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ABSTRACT: 

Tackling the accelerated human-induced biodiversity loss requires tools able to map biodiversity and its changes globally. Remote 
sensing (RS) offers unique capabilities of characterizing Earth surfaces; therefore, it could map plant biodiversity continuously and 
globally. This approach is supported by the Spectral Variation Hypothesis (SVH), which states that spectra and species (taxonomic 
and trait) diversities are linked through environmental heterogeneity. In this work, we evaluate the capability of the DESIS 
hyperspectral imager to capture plant diversity patterns as measured in dedicated plots of the network FunDivEUROPE. We 
computed functional and taxonomical diversity metrics from field taxonomic, structural, and foliar measurements in vegetation plots 
sampled in Spain and Romania. In addition, we also computed functional diversity metrics both from the DESIS reflectance factors 
and from vegetation parameters estimated via inversion of a radiative transfer model. Results showed that only metrics computed 
from spectral reflectance were able to capture taxonomic variability in the area. However, the lack of sensitivity was related to the 
insufficient plot size and the lack of spatial match between remote sensing and field data, but also the differences between the 
information contained in the field traits and remote sensing data, and the potential uncertainties in the remote estimates of vegetation 
parameters. Thus, while DESIS showed some sensitivity to plant diversity, further efforts are needed to deploy suitable biodiversity 
evaluation and validation plots and networks that support the development of biodiversity remote sensing products. 41

42

43

* Corresponding author

1. INTRODUCTION 44

The accelerated loss of biodiversity induced by human actions 45

imposes a pressing need to develop reliable tools to monitor 46

Earth’s biodiversity (Pereira et al., 2013). Remote sensing 47

provides global maps of multiple variables that are relevant for 48

the study of Climate Change (GCOS, 2003), as well as major 49

biodiversity drivers, but not of biodiversity itself (e.g., land-use 50

change and climatic variables) (Sohl and Sleeter, 2012; Yang et 51

al., 2013). In this context, Pereira et al. (2013) proposed that 52

global characterization of biodiversity could be achieved by the 53

definition, estimation, and analysis of the termed “Essential 54

Biodiversity Variables” (EBVs). Due to their nature and 55

influence on the optical radiation scattered by vegetation 56

surfaces, several of these variables could be inferred by remote 57

sensing (Hardisty et al., 2019; Jetz et al., 2019).  58

Alternatively, plant diversity might be directly inferred from the 59

variability of the spectral signals captured by satellite imagers. 60

The underlying idea is that the variability of the spectral signals 61

is connected with plant functional and taxonomic diversities, as 62

stated by the Spectral Variation Hypothesis (SVH) (Palmer et 63

al., 2002). Additionally, remote sensing signals can be related to 64

vegetation state parameters through the inversion of radiative 65

transfer models (RTMs). These models describe the interaction 66

of radiation with canopy structures, e.g., leaves, and known 67

optical properties, e.g., the absorption coefficients of pigments. 68

Some of these parameters have been proposed as EBVs 69

(Skidmore et al., 2021). Therefore, the reflectance factors’ 70

variability and parameter estimates from those could be 71

informative of the vegetation diversity. 72

Nonetheless, biodiversity is a complex term. It involves 73

different facets of the biological variability, such as taxonomical 74

(species), functional (functional traits, the “characteristics of an 75

organism that are considered relevant to its response to the 76

environment and/or its effects on ecosystem functioning” (c.f. 77

Cabido and Dı́az (2001)), or phylogenetic (the branch length of 78

the evolutionary tree of a community). We will focus on the two 79

first aspects. Taxonomic diversity is usually defined as a 80
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function of the species in a study area. However, functional 81 

diversity can be described with several traits, and therefore can 82 

involve multidimensional information that must be summarized 83 

in comparable quantities. This is the aim of the functional 84 

diversity metrics (FDMs). These metrics quantify different 85 

aspects of functional diversity (i.e., richness, evenness, and 86 

divergence) with a single value (Laliberté and Legendre, 2010; 87 

Mason et al., 2005; Villéger et al., 2008). A meaningful 88 

computation of FDMs typically requires removing the 89 

covariance between trait dimensions (Anderson, 2006). 90 

Otherwise, the addition of co-variated variables can spuriously 91 

inflate their value. In a remote sensing context, they can be 92 

computed both from parameter estimates, which operate as a 93 

surrogate of functional traits (Schneider et al., 2017), or directly 94 

from spectral reflectance factors replacing functional by 95 

“spectral traits” (Torresani et al., 2019). However, the potential 96 

of such approaches still needs to be understood better before 97 

they can be widely applied.  98 

Also, the trade-offs between different sensor resolutions, 99 

methods, and metrics remain unclear. The increasing 100 

availability and the expected arrival of spaceborne hyperspectral 101 

missions (e.g., DESIS, PRISMA, EnMAP, SBG, CHIME) will 102 

provide better and detailed information of Earth surfaces in the 103 

spectral domain. Compared with multispectral imagers, these 104 

missions will enable the exploitation of narrow spectral features 105 

characteristic of certain species or traits, increase the parameter 106 

retrieval accuracy and the number of parameters that could be 107 

estimated by improving the constrain of RTMs (Goetz, 2009). 108 

In order to accelerate the exploitation of full-range 109 

hyperspectral data provided by the upcoming missions such as 110 

EnMAP, we evaluate the potential of functional diversity 111 

metrics computed from hyperspectral imagery to quantify 112 

taxonomic and functional diversity in plots of the 113 

FunDivEUROPE network (Baeten et al., 2013). These plots 114 

were established in mature European forests to characterize 115 

diversity-function relationships but not specifically for the 116 

evaluation of remote sensing products. We used DESIS imagery 117 

of similar spatial resolution and a narrower (400-1000 nm) 118 

spectral range than EnMAP. 119 

 120 

2.  METHODS 121 

2.1 FunDivEUROPE biodiversity plots  122 

The FunDivEUROPE network has deployed 30x30 m plots in 123 

forests where taxonomic and functional diversity were 124 

characterized from species identity, abundances, and foliar and 125 

structural traits measured in place for species accounting for 126 

more than 95 % cumulative species abundance (Baeten et al., 127 

2013; Benavides et al., 2019a; Benavides et al., 2019b). Tree 128 

height (hc, m), diameter at breast height (DBH, m), and crown 129 

cross-sectional area (CCSA, cm2) were measured per species. 130 

LAI was determined per plot with an LAI-2000 Plant Canopy 131 

Analyzer (LI-COR, Lincoln, NE, USA) per plot (Grossiord et 132 

al., 2014). Also, leaf nitrogen concentration (Nmass, %), leaf 133 

carbon concentration (Cmass, %), leaf area (la, mm2), specific leaf 134 

area (SLA, mm2/mg), and leaf dry matter concentration (LDMC, 135 

mg/g) were measured per species (Benavides et al., 2019a; 136 

Benavides et al., 2019b). Measurements took place in the 137 

summer of 2013. Further information about the data available in 138 

these plots can be found in Ma et al. (2019). Not all the 139 

parameters were “functional traits” (Dı́az and Cabido, 2001), 140 

but just vegetation parameters varying with environmental 141 

conditions and ontogeny (e.g., canopy height or leaf area 142 

index). Although the network expands through six European 143 

countries, only the sites of Romania and Spain were could be 144 

used in this study since DESIS imagery and foliar traits were 145 

available. 146 

 147 

2.2 DESIS imagery and spectral data analysis 148 

DESIS imagery was acquired over the FunDivEUROPE sites of 149 

Spain (2020-Jun-21, 06:51) and Romania (2020-Jun-29, 07:02), 150 

covering 19 and 15 plots in each country, respectively. DESIS 151 

L2A products were downloaded from the EOWEB® GeoPortal 152 

(https://eoweb.dlr.de/egp/) after automated processing following 153 

DLR standard procedures (Alonso et al., 2019). 4x binned 154 

images featuring 58 bands were downloaded and clipped 250 m 155 

around each of the biodiversity plots. Figure 2 shows the DESIS 156 

3x3 pixels window (blue square) extracted around one of the 157 

FunDivEUROPE plots in Spain (red-dashed square) (a) and the 158 

spectra of those pixels on the left (b). As can be seen, DESIS 159 

spatial resolution is comparable to the plot size, and the 160 

diversity metrics are computed from a larger extent where field 161 

data are sampled. 162 

 163 

Figure 1. DESIS 3-by-3 window over a FunDivEUROPE site. 164 

 165 

Sun zenith (θsun) and azimuth (ϕsun) angles and the averaged 166 

aerosol optical thickness of the scene were obtained from the 167 

imagery metadata and assumed homogeneous for all plots. View 168 

zenith (θview) and azimuth (ϕview) angles were provided at the 169 

center of the scene in the metadata. Knowing sensor height (also 170 

in the metadata), the position of the sensor was estimated from 171 

these angles. Knowing the scanning direction followed by the 172 

sensor, we recalculated the observation angles of each point of 173 

the image, and therefore for each plot. From these angles, sun- 174 

view azimuth difference (Δϕ) was calculated per plot (Table 1). 175 

 176 

 Spain Romania 

Date 2020-Jun-29 10:11 2020-Jun-29 07:02 

n plots 19 15 

Mean θsun 30.8 45.9 

Mean θview 23.8 2.1 

Mean Δϕ 6.6 3.7 

Mean AOT 0.266 0.275 

Table 1. DESIS imagery. 177 

 178 

2.3 Retrieval of vegetation parameters 179 

In order to calculate functional diversity metrics from estimates 180 

of vegetation parameters, we constrained an RTM with DESIS 181 

reflectance factors within a 3-by-3 pixel window centered on 182 

each plot. Vegetation parameters were retrieved by inverting the 183 

optical RTM of the model SCOPE (van der Tol et al., 2009). In 184 

addition, to fit the observed reflectance factors, soil parameters 185 

of the SCOPE’s model BSM were also estimated (Table 2).  186 

 187 

 188 

 189 
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Parameter Symb

ol 

Units Bounds 

Vegetation Parameters (PRTM) 

Leaf chlorophyll content Cab μg cm-2 [0, 100] 

Leaf carotenoids content Cca μg cm-2 [0, 25] 

Leaf anthocyanins content Cant μg cm-2 [0, 10] 

Leaf senescent pigments  Cs a.u. [0, 1] 

Leaf water content Cw g cm-2 [0.004, 

0.045] 

Leaf dry matter content Cdm g cm-2 [0.00190, 

0.01570] 

Leaf structural param. N layers [1, 3] 

Leaf area index LAI m2 m-2 [0, 8] 

Leaf inclination param.  LIDFa - [-1, 1] 

[-1, 1]; Leaf inclination param.  LIDFb - 

Canopy height hc M [0.1, 10.0] 

Leaf width lqw M [0.01, 0.1] 

Soil Parameters (BSM model) 

Soil brightness B - [0.5, 1.0] 

Spectral shape latitude Lat Deg [20, 40] 

Spectral shape longitude Lon Deg [45, 65] 

Soil moisture capacity SMC % [5, 55] 

Soil moisture content Lat - [0, 1] 

Table 2. Retrieved SCOPE parameters. 190 

 191 

The inversion took place in two steps. First, a solution was set 192 

for each pixel using an emulator of the SCOPE model trained 193 

with a dataset of 6000 synthetic samples generated using Latin 194 

Hypercube Sampling (McKay et al., 1979). The emulator was 195 

trained using the Python module scikit-learn (Pedregosa et al., 196 

2011). Its performance was evaluated with a validation dataset 197 

of 1000 samples (Table 3). The emulator’s performance was 198 

assessed using the root mean squared error (RMSE) and the 199 

relative root mean squared error (RRMSE). 200 

 201 

 Training Validation 

n samples 6000 1000 

RMSE (-) 0.0050 0.0056 

RRMSE (%) 5.92 6.59 

Table 3. Emulator training and validation synthetic sample 202 

sizes and performance statistics. 203 

 204 

We averaged soil parameters per plot in a second step, assuming 205 

little variability within the 90 m x 90 m region analyzed. Then, 206 

the vegetation parameters only were optimized minimizing a 207 

regularized cost function (Eq. 1) with the trust-region-reflective 208 

algorithm (Coleman and Li, 1996) implemented in the Matlab™ 209 

function lsqnonlin (MathWorks, Natick, MA, USA) 210 

 211 

          (1) 212 

                               213 
 214 

where  χ2 = Cost function error 215 

 Rλ,pred = Predicted spectral reflectance factor 216 

 Rλ,obs = Observed spectral reflectance factor 217 

 γ1 = 10-1 218 
 γ2 = 10-2 219 

 γ3 = 5·10-3 in Romania or 4·10-3 in Spain 220 

  LAI = LAI in Spain and |LAI-6.0| in Romania 221 

2.4 Taxonomic and functional diversity metrics 222 

We computed per plot Species Richness (S, number of species 223 

in each plot) and the Shannon index (H, Eq. 2) from the 224 

taxonomic data in FunDivEurope plots. The Shannon index is 225 

defined as  226 

  227 

                              ,                   (2) 228 

 229 

where  S = Species Richness or number of species 230 

 A = relative species abundance 231 

 232 

We also computed Rao’s Q parametric indices of order α 233 

(RaoQα, Eq. 3) ranging between 0 and infinity (Rocchini et al., 234 

2021):  235 

 236 

                                                 (3) 237 

 238 

where  d = distance metric, in this case, Euclidean 239 

 α = parameter weighting the roles of the distance 240 

metric.  241 

 242 

RaoQα was also computed for the reflectance factors and the 243 

vegetation parameters estimated from those. In fact, we 244 

computed Rao’s Q parametric indices on the components of a 245 

Principal Components Analysis (PCA) applied on these traits 246 

after standardization.  247 

For the spectral variables (reflectance factors and parameters), 248 

we computed as well the metrics implemented in the dbFD 249 

package (Laliberté and Legendre, 2010). The dbFD package 250 

applies standardization and Principal Coordinates Analysis 251 

(PCoA) to the distance matrix (not the traits). The package 252 

provides: Functional Richness (FRic), which is the volume of 253 

the multidimensional convex-hull; Functional Evenness (FEve), 254 

which describes the uniformity of the abundances of the traits; 255 

Functional Divergence (FDiv), which represents the degree of 256 

divergence of the traits; Functional Dispersion (FDis), which is 257 

the weighted average distance to the centroid of the 258 

multidimensional space; and RaoQ which describes the 259 

weighted mean distance between traits (or α=1 in Eq. 3). 260 

 261 

3. RESULTS 262 

3.1 Estimation of vegetation biophysical parameters 263 

Some of the vegetation parameters estimated via radiative 264 

transfer inversion could be evaluated using field measurements. 265 

Figure 2 compares the estimated leaf area index (LAI, Figure 266 

2a) and leaf dry matter content (Cdm, Figure 2c). No chlorophyll 267 

content measurements were available; therefore, we compared 268 

chlorophyll content retrievals (Cab) with leaf nitrogen 269 

concentration (Nmass, Figure 2b). The evaluation was performed 270 

with the coefficient of determination (R2), and the relative root 271 

mean squared error (RRMSE). Statistics show that the retrieval 272 

of LAI was most problematic in the sites of Romania (R2 = 273 

0.07). In Spain LAI values were slightly higher but correlated 274 

with field observations (R2 = 0.49). Altogether, LAI estimates 275 

correlated with field measurements with R2 = 0.56. Cab 276 

retrievals showed low correlations with Nmass, the highest R2 277 

was found in Romania (0.29). All the sites together presented a 278 

low correlation (R2 = 0.07) and an RRMSE of around 30 %. Dry 279 

matter content estimates showed larger values than field 280 

measurements. Correlations were higher for the Spanish (R2 = 281 

0.42) than for the Romanian sites (R2 = 0.13) and became 282 

higher when both sites were compared together (R2 = 0.46). 283 
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 284 

Figure 2. Evaluation of estimated parameters (subscript 285 

“RTMinv”) with field measurements (subscript “obs”). 286 

 287 

3.2 Relationships between functional diversity metrics 288 

Figure 3 shows the Pearson correlation coefficient (r) between 289 

the taxonomical and functional diversity metrics computed from 290 

field data and the functional diversity metrics computed from 291 

DESIS imagery computed either using the dbFD package (a) or 292 

following Rocchini et al. (2021) (b). Functional Richness 293 

(FRic), Evenness (FEve), and Divergence (FDiv) computed 294 

from reflectance factors are not significantly related to field 295 

diversity metrics, and in some cases, the relationships are 296 

negative. Only Functional Diversity (FDis) and some of the 297 

Rao’s Q parametric formulations achieve significant 298 

relationships with field taxonomical metrics, mostly with S. 299 

Maximum Pearson correlation coefficients were 0.53 for the 300 

dbFD package metrics (Figure 3a) and 0.48 for the parametric 301 

Rao’s Q (Figure 3b). 302 

 303 

 304 

 305 

Figure 3. Pearson correlation between field and remote sensing 306 

(reflectance factors-based) metrics. Asterisks indicate 307 

significant relationships at 95 % of confidence. 308 

 309 

Functional diversity metrics computed from the vegetation 310 

parameter estimates (Figure 4) obtained via RTM inversion 311 

showed no significant correlations with field functional or 312 

taxonomical metrics. Still, similar patterns of correlation than 313 

those observed for reflectance factors-based metrics (Figure 3), 314 

except for FRic, which presents relatively stronger correlations 315 

than FEve or FDiv this time. Maximum Pearson correlation 316 

coefficients were 0.53 for the dbFD package metrics (Figure 4a) 317 

and 0.48 for the parametric Rao’s Q indices (Figure 4b). 318 

 319 

 320 

 321 

Figure 4. Pearson correlation between field and remote sensing 322 

(parameter estimate-based) metrics. Asterisks indicate 323 

significant relationships at 95 % of confidence. 324 
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4. DISCUSSION 325 

The direct comparison of DESIS functional diversity metrics 326 

with field taxonomical and functional diversity metrics led to a 327 

few weak but significant linear relationships, mainly with the 328 

taxonomical indices. Comparing remote sensing estimates of 329 

plant functional diversity with field data was challenging for 330 

several reasons that might explain the limited number of 331 

significant correlations found.  332 

First, the fact that field plot size equals the spatial resolution of 333 

the remote sensor, which forced us to compare information from 334 

different extents (the surroundings of the field plot). 335 

Taxonomical metrics are better correlated with remote sensing 336 

information than functional diversity metrics, especially when 337 

species abundance is ignored (i.e., species richness, S). We 338 

hypothesize that if the species richness does not change in the 339 

surroundings of the FunDivEUROPE plots (there is the same 340 

number of species but with different abundances), functional 341 

richness inside the plot could still correlate with spectral 342 

variability, even if the sensor cannot discriminate the individual 343 

species or their abundances. Ideally, field plots should be large 344 

enough to include several remote sensing pixels in biodiversity 345 

applications. 346 

A second potential source of uncertainty is the temporal 347 

mismatch between field and remote sensing samplings (8 years, 348 

but taking place in the same season). However, Ma et al. (2019) 349 

proved that FunDivEUROPE plots are relatively stable in time. 350 

They analyzed remote sensing data time series and found that 351 

spectral information was comparable between different years at 352 

the same phenological stages. These results are coherent with 353 

the design of the FunDivEUROPE experiment. The plots were 354 

located in mature and stable forests not subject to management 355 

nor human exploitation (Baeten et al., 2013), minimizing thus 356 

the effect of temporal mismatches. Based on these results, we 357 

assumed that data acquired within the same phenological stage 358 

in different years should still be comparable if no major 359 

disturbance occurred. Still, some inter-annual variability in the 360 

functional traits and eventual tree mortality might account for 361 

some unexplained variance. 362 

A third potential source of uncertainty is the mismatch between 363 

the information contained in the vegetation and traits compared. 364 

The traits sampled in the field were selected to perform 365 

ecological studies to analyze the relationships between function 366 

and biodiversity. On the contrary, vegetation parameters 367 

estimated from remote sensing are limited to traits describing 368 

light-matter interaction in an RTM, independently of their 369 

ecological significance. Correlations can exist between these 370 

parameters. For example, field structural parameters are usually 371 

related to leaf area index by allometric equations (Fischer et al., 372 

2019; Turner et al., 2000), nitrogen relates with chlorophyll 373 

content (Evans and Clarke, 2019; Li et al., 2019), and with 374 

specific leaf area (Reich, 2014; Wright et al., 2004). Therefore, 375 

spectral variability and the variability of parameters estimated 376 

remotely might be explained by traits of ecological significance. 377 

Still, the interspecific variability of these radiative transfer and 378 

ecological parameters might induce some uncertainty.  379 

The fourth challenge in the comparison of remote sensing and 380 

field estimates of vegetation diversity is the presence of 381 

uncertainties in the remote sensing signals (they exist in the 382 

field data as well). Uncertainty in the reflectance propagates to 383 

the retrieval of vegetation parameters, which adds to the 384 

uncertainties associated with the model estimation process 385 

(Beven, 2006). Also, the retrieval of vegetation parameters is 386 

affected by the model’s inaccuracies. The use of more complex 387 

and detailed RTMs might have provided more accurate 388 

estimates of vegetation parameters. These facts might explain 389 

the absence of significant relationships found in the metrics 390 

computed from the parameter estimates. For example, 391 

comparing these estimates with field data showed medium and 392 

low correlations (Figure 2). 393 

The abovementioned sources of uncertainty prevent evaluating 394 

the potential of spaceborne hyperspectral imagers to infer plant 395 

functional diversity from space. Part of these uncertainties 396 

relates to the fact that biodiversity monitoring sites and 397 

networks have not usually considered the need to support 398 

remote sensing studies. On the one hand, biodiversity plots 399 

should be at least three times larger than the spatial resolution 400 

of hyperspectral imagers so that their variability can be 401 

characterized with 3-by-3 windows in the imagery. On the other 402 

hand, field surveys should also measure variables that control 403 

the spectral signals captured by these sensors (i.e., radiative 404 

transfer parameters), enabling a sounder comparison with 405 

spectral variability. Collaboration between ecologists and the 406 

remote sensing community should be enhanced to develop new 407 

satellite products that describe plant functional diversity on a 408 

global scale. 409 

Also, our analysis does not fully cover the optical domain. 410 

Several authors have identified the short-wave infrared (SWIR) 411 

region as valuable insight on relevant leaf traits such as specific 412 

leaf area (one of the traits sampled in the FunDivEUROPE 413 

plots), among others (Cavender-Bares et al., 2020). We 414 

hypothesize that hyperspectral imagers covering the SWIR 415 

region, such as EnMAP, could improve the monitoring of plant 416 

functional diversity from space and effectively enable 417 

alternative methods based on the variability of estimated plant 418 

traits (Schneider et al., 2017). Other remote sensing techniques, 419 

such as Radar and Lidar have recently proven potential to assess 420 

plant biodiversity (Bae et al., 2019) could be combined with 421 

optical data to improve plant biodiversity characterization 422 

Further work with suitable datasets is needed to understand how 423 

plant trait diversity propagates to spectral diversity, how remote 424 

sensing can infer the first using different missions and metrics. 425 

 426 
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