNA	extraction,	library	preparation	and	sequencing	were	done	in	

^_	well	plates	with	one	treatment	per	row	and	QG	replicates	(Table	A).	

Table-	B.	Experimental	setup	for	RNA	sequencing	of	Mdng-expressing	and	control	cells.	

Row	 Sample	(Columns	K–KI)	

A	 FITR	?TA	non-transfected	cells	CTR	(no	Doxycycline)	

B	 FITR	?TA	non-transfected	cells	DOX	(with	Doxycycline)	

C	 Transfected	cells	-	Mdng?	CTR	(no	Doxycycline)	

D	 Transfected	cells	-	Mdng?	DOX	(with	Doxycycline)	

E	 Transfected	cells	-	MdngS	CTR	(no	Doxycycline)	

F	 Transfected	cells	-	MdngS	DOX	(with	Doxycycline)	

G	 Transfected	cells	-	MdngXB	CTR	(no	Doxycycline)	

H	 Transfected	cells	-	MdngXB	DOX	(with	Doxycycline)	

8.2 CANDIDATE GENE CHARACTERIZATION 

Candidate	 gene	 CDS	 sequences	 were	 downloaded	 from	 ENSEMBL	 Mouse	 assembly	

(GRCmV`).	Specific	primers	were	designed	for	a	two-step	amplification	(Table-	H).	The	first	PCR	

was	done	to	amplify	the	product	from	the	corresponding	cDNA	or	DNA	sample	as	shown	in	

Table	V-Q.	The	second	PCR	was	done	to	add	restriction	sites	for	HindIII	and	BamHI	in	the	g’	and	

the	V’	end	of	the	sequences,	respectively	(Table-	I).	Amplified	products	were	cloned	as	described.	

Gene	information	was	retrieved	from	ENSEMBL	annotations	for	each	candidate.	Additionally,	

the	 CDS	 sequences	 were	 used	 as	 query	 for	 BLAST	 against	 the	 complete	 non-redundant	

nucleotide	database	of	the	NCBI,	with	default	parameters.	Domain	prediction	was	done	on	the	

web	 interface	 of	 INTERPRO	 (Blum	 et	 al.,	 GHGQ),	 and	 signatures	 of	 anti-microbial	 peptide	

homology	were	investigated	through	the	web	interface	of	CAMPsite	(Waghu	et	al.,	GHQ_).	

8.3 RNASEQ ANALYSES 

Reads	were	trimmed	to	a	minimum	average	quality	score	of	GH	and	Rg	bases	of	length.	In	

order	 to	 get	 rid	 of	 the	 batch	 effects,	 replicates	 g	 to	 `	 for	 all	 samples	 were	 removed	 from	

downstream	analyses,	and	replicates	Q	and	G	of	the	MdngQH	treatment	were	subsampled	using	
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seqtk	 	sample	(https://github.com/lhV/seqtk.git)	to	reduce	the	number	of	reads	by	QH-fold	to	

match	the	average	of	all	other	files.		

Mapping	was	done	using	HISATG	(v.G.G.Q)	(Kim	et	al.,	GHQ^)	 .	The	human	genome	(Homo	

sapiens	 assembly	GRChV`)	FASTA	and	GTF	 files	were	downloaded	 from	ENSEMBL,	 and	 the	

recombined	plasmids’	expected	sequence	for	each	of	the	genes	from	the	Flp-In™	T-REx™	system	

was	 added	 as	 an	 extra	 chromosome.	Mapped	 reads	were	 saved	 in	 sorted	BAM	 format	 using	

samtools	 (v.Q.^)	 (Berretta	&	Morillon,	 GHH^),	 and	used	 for	 gene	 counting	using	 the	 Subread	

package	featureCounts	(v.G.H.Q)	(Liao	et	al.,	GHQE).	

Raw	 count	 tables	 generated	 independently	 for	 each	 gene	were	 used	 for	 differential	 gene	

expression	analysis	using	DESeqG	(v.Q.VH.H)	(Love	et	al.,	GHQE).	A	likelihood	ratio	test	was	used	

to	compare	results	using	the	full	experimental	design	formula	~Replicate	+	Treatment	and	the	

reduced	 formula	~Treatment.	 Since	no	differences	were	 identified,	 the	 reduced	 formula	was	

used	 for	 the	 analyses	 presented	 here.	 Dispersions	 calculated	 by	 DESeqG	 were	 extracted	 to	

analyse	the	degree	of	variance	among	replicates	in	the	experiment.	

In	addition	to	mapping	with	HISATG,	a	quick	mapping	of	the	trimmed	reads	was	done	against	

the	plasmid	sequence	for	each	of	the	three	genes	in	Geneious.	The	results	were	used	to	evaluate	

the	differences	of	expression	of	the	Mdng	between	the	induced	and	non-induced	samples.	

9. Primers used in this study 

Primers	 were	 designed	 by	 me,	 unless	 otherwise	 stated,	 using	 the	 primer	 design	 tools	

Geneious,	 PrimerVPlus	 (https://www.bioinformatics.nl/cgi-bin/primerVplus/primerVplus.cgi)	

and	OligoAnalyzer	Tool	from	IDT	(https://eu.idtdna.com/pages/tools/oligoanalyzer).	Primers	

were	 ordered	 from	 Sigma-Aldrich/Merck	 either	 as	 lyophilised	 powder	 or	 resuspended	 in	

nuclease-free	water.	 All	 stock	 solutions	were	 resuspended	 to	 a	 concentration	 of	 QHH	 µM	 for	

storage,	and	diluted	to	a	concentration	of	g	µM	for	working	stocks.	Primers	were	stored	frozen	

at	-GH	˚C	between	uses.	

Table-	C.	Primers	used	for	one-step	PCR	amplicon	sequencing	of	E.	coli	library	[CHS]	
These	primers	were	designed	by	the	authors	of	(Neme	et	al.,	YWSV).	

Primer	
name	

Sequence	

pFLAG-CTC	
FWD-X	

AATGATACGGCGACCACCGAGATCTACAC	AACCGCAT	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-?	

AATGATACGGCGACCACCGAGATCTACAC	AAGGCCTT	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	T	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-A	

AATGATACGGCGACCACCGAGATCTACAC	AGAGTGTG	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	GT	CATCATAACGGTTCTGGCAAATATTC	
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pFLAG-CTC	
FWD-@	

AATGATACGGCGACCACCGAGATCTACAC	CACAAGTC	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	CGA	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-V	

AATGATACGGCGACCACCGAGATCTACAC	CGTTCCTA	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	ATGA	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-C	

AATGATACGGCGACCACCGAGATCTACAC	GCTTGGAT	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	TGCGA	CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
FWD-S	

AATGATACGGCGACCACCGAGATCTACAC	GTCAACAC	
ACACTCTTTCCCTACACGACGCTCTTCCGATCT	GAGTGG	
CATCATAACGGTTCTGGCAAATATTC	

pFLAG-CTC	
RWD-A	

CAAGCAGAAGACGGCATACGAGAT	AACCGGAA	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	A	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-B	

CAAGCAGAAGACGGCATACGAGAT	AGAGTGAC	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	TC	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-C	

CAAGCAGAAGACGGCATACGAGAT	CAACTGGT	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	CTA	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-D	

CAAGCAGAAGACGGCATACGAGAT	CGTTCGTT	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	GATA	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-E	

CAAGCAGAAGACGGCATACGAGAT	CTGTTCAC	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	ACTCA	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-F	

CAAGCAGAAGACGGCATACGAGAT	GCTTGCAA	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	TTCTCT	CTGTATCAGGCTGAAAATCTTCT	

pFLAG-CTC	
RWD-G	

CAAGCAGAAGACGGCATACGAGAT	GTCAACTG	
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	CACTTCT	CTGTATCAGGCTGAAAATCTTCT	

	

Table-	D.	Primers	used	for	sequencing	of	pcDNAU/FRT/TO	plasmid	[CHY,	CHX]	

Primer	Name	 Sequence	 Product	
length	(bp)	

Annealing	
temperature	(˚C)	

CMV-FW	(!)	 CGCAAATGGGCGGTAGGCGTG	
AAR	 CX.@?V	

BGH-RV	(!)	 TAGAAGGCACAGTCGAGG	

pcDNAV-?-T?TF	 TAGAAGACACCGGGACCGAT	
TTA	 VT.?V	

pcDNAV-?-XT?XR	 ATAGGTCAGGCTCTCGCTGA	

pcDNAV-A-XSARF	 CTCGGAGGGCGAAGAATCTC	
TBR	 VT.R?V	

pcDNAV-A-?C@VR	 GGTTTCCACTATCGGCGAGT	

pcDNAV-@-?VCXF	 ACTGTCGGGCGTACACAAAT	
SR@	 VT.@?V	

pcDNAV-@-AA@@R	 TTTGCTGGCCTTTTGCTCAC	

pcDNAV-V-A?CXF	 CAGCTCACTCAAAGGCGGTA	
TRS	 VT.BSV	

pcDNAV-V-@?@SR	 AGCCCTCCCGTATCGTAGTT	

pcDNAV-C-@?BRF	 TGACTCCCCGTCGTGTAGAT	
TTR	 VT.@?V	

pcDNAV-C-CRR	 CTATGCGGCATCAGAGCAGA	

pcDNAV-S-?BF	 CGATCCCCTATGGTGCACTC	
T?R	 VT.T	

pcDNAV-S-T@SR	 TCGGTCCCGGTGTCTTCTAT	

pcDNAV-@-?VCXF	 ACTGTCGGGCGTACACAAAT	
@VC	 VT.@	

MXA-R-@C	(!)	 GAGCGGATAACAATTTCACACAGG	

(%)	Universal	sequencing	primers.	
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Table-	E.	Primers	used	for	amplification	and	cloning	of	GFP	into	pcDNAU/FRT/TO/GFP-STOP,	control	plasmid	[CHY,	
CHX]	

Primer	Name	 Sequence	 Product	
length	(bp)	

Annealing	
temperature	(˚C)	

GFP_AddgeneFX	 GCTCGTTTAGTGAACCGTCAG	
TSA	 VS.CSV	

GFP_AddgeneRX	 GCCACTGTGCTGGATATCTG	

GFP_AddgeneFX	 GCTCGTTTAGTGAACCGTCAG	
R@C	 VT.A?V	

GFP_Rstop	 AGTGGATCCCTAGTACAGCTCGTC	

	

Table-	F.	Primers	used	to	amplify	human	housekeeping	genes	from	FITRY\X	cells	[CHY,	CHX].	
Highlighted	primers	were	also	used	to	amplify	housekeeping	genes	from	mouse	DNA	and	cDNA.	

Gene	(Accession	no.)	 Primer	Name	 Sequence	 Product	length	
(bp)	(RNA	|	DNA)	

Annealing	
temperature	(˚C)	

Actin	beta	(ACTB)	
(NG_%%/??..&)	

ACTB_JF_F.	 CTGGCACCACACCTTCTACA	
&=1	|	4.2	 -=../-	

ACTB_JF_R.	 CCAGAGGCGTACAGGGATAG	

Glyceraldehyde-1-phosphate	
Dehydrogenase	(GAPDH)	
(NG_%%/%/1..)	

GAPDH_JF_F.	 GGACCTGACCTGCCGTCTA	
.2=	|	1-.	 -?.?.-	

GAPDH_JF_R.	 CCACCACCCTGTTGCTGTAG	

TATA-box	binding	protein	
(TBP)	(NG_%%=&4-.&)	

TBP_KK_F&	(!)	 TGAGCCAGAGTTATTTCCTGGT	
&44	|	=2/	 -/.2	

TBP_JF_R.	 CGTCTTCCTGAATCCCTTTAGA	

(%)	Designed	by	Koray	Kasan	under	my	supervision	

	

Table-	G.	Primers	used	to	amplify	random	oligonucleotide	pool	for	library	generation	[CHY].	

Primer	Name	 Sequence	 Product	
length	(bp)	

Annealing	
temperature	(˚C)	

EukLibXF	 GACGATGTAGGTGACGAAGC	
?AX	 VS.BSV	

VR	(!)	 ATTACCGCCTTTGAGTGAGC	

(%)	Universal	sequencing	primer.	

	

Table-	H.	Primers	used	for	two-step	amplicon	sequencing	PCR	S	[CHY].	

Primer	Name	
Heterogeneity	
Spacer	 Sequence	

SeqEL-FX	
	 ACACTCTTTCCCTACACGACGCTCTTCCGATCT	

CCTCCGGACTCTAGCGTTTA	

SeqEL-F?	 T	 ACACTCTTTCCCTACACGACGCTCTTCCGATCT	T	
CCTCCGGACTCTAGCGTTTA	

SeqEL-FA	 GT	 ACACTCTTTCCCTACACGACGCTCTTCCGATCT	GT	
CCTCCGGACTCTAGCGTTTA	

SeqEL-F@	 CGA	 ACACTCTTTCCCTACACGACGCTCTTCCGATCT	CGA	
CCTCCGGACTCTAGCGTTTA	

SeqEL-FV	 ATGA	 ACACTCTTTCCCTACACGACGCTCTTCCGATCT	ATGA	
CCTCCGGACTCTAGCGTTTA	

SeqEL?-RX	
	 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	

CAACAGATGGCTGGCAACTA	

SeqEL?-R?	 A	 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	A	
CAACAGATGGCTGGCAACTA	

SeqEL?-RA	 TC	 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	TC	
CAACAGATGGCTGGCAACTA	
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SeqEL?-R@	 CTA	 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	CTA	
CAACAGATGGCTGGCAACTA	

SeqEL?-RV	 GATA	 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	GATA	
CAACAGATGGCTGGCAACTA	

	

Table-	I.	Primers	used	for	two-step	amplicon	sequencing	PCR	Y	[CHY].	Illumina	adaptor	barcoded	primers	provided	by	
Dr.	Sven	Künzel.	

Primer	Name	
Illumina	
Adaptor	 Barcode	 Sequence	

F-&	 P-	 AACCGCAT		 AATGATACGGCGACCACCGAGATCTACAC	AACCGCAT	
ACACTCTTTCCCTACACG	

F-.	 P-	 AAGGCCTT		
AATGATACGGCGACCACCGAGATCTACAC	AAGGCCTT	
ACACTCTTTCCCTACACG	

F-1	 P-	 AGAGTGTG		 AATGATACGGCGACCACCGAGATCTACAC	AGAGTGTG	
ACACTCTTTCCCTACACG	

F-2	 P-	 CACAAGTC		
AATGATACGGCGACCACCGAGATCTACAC	CACAAGTC	
ACACTCTTTCCCTACACG	

F--	 P-	 CGTTCCTA		 AATGATACGGCGACCACCGAGATCTACAC	CGTTCCTA	
ACACTCTTTCCCTACACG	

F-4	 P-	 GCTTGGAT		
AATGATACGGCGACCACCGAGATCTACAC	GCTTGGAT	
ACACTCTTTCCCTACACG	

F-/	 P-	 GTCAACAC		 AATGATACGGCGACCACCGAGATCTACAC	GTCAACAC	
ACACTCTTTCCCTACACG	

F-=	 P-	 GTCACTGA		
AATGATACGGCGACCACCGAGATCTACAC	GTCACTGA	
ACACTCTTTCCCTACACG	

F-?	 P-	 TCTCGTCA		 AATGATACGGCGACCACCGAGATCTACAC	TCTCGTCA	
ACACTCTTTCCCTACACG	

F-&%	 P-	 TTGGTACG		
AATGATACGGCGACCACCGAGATCTACAC	TTGGTACG	
ACACTCTTTCCCTACACG	

F-&&	 P-	 CGTTGGAT	 AATGATACGGCGACCACCGAGATCTACAC	CGTTGGAT	
ACACTCTTTCCCTACACG	

F-&.	 P-	 CGTTAAGC	 AATGATACGGCGACCACCGAGATCTACAC	CGTTAAGC	
ACACTCTTTCCCTACACG	

F-&1	 P-	 ACAGCTCA	 AATGATACGGCGACCACCGAGATCTACAC	ACAGCTCA	
ACACTCTTTCCCTACACG	

R-A	 P/	 AACCGGAA		 CAAGCAGAAGACGGCATACGAGAT	AACCGGAA	
GTGACTGGAGTTCAGACG	

R-B	 P/	 AGAGTGAC		 CAAGCAGAAGACGGCATACGAGAT	AGAGTGAC	
GTGACTGGAGTTCAGACG	

R-C	 P/	 CAACTGGT		 CAAGCAGAAGACGGCATACGAGAT	CAACTGGT	
GTGACTGGAGTTCAGACG	

R-D	 P/	 CGTTCGTT		
CAAGCAGAAGACGGCATACGAGAT	CGTTCGTT	
GTGACTGGAGTTCAGACG	

R-E	 P/	 CTGTTCAC		 CAAGCAGAAGACGGCATACGAGAT	CTGTTCAC	
GTGACTGGAGTTCAGACG	

R-F	 P/	 GCTTGCAA		
CAAGCAGAAGACGGCATACGAGAT	GCTTGCAA	
GTGACTGGAGTTCAGACG	

R-G	 P/	 GTCAACTG		 CAAGCAGAAGACGGCATACGAGAT	GTCAACTG	
GTGACTGGAGTTCAGACG	

R-H	 P/	 TCCTCATG		
CAAGCAGAAGACGGCATACGAGAT	TCCTCATG	
GTGACTGGAGTTCAGACG	

R-I	 P/	 TCGACTAG		 CAAGCAGAAGACGGCATACGAGAT	TCGACTAG	
GTGACTGGAGTTCAGACG	

R-J	 P/	 TTGCAAGC		
CAAGCAGAAGACGGCATACGAGAT	TTGCAAGC	
GTGACTGGAGTTCAGACG	

R-K	 P/	 AGAGGTGT	 CAAGCAGAAGACGGCATACGAGAT	AGAGGTGT	
GTGACTGGAGTTCAGACG	

R-L	 P/	 GCTACGAT	 CAAGCAGAAGACGGCATACGAGAT	GCTACGAT	
GTGACTGGAGTTCAGACG	

R-M	 P/	 GTCAAGAG	 CAAGCAGAAGACGGCATACGAGAT	GTCAAGAG	
GTGACTGGAGTTCAGACG	

R-N	 P/	 ATGGTAGG	 CAAGCAGAAGACGGCATACGAGAT	ATGGTAGG	
GTGACTGGAGTTCAGACG	

R-O	 P/	 GACTTCAG	 CAAGCAGAAGACGGCATACGAGAT	GACTTCAG	
GTGACTGGAGTTCAGACG	
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Table-	J.	Primers	used	for	Mdng	amplification	from	mouse	samples	[CHX].	

Primer	Name	 Sequence	 Product	
length	(bp)	

Annealing	
temperature	(˚C)	

MdngX_F	 CAGCACAGCCTTGTTTGTTGA	
CVT	 VT.RSV	

MdngX_R	 TGTCACGGGTTTTGGAGGTC	

Mdng?_F	 CAAGCTTTAAAAGGACAACATGG	
VT@	 VS.BV	

Mdng?_R	 TCAAGTGTGGCGTGTATCCT	

MdngA_F	 CTGCAGAACCTCTTCTTTGGA	
VTS	 VS.ASV	

MdngA_R	 TCCCACGGTGTGAATTATCC	

Mdng@_F	 ATGTGCTGTGTGTTTACACATTT	
ATT	 VV.@	

Mdng@_R	 AAGCAAATTAACATAGTCTGTGGTT	

MdngV_F	 ATTCTCCCTGGTGACAGGTG	
ATX	 VS.T	

MdngV_R	 TCTTTCTGGCCTCGATTCTG	

MdngC_F	 GAATTCGCTTGGTCTCATCC	
?@R	 VS.CSV	

MdngC_R	 GGCACCTGGTCCTCTGACT	

MdngS_F	 TGATCTCGGGGACACAGG	
VBB	 VC.V?V	

MdngS_R	 AGAAAAATTGGCTAGACTTAAGAAAG	

MdngR_F	 AGTGTCCGCTGGAGTTGC	
?AS	 VR.@	

MdngR_R	 ATCCAGGAGAGCTGTTTCCA	

MdngT_F	 TCTTCCACCTGGATGACTCC	
@CC	 VS.B?V	

MdngT_R	 CGCTCATGAACTCCCAATCT	

MdngXB_F	 ATGTCACATTCAAGCCACTCA	
@TR	 VS.B?V	

MdngXB_R	 GGATGGATTGGTCTCCATTCT	

MdngXX_F	 GGTTGCTAGGTGGGTGTGTT	
V@S	 VT.BV	

MdngXX_R	 CCTGCCACCAAACCAGATGA	

MdngX?_F	 CGACGGGCTTAGATTCTGCT	
CXT	 VT.TSV	

MdngX?_R	 CTTCCAGGGCTCAATGGGTT	

MdngXA_F	 TCCCCTGGGACTCGAGTTAT	
@XR	 VS.X	

MdngXA_R	 CAAATACACACAGATTCTTACTGGA	

MdngX@_F	 AGGCTTGGACTCCTAATTGCAA	
@X@	 VR.R?V	

MdngX@_R	 ACCAGGACAGAAACCAGCTC	

	

Table-	K.	Primers	used	to	add	restriction	sites	to	amplified	Mdng	[CHX].	

Primer	Name	 Sequence	 Product	
length	(bp)	

Annealing	
temperature	(˚C)	

MdngX_F-HindIII	 CATGACAAGCTTATGAGCTCCAG	
@ST	 VS.SSV	

MdngX_R-XhoI	 CATACTCGAGGGCATCCTG	

Mdng?_F-HindIII	 CAAGCTTTAAAAGGACAACATGG	
VT@	 VS.VSV	

Mdng?_R-BamHI	 CAAGTGTGGCGTGGATCC	

MdngA_F-HindIII	 CTGCAGAAGCTTTTCTTTGGTT	
VTX	 VR.@V	

MdngA_R-BamHI	 TGTGAAGGATCCGCACACTC	
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Mdng@_F-HindIII	 GTGCTGAAGCTTTACACATTTATGC	
@B@	 VR.?SV	

Mdng@_R-BamHI	 GCCGAAGGATCCAATTAACATAGT	

MdngV_F-HindIII	 ATACAGAAGCTTGACAGGTGAACA	
ARX	 VS.CSV	

MdngV_R-BamHI	 CTCGATGGATCCTGTTTCAGA	

MdngC_F-HindIII	 GTGTTGTAAGCTTCCGGGATGT	
XR@	 VR.R?V	

MdngC_R-BamHI	 GCACCGGATCCTCTGACT	

MdngS_F-HindIII	 GGACACAAGCTTGGGAAATGT	
@CA	 VR.CSV	

MdngS_R-XhoI	 GGCCTCGAGATCTGTTATCCA	

MdngR_F-HindIII	 CCGCTAAGCTTATCCTATGTTC	
?B@	 VC.RSV	

MdngR_R-BamHI	 CTCTGTGGATCCCAAAATCTTCA	

MdngT_F-HindIII	 TTCATAAGCTTCCCGCCAAT	
@A@	 VS.V	

MdngT_R-BamHI	 GTTTGGGGATCCAGCTAAGATA	

MdngXB_F-HindIII	 GGGTAAAAGCTTATGTCACATTCAA	
VXX	 VS.RSV	

MdngXB_R-XhoI	 CCTTTCTCGAGGTCTCCATTCT	

MdngXX_F-HindIII	 GTTAAGCTTGATGTTGCAGCGTA	
ABS	 VS.CV	

MdngXX_R-XhoI	 GAGACTCGAGAGCTCCACAT	

MdngX?_F-HindIII	 GTTAAGCTTATGCCTCCCTTGAA	
VB@	 VR.BSV	

MdngX?_R-BamHI	 GAAGGATCCATGTGTTAGTTTCCA	

MdngXA_F-HindIII	 GCTAAGCTTGTAAGAGCGACAA	
AV@	 VC.@SV	

MdngXA_R-XhoI	 CTTAGCTCGAGTTCTTACTGGATT	

MdngX@_F-HindIII	 CTCATTAAGCTTTGCATCTCATTTACA	
AVB	 VR.X	

MdngX@_R-BamHI	 CAAGGATCCTCACAGGTTTCAA	
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General	discussion	
With	 the	 discovery	 that	 de	 novo	 gene	 birth	 is	 a	 real,	 and	 important	 source	 of	 genetic	

innovation,	 comes	 the	work	 of	 understanding	 how	 this	 process	works.	 There	 are	 still	many	

things	 unknown	 about	 the	way	 in	which	 novel	 genes	 transition	 from	non-coding	 to	 coding	

sequences.	The	main	goal	of	this	thesis	was	to	address	three	of	such	questions	about	the	process	

of	 de	 novo	 gene	 birth.	 The	 first	 question	 was	 whether	 there	 are	 any	 features	 of	 a	 random	

sequence	that	would	make	it	more	likely	to	have	a	positive	effect	on	the	growth	of	prokaryotic	

cells	 (Chapter	 Q).	 The	 second	 question	 was	 whether	 there	 are	 any	 differences	 between	

prokaryotes	and	eukaryotes	in	the	types	and	numbers	of	sequences	that	could	be	used	as	de	novo	

gene	material	(Chapter	G).	The	third	question	was	how	does	a	novel	sequence,	already	exposed	

to	 selection	 interact	 with	 the	 genes	 already	 present	 in	 the	 organism	 and	 the	 regulatory	

machinery	(Chapter	V).	The	specific	results	and	limitations	have	already	been	discussed	in	each	

chapter,	so	I	will	focus	this	discussion	on	how	they	are	related,	and	their	implications	on	the	

study	of	gene	evolution.	

It	would	 seem	that	 there	are	different	 requirements	 for	whether	a	novel	 sequence	 is	well	

tolerated	in	bacteria	or	in	eukaryotes.	The	driving	factor	in	bacteria	seems	to	be	peptide	length,	

while	no	specific	factor	could	be	identified	for	the	eukaryotic	sequences.	This	finding	matches	

the	 prediction	 that	 costs	 associated	 to	 expressing	 a	 gene	 are	 smaller	 in	 eukaryotes	 than	

prokaryotes.	This	prediction	includes	the	costs	of	translation—the	longer	the	gene,	the	costlier	

it	 is	 to	 express	 it	 in	 bacteria	 (Lynch	&	Marinov,	 GHQg).	On	 the	 other	 hand,	 the	 correlations	

between	length,	disorder,	GC	content	and	aggregation	propensity	are	well	known	(Angyan	et	al.,	

GHQG;	Basile	et	al.,	GHQR;	Li	et	al.,	GHQg;	Oliver	&	Marin,	Q^^_).	Therefore,	it	is	not	surprising	that	

no	other	predicting	factors	could	be	identified.	

Based	on	what	has	been	shown	in	the	literature	regarding	the	tolerance	of	random	sequences	

by	cells	(Neme	et	al.,	GHQR;	Tretyachenko	et	al.,	GHQR),	my	general	hypothesis	was	that	cells	would	

tolerate	 the	 expression	 of	 random	 sequences,	 even	more	 so	 in	 the	 eukaryotic	 cells	 than	 the	

prokaryotic	ones.	This	was	also	based	on	the	idea	that,	since	eukaryotic	cells	have	more	non-

coding	 sequences,	 they	 could	 be	 better	 at	managing	 spurious	 expression.	 In	 the	 case	 of	 the	

mouse	de	novo	genes,	the	null	hypothesis	was	that	their	expression	would	not	have	any	effect	

on	the	transcriptome.	The	results,	however	only	matched	my	initial	hypotheses	partially.	In	the	

case	of	the	random	libraries,	the	cells	did	indeed	have	a	high	tolerance	for	their	expression,	with	

over	half	of	the	sequences	being	maintained	in	the	populations	with	no	apparent	negative	effects	

on	growth.	However,	there	is	no	indication	that	the	eukaryotic	cells	are	any	more	tolerant	to	the	

expression	 of	 random	 sequences	 than	 the	 prokaryotic	 ones.	 For	 the	 mouse	 de	 novo	 genes	
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expressed	in	a	human	cell	line	it	was	not	possible	to	reject	the	null	hypothesis.	This	means	that	

either	the	effect	is	too	small	to	be	detected,	or	there	is	no	effect—which	in	itself	is	surprising.	

These	results	have	further	implications	for	the	study	of	gene	evolution.	First,	the	fact	that	

sequences	 spanning	 the	whole	 range	of	 intrinsic	disorder	 scores	could	have	positive	or	non-

significant	effects	on	cell	growth	suggests	that	intrinsic	disorder	is	not	a	limiting	factor	for	the	

evolution	of	de	novo	 genes.	Also,	 the	mouse	de	novo	 genes	had	 either	high	 (MdngG)	 or	 low	

(MdngR	and	MdngQH)	disorder	scores,	and	showed	no	significant	effects	in	either	case.	Of	course,	

there	are	examples	of	ordered	and	disordered	functional	proteins	both	ancient	and	novel.	There	

is	 at	 least	one	example	of	 a	de	novo	 protein	having	a	defined	 secondary	 structure	and	 some	

“rudimentary	fold”	(Bungard	et	al.,	GHQR).	What	is	interesting,	is	that,	although	younger	genes	

tend	to	be	more	disordered,	disorder	itself	is	not	a	requirement	for	their	birth.	

This	thesis	also	joins	the	voice	of	many	authors	in	stressing	that	it	is	important	to	expand	the	

study	of	protein	function	and	evolution	to	short	peptides	(Andrews	&	Rothnagel,	GHQE;	Bazzini	

et	al.,	GHQE;	Khitun	et	al.,	GHQ^;	Mackowiak	et	al.,	GHQg;	Orr	et	al.,	GHGH;	Storz	et	al.,	GHQE).	Here,	

peptides—between	E	and	_H	residues	in	length—with	apparent	positive	or	negative	effects	on	

cell	growth	could	be	identified	in	both	types	of	cells.	It	has	been	shown	that	the	entire	genome	

of	at	least	several	organisms	is	transcribed	at	some	point.	Many	of	the	transcription	products	

contain	sORFs	which	could	be	translated	and,	as	shown	here,	exposed	to	selection	regardless	of	

how	small.	This	could	mean	that	the	entire	genome	is	selected	against	coding	for	deleterious	

peptides,	even	when	those	peptides	are	never	actually	fixed	in	the	population.	

Finally,	I	presented	in	this	thesis	evidence	that	the	exploration	of	sequence	space	through	

expression	of	random	peptides	is	possible	in	living	cells.	These	“junk	polypeptides”—with	low	

or	null	positive	fitness	effects—are	better	at	exploring	sequence	space.	This	would	facilitate	the	

evolution	 of	 complex	 adaptations	 to	 escape	 local	 fitness	 peaks,	 in	 a	 similar	 way	 that	 non-

adaptive	mutations	or	pre-adaptations	do	(Nielly-Thibault	&	Landry,	GHQ^;	Pal	&	Papp,	GHQR).	

De	novo	genes	or	random	sequences	could	serve	as	stepping	stones	in	this	process,	which	is	why	

having	more	non-coding	sequences	provides	the	variability	necessary	to	explore	more	possible	

phenotypes	(Knibbe	et	al.,	GHHR).
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Future	directions	
The	results	presented	here	have,	undoubtedly,	generated	many	new	questions	which	might	

prove	useful	in	directing	future	efforts	to	study	the	evolution	of	new	genes.	Future	studies	using	

random	sequences	and	heterologous	expression	systems	should	focus	on	addressing	some	of	the	

variables	that	could	not	be	controlled	in	the	experimental	work	presented	here.	

Given	 that	 the	 experiments	 described	 in	 this	 thesis	 are	 in	 general	 proofs	 of	 principle,	

replication	studies	for	all	of	them	would	be	useful.	Using	different	candidates,	newly	synthesised	

pools	 of	 oligonucleotides,	 and	 different	 cell	 lines	 or	 bacteria	 strains,	 would	 allow	 us	 to	

understand	to	what	degree	the	results	obtained	here	can	be	generalised.	For	example,	although	

I	have	demonstrated	that	both	random	sequence	libraries	have	the	expected	features	of	random	

sequences,	they	contain	only	a	few	thousand	clones	each.	Since	this	is	just	a	small	part	of	the	

possible	 sequence	 space	 (G.HE	 x	 QH%	 sequences),	 it	 is	 possible	 that	 we	 are	 not	 observing	 a	

representative	sample.	It	would	be	interesting	to	see	whether	such	experiments	recover	the	same	

trends	described	here.		

The	same	considerations	apply	to	the	mouse	de	novo	genes.	It	will	be	necessary	to	take	a	look	

at	the	effect	of	more	candidates,	and	compare	them	to	the	effects	of	murine	cells,	for	example.	

Considering	that	de	novo	genes	are	expressed	in	a	tissue-specific	manner,	looking	at	their	effects	

on	different	types	of	cells	or	developmental	stages	could	be	informative.	

For	the	eukaryotic	library,	it	would	also	be	interesting	to	evaluate	whether	the	selected	Kozak	

sequence	has	an	effect	on	the	trends	and	effects	seen	here.	Also,	a	more	specific	study	of	the	

clones	that	showed	differences	between	the	induced	and	uninduced	treatments,	could	help	to	

identify	the	reason	for	the	lack	of	regulation	of	the	tetON	system,	that	worked	well	with	the	

mouse	de	novo	genes	and	the	GFP	control	cells.	

The	datasets	and	genetic	material	generated	in	these	projects	could	be	used	for	other	types	

of	analyses	as	well.	In	particular,	it	would	be	interesting	to	attempt	a	machine	learning	or	HMM	

approach	to	study	the	random	sequences	and	their	group	assignments.	Such	approaches	could	

be	helpful	to	disentangle	the	correlations	between	the	different	features	of	the	sequences	and	

their	effect	on	cell	growth.	Furthermore,	the	short	peptides	with	potential	positive	or	negative	

effects	on	growth	could	be	used	to	inform	future	research	on	drug	discovery	or	cell	growth	assays.	
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Concluding	remarks	
In	his	 influential	essay,	 “Evolution	and	 tinkering”	François	 Jacob	described	Evolution	as	a	

“tinkerer”	that	takes	existing	parts	and	pieces	of	existing	genetic	information	in	organisms	and	

uses	it	to	create	novelty	(Jacob,	Q^RR).	He	used	as	examples	well	know	and	frequent	evolutionary	

processes,	and	reached	the	conclusion	that	innovation	could	not	happen	“de	novo”	from	random	

pieces	 of	 sequence	without	 a	 pre-existing	 function.	The	 fact	 that	 gene	duplication	 and	neo-

functionalization,	 or	 mutations	 in	 regulatory	 sequences	 are	 indeed	 the	 most	 common	

mechanisms	through	which	new	genes	are	born	seemed	to	back	this	statement.	

But	the	metaphor	would	be	incomplete	if	we	ignored	the	tinkerer’s	ability	to	take	pieces	of	

apparent	”junk”	and	transforming	them	into	important	elements	of	their	creations.	After	all,	the	

most	 elemental	 parts	 that	 make	 all	 matter	 follow	 the	 rules	 of	 physics	 and	 chemistry,	 and	

therefore,	although	it	might	be	unlikely	that	a	new	type	of	nucleotide	could	arise	from	atoms,	

the	 probabilities	 of	 getting	 a	 functional	 sequence	 of	 translated	 amino	 acids	 are	 orders	 of	

magnitude	higher.	Why,	then,	would	evolution	not	tinker	with	the	abundance	of	non-coding	

sequences	present	in	eukaryotic	genomes	as	well?	In	fact,	it	is	now	a	well-known	fact	that	de	

novo	gene	birth	is	not	only	possible,	but	also	pervasive	in	all	domains	of	life.	

We	 are	 just	 now	 beginning	 to	 understand	 the	 fascinating	 complexity	 and	 diversity	 of	

mechanisms	through	which	genetic	novelty	arises.	Given	the	sheer	magnitude	of	the	sequence	

space,	it	would	seem	that	any	mechanism	that	allows	for	its	exploration,	no	matter	how	unlikely	

could	yield	functional	genes.	
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