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Abstract. In this paper, we study the elliptic spectral sequence computing

tmf∗(RP 2) and tmf∗(RP 2 ∧ CP 2). Specifically, we compute all differentials
and resolve exotic extensions by 2, η, and ν. For tmf∗(RP 2 ∧ CP 2), we also

compute the effect of the v1-self maps of RP 2 ∧ CP 2 on tmf -homology.
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1. Introduction

1.1. Motivation. Topological modular forms (tmf) are ubiquitous in algebraic
topology and homotopy theory. The goal of this paper is to compute the tmf -
homology of two spaces, namely RP 2 and RP 2 ∧CP 2, and to determine the differ-
entials and extensions in their elliptic spectral sequences.

We approach this problem from the point of view of stable homotopy theory.
As is common, we let V (0) denote the cofiber of multiplication by 2 on the sphere
spectrum. Then

V (0) ' Σ−1Σ∞RP 2

and, via the suspension isomorphism, computing tmf∗V (0) ∼= π∗tmf ∧ V (0) is
equivalent to computing the tmf -homology of RP 2. Similarly, let Y be the smash
product of V (0) with Cη, the cofiber of the stable Hopf map η. Then

Y ' Σ−3RP 2 ∧ CP 2

and computing tmf∗Y is equivalent to computing the tmf -homology of RP 2∧CP 2.
In this paper, we compute the elliptic spectral sequence for both tmf ∧ V (0) and
tmf ∧ Y . From this computation, we deduce tmf∗V (0) and tmf∗Y and provide
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information about their module structure over tmf∗. In particular, we resolve all
exotic 2, η, ν extensions as well as compute the effect of v1-self maps of Y on tmf∗Y .
Note that determining the tmf∗-module structure is much less straightforward than
a simple degree-wise computation of tmf∗V (0) or tmf∗Y .

Knowing the homology of basic spaces is part of a full understanding of any
generalized homology theory. So we see these computations as having independent
and fundamental interest. They are, at the very least, an addition to the slim bank
of examples of computations in tmf -homology theory of spaces and finite spectra.

However, our motivation for doing this runs deeper and this computation is part
of a more ambitious program, coming from chromatic homotopy theory. Specifically,
our main goal in doing this computation is not just to understand the structure of
tmf∗V (0) and tmf∗Y as tmf∗-modules, but more-so to fully compute their ellip-
tic spectral sequences. To explain this, we let K(2) denote the Morava K-theory
spectrum and E2 the Lubin-Tate spectrum (also often called Morava E-theory).

In the sequence of papers [GHM04, GHMR05, HKM13, GHMR15, GH16, GHM14,
Hen07], Goerss, Henn, Karamanov, Mahowald and Rezk carry out a program for
studying K(2)–local homotopy theory at p = 3 using the theory of finite resolutions.
These are sequences of spectra built from the K(2)-localization of tmf (and tmf
with level structures) that resolve the K(2)-local sphere. Finite resolutions give
rise to Bousfield-Kan spectral sequences. Let us call these finite resolution spectral
sequences. The input is K(2)-local tmf -homology, possibly with level structures,
and the output is K(2)-local homotopy groups. The ultimate goal is to use finite
resolutions to compute π∗LK(2)S

0, but an intermediate step is the computations of
the homotopy groups of LK(2)F for some key finite spectra F , such as the prime
3 Moore spectrum V (0) [HKM13] and the cofiber of its v1-self map, commonly
denoted V (1) [GHM04]. So, to use the finite resolution approach to K(2)-local ho-
motopy, a key input is π∗LK(2)(tmf ∧F ). This can be computed via the K(2)-local
E2-based Adams-Novikov spectral sequence (which can also be cast as a homotopy
fixed point spectral sequence). This spectral sequence receives a map from the el-
liptic spectral sequence of tmf ∧ F . Understanding the elliptic spectral sequence
of tmf ∧ F thus provides key input for K(2)-local computations.

Recently, there have been significant advancements towards carrying out an anal-
ogous program at the prime p = 2. See [Bea15, Bea17, BG18, BGH17]. But the
program is still in progress. For example, the only complete computation of the
K(2)-local homotopy groups of a finite spectrum at p = 2 is the computation of
π∗LK(2)Z for Z ∈ Z, where Z is the class of Bhattacharya-Egger spectra admit-

ting a v2-self map. See [BE20a, BE20b] and also [BBB+19]. The motivation for
this project is to add to this bank of computations, namely, to study LK(2)V (0),
LK(2)Y , but also LK(2)A1 where A1 is the cofiber of a v1-self map of Y . For
this, we found the need to understand the elliptic spectral sequence of tmf ∧ V (0),
tmf ∧ Y and tmf ∧ A1. In [Pha18], the third author computes a K(2)-local E2-
based Adams-Novikov spectral sequence converging to π∗LK(2)(tmf ∧ A1). From
this computation, one can deduce that of the elliptic spectral sequence of tmf ∧A1.

Here, we study instead the elliptic spectral sequences of tmf∧V (0) and tmf∧Y .
For F either V (0) or Y , tmf∗F = 0 for ∗ < 0 and tmf∗F is determined by its values
in the range 0 ≤ ∗ < 192. In this paper, we obtain the following result, where the
definition of what we mean by exotic extensions is given in Definition 2.18.
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Theorem 1.1. The elliptic spectral sequence for tmf∧V (0) is depicted in Figures 4,
5, 6 and 7. The tmf -homology of V (0) ' Σ−1Σ∞RP 2, namely

tmf∗V (0) ∼= t̃mf∗+1RP 2,

together with all exotic 2, η and ν extensions in the corresponding elliptic spec-
tral sequence is as displayed in Figures 8 and 9 in degrees 0 ≤ ∗ < 192.

Similarly, the elliptic spectral sequence for tmf ∧ Y is depicted in Figures 14,
15, 16, 17, 19 and 20. The tmf -homology of Y ' Σ−3Σ∞RP 2 ∧ CP 2, namely

tmf∗Y ∼= t̃mf∗+3RP 2 ∧ CP 2,

together with all exotic 2, η and ν extensions and almost all exotic v1-
extensions in the corresponding elliptic spectral sequence is as displayed in Fig-
ures 21 and 22 in degrees 0 ≤ ∗ < 192. In particular,

2(t̃mf∗(RP 2 ∧ CP 2)) = 0.

Remark 1.2. Computing exotic extensions in this sense of Definition 2.18 can
(and does in some places here) leave ambiguity about the module structure. How-
ever, this definition of exotic extensions, which we borrowed from [IWX20], is very
standard in these kinds of large spectral sequence computations.

1.2. Methods and comparison with existing work. To say a few words about
our techniques, the major input in our computation is the elliptic spectral sequence
of tmf , which was first computed by Hopkins and Mahowald [DFHH14, Ch. 15],
and later by Bauer [Bau08]. The computation of the spectral sequence for tmf∗V (0)
is straightforward given that data, while that of tmf∗Y is more intricate. The tech-
nique we use for the latter relies on an observation of the third author from [Pha18].
For both V (0) and Y , computation of the exotic extensions requires work and new
input. Several techniques are used to achieve this, and the most interesting among
these is probably the Brown-Comenetz “self-duality” of tmf∗V (0) and tmf∗Y . See
Theorem 2.5.

In [BR] (soon to be published), Bruner and Rognes do a thorough investigation
of tmf . A main tool used in [BR] to answer computational questions about tmf
and its modules is the classical Adams spectral sequence. (Note that the study of
the classical Adams spectral sequence of tmf probably goes back to Hopkins and
Mahowald, and later to Henriques in [DFHH14, Chapter 13].) Among many other
topics, including duality for topological modular forms which is relevant for our
approaches, they study the classical Adams spectral sequence of tmf smashed with
many finite spectra, including a study of tmf smashed with V (0). In particular,
they also compute tmf∗V (0), determining all but a few 2, η, ν-multiplications as
well as v4

1-multiplications. Here, we deliberately use the word multiplication in
contrast to the word extension discussed above to emphasize that Bruner–Rognes
name all classes, which leads them to a more precise determination of multiplicative
relations. Recently, Bruner and Rognes shared their charts and an advanced copy
of some of the chapters of their forthcoming book with us. However, our results
were obtained independently from theirs and via different methods. So the two
approaches complement one another. We also use a few results on the classical
Adams spectral sequence of tmf∗ which we verified against both [DFHH14, Chapter
13] and [BR, Chapters 5,9]. Furthermore, [BR, Chapter 10] is a direct reference of
Theorem 2.5, which is used extensively in this paper.
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Finally, we reiterate that for our applications, namely, as an input in the finite
resolution approach to K(2)-local homotopy theory, it is important to understand
specifically the elliptic spectral sequence instead of the classical Adams spectral
sequence because of its close relationship to the homotopy fixed point spectral
sequence, a key tool in chromatic homotopy theory (see the discussion above).

1.3. Organization of the paper. In Section 2, we discuss the elliptic spectral
sequences and other key tools used later in the paper. In Section 3, we review the
computation of the E2-term of the elliptic spectral sequence for tmf ∧ V (0). In
Section 4 we compute the differentials and some exotic extensions. In Section 5 we
turn to the computation of the E2-term of the elliptic spectral sequence for tmf ∧Y
and in Section 6 we compute the differentials and exotic extensions.

1.4. Acknowledgements. We thank Robert Bruner and John Rognes for useful
discussions and their generosity in sharing some charts and chapters as well as the
front matter of their book [BR]. We are extremely grateful to Hans-Werner Henn
and Vesna Stojanoska for useful conversations along the way. In particular, Henn
could very well have been a co-author given the extent of interactions we had with
him on this project.

Computations like these are much harder without effective drawing tools and
spectral sequence programs. We are thankful to Tilman Bauer (luasseq) and Hood
Chatham (spectralsequences) for their LATEX spectral sequence programs. While
the charts in this paper have mostly been re-drawn with Hood’s program, early
versions of our computations (before spectralsequences was written) were facilitated
by Bauer’s program and his kindness in helping us make it work in such large scales.
Classic but not least, we thank Bruner for his Ext-program which is an ever-useful
tool.

Finally, the second and third authors also thank l’Université de Strasbourg for
its support during part of the project.

2. Background

In this section, we review some of the key tools that will be used in the paper.

2.1. The elliptic spectral sequence. We begin with the elliptic spectral se-
quence. Let

(A,Λ) = (Z[a1, a2, a3, a4, a6],Z[a1, a2, a3, a4, a6, s, r, t])

with
|ai| = 2i, |r| = 4, |s| = 2, |t| = 6

be the Hopf algebroid of Weierstrass elliptic curves. Then the elliptic spectral
sequence has the form [Bau08]

Es,t−s2 = Exts,tΛ (A,A) =⇒ πt−stmf.

Consider the map
ΩSU(4)→ ΩSU ' BU

induced by the usual inclusion SU(4) → SU . Let X(4) be the Thom spectrum
of the associated virtual vector bundle over ΩSU(4). These spectra play a crucial
role in the study of nilpotence and periodicity in chromatic homotopy theory, in
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particular, in the work of Ravenel [Rav87]. As outlined in [DFHH14, Ch. 9], the
elliptic spectral sequence is the X(4)-based Adams spectral sequence for tmf . See
also [Rez].

Let us spell this out. We let R = tmf and E = tmf ∧X(4). Then

E ∧R E ' tmf ∧X(4) ∧X(4).

Let E be the fiber of the unit map R → E. For any tmf -module M , one can
construct the Adams tower

M

��

E ∧RMoo

��

E ∧R E ∧RMoo

��

...oo

E ∧RM

77

E ∧R E ∧RM

55

E ∧R E ∧R E ∧RM

77

by splicing together the cofiber sequences

E
∧R(n+1) ∧RM → E

∧Rn ∧RM → E ∧R E
∧Rn ∧RM.

We abbreviate

Xk := E
∧Rk ∧RM ' X(4)

∧k ∧M,

Ik := E ∧R E
∧Rk ∧RM ' X(4) ∧X(4)

∧k ∧M

where X(4) is the fiber of the unit map S0 → X(4). As a consequence, the associ-
ated spectral sequence is identified with the X(4)-based Adams spectral sequence
for M .

However, we have that the Hopf algebroid

(π∗(E), π∗(E ∧R E)) = (π∗(tmf ∧X(4)), π∗(tmf ∧X(4) ∧X(4)))

is isomorphic to (A,Λ). In particular, it is flat. Therefore, the E2-term of the
associated spectral sequence is identified with

Es,t2 (M) ∼= Exts,tΛ (A, π∗(E ∧RM)).

See [BL01]. When M = tmf , this is precisely the elliptic spectral sequence, and
more generally, this is the elliptic spectral sequence for the tmf -module M .

According to Bousfield [Bou79, Theorem 6.5], since X(4) is connected and
π0(X(4)) ∼= Z, if M is connective, then LX(4)M ' M and the spectral sequence
converges to π∗(M). In particular, if F is a finite spectrum, then the elliptic spectral
sequence for tmf ∧ F reads as

Es,t−s2 = Exts,tΛ (A, π∗(tmf ∧X(4) ∧ F )) =⇒ πt−s(tmf ∧ F ).

To simplify the notation, we put

F∗(F ) := π∗(tmf ∧X(4) ∧ F )

noting that this is a Λ-comodule.
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2.2. (co)Truncated spectral sequences. We will use the (co-)truncation of the
spectral sequence associated to a tower of cofibrations. We will recall the construc-
tions and their basic properties. Let

X0

��

X1
oo

��

X2
oo

��

X3
oo

��

. . .oo Xn−1
oo

��

Xn
oo ...oo

I0

>>

I1

>>

I2

>>

I3

>>

In−1

<<

be a tower of cofibrations of spectra. Let (E∗,∗r , dr)r≥1 be the associated spectral
sequence.

Let Xi/Xn be the cofiber of the evident map Xn → Xi. For any n ∈ N, there is
a tower of fibrations, which we call the n-truncated tower :

X0/Xn

��

X1/Xn
oo

��

X2/Xn
oo

��

. . .oo Xn−1/Xn
oo

��

ptoo

I0

99

I1

99

I2

;;

In−1

::

We denote the terms of the resulting spectral sequence by Es,tr,<n. This spectral
sequence computes the homotopy groups of

skn−1X0 := X0/Xn.

There is a natural map from the original tower to the n-truncated tower. Let

T s,tr : Es,tr → Es,tr,<n

be the induced map between the respective Er-terms. Then Es,t2,<n = 0 for s ≥ n,

while T s,t2 is an isomorphism if s < n − 1 and an injection if s = n − 1. More
generally, we have:

Lemma 2.1. For every r ≥ 2, the map T s,tr has the following properties:

(i) T s,tr is injective for s ≤ n− 1, and
(ii) T s,tr is bijective for s ≤ n− 1− (r − 1).

Proof. We prove this by induction on the r. From the above discussion, (i) and (ii)
hold for r = 2. Suppose both hold for some r ≥ 2.

We prove that (i) holds at Er+1. Let [x] ∈ Es,tr+1 be represented by an element

x ∈ Es,tr such that s ≤ n − 1 and T s,tr+1([x]) = 0. So T s,tr (x) is the target of a

dr-differential. That is, there exists y ∈ Es−r,t−r−1
r,<n such that dr(y) = T s,tr (x).

Since s− r ≤ n− r, T s−r,∗r is bijective by the induction hypothesis. It follows that
there exists y ∈ Es−r,t−r−1

r such that T s−r,t−r−1
r (y) = y. So, by naturality and the

hypothesis that T s,tr is injective, dr(y) = x. This means that [x] = 0, and hence

T s,tr+1 is injective when s ≥ n− 1.

Now, we prove that (ii) holds at Er+1. Let [x] ∈ Es,tr+1,<n with s ≤ n− r−1. We

need to show that [x] is in the image of T s,tr+1. By the induction hypothesis, there
is a class x ∈ Es,tr such that T s,tr (x) = x. It suffices to prove that x is a dr-cycle.
By naturality,

T s+r,t+r−1
r (dr(x)) = dr(T

s,t
r (x)) = dr(x) = 0.
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Since dr(x) ∈ Es+r,t+r−1
r,<n and s+ r ≤ n− 1, the induction hypothesis implies that

dr(x) = 0. �

Next, we look at the co-truncated spectral sequence. Consider the following
tower of fibrations, which we call the n-co-truncated tower,

Y0

��

Y1
idoo

��

. . .
idoo Yn = Xn

idoo

��

Xn+1
oo

��

Xn+2
oo

��

. . .oo

J0

??

J1

>>

Jn = In

99

In+1

;;

In+2

<<

where Y0 = . . . = Yn = Xn and J0 = . . . = Jn−1 = pt. We denote by Es,tr,≥n the
r-term of the spectral sequence associated to this tower. There is an obvious map
from the n-co-truncated tower to the original one. This map induces a map of
spectral sequences:

cT s,tr : Es,tr,≥n → Es,tr .

We observe that Es,tr,≥n = 0 for s < n, and that cT s,∗2 is a bijection for s ≥ n + 1
and a surjection for s = n. The following lemma is proved as in Lemma 2.1.

Lemma 2.2. For every r ≥ 2, the map cT s,tr has the following properties:

(i) cT s,tr is surjective for s ≥ n, and
(ii) cT s,tr is bijective for s ≥ n+ r − 1.

We will be applying this technology to 2-local spectra. As described in [Bau08,
Section 7], one can simplify the computation of the cohomology of the Weierstrass
Hopf algebroid

(A(2),Λ(2)) ∼= (A⊗ Z(2),Λ⊗ Z(2))

as follows. Let A′ denote Z(2)[a1, a3] and f : A → A′ the evident projection. Let
Λ′ denote A′ ⊗A Λ⊗A A′, which is isomorphic to A′[s, t]/∼, where the relations ∼
are generated by

s4 − 6st+ a1s
3 − 3a1t− 3a3s = 0

s6 − 27t2 + 3a1s
5 − 9a1s

2t+ 3a2
1s

4 − 9a2
1st+ a3

1s
3 − 27a3t = 0.

The map between Hopf algebroids

f : (A(2),Λ(2))→ (A′,Λ′)

induces an equivalence of the associated categories of comodules [Bau08, Sections
2 & 7], where

N 7→ A′ ⊗A(2)
N

for an (A(2),Λ(2))-comodule N . When F is the 2-localization of a finite spectrum,
the E2-term of the elliptic spectral sequence for

tmf ∧ F ' tmf(2) ∧ F
is isomorphic to

Es,t2 (tmf ∧ F ) ∼= Exts,tΛ′ (A
′, A′ ⊗A F∗(F )).
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Remark 2.3. The spectrum tmf ∧X(4) is a complex oriented ring spectrum (e.g.,
A = π∗(tmf ∧X(4)) is concentrated in even degrees). Let us denote by

H : MU → tmf ∧X(4)

the map of ring spectra inducing the complex orientation of tmf ∧X(4) given by
the completion of the universal Weierstrass curve at the origin. Then H induces a
homomorphism of Hopf algebroids

H∗ : (MU∗,MU∗MU)→ ((tmf ∧X(4))∗, (tmf ∧X(4) ∧X(4))∗) = (A,Λ).

Recall that MU∗ ∼= Z[x1, x2, . . .] with |xi| = 2i and MU∗MU ∼= MU∗[m1,m2, . . .]
with |mi| = 2i. We note that H∗(x1) = ±a1. This is discussed in [Bau08, (3.2)].

For any finite spectrum F , H also induces a map from the Adams–Novikov
spectral sequence for π∗(F ) to the elliptic spectral sequence for π∗(tmf ∧F ), which
converges to the Hurewitz map h : π∗(F ) → π∗(tmf ∧ F ). Moreover, the induced
map at the E2 is induced by H∗.

2.3. Duality. In this section, we discuss Brown-Comenetz duality for tmf . This
will be used for determining some of the exotic extensions in our spectral sequences.
First, we introduce the following notation.

Notation 2.4. Let A be a graded module over a graded commutative ring S and
x ∈ S. We let ΣrA be the module determined by (ΣrA)t = At−r. We denote by
ΓxA the x-power torsion of A, i.e.,

ΓxA = {m ∈ A | xim = 0, i� 0},
and by A/(x∞) the module that fits into the exact sequence of S-modules

A→ A

[
1

x

]
→ A/(x∞)→ 0.

We will also denote by A∨ the Pontryagin dual A, i.e.,

(A∨)∗ = Hom((A)−∗,Q/Z)

with the S-module structure given by (r.f)(m) = (−1)|r||f |f(rm) for every r ∈ S|r|,
f ∈ (A∨)|f | and m ∈ A|m|.

Now suppose that R is a commutative ring spectrum (e.g., R = tmf) and M is
a R-module. For any x ∈ π∗(R), we define M

[
1
x

]
to be

M

[
1

x

]
= hocolim(M

x−→ Σ−|x|M
x−→ Σ−2|x|M

x−→ ...).

We define M/(x∞) to be the cofiber of the natural map M →M
[

1
x

]
. Inductively,

if (x1, x2, ..., xn) is a sequence of element of π∗R, then we define

M/(x∞1 , x
∞
2 , ..., x

∞
n ) = (M/(x∞1 , x

∞
2 , ..., x

∞
n−1))/(x∞n ).

With this notation, using the long exact sequence on homotopy groups, we see
that the cofiber sequence

M →M

[
1

x

]
→M/(x∞)

gives rise to the short exact sequence of π∗(R)-modules

0→ π∗(M)/(x∞)→ π∗(M/(x∞))→ Γx(π∗−1(M))→ 0.
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Let IQ/Z be the spectrum representing the Pontryagin dual of stable homotopy
groups, so that for a spectrum X,

IqQ/Z(X) := Hom(πqX,Q/Z).

Then the the Brown-Comenetz dual of a spectrum X is defined to be

IQ/Z(X) = F (X, IQ/Z).

The literature contains a variety of references and methods for studying duali-
ties of tmf and related spectra. To name a few, we note work of Mahowald–Rezk
[MR99], of Stojanoska [Sto12, Sto14] and of Greenlees [Gre16]. While the identifica-
tion of IQ/Z(tmf) is known to experts, there is no direct reference in the literature.
(The work of Greenlees and Stojanoska [GS18] describes the relationship between
various forms of duality, but this work does not directly apply to tmf .) Upcoming
work of Bruner–Rognes [BR, Chapter 10] and Bobkova–Stojanoska will soon fill
this gap and provide a reference for the following result.

Theorem 2.5. There is an equivalence of tmf -modules

IQ/Z(tmf/(2∞, c∞4 ,∆
∞)) ' Σ20tmf.

Remark 2.6. Here and below, “−/∆∞”, we really mean −/(∆8)∞ as ∆ is an
element of the E2-term of the elliptic spectral sequence but it does not survive to
the E∞-term. However, ∆8 survives and detects a class in π192tmf . Note also that
the class c4 ∈ π8tmf reduces to v4

1 ∈ tmf ∧ V (0) and so c4-power torsion is the
same as v1-power torsion when the latter makes sense.

Corollary 2.7. There are equivalences of tmf -modules

(1) IQ/Z(tmf ∧ V (0)/(2∞, c∞4 ,∆
∞)) ' Σ19tmf ∧ V (0), and

(2) IQ/Z(tmf ∧ Y/(2∞, c∞4 ,∆∞)) ' Σ17tmf ∧ Y .

In the proof of the result below, we use the following lemma.

Lemma 2.8. For X = tmf ∧ V (0) or tmf ∧ Y and a ∈ π∗X , c4a is divisible by
∆8 if and only if a is divisible by ∆8.

Remark 2.9. The proof makes use of the structure of the E∞-terms of the elliptic
spectral sequences as a module over F2[c4,∆

8]. So this is a bit premature but we
want to have this result here to gather all our techniques in one place. We note
that the logic of the argument is not circular as the determination of the E∞-terms
do not require this lemma.

Proof. Let X be tmf ∧ V (0). The homotopy groups of X decompose as

0→ Tc4 → π∗X → Fc4 → 0

Here, Tc4 is the subgroup of c4-torsion elements, and Fc4 = π∗(X )/Tc4 . By the
calculation of the E∞-term of the elliptic spectral sequence for X , multiplication
by ∆8 induces a bijective endormorphism of Tc4 in every stem and an injective
endormorphism of Fc4 . Furthermore, there are no non-trivial c4-torsion elements
in the stems between 176 and 191, and hence Tc4 satisfies the conclusion of the
lemma. Any element that maps non-trivially to Fc4 is detected in filtrations less
than or equal to 2 of the E∞-term of the elliptic spectral sequence. This part of the
E∞-term is free as a module over F2[v4

1 ,∆
8], and hence satisfies the conclusion of
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the lemma. (Note that in the elliptic spectral sequence c4 is detected by v4
1 .) Now,

suppose we have a ∈ π∗X such that a 6∈ Tc4 and c4a is divisible by ∆8. Then by
our remarks on Fc4 , a = ∆8b + c for some element c ∈ Tc4 . Since ∆8 is surjective
on Tc4 , we see that c is in the image of ∆8 and so the claim holds.

For X = tmf ∧ Y , a similar argument applies. �

Corollary 2.10. We have the following isomorphisms of π∗tmf -modules

(1) Γc4(π∗(tmf ∧ V (0))/(∆∞))∨ ∼= Γc4(π∗−21(tmf ∧ V (0))), and
(2) Γc4(π∗(tmf ∧ Y )/(∆∞))∨ ∼= Γc4(π∗−19(tmf ∧ Y )).

Proof. In this proof, we let X = tmf ∧V (0). Since π∗X is 2-power torsion, we have
X [1/2] ' ∗. Thus,

(2.11) X/(2∞) ' ΣX .

The long exact sequence in homotopy associated to the cofiber sequence

X/(2∞)→ X/(2∞)

[
1

c4

]
→ X/(2∞, c∞4 ),

gives an exact sequence

(2.12) 0→ (π∗X/(2∞))/(c∞4 )→ π∗(X/(2∞, c∞4 ))→ Γc4π∗−1(X/(2∞))→ 0.

By (2.11), we have that

(π∗(X/(2∞)))/(c∞4 ) ∼= (π∗−1X )/(c∞4 )

and that

Γc4(π∗−1(X/(2∞))) ∼= Γc4(π∗−2X ).

Since ∆8 acts injectively on π∗X , it also acts injectively on Γc4(π∗−2X ). Moreover,
∆8 acts injectively on (π∗X )/(c∞4 ) by Lemma 2.8. The short exact sequence (2.12)
then shows that ∆8 acts injectively on π∗(X/(2∞, c∞4 )). Therefore, we have that

π∗(X/(2∞, c∞4 ,∆∞)) ∼= (π∗X/(2∞, c∞4 ))/(∆∞).

The 9-lemma then implies that the following is a short exact sequence of π∗tmf -
modules:
(2.13)

0→ (π∗−1X )/(c∞4 ,∆
∞)→ π∗(X/(2∞, c∞4 ,∆∞))→ Γc4(π∗−2X )/(∆∞)→ 0.

By applying Hom(−,Q/Z) to this exact sequence, we obtain that

0→ (Γc4(π∗−2X )/(∆∞))∨ → π∗(X/(2∞, c∞4 ,∆∞))∨ → ((π∗−1X )/(c∞4 ,∆
∞))∨ → 0,

is an exact sequence of π∗tmf -modules.

We see that the right most term is c4-free and the left most term is c4-torsion.
In particular, it follows that

(Γc4(π∗−2X )/(∆∞))∨ ∼= Γc4(π∗(X/(2∞, c∞4 ,∆∞))∨)

∼= Γc4(π∗IQ/Z(X/(2∞, c∞4 ,∆∞))),
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where the second isomorphism comes from the definition of the Brown-Comenetz
dual IQ/Z(X/(2∞, c∞4 ,∆∞)). Together with Corollary 2.7, we obtain an isomor-
phism of π∗tmf -modules

(Γc4(π∗X )/(∆∞))∨ ∼= Σ2(Γc4(π∗−2X )/(∆∞))∨

∼= Σ2Γc4π∗(IQ/Z(X/(2∞, c∞4 ,∆∞)))

∼= Σ2Σ19Γc4(π∗X )

∼= Σ21Γc4(π∗X ).

Substituting X for tmf ∧ Y and this last 19 with 17 gives the result for Y . �

Remark 2.14. We will explain how to use Corollary 2.10 to compute extensions.
Continue to let X = tmf ∧ V (0). Let K denote the kernel of the homomorphism
induced by multiplication by ∆8 on Γc4(π∗X )/(∆∞). Since multiplication by ∆8

induces an isomorphism

(2.15) Γc4(π∗X )
∼=−→ Γc4(π∗+192X )

for ∗ ≥ 0, we see that, for −192 ≤ t < 0,

Kt
∼= Γc4(π∗X )/(∆∞)t.

The Snake Lemma applied to the following diagram

0

��

// Γc4(π∗X )
[

1
∆8

] ∆8
//

��

Γc4(π∗X )
[

1
∆8

]
//

��

0

0 // K // Γc4(π∗X )/(∆∞)
∆8
// Γc4(π∗X )/(∆∞)

gives rise to the exact sequence

0→ Γc4(π∗X )
∆8

−−→ Γc4(π∗+192X )→ K → 0.

Using (2.15) again, the homomorphism Γc4(π∗+192X )→ K in the above short exact
sequence induces an isomorphism

Γc4(π∗X )t → Kt−192
∼= Γc4π∗(X/(∆∞))t−192

for 0 ≤ t < 192.

Now let r be an element of πl(tmf). If 0 ≤ k < 192 − l, multiplication by r
induces a commutative diagram

Γc4(π∗X )k
∼= //

r

��

Kk−192
∼= Γc4(π∗X )/(∆∞)k−192

r

��
Γc4(π∗X )k+l

∼= // Kk+l−192
∼= Γc4(π∗X )/(∆∞)k+l−192.

By applying the Pontryagin dual to this commutative diagram, together with Corol-
lary 2.10, we obtain the commutative diagram

Hom(Γc4(π∗X )k,Q/Z) Γc4(π∗X )171−k
∼=oo

Hom(Γc4(π∗X )k+l,Q/Z)

r∨

OO

Γc4(π∗X )171−k−l.

r

OO

∼=oo
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As a consequence, the cardinality of the image of

r : Γc4(π∗X )k → Γc4(π∗X )k+l

is the same as that of

r : Γc4(π∗X )171−k−l → Γc4(π∗X )171−k.

In particular, this means that a non-trivial multiplication by r on stem k forces a
non-trivial multiplication by r on stem 171− k − l.

Similarly, for tmf ∧ Y we obtain that a non-trivial multiplication by r on stem
k forces a non-trivial multiplication by r on stem 173− k − l.

2.4. The Geometric Boundary Theorem. We also make use of the following
result, due to Bruner [Bru78]. A standard reference is Theorem 2.3.4 of [Rav86].
We apply this Theorem 2.3.4 to the X(4)-based Adams-Novikov spectral sequence
and the cofiber sequence

tmf ∧ S0 2−→ tmf ∧ S0 i−→ tmf ∧ V (0)
p−→ tmf ∧ S1.

Using X(4)∗tmf ∼= A and X(4)∗(tmf ∧ V (0)) ∼= A/2, we have X(4)∗p = 0 and
hence a short exact sequence

0→ A
2−→ A→ A/2→ 0.(2.16)

Theorem 2.17 (Geometric Boundary Theorem). There are maps

δr : Es,tr (V (0))→ Es+1,t
r (S0)

such that

δ2 = δ : Es,t2 (V (0))→ Es+1,t
2 (S0)

is the connecting homomorphism arising from (2.16). For all r,

δrdr = drδr

and δr+1 is induced by δr. Furthermore, δ∞ is a filtered form of

p∗ : π∗tmf ∧ V (0)→ π∗+1tmf.

2.5. Further observations on extensions. Here, we collect a few classical but
useful extension results. Note that, in this paper, we use Definition 2.10 of [IWX20]
as our definition of an exotic extension. See Section 2.1 of that reference for a
detailed discussion. However, briefly, we have

Definition 2.18 (Definition 2.10 [IWX20]). Let α ∈ π∗tmf be an element detected
by a on the E∞-term of the elliptic spectral sequence for tmf . An exotic extension
by α is a pair of elements b and c on the E∞-term of the elliptic spectral sequence
for M (where M is a tmf -module) such that

(1) ab = 0 on the E∞-term,
(2) there is an element β detected by b such that αβ is detected by c,
(3) if an element β′ detected by b′ is such that αβ′ is detected by c, then the

filtration of b′ is less than or equal to that of b.

Note that this implies that if both αβ and αβ′ are detected by c as in Figure 1,
there is no exotic extension from b′ to c.
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8 12

0

4

8

•
b′

•
b

•
c

Figure 1. Here there is no exotic extensions from b′ to c, and so
the dashed line would not be drawn.

Lemma 2.19. Let X be a spectrum. Consider the long exact sequence in homotopy

. . .→ πnX
i−→ πn(X ∧ V (0))

p−→ πn−1X
2−→ . . .

associated to the cofiber sequence X
2−→ X → X ∧ V (0). Let a ∈ πn−1X be an

element of order 2. If a′ ∈ πn(X ∧ V (0)) is such that p∗(a
′) = a, then

2a′ = i∗(ηa) ∈ πnX ∧ V (0).

Proof. This is a classical result. See, for example, [BGH17, Lemma 3.1.5.]. �

Remark 2.20. Lemma 2.19 will be used with X = tmf and tmf ∧Cη where Cη is
the cofiber of the Hopf map η : S1 → S0. This gives all exotic 2-extensions in the
elliptic spectral sequences for tmf ∧ V (0) and tmf ∧ Y , since Y ' Cη ∧ V (0).

Finally, we have the following classical result which is an analogue of Lemma 2.19.

Lemma 2.21. Let b ∈ πnX be such that ηb = 0. If b′ ∈ πn+2(Cη ∧X) is such that
p∗b
′ = b in the long exact sequence on homotopy groups associated to

ΣX
η−→ X

i−→ X ∧ Cη p−→ Σ2X,

then ηb′ = i∗(νb).

Proof. First, consider b = ι ∈ π0Cη given by the inclusion S0 → Cη of the bottom
cell. We have a cofiber sequence

Cη
i−→ Cη ∧ Cη p−→ Σ2Cη
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which is not split because of the non-triviality of Sq4 in H∗(Cη ∧Cη,Z/2). We get
a diagram

π2Cη
i∗ //

η

��

π2Cη ∧ Cη
p∗ //

η

��

π2Σ2Cη // 0

π3Cη
i∗ // π3(Cη ∧ Cη)

For any b′ ∈ π2(Cη∧Cη) such that p∗b
′ = ι, we must have ηb′ 6= 0, else we could split

the above cofiber sequence. Since ηι = 0, ηb′ ∈ i∗(π3Cη), where π3Cη ∼= Z/4{νι}.
Now, in π∗Cη, we can form the bracket

〈ι, η, 2〉 ∈ π2Cη

with indeterminacy

2π2Cη + ιπ2S
0 = 2π2Cη ∼= 2Z.

So, 〈ι, η, 2〉η contains a unique element. In π∗S
0, we also have 2ν ∈ 〈η, 2, η〉 with

indeterminacy ηπ2S
0. It follows that

〈ι, η, 2〉η = ι〈η, 2, η〉 = ι2ν 6= 0 ∈ π3Cη.

So i∗(2ν) = 0 and ηb′ = i∗(νι).

For the general case, note that any class b : Sn → X such that ηb = 0 can be
extended to a map b̄ : ΣnCη → X. The claim then follows from the commutativity
of the following diagram

ΣnCη //

b̄

��

ΣnCη ∧ Cη //

b̄∧Cη
��

Σn+2Cη

Σ2b̄

��
X

i // X ∧ Cη
p // Σ2X

Then b′ = (b̄ ∧ Cη)∗ι satisfies ηb′ = i∗(νb). Now, suppose that p∗b̃
′ = b. Then

b̃′ − b′ ∈ ker p∗ = im i∗. Therefore, η(b̃′ − b′) = 0 so, ηb̃′ = i∗(νb) as well. �

2.6. Self-maps and their cofiber. It is well-known that V (0) admits v4
1 self-

maps, i.e., maps Σ8V (0) → V (0) which induce multiplication by v4
1 in K(1)-

homology for K(1) the first Morava K-theory. The map on MU -homology is given
by multiplication by x4

1 ∈MU8. Under the map from the Adams-Novikov spectral
sequence of V (0) to that of the ellpitic spectral sequence of tmf ∧ V (0), x1 maps
to v1 on the E2-term. See the discussion surrounding (3.3). Any v4

1 self-map is
detected by the same-named element. The spectral sequence inherits an action of
v4

1 and the differentials are v4
1-linear.

Recall that we let Y be the spectrum V (0) ∧ Cη. In [DM81], Davis and Ma-
howald show that there exist v1 self-maps of Y , i.e., maps Σ2Y → Y which induce
multiplication by v1 in K(1)∗Y . Any of these is detected by the element v1 on the
E2-term of elliptic spectral sequence for tmf ∧Y and the differentials are v1-linear.

In Lemma 6.40, we will be studying the v1-multiplication in tmf∗Y . Some of
the answers will depend on the choice of v1-self map, so we give a bit of background
here on this subject. This material can be found in [DM81].

In [DM81], the authors show that there are in fact 8 v1-self maps of Y . They
also show that a v1-self map of Y is detected in the Adams spectral sequence by
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an element of Ext1,3
A (H∗(Y ), H∗(Y )), where A denotes the Steenrod algebra at the

prime 2.

A class of Ext1,3
A (H∗(Y ), H∗(Y )) is represented by a short sequence ofA-modules:

0→ Σ2H∗(Y )→M → H∗(Y )→ 0.

Let A(1) be the sub-algebra of the Steenrod algebra generated by Sq1 and Sq2.

We know that Ext1,3
A(1)(H

∗(Y ), H∗(Y )) ∼= F2 and its unique non-trivial class is

represented by the short exact sequence of A(1)-module

0→ Σ2H∗(Y )→ A(1)→ H∗(Y )→ 0,

where A(1) is isomorphic to A(1) as an A(1)-module, thus the notation. Davis

and Mahowald showed that a class of Ext1,3
A (H∗(Y ), H∗(Y )) which detects a v1-self

map of Y is sent to the unique non-trivial class of Ext1,3
A(1)(H

∗(Y ), H∗(Y )) (via the

map induced by the inclusion A(1) ⊂ A).

To put an A-module structure on A(1), it suffices to specify the Sq4 action.
Indeed, the action of Sqk, for k ≥ 8 on A(1) is trivial for degree reasons. By the
Adem relations, there must be a non-trivial Sq4 on the class of degree one of A(1).
There are possibilities for a non-trivial action of Sq4 on the classes of degrees zero
and two, giving rise to four different A-module structures on A(1). This implies,
in particular, that

Ext1,3
A (H∗(Y ), H∗(Y )) ∼= F⊕3

2 .

Computing the first three stems of Exts,tA (H∗(Y ), H∗(Y )), we see that

Exts,s+2
A (H∗(Y ), H∗(Y )) ∼=

{
F2 if s = 2

0 otherwise.

We deduce that there are eight homotopy classes of maps Σ2Y → Y detected
in Ext1,3

A (H∗(Y ), H∗(Y )) and mapping non-trivially to Ext1,3
A(1)(H

∗(Y ), H∗(Y )).

These are the v1 self-maps of Y .

The singular cohomology of the cofiber of each of the v1-self map is isomorphic
to one of the four A(1)s as an A-module. We denote the four choices by A1[ij],
with i, j ∈ {0, 1}. Here, A1[ij] means that the cohomology has a non-trivial Sq4 on
the class of degree 0, respectively 2 if i = 1, respectively if j = 1.

It is somewhat surprising that out of eight v1-self-maps, there are only four
homotopy types which are distinguished by their cohomology, as is shown [DM81].
We use the notation A1, for short, when we mean any or all of the four models.

3. tmf∗V (0): The E2-page

From now on, we will be working exclusively with 2-local spectra. We will write
tmf for tmf(2) to simplify the notation. Furthermore, we will be considering only
elliptic spectral sequences for M = tmf ∧F for F a finite spectrum and so shorten
our notation even more to

Es,t2 (F ) := Exts,tΛ′ (A
′, A′ ⊗A F∗(F )).

The map S0 ×2−−→ S0 induces multiplication by 2 on F∗(S0) ∼= A, which is injec-
tive. Thus the cofiber sequence

S0 2−→ S0 → V (0)
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gives rise to a short exact sequence of Λ′-comodules

0→ A′
×2−−→ A′ → A′ ⊗A F∗(V (0))→ 0.(3.1)

It follows that A′ ⊗A F∗(V (0)) is isomorphic to A′/(2) as a Λ′-comodule. Since
(2) ⊆ A′ is a Λ′-invariant ideal, we have that

Exts,tΛ′ (A
′, A′/(2)) ∼= Exts,tΛ′/(2)(A

′/(2), A′/(2)).

See, for example, [Rav86, Proposition A1.2.16]. So, we have a spectral sequence

(3.2) Es,t2 (V (0)) = Exts,tΛ′/(2)(A
′/(2), A′/(2)) =⇒ π∗tmf ∧ V (0).

A computation of the cohomology of (A′/(2),Λ′/(2)) is originally due to Hopkins
and Mahowald and can be found in [DFHH14, Chapter 15, Section 7] and [Bau08,
Section 7]. Let us describe the answer here and introduce some notation.

Classical computations of modular forms yield

Ext0,∗
Λ′ (A′, A′) ∼= Z(2)[c4, c6,∆]/(c34 − c26 − (12)3∆)

where

c4 = a4
1 − 24a1a3

c6 = −a6
1 + 36a3

1a3 − 216a2
3

∆ = a3
1a

3
3 − 27a4

3

as well as

Ext0,∗
Λ′/(2)(A

′/(2), A′/(2)) ∼= Z/2[a1,∆].

See, for example [Bau08] and [Sil86, III.1]. The map on Ext0,∗ induced by the mod
2 reduction (A′,Λ′)→ (A′/(2),Λ′/(2)) sends c4 7→ a4

1 and c6 7→ a6
1.

There are also maps of Adams–Novikov Spectral Sequences, where H and h are
as in Remark 2.3:

Ext∗,∗BP∗BP (BP∗, BP∗V (0)) // π∗V (0)

Ext∗,∗MU∗MU (MU∗,MU∗V (0))

∼=

OO

H

��

// π∗V (0)

∼=

OO

h

��
Ext∗,∗Λ′/(2)(A

′/(2), A′/(2)) // π∗tmf ∧ V (0)

Further,

Ext0,∗
BP∗BP

(BP∗, BP∗V (0)) ∼= F2[v1];

see [Rav86, Thm 4.3.2].

So, we have a1 ∈ Ext0,2
Λ′/(2)(A

′/(2), A′/(2)), v1 ∈ Ext0,2
BP∗BP

(BP∗, BP∗V (0)) and

x1 ∈ Ext0,2
MU∗MU (MU∗,MU∗V (0)), and

v1 ← [ x1 7→ a1.(3.3)

Note that v1 detects either of the two classes in π2V (0) ∼= Z/4 which map to
η ∈ π1V (0) under the homomorphism π2V (0) → π1S

0 in the long exact sequence
in homotopy. We fix a choice and call it v1 ∈ π2V (0). It follows that a1 survives
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to detect the image of v1 ∈ π2V (0) in π2tmf ∧ V (0). From now on, in mod 2
computations, we abuse notation and denote all classes we have named a1 by v1.

Now we will present the E2 page of (3.2) as computed in [DFHH14, p. 270],
[Sto14, Fig. 5] and [Bau08, p.26]. See Figure 2. Even if the elliptic spectral sequence
for V (0) is not multiplicative, E2(V (0)) is a ring and we can completely describe
the algebraic relations (which also follow from [Bau08]). The ring structure will be
used in our computation of E2(Y ) below.

Recall that δ = δ2 was defined in Theorem 2.17. In the theorem below, κ ∈
E2,16

2 (S0) is the unique non-zero element.

Theorem 3.4 (Figure 2). The ring E2(V (0)) is isomorphic to

F2[v1,∆, κ̄, η, ν, x, y]/(∼)

for elements

η ∈ Ext1,2, ν ∈ Ext1,3, κ̄ ∈ Ext0,24, ∆ ∈ Ext0,24

in the image of E2(S0)→ E2(V (0)), as well as elements

v1 ∈ Ext0,2, x ∈ Ext1,8, y ∈ Ext1,15

in the image of δ2 : E2(V (0))→ E2(S0) where

δ2(v1) = η, δ2(x) = ν2, δ2(y) = κ.

The relations (∼) is the ideal generated by

(s = 1) v1ν v2
1x v1y

(s = 2) νη νx− v1ηx ηy − v1x
2 xy y2 − ν2∆

(s = 3) η2x− ν3 x3 − ν2y

(s = 4) η4∆− v4
1κ̄ .

Furthermore, we have κ = x2 and δ2(ν2y) = 4κ̄.

Remark 3.5. The algebraic structure in Theorem 3.4 can also be deduced from
the appendix of [Bea17].

Remark 3.6. The element ∆ is detected by v4
2 in the Bockstein spectral sequence

computation of [DFHH14, II.2.7].

Remark 3.7. Let P denote the following pattern:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

ν

ε

x

εv1

κ = x2

y

x3

Then E∗,∗2 (V (0)) can be summarized additively as

E∗,∗2 (V (0)) = P [κ̄,∆]/(∆η4 − κ̄v4
1).
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0

1

2

3

4

5

6

7

8

9

10

11

12

ν

ε

x
xv1

κ = x2

y

x3 = yν2

y2 = ∆ν2η

κ̄ κ̄v1

∆

∆κ̄

κ̄2

∆2

Figure 2. The E2-term of the elliptic spectral sequence for tmf ∧
V (0). A bullet • denotes F2 and a diamond � denotes a copy of
F2[v1]. The lines of slope 1 denote multiplication by η, and the
lines of slope 1/3 denote multiplication by ν. Horizontal lines are
v1-multiplications.

4. tmf∗V (0): The differentials and extensions

We begin with an observation that V (0) has a v4
1 self map, hence all differentials

dr for r ≥ 3 are v4
1 linear. Since η, ν, κ̄ and ∆8 are permanent cycles, all differentials

are linear with respect to multiplication by these elements. Note that there are no
even length differentials due to sparseness.

We will use the following methods when computing differentials in this section.

(1) The map of spectral sequences induced by the map of spectra

tmf → tmf ∧ V (0)

allows us to import a differential dr(a) = b from the spectral sequence for
tmf if the images of a and b are both non-trivial on the Er page of the
spectral sequence for tmf ∧ V (0). Note also that the elliptic spectral for
tmf ∧ V (0) is a module over the elliptic spectral sequence for tmf .

(2) The long exact sequence in homotopy groups associated to the fiber se-
quence

tmf
2−→ tmf → tmf ∧ V (0)

gives short exact sequences

0→ (πitmf)/2→ πi(tmf ∧ V (0))→ ker2(πi−1tmf)→ 0

where ker2(πi−1tmf) is the subgroup of elements of order 2. This allows
us to compute the rank of πi(tmf ∧ V (0)) and forces certain differentials
by various dimension count arguments.

(3) The Geometric Boundary Theorem, stated in Theorem 2.17.

4.1. The d3-differentials.

Lemma 4.1 (Figure 3). The d3-differentials are ∆ and v4
1-linear. They are deter-

mined by this linearity, the differentials

d3(v2
1) = η3; d3(v3

1) = v1η
3,

and the module structure over the elliptic spectral sequence for tmf .



THE TOPOLOGICAL MODULAR FORMS OF RP 2 AND RP 2 ∧ CP 2 19

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0

2

4

6

8

10

·
·
·
·
·
·
·
·
·
·
·

· v1

·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·v121

·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·

·v241

·
·

·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

· ∆

·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
∆v121

·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·

··
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·
·
·
·
·

·
·
·
·
·

·
·
·

·

· ∆2

·
·

·

Figure 3. The d3-differentials
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Figure 4. d5 and d7-differentials in stems 0-48. A ◦ denotes
F2[v4

1 ].

Proof. The two listed d3-differentials occur in the Adams-Novikov spectral sequence
computing π∗V (0) so happen here also by naturality. See, for example, [Rav78,
Theorem 5.13 (a)]. Since ∆ is a d3-cycle in the elliptic spectral sequence computing
π∗tmf and the elliptic spectral sequence for V (0) is a module over this spectral
sequence, the d3-differentials are ∆-linear. For degree reasons (making use of ∆
and κ̄-linearity), these determine all d3-differentials. �

Remark 4.2. On the E5-page, all classes in filtrations s ≥ 3 are v4
1-torsion. The

v4
1-free classes are concentrated in stems t− s 6≡ 5, 6, 7 mod 8.

4.2. The d5-differentials.

Lemma 4.3 (Figure 4). The d5-differentials are ∆2-linear. They are determined
by this linearity, the differential

d5(∆) = κ̄ν,

and the module structure over the elliptic spectral sequence for tmf .



20 AGNÈS BEAUDRY, IRINA BOBKOVA, VIET-CUONG PHAM, AND ZHOULI XU

48 52 56 60 64 68 72 76 80 84 88 92 96

0

4

8

12

16

20

48 52 56 60 64 68 72 76 80 84 88 92 96

0

4

8

12

16

20

Figure 5. Differentials in stems 48 to 96

Proof. The same differential occurs in the spectral sequence for π∗tmf . The rest
of the argument is as in the proof of Lemma 4.1. �

4.3. Higher differentials. Since all the classes in filtrations 4 and above are in
the ideal generated by κ̄, the differentials that have sources in filtrations 0-3 gen-
erate the other differentials with respect to the module structure over the elliptic
spectral sequence for tmf (denoted E∗,∗r (S0)). We focus on these differentials in
the narrative. See Figures 4, 5, 6 and 7.
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Lemma 4.4. The d7-differentials are ∆4-linear and determined by

d7(∆ν2y) = κ̄2η2v1,

d7(∆3ν2y) = ∆2κ̄2η2v1 ,

and the module structure over the elliptic spectral sequence for tmf .

Proof. First, note that d7(∆4) = η2κ̄ = 4νκ̄ in the spectral sequence for tmf .
Therefore, for any a ∈ E7(V (0))

d7(∆4a) = 4νκ̄a+ ∆4d7(a).

Since 4E7(V (0)) = 0, we get ∆4-linearity.

We give a proof for the differential d7(∆ν2y) = κ̄2η2v1. The proof for the other
differential is similar. In the spectral sequence for tmf , we have

d7(∆4κ̄) = η3κ̄2.

But, for δ2 : Es,t2 (V (0))→ Es+1,t
2 (S0) the connecting homomorphism, we have

δ2(∆ν2y) = ∆4κ̄

and
δ2(κ̄2η2v1) = κ̄2η3.

The differential when i = 0 then follows from Theorem 2.17.

Making use of the module structure over the spectral sequence for tmf , the only
other possible d7-differential for degree reasons is on ∆2ν2y. But this class is in
fact a d7-cycle since ∆2y is a d7-cycle by sparseness. �

Lemma 4.5. Using the module structure over the elliptic spectral sequence for tmf ,
the d9-differentials are determined by the following differentials with i = 0, 1:

(1) d9(∆2+4i) = ∆4iκ̄2x,
(2) d9(∆2+4ix) = ∆4iκ̄2κ,
(3) d9(∆3+4iη) = ∆1+4iκ̄2ε
(4) d9(∆3+4iε) = ∆1+4iκκ̄2η
(5) d9(∆2+4iv1) = ∆4iκ̄2v1x
(6) d9(∆2+4iv1x) = ∆4iκ̄2ηy
(7) d9(∆3+4iv1) = ∆1+4iκ̄2v1x
(8) d9(∆3+4iv1x) = ∆1+4iκ̄2ηy

Proof. We prove the claim for i = 0. To prove i = 1, one uses exactly the same
arguments in later stems.

In order to show (1), note that ∆2 cannot support any dr for r < 9 by sparseness.
Then we have the differential from the elliptic spectral sequence for tmf

d9(∆2η) = κ̄2ε

and this differential becomes η divisible in the spectral sequence for tmf ∧ V (0).
For (2), we use the same argument with the differential d9(∆2ε) = ∆κ̄2κη from the
elliptic spectral sequence for tmf .

The differentials (3) and (4) are the images of the same differentials in the elliptic
spectral sequence for tmf . The differentials (5)–(8) are proved using Theorem 2.17.
For example, the differential d9(∆2η) = κ̄2ε and the facts that δ(v1) = η and
δ(v1x) = ε together imply (5). The others are similar.
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It remains to argue that there are no other generating d9-differentials. As noted
above, it suffices to determine this on classes in filtration less than four. Combining
a comparison with the spectral sequence for tmf and sparseness, we see that the
only question is whether or not the classes ∆4x and ∆4v1x support non-trivial d9s.
However, the possible targets are the sources of κ̄-multiples of the d11-differentials
(1) and (3) of Lemma 4.6 shown below, which settles the question. �

Lemma 4.6. Using the module structure over the elliptic spectral sequence for tmf ,
the d11-differentials are determined by the following differentials with i = 0, 1:

(1) d11(∆2+4iκ) = ∆4iκ̄3η
(2) d11(∆3+4iκη) = ∆1+4iκ̄3η2

(3) d11(∆2+4iy) = ∆4iκ̄3v1

(4) d11(∆3+4iκv1) = ∆1+4iv1κ̄
3η

(5) d11(∆5v1) = ∆3κ̄2ν3

Proof. The differentials (1) and (2) are images of the same differentials in the
spectral sequence for tmf . The differentials (3) and (4) follow from (1) and (2)
respectively using Theorem 2.17. The differential (5) follows from the fact that
π121(tmf ∧ V (0)) does not contain v4

1-torsion, which can be verified by comparing
with π∗tmf using the long exact sequence on π∗.

Sparseness and multiplicative structure guarantees that these are all the gener-
ating d11-differentials, except for a possible d11 on ∆7η2v1. However, the possible
target is the source of the κ̄-multiple of the d13 below. �

Lemma 4.7. The d13-differentials are determined by

d13(∆4y) = ∆2κ̄3η2.

There are no d15-differentials and the d17-differentials are determined by

d17(∆4) = κ̄4y.

The d19-differentials are determined by

d19(∆7ν3) = κ̄5∆3v1η
2.

Proof. The first and second differentials follow from the facts that

π110(tmf ∧ V (0)) = Z/2 and π95(tmf ∧ V (0)) = 0

respectively. The d19-differential follows from the fact that the there is no v4
1-torsion

in π177(tmf ∧ V (0)).

There are no d15 differentials and no other d17 and d19 for degree reasons. The
only argument needed beyond sparseness and multiplicative structure to show that
there are no other d13-differentials is as follows. There are possible d13s on ∆3ν3

and ∆7ν3. These classes are in the image of the tmf spectral sequence. For tmf ,
d13(∆3ν3) = 2κ̄4 and the target maps to zero in the spectral sequence for tmf∧V (0)
and similarly for ∆7ν3. �

Warning 4.8. The d13 differential above is in fact equivalent to the 2-extension
in π110tmf . For those familiar with names, this corresponds to 2κ4 = η1κ̄

3. For a
recent detailed treatment of this extension, see [BR, Chapter 9].
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Figure 6. Differentials in stems 96 to 140
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Lemma 4.9. There are no d21-differentials. The d23-differentials are determined
by:

(1) d23(∆5η) = κ̄6

(2) d23(∆6η2) = κ̄6∆η
(3) d23(∆6ηv1) = κ̄6∆v1

(4) d23(∆7η2v1) = κ̄6∆2ηv1

Proof. The differentials (1) and (2) occur in the elliptic spectral sequence for tmf .
The differential (3) is the geometric boundary of (2) as in Theorem 2.17. The last
differential is forced by the fact that the v4

1-torsion in π171(tmf ∧ V (0)) is trivial.
There are no d21 or other d23-differentials for degree reasons. �

The following is now immediate.

Lemma 4.10. The spectral sequence collapses at E24 with a horizontal vanishing
line at s = 22, i.e., Es,t∞ (V (0)) = 0 for s ≥ 22.

4.4. Exotic extensions. We list the exotic extensions that do occur. All other
possibilities can be ruled out using algebraic structure and duality. We bring to
the attention of the reader the precise meaning of exotic extensions given in Defi-
nition 2.18. Note also that all exotic 2-extensions are deduced from Lemma 2.19.
We do not discuss 2-extensions further but include them in our figures.

Lemma 4.11 (Figure 8). In stems 0 to 45, there are exotic extensions:

(1) [∆η]ν = κ̄ε
(2) [∆ε]ν = κκ̄η
(3) [∆κη]ν = κ̄2η2

(4) [∆v1]ν = κ̄v1x
(5) [∆v1x]ν = κκ̄v1

(6) [∆κv1]ν = κ̄2ηv1

(7) [yν2]ν = κ̄v1η
2

Proof. The first three extensions are between elements from π∗tmf , see [Bau08].
The next three are forced by the fact that the connecting homomorphism in the
long exact sequence on homotopy groups is a map of π∗S

0-modules, the geometric
boundary theorem, and the fact that under the map

δ : Es,t2 (V (0))→ Es+1,t
2 (S0)

we have δ(v1) = η (and so δ(xv1) = ε, δ(κv1) = ηκ, etc.).

The last extension follows from duality and the fact that there is a ν multipli-
cation between stems 147 and 150 (already present on the E2-page). �

Lemma 4.12 (Figure 8). In stems 46 to 96, there are exotic extensions:

(1) [∆2η2]ν = ∆κ̄ν3

(2) [∆2ν]η = ∆κ̄ε
(3) [∆2v1η]ν = ∆κ̄xν
(4) [∆2xν]η = ∆κ̄κη
(5) [∆2xν]ν = ∆κ̄κηv1

(6) [∆2κν]ν = ∆κ̄2η2v1

(7) [∆2yν2]ν = ∆2κ̄v1η
2
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Figure 8. Exotic extensions in the elliptic spectral sequence for

tmf∧V (0) in stems 0 to 96. This records tmf∗V (0) ∼= t̃mf∗+1RP 2.

Proof. The first two extensions (1) and (2) are multiplicative relations that hold in
π∗tmf . Extension (3) follows from (1) and Theorem 2.17. Extension (4) is dual
to the algebraic η multiplication from stem 112 to 113, and similarly for (5). The
extension (6) involves classes in the image of i∗ and this extension happens in tmf∗.
Finally, (7) is dual to the algebraic ν multiplication from stem 99 to 102. �

Remark 4.13. Looking at the charts in [Bau08], one might have expected ex-
tensions [∆2κν]η = ∆κ̄2η2 and, by the Geometric Boundary Theorem, [∆2yν]η =
∆κ̄2ηv1. However, these are not exotic extensions according to Definition 2.18.

We also note that [∆2c4]ν 6= [∆κ̄κη] and [∆3c4v1]ν 6= [∆κ̄3η]. The first comes
from the fact in π∗tmf , there is no such extension. (This can be seen, for example,
from the Adams Spectral Sequence of tmf .) The second follows from the fact that
the target has a non-trivial κ̄-multiple and κ̄ν = 0.

Lemma 4.14 (Figure 9). In stems 97 to 144, there are exotic extensions:
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Figure 9. Exotic extensions in the elliptic spectral sequence of

tmf∧V (0) in stems 96 to 192, recording tmf∗V (0) ∼= t̃mf∗+1RP 2.

(1) [∆4η]ν = κ̄5

(2) [∆4ν]η = κ̄5

(3) [∆4κ̄ε]η = ∆κ̄5η
(4) [∆5η2]ν = ∆κ̄5η
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(5) [∆5ε]ν = ∆4κκ̄η
(6) [∆5κη]ν = ∆4κ̄2η2

(7) [∆4κ̄xv1]η = ∆κ̄5v1 (from (125, 5) to (126, 20))
(8) [∆5xv1]ν = ∆4κκ̄v1 (from (129, 1) to (132, 6))
(9) [∆5κv1]ν = ∆4κ̄2ηv1 (from (136, 2) to (139, 9))

(10) [∆5εv1]η = ∆2κ̄4v1η (from (130, 2) to (131, 17))
(11) [∆4v1]ν = ∆3κ̄ν3 (from (98, 0) to (101, 7))
(12) [∆5κη]η = ∆3κ̄3η2v1 (from (135, 3) to (136, 14))
(13) [∆4yν2]ν = [∆4κ̄v1η

2] (from (117, 3) to (120, 6))

Proof. Extensions (1)–(6) follow from studying i∗ : tmf∗ → tmf∗V (0). Note that
(4) is missing from the [Bau08] charts, but can be obtained from the classical
Adams Spectral Sequence for tmf . See [DFHH14, Chapter 13] or [BR, Chapter
9]. Extensions (7), (8) and (9) follow from (3), (5) and (6), respectively, using
Theorem 2.17.

For (11), note that by Theorem 2.17, [∆4v1] has geometric boundary [∆4η].
Since [∆4η]ν 6= 0, [∆4v1]ν 6= 0 and this extension is the only choice. For (12),
use Remark 2.14 and the algebraic η multiplication between π35tmf ∧ V (0) and
π36tmf ∧ V (0). A similar argument applies for (13). �

Remark 4.15. There is no exotic ν-extension on [∆5c4] since the potential target
is not annihilated by κ̄.

Lemma 4.16 (Figure 9). In stems 145 to 191, there are exotic extensions:

(1) [∆6ν]η = [∆5κ̄ε] (from (147, 1) to (148, 6))
(2) [∆6κν]η = [∆5κ̄2η2] (from (161, 3) to (162, 10))
(3) [∆5κ̄κη]η = [∆3κ̄4η2v1] (from (155, 7) to (156, 18))
(4) [∆6yν]η = [∆5κ̄2v1η] (from (162, 2) to (163, 9))
(5) [∆5κ̄εv1]η = [∆2κ̄5ηv1] (from (150, 6) to (151, 21))
(6) [∆6ν3]ν = ∆3κ̄4v1η

2 (from (153, 3) to (156, 18))
(7) [∆6εv1]η = ∆5κ̄κη (from (154, 2) to (155, 7))
(8) [∆6εv1]ν = ∆5κ̄κν (from (154, 2) to (157, 7))
(9) [∆6κν]ν = ∆5κ̄2v1η

2 (from (161, 3) to (164, 10))
(10) [∆6yν2]ν = [∆6κ̄v1η

2] (from (165, 3) to (168, 6))

Proof. The first two extensions occur in tmf∗. The third is also an extension in
tmf∗, namely [∆5κ̄κη]η = [∆42κ̄3], but the image of the class [∆42κ̄3] is detected
by [∆3κ̄4η2v1] in tmf∗V (0). The extension (4) follow from (2) and Theorem 2.17.
This result also implies (5) from the extensions [∆5κ̄ν3]η = [∆2κ̄5η2] in tmf∗. All
the extensions (6)–(10) follow from Corollary 2.10 and Remark 2.14 and the data
for algebraic multiplications in the range 3 ≤ t− s ≤ 20. �

5. tmf∗Y : The E2-page

Let Cη be the cofiber of the Hopf map η, so that there is an exact triangle

(5.1) S1 η−→ S0 → Cη → S2.

We define Y ' V (0) ∧ Cη and study its elliptic spectral sequence. Recall that if F
is a finite spectrum, then we abbreviate

F∗(F ) := π∗(tmf ∧X(4) ∧ F ).
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We first describe F∗(Cη). Since π∗(tmf ∧ X(4)) ∼= A is concentrated in even
degrees, the cofiber sequence (5.1) induces a short exact sequence on tmf ∧X(4)-
homology

0→ A→ F∗(Cη)→ Σ2A→ 0.

This splits as a sequence of A-modules so that

F∗(Cη) ∼= A⊕ Σ2A.

Multiplication by 2 on Cη induces multiplication by 2 on tmf ∧ X(4)-homology,
which is injective because F∗(Cη) is torsion-free. Thus the cofiber sequence

Cη
2−→ Cη → Y

induces a short exact sequence in tmf ∧X(4)-homology

0→ F∗(Cη)→ F∗(Cη)→ F∗(Y )→ 0,

and it follows that

(5.2) F∗(Y ) ∼= A/(2)⊕ Σ2A/(2)

as an A/(2)-module.

Likewise, since F∗(V (0)) is concentrated in even degrees, the induced map on
tmf ∧X(4)-homology of the cofiber sequence

ΣV (0)
η−→ V (0)→ Y

is trivial. It follows that there is a short exact sequence of Λ-comodules

0→ A/(2)→ F∗(Y )→ Σ2A/(2)→ 0.

This short exact sequence of A-modules splits because of (5.2). Tensoring it with
A′ over A, we obtain a short exact sequence of Λ′-comodules, which splits as a
sequence of A′-modules

(5.3) 0→ A′/(2)→ A′ ⊗A F∗(Y )→ Σ2A′/(2)→ 0.

As F∗(Y ) is 2-torsion, (5.3) is a short exact sequence of A′/(2)-module, and hence
splits as such. Therefore, applying Ext∗,∗Λ′ (A′,−) to (5.3), we get a long exact
sequence of Ext∗,∗Λ′ (A′, A′/(2))-modules. See, for example, [Bro10, p.110, (3.3)]. Its
connecting homomorphism

(5.4) δ : Exts,tΛ′ (A
′, A′/(2))→ Exts+1,t+2

Λ′ (A′, A′/(2))

is given by multiplication with η ∈ Ext1,2
Λ′ (A′, A′/(2)). Here, as is often the case,

we denote by η the class in Ext which detects the same-named homotopy class.

We present the effect of the connecting homomorphism separately for the v1-
power torsion and for the v1-free classes of E2(V (0)) in Figure 10 and Figure 11,
respectively.

In Figure 11 a ◦ denotes a copy of F2[v1], and a line of slope 1 denotes, as usual,
multiplication by η. Note that we have κ̄v4

1 = ∆η4, hence κ̄v4
1 = 0 in E2(Y ), while

v1 itself is not nilpotent and ∆i is not v1 torsion. For our purposes, we need to
determine completely the action of v1 on E2(Y ). The class v1 ∈ Ext0

Λ′(A
′, A′/(2)) is

detected by the primitive a1 ∈ A′/(2) (with respect to the Λ′-comodule structure).

Since a1 ∈ A′/(2) is a primitive, multiplication by a1 ∈ A′/(2) induces the
following diagram of Λ′-comodules



30 AGNÈS BEAUDRY, IRINA BOBKOVA, VIET-CUONG PHAM, AND ZHOULI XU

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

x y

f

Figure 10. The connecting homomorphism (5.4) for the v1-power
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Figure 11. The connecting homomorphism (5.4) for the v1-free
classes

0

��

0

��

0

��
0 // Σ2A′/(2)

×a1
��

// Σ2A′/(2)⊗A/(2) F∗(Y )

×a1
��

// Σ4A′/(2)

×a1
��

// 0

0 // A′/(2)

��

// A′/(2)⊗A/(2) F∗(Y )

��

// Σ2A′/(2)

��

// 0

0 // A′/(2, a1)

��

// A′/(2, a1)⊗A/(2) F∗(Y )

��

// Σ2A′/(2, a1)

��

// 0

0 0 0

(5.5)

We let

M := A′/(2, a1)⊗A/(2) F∗(Y )
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The middle vertical short exact sequence induces a long exact sequence
(5.6)

. . . // Es,t2 (Y )
v1 // Es,t+2

2 (Y ) // Exts,t+2
Λ′ (A′,M) // Es+1,t+2

2 (Y )
v1 // . . .

so that we can determine the action of v1 on E2(Y ) by computing

Ext∗,∗Λ′ (A′,M) ∼= Ext∗,∗Λ′/(2,a1)(A
′/(2, a1), A′/(2, a1)⊗A/(2) F∗(Y )).

The cohomology ring Ext∗,∗Λ′/(2,a1)(A
′/(2, a1), A′/(2, a1)) is computed in [Bau08, Sec-

tion 7]. With our notation,

Ext∗,∗Λ′/(2,a1)(A
′/(2, a1), A′/(2, a1)) ∼= F2[η, ν, κ̄, v2]/(v2η

3 − ν3, ην).

The bottom short exact sequence of the above diagram (5.5) splits as a sequence
of A′/(2, a1)-modules. However, it does not split as a one of Λ′/(2, a1)-comodules,

rather it represents the element η ∈ Ext1,2
Λ′/(2,a1)(A

′/(2, a1), A′/(2, a1)). Therefore,

the connecting homomorphism

(5.7) Exts,tΛ′/(2,a1)(A
′/(2, a1), A′/(2, a1))→ Exts+1,t+2

Λ′/(2,a1)(A
′/(2, a1), A′/(2, a1))

of the induced long exact sequence in Ext∗,∗Λ′/(2,a1)(A
′/(2, a1),−) is given by multi-

plication by η. We obtain:

Lemma 5.8. As a module over the ring F2[η, ν, κ̄, v2]/(v2η
3 − ν3, ην), the coho-

mology group

Ext∗,∗Λ′/(2,a1)(A
′/(2, a1), A′/(2, a1)⊗A/(2) F∗(Y ))

is generated by a[0, 0] ∈ Ext0,0 and a[5, 1] ∈ Ext1,6 with the relations

ηa[0, 0] = 0, ηa[5, 1] = ν2a[0, 0].

Proof. By the description of the connecting homomorphism (5.7), we see that

Ext∗,∗Λ′/(2,a1)(A
′/(2, a1), A′/(2, a1)⊗A/(2) F∗(Y )) ∼= F2[ν, κ̄, v2]/(ν3){a[0, 0], a[5, 0]}

as an F2[ν, κ̄, v2]/(ν3)-module. Next, we determine the action of η. We see easily
that ηa[0, 0] = 0. To calculate ηa[5, 1], we remark that

ν2a[0, 0] = 〈η, ν, η〉a[0, 0] = η〈ν, η, a[0, 0]〉,
where the first equality comes from the Massey product ν2 = 〈η, ν, η〉 and the
second is a shuffle. As ν2a[0, 0] 6= 0, 〈ν, η, a[0, 0]〉 is not trivial and must be equal
to a[5, 1] by sparseness. Hence, ν2a[0, 0] = ηa[5, 1]. �

0 6 12 18 24
0
1
2
3
4

Figure 12. Exts,tΛ′/(2,a1)(A
′/(2, a1), A′/(2, a1) ⊗A/(2) F∗(Y )) de-

picted in the coordinate (t− s, s).
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Proposition 5.9 (Figure 13). As a module over E2(V (0)), E2(Y ) is generated by
classes

a[0, 0], a[5, 1], a[17, 3]

The submodule generated by a[0, 0] is isomorphic to E2(V (0))/η. There are Massey
products

a[5, 1] = 〈ν, η, a[0, 0]〉, a[17, 3] = 〈ηx2, η, a[0, 0]〉
and these classes are subject to the following relations. On the new classes, we have
v1 mulitiplications

v1a[5, 1] = xa[0, 0] v1a[17, 3] = x2a[5, 1],

η and ν multiplications

ηa[5, 1] = ν2a[0, 0], ηa[17, 3] = νa[17, 3] = ya[17, 3] = 0

as well as

ν2ya[5, 1] = v3
1κ̄a[0, 0] .

Proof. Using the description of E2(V (0)), the effect of the connecting homomor-
phism δ of (5.4) is straightforward to compute. The cokernel is simply E2V (0)/η as
an E2(V (0))-module. Using the multiplication on E2(V (0)), the kernel is generated
by classes a[5, 1] and a[17, 3] defined as

a[5, 1] = p∗(ν) a[17, 3] = p∗(ηx
2),

where p∗ is induced by the map A′ ⊗A F∗(Y )→ Σ2A′/(2) of (5.3).

Inspecting the long exact sequence (5.6) and the structure of

Ext∗,∗Λ′/(2,a1)(A
′/(2, a1), A′/(2, a1)⊗A/(2) F∗(Y )),

we see that v1a[5, 1] = xa[0, 0] (else the latter Ext1,8-term would be nonzero and
contain the image of xa[0, 0]). That v1a[17, 3] = x2a[5, 1] follows from the fact that
v1ηx

2 = x2ν in E2(V (0)) and the definition these classes as images of δ.

By the same argument used in Lemma 5.8, we deduce the η-multiplication on
a[5, 1]. The relations ηa[17, 3] = νa[17, 3] = ya[17, 3] = 0 follows for degree reasons.

It remains to verify that ν2ya[5, 1] = v3
1κ̄a[0, 0]. A juggling of Massey products

gives

yν2〈ν, η, a[0, 0]〉 = 〈yν2, ν, η〉a[0, 0].

The relation ν2ya[5, 1] = v3
1κ̄a[0, 0] then follows by Lemma 5.10 below and the fact

that ηa[0, 0] = 0. �

Lemma 5.10. In Ext∗,∗Λ′ (A′, A′/(2)), there is the following Massey product

κ̄v3
1 ∈ 〈yν2, ν, η〉

with indeterminacy

ηExt3,28
Λ′ (A′, A′/(2)) + yν2 Ext1,6

Λ′ (A′, A′/(2)).
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0

2

4

6

8

Figure 13. E2(Y ) as a module over E2(V (0)). The dashed lines
are x-multiplications and dotted lines y-multiplications. Other
structure lines are as in Figure 2.

Proof. By [Bau08, Formula 7.9], κ̄v2
1 = 〈η, κη, x〉 and

κ̄v3
1 = v1〈η, κη, x〉 ⊂ 〈v1η, κη, x〉 ⊂ 〈η, v1κη, x〉 = 〈η, η2y, x〉

and the indeterminacy ηExt3,28
Λ′ (A′, A′/(2)) does not contain κ̄v3

1 . Here, we used
the relation v1κη = η2y. So κ̄v3

1 = 〈η, η2y, x〉 and it follows that

κ̄v4
1 = v1〈η, η2y, x〉 = 〈v1η, y, η

2x〉 = 〈v1η, y, ν
3〉 ⊂ 〈v1η, yν, ν

2〉
and the indeterminacy ηv1 Ext3,28 does not contain κ̄v4

1 . So

κ̄v4
1 = 〈v1η, yν, ν

2〉 = 〈v1η, ν, ν
2y〉 = v1〈η, ν, yν2〉.

As v1 acts injectively on Ext4,30
Λ′ (A′, A′/(2)), so κ̄v3

1 = 〈η, ν, yν2〉 = 〈yν2, ν, η〉. �

Remark 5.11. In Es,t2 (Y ), there is at most one non-zero element in any bi-degree
(s, t) with filtration s > 0. There is also a unique non-zero element in bi-degree
(0, 0). So, for s > 0 or (s, t) = (0, 0), we often denote by a[t− s, s] ∈ Es,tr the non-
zero element, if it exists. Furthermore, when s = 0 and t > 0, we let a[t, 0] denote

the element of E0,t
2 (Y ) which is divisible by the largest power of ∆. For example,

E0,52
2 (Y ) ∼= F2{v26

1 a[0, 0], v14
1 ∆a[0, 0], v2

1∆2a[0, 0]} and a[52, 0] = v2
1∆2a[0, 0].

Although Proposition 5.9 gives us a very compact description of E2(Y ), the
elliptic spectral sequence of tmf ∧ Y is not a module over the elliptic spectral
sequence of tmf ∧ V (0) as the latter is not even a multiplicative spectral sequence.
However, the elliptic spectral sequence of tmf ∧ Y is a module over the elliptic
spectral sequence of tmf . In fact, we get even more structure than that from the
fact that Y has v1-self maps. As explained in Section 2.6, we have:

Lemma 5.12 (v1-linearity). The differentials in the elliptic spectral sequence for
tmf ∧ Y are v1-linear.

We state the following “intermediate” result for convenience of reference in the
computations below. The module structure of the elliptic spectral sequence spectral
sequence of tmf ∧ Y over that of tmf is richer than what is stated here but that
information can be read off of Proposition 5.9.

Corollary 5.13. As a module over

F2[v1, ν, κ̄,∆]/(v1ν, ν
3, v4

1κ̄)
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E2(Y ) is generated by

a[0, 0], a[5, 1], a[12, 2], a[15, 1], a[17, 3], a[20, 2]

subject to the relations generated by

v3
1a[5, 1] = v2

1a[12, 2] = v1a[15, 1] = νa[12, 2] = νa[17, 3] = 0

and

ν2a[15, 1] = v2
1a[17, 3], ν2a[20, 2] = v3

1κ̄a[0, 0] .

Furthermore, the differentials are F2[v1, ν, κ̄,∆
8]/(v1ν, ν

3, v4
1κ̄)-linear.

Proof. This follows from the results of this section and the fact that ∆8 is a per-
manent cycle in the elliptic spectral sequence spectral sequence of tmf . �

6. tmf∗Y : The differentials and extensions

Our approach to computing the differentials of the elliptic spectral sequence
for π∗(tmf ∧ Y ) is based largely on the analysis of the action of κ̄. Since κ̄ is a
permanent cycle in the elliptic spectral sequence for tmf , κ̄ acts on the spectral
sequence for tmf ∧ Y and differentials are linear with respect to this action.

Lemma 6.1. The Er-term of the elliptic spectral sequence for Y has the following
properties:

(1) All classes in filtration greater than (r − 1) are κ̄-free.
(2) All classes in filtration greater than or equal to 4 are divisible by κ̄.

Proof. We prove these two properties by induction on r ≥ 2. For r = 2, this follows
from Proposition 5.9. Suppose now that r > 2. Let a be a dr−1-cycle and [a] ∈ Es,tr
the corresponding class. Suppose that a lives in filtration s with s > (r − 1). We
have that κ̄[a] = 0 if and only if there exists b ∈ Er−1 such that dr−1(b) = κ̄a. Then,
b must live in filtration (4+s)−(r−1) > 4. By the second property, b is divisible by
κ̄, i.e., there exists c ∈ Er−1 such that κ̄c = b. As a consequence of the κ̄-linearity,
κ̄dr−1(c) = dr−1(b) = κ̄a, and so κ̄(dr−1(c) − a) = 0. Since (dr−1(c) − a) ∈ Er−1

lives in filtration s greater than r− 2, it is κ̄-free by the second property. It follows
that dr−1(c) = a, and so [a] = 0. Therefore, the Er-term has the first property.

For the second property, suppose that a lives in filtration greater than or equal
to 4. By the second property for Er−1, there exists b ∈ Er−1 such that κ̄b = a.
It suffices to prove that b is a dr−1-cycle. Suppose that dr−1(b) = c. The latter
implies that c lives in filtration greater that (r − 2), hence is κ̄-free by the first
property. Since a is a dr−1-cycle by assumption, we have, by κ̄-linearity, that

0 = dr−1(a) = dr−1(κ̄b) = κ̄c.

This means that c = 0 and so b is a dr−1-cycle, as required. �

Terminology. For convenience, we will call all κ̄-multiples of a class which has
filtration less than four the κ̄-family of that class. By part (2) of the above lemma,
at any term of the spectral sequence, every class belongs to some κ̄-family. The
following corollary tells us how these κ̄-families are organized.

Corollary 6.2. (1) At any term of the spectral sequence, all non-zero κ̄-power
torsion classes survive to the E∞-term.
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(2) Every κ̄-free family consisting of permanent cycles is truncated by one and
only one other κ̄-free family.

Proof. For part (1), let a ∈ Er be a non-zero κ̄-power torsion class. By part (1) of
Lemma 6.1, a is in filtration less than or equal to r − 1. It follows that a cannot
be hit by any differential from the Er-term onwards. Moreover, by part (1) of
Lemma 6.1 again, the possible targets of dr′(a), r′ ≥ r are κ̄-free classes. Since
a ∈ Er is κ̄-power torsion, it is a permanent cycle, by κ̄-linearity. Therefore, a
persists to the E∞-term.

For part (2), let a be a permanent cycle of filtration striclty less than four which
is κ̄-free at the E2-term. Then the κ̄-family of a consists of permanent cycles.
Since κ̄ is nilpotent at the E∞-term of the elliptic spectral sequence for tmf , some
κ̄-multiple of a must be hit by a differential. Suppose that a is κ̄-free at the Er-
term and that κ̄la is the smallest κ̄-multiple of a that is hit by a differential, say
dr(b) = κ̄la. Since a is κ̄-free at the Er-term, so is b. It follows that the κ̄-multiples
of b truncate those of κ̄la by differentials dr, i.e., dr(κ̄

nb) = κ̄l+na. So, all the
classes κ̄ka for k ≤ l − 1 are non-zero κ̄-power torsion classes on the Er+1-term,
hence are essential by part (1).

Finally, we claim that b has filtration less than four so that the κ̄-family of b
truncates the κ̄-family of a. If b had filtration greater than or equal to 4, then
b would be divisible by κ̄, i.e., there would exist c ∈ Er such that κ̄c = b, by
Lemma 6.1 part (2). By κ̄-linearity, we have that κ̄la = dr(b) = κ̄dr(c), and so
κ̄(κ̄l−1a − dr(c)) = 0. This means that dr(c) = κl−1a because dr(c) − κ̄l−1a has
filtration at least r so that it is κ̄-free, by Lemma 6.1 part (1). This contradicts the
minimality of `, so b has filtration less than four. �

Slogan 6.3. The κ̄-free families at the Er-page come in pairs. The first member of
the pair is a family consisting of permanent cycles. The second member is a family
which eventually supports differentials (i.e., possibly at a later page) to truncate
the first family.

Corollary 6.4. At the Er-term, we have:

(1) The homomorphism Es,tr → Es,t+192
r induced by multiplication by ∆8 is an

injection for all s and t,
(2) If a is a class of the E2-term such that ∆8a is a dr-cycle, then a is also a

dr-cycle.

Proof. We prove part (1) by induction on r ≥ 2. For r = 2, this can be seen from
the explicit structure of the E2-term. Suppose the Er′ -term has these properties
for r′ < r. Let us prove part (1) for Er. Let a ∈ Er−1 represent a class of Er. If
∆8[a] = 0 ∈ Er. This means that there exists b ∈ Er−1 such that dr−1(b) = ∆8a.
It is obvious that b lives in stem at least 192, hence there exists c ∈ Er−1 such that
b = ∆8c, by the induction hypothesis. It follows that ∆8(dr−1(c)− a) = 0, and so
dr−1(c) = a because of part (1) of the induction hypothesis. Thus [a] = 0 ∈ Er, as
needed.

For part (2), by induction, suppose that a is a dr−1-cycle. We need to prove that
a is a dr-cycle. In effect, if dr(a) = b, then

0 = dr(∆
8a) = ∆8dr(a) = ∆8b.
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By part (1), b = 0, and so dr(a) = 0, as needed. �

Finally, we will also use the following result to establish the differentials.

Lemma 6.5 (Vanishing line). The spectral sequence for π∗tmf ∧ Y degenerates at

the E24-term and has a horizontal vanishing line at s = 24, i.e., Es,t24 = Es,t∞ = 0
for s ≥ 24.

Proof. We know that κ̄6 is hit by a differential d23 in the elliptic spectral sequence
for tmf , see [Bau08]. This means that at the E24-term of the elliptic spectral
sequence for tmf ∧ Y , all the classes are annihilated by κ̄6, hence are κ̄-power
torsion. Therefore, by Lemma 6.1, all the classes in the E24-term are in filtrations
less than 24, meaning that the spectral sequence has the horizontal vanishing line
at s = 24, i.e., Es,tr = 0 for s ≥ 24 and r ≥ 24. �

Remark 6.6. The cofiber sequence

V (0)
i−→ Y

p−→ Σ2V (0)
η−→ ΣV (0)

gives rise to maps of spectral sequences

i∗ : Es,t2 (V (0))→ Es,t2 (Y ), p∗ : Es,t2 (Y )→ Es,t−2
2 (V (0))

as well as a long exact sequence

. . .→ tmf∗+1V (0)
η−→ tmf∗V (0)

i∗−→ tmf∗Y
p∗−→ tmf∗−1V (0)→ . . .(6.7)

6.1. The d3, d5 and d7-differentials. Note that for r even, Er(Y ) ∼= Er+1(Y )
since the spectral sequence is concentrated in bi-degrees (s, t) with t even. The
differentials in this section are depicted in Figures 14, 15, 16 and 17.

Proposition 6.8. There is no non-trivial d3-differential, and so E3(Y ) ∼= E5(Y ).

Proof. Since ∆ is a d3-cycle in the elliptic spectral sequence of tmf , the d3-differentials
are F2[v1, ν, κ̄,∆]/(v1ν, ν

3, v4
1κ̄)-linear. All the generators listed in Corollary 5.13

are d3-cycles for degree reasons. �

We then get the following result for degree reasons.

Corollary 6.9. The classes in stems t− s < 24 are permanent cycles.

Lemma 6.10. The d5-differentials are linear with respect to κ̄, ν, v1,∆
2 and are

determined by

d5(∆) = νκ̄, d5(∆a[5, 1]) = νκ̄a[5, 1]

d5(∆a[15, 1]) = νκ̄a[15, 1], d5(∆a[20, 2]) = νκ̄a[20, 2]

under multiplication by elements of F2[∆2, κ̄, ν, v1]/(v1ν, ν
3, κ̄v4

1).

Proof. For linearity, we only need to prove the ∆2-linearity. Note that d5(∆) = νκ̄
in the elliptic spectral sequence of tmf . By Leibniz rule and the fact that E2(Y )
is 2-torsion,

d5(∆2x) = 2∆d5(∆)x+ ∆2d5(c) = ∆2d5(x).

Using the module structure over the elliptic spectral sequence of tmf , we get

d5(∆a[5, 1]) = d5(∆)a[5, 1] + ∆d5(a[5, 1]) = νκ̄a[5, 1].

The other arguments are similar. �



THE TOPOLOGICAL MODULAR FORMS OF RP 2 AND RP 2 ∧ CP 2 37

Lemma 6.11. There are no non-trivial d7-differentials.

Proof. This is an immediate consequence of sparseness. �

The following observation will be crucial for our computation and is motivated
by Slogan 6.3.

Corollary 6.12 (Figure 14). The κ̄-free families on the E9-term of the elliptic
spectral sequence of tmf ∧ Y in stems 0 ≤ t− s < 48 are given by the following 24
classes

a[0, 0] a[2, 0] = v1a[0, 0] a[4, 0] = v2
1a[0, 0]

a[5, 1] a[7, 1] = v1a[5, 1] a[9, 1] = v2
1a[5, 1]

a[12, 2] a[14, 2] = v1a[12, 2] a[15, 1]

a[17, 3] a[19, 3] = v1a[17, 3] a[20, 2]

a[26, 0] = ∆v1a[0, 0] a[28, 0] = ∆v2
1a[0, 0] a[30, 0] = ∆v3

1a[0, 0]

a[30, 2] = ∆ν2a[0, 0] a[31, 1] = ∆v1a[5, 1] a[33, 1] = ∆v2
1a[5, 1]

a[35, 3] = ∆ν2a[5, 1] a[36, 2] = ∆a[12, 2] a[38, 2] = ∆v1a[12, 2]

a[41, 3] = ∆a[17, 3] a[43, 3] = ∆v1a[17, 3] a[45, 3] = ∆v2
1a[17, 3]

All κ̄-free families at E9 are given by these classes and their ∆2-multiples. All the
elements in filtrations four and above are κ̄-multiples of these generators.
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Figure 14. d5-differentials in stems 0 to 48 and κ̄-free generators
at E9

The generators of the κ̄-free families in stems 0 ≤ t − s < 48 are presented
in Figure 14. The κ̄-free generators in the range 0 ≤ t − s < 192 are given by
multiples of these with ∆2,∆4 and ∆6 and all other κ̄-free generators are multiples
of these with the powers of ∆8. By Corollary 6.2, each κ̄-free family consisting
of permanent cycles is truncated by exactly one other κ̄-free family. Thus, using
the ∆8-linearity and Corollary 6.4, we see that the 24× 4 κ̄-free generators in the
range 0 ≤ t − s < 192 organize themselves as follows. Exactly half of them are
permanent cycles and the other half are not. The κ̄-family of each non-permanent
κ̄-free generator supports a differential that hits the κ̄-family of exactly one of the
other permanent generators. Note that the truncation must begin in stems less
than four by Corollary 6.2. This allows us to determine longer differentials before
settling shorter ones.
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All 24 κ̄-free generators in the range 0 ≤ t− s < 48 are permanent cycles due to
sparseness and in the next section we will find their “partners”.

6.2. The d9-differentials. To analyze the d9-differentials, we make the following
observation, which, in some sense, is a very small part of the geometric boundary
theorem as in [Beh12, Appendix 4].

Lemma 6.13. Let a ∈ Es,tr (Y ) so that p∗(a) ∈ Es,t−2
r (V (0)). Suppose p∗(a)

persists to the Er′ term for some r′ ≥ r and that there is a non-trivial differential,
dr′(p∗a) 6= 0. Then dr′′(a) 6= 0 for r′′ ≤ r′.

Proof. This is a straight forward application of naturality. Our assumptions imply
that a cannot be hit by a differential dr′′ for r′′ ≤ r′ and, furthermore, that if it
persists to the Er′ term, that dr′(a) = b′ for b′ such that p∗b

′ = b. �

The differentials below are depicted in Figures 14, 15, 16 and 17.

Lemma 6.14 (Figures 15, 16 and 17). There are d9-differentials, for i = 0, 1,

(1) d9(∆4i+2a[0, 0]) = κ̄2∆4iv1a[5, 1]
(2) d9(∆4i+2a[5, 1]) = κ̄2∆4ia[12, 2]
(3) d9(∆4i+3v1a[0, 0]) = κ̄2∆4i+1v2

1a[5, 1]
(4) d9(∆4i+2a[17, 3]) = κ̄3∆4iv2

1a[0, 0]
(5) d9(∆4i+3a[17, 3]) = κ̄3∆4i+1v2

1a[0, 0]
(6) d9(∆4i+3a[12, 2]) = κ̄2∆4i+1v1a[17, 3]
(7) d9(∆4i+2a[12, 2]) = κ̄2∆4iv1a[17, 3]
(8) d9(∆4i+3v1a[5, 1]) = κ̄2∆4i+1 v1a[12, 2]
(9) d9(∆4i+2v1a[0, 0]) = κ̄2∆4iv2

1a[5, 1]
(10) d9(∆4i+2v1a[5, 1]) = κ̄2∆4iv1a[12, 2]
(11) d9(∆4i+3v1a[17, 3]) = κ̄3∆4i+1v3

1a[0, 0].
(12) d9(∆4i+3v1a[12, 2]) = κ̄2∆4i+1v2

1a[17, 3]

Proof. Let i = 0. The differentials (1) and (3) are the image of a differential in
E2(V (0)) under i∗. The second differential (2) follows v1-linearity and from the fact
that d9(∆4i+2x) = κ̄2∆4iκ in E2(V (0)), i∗(x) = v1a[5, 1] and i∗(κ) = v1a[12, 2].

For (4), we use Lemma 6.13. In E∗(V (0)), we have d11(∆2ηκ) = η2κ̄3. Since
p∗(∆

2a[17, 3]) = ∆2ηκ, ∆2a[17, 3] supports a differential of length at most 11. This
d9 is the only choice. The argument for (5) is the same, with one more power of ∆.

For (6), note that p∗(∆
3a[12, 2]) = ∆3v1ηx. Since d9(ηv1x) = νκκ̄2∆, the class

∆3a[12, 2] supports a differential of length at most 9. This is the only choice.

The arguments (1)–(6) when i = 1 are the same as those for i = 0.

For (7)–(8), note that from our computation above, tmf59Y ∼= Z/2. This forces
(7) when i = 0. Arguing in a similar way, tmf79Y = 0, tmf155Y ∼= Z/2 and
tmf175Y = 0 imply the other d9s.

The d9-differentials (9)-(12) follow from those of (1), (2), (5), (6), respectively,
by v1-linearity. �

Remark 6.15. It turns out these are all the d9-differentials. For degree reasons,
there can be very few other d9s. The class ∆5v1a[0, 0] is the image of a d9-cycle in
E9(V (0)) so does not support a d9.

The only other possible d9 differentials for degree reasons are



THE TOPOLOGICAL MODULAR FORMS OF RP 2 AND RP 2 ∧ CP 2 39

• A non-trivial d9 on ∆5a[17, 3]. This does not happen since it implies a non-
trivial d9 on v1∆5a[17, 3] = ∆4a[43, 3], but this family has already been
paired: it is truncated by ∆6a[36, 2].
• A nontrivial d9 on ∆4a[17, 3], truncating the κ̄-family of ∆2a[4, 0]. We

will see below that this does not happen, but at this point, we leave this
undecided.
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Figure 15. d5 and d9 differentials in stems 46 to 86

6.3. Higher differentials. We begin our analysis using Slogan 6.3. The reader
should remember that we only need to analyze the generators of the κ̄-free families,
which are in filtration less than four. All differentials discussed in this section are
depicted in Figures 19 and 20.

Lemma 6.16. There are differentials

(1) d19(∆4a[5, 1]) = κ̄5a[0, 0]
(2) d19(∆5v1a[5, 1]) = κ̄5∆v1a[0, 0]
(3) d19(∆4a[36, 2] = κ̄5a[31, 1]
(4) d19(∆4a[41, 3]) = κ̄5a[36, 2]
(5) d19(∆4a[26, 0]) = κ̄4a[41, 3]

Proof. For (1), since the element κ̄4 ∈ π80(tmf ∧ V (0)) is not divisible by η and
κ̄5 ∈ π100(tmf ∧V (0)) is divisible by η, the κ̄-family of a[0, 0] in the elliptic spectral
sequence for tmf ∧Y must be truncated at κ̄5a[0, 0]. Remembering that the source
has to have filtration less than four, the only possibility is this differential.

Inspection then show that the differentials (2)-(4) are the only possibilities to
satisfy Slogan 6.3. �

Lemma 6.17. There are differentials

(1) d17(∆4a[0, 0]) = κ̄4a[15, 1]



40 AGNÈS BEAUDRY, IRINA BOBKOVA, VIET-CUONG PHAM, AND ZHOULI XU

(2) d17(∆4a[15, 1]) = κ̄4a[30, 2]

Proof. For (1), note that in π∗(tmf ∧ V (0)), κ̄3y is not divisible by η and κ̄4y = 0.
The class y maps to a[15, 1] under i∗ so it follows that the κ̄-family of a[15, 1] is
truncated at κ̄4a[15, 1]. The only possibility is this differential.

For (2), using the long exact sequence, we obtain that π111(tmf ∧Y ) = Z/2. By

part Lemma 6.16 (3), the class κ̄4a[31, 1] ∈ E17,128
5 survives the spectral sequence

and so detects the unique non-trivial class of π111(tmf ∧ Y ). This implies that the

class ∆4a[15, 1] ∈ E1,112
5 must support a differential. Taking into account the d9

differentials proves (2). �

Lemma 6.18. There is a differential d23(∆4a[30, 2]) = κ̄6a[5, 1].

Proof. By inspection, taking into account the d9s, the only generators that can be
paired with a[5, 1] are ∆4a[30, 2] and ∆4a[30, 0]. However, it cannot be ∆4a[30, 0]
because such a differential would have length 25, contradicting Lemma 6.5. �

Lemma 6.19. For i = 0, 1, there are differentials:

(1) d11(∆4i+2a[15, 1]) = κ̄3∆4ia[2, 0]
(2) d11(∆4i+2a[28, 0]) = κ̄2∆4ia[35, 3]

Proof. In (1), for both i = 0, 1, these are the image of differentials in the spectral
sequence E∗(V (0)). Both source and targets survive to E11(Y ) and so these two
differentials occur.

For (2), the long exact sequence shows that π75(tmf ∧ Y ) = Z/2. Lemma 6.17

(1) implies that the class κ̄3a[15, 1] ∈ E13,88
7 survives the spectral sequence and

detects the unique non-trivial element of the π75(tmf ∧ Y ). On the other hand,

the class κ̄2∆ν2a[5, 1] ∈ E11,86
7 is a permanent cycle. Thus, it must be hit by a

differential and this is the possibility.

For i = 1, by taking into account the d9-differentials and the d17-differential
Lemma 6.17 (2), we see that ∆4a[35, 3] is a permanent cycle, which is κ̄-free at the
E11-term. By inspection, the only class which can truncate its κ-family is ∆6a[28, 0]
by the indicated d11-differential. �

Lemma 6.20. There are differentials:

(1) d13(∆2a[30, 2]) = κ̄3a[17, 3]
(2) d13(∆2a[33, 1]) = κ̄3a[20, 2]

Proof. For (1), it follows from (6.7) that π78(tmf ∧ Y ) ∼= Z/2. By sparseness,
either ∆2a[30, 2] or ∆2a[30, 0] is a permanent cycle detecting the non-zero element
of π78(tmf ∧ Y ). Suppose that

∆2a[30, 2] = ∆3ν2a[0, 0]

is a permanent cycle detecting a class α ∈ π78(tmf ∧ Y ). At E2, ∆3ν2a[0, 0] is in
the image of i∗ : E2(V (0)) → E2(Y ) and so p∗(∆

3ν2a[0, 0]) = 0. However, since
π78(tmf ∧ V (0)) = 0, p∗α 6= 0 in π76(tmf ∧ V (0)) and so is detected by a non-zero
class in filtration s > 2, but such a class does not exist. We conclude that ∆2a[30, 0]
is a permanent cycle and that ∆2a[30, 2] supports the stated differential. For (2),
by inspection, only ∆2a[33, 1] and ∆4a[5, 1] can support differentials truncating the
κ̄-family of a[20, 2]. But ∆4a[5, 1] is already paired with a[0, 0]. �
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Figure 16. d5 and d9 differentials in stems 86 to 160
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Figure 17. d5 and d9 differentials in stems 160 to 194

Proposition 6.21. The following classes are κ̄-free permanent cycles:

(A) :
∆2a[4, 0] ∆2a[9, 1] ∆2a[14, 2] ∆2a[19, 3] ∆2a[20, 2]
∆2a[30, 0] ∆2a[35, 3] ∆2a[45, 3] ∆4a[17, 3] ∆4a[20, 2]

and the following classes are not permanent cycles:

(B) :
∆6a[4, 0] ∆6a[9, 1] ∆6a[14, 2] ∆6a[19, 3] ∆6a[20, 2]
∆6a[30, 0] ∆6a[30, 2] ∆6a[33, 1] ∆6a[35, 3] ∆6a[45, 3]

Consequently, in the elliptic spectral sequence for tmf ∧ Y , each generator in (B)
truncates some κ̄-multiple of one and only one generator in (A).

Proof. These are the remaining generators of κ̄-free families. No class in (B) can
be a permanent cycle because the κ̄-family of a class of (B) cannot be truncated.
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This means that all the 10 classes of (B) are non-permanent cycles, and so all the
10 classes of (A) are permanent cycles. �

Lemma 6.22. We have the following differentials:

(1) d19(∆6a[4, 0]) = κ̄4∆2a[19, 3]
(2) d19(∆6a[9, 1]) = κ̄5∆2a[4, 0]
(3) d19(∆6a[14, 2]) = κ̄5∆2a[9, 1]
(4) d19(∆6a[19, 3]) = κ̄5∆2a[14, 2]
(5) d17(∆6a[20, 2]) = κ̄4∆2a[35, 3]
(6) d13(∆6a[33, 1]) = κ̄3∆4a[20, 2]
(7) d17(∆6a[35, 3]) = κ̄5∆2a[30, 0]
(8) d23(∆6a[45, 3]) = κ̄6∆2a[20, 2]

Proof. Taking into account the differentials shown above, these are only possible
pairings remaining between the classes in (B) which are the sources in (1)–(8) and
classes of (A). �

Remark 6.23. There are only two generators in (B) left living in the same topolog-
ical degree, namely ∆6a[30, 0] and ∆6a[30, 2]. Each of these supports a differential
truncating the κ̄-families of either ∆4a[17, 3] or ∆2a[45, 3] and one differential de-
termines the other.

Determining the last differential pattern turns out to be unfortunately tricky (as
far as we know). A crucial step towards settling the last differentials is to establish
the following extension in the E∞-term of the elliptic spectral sequence for tmf∧Y .

Proposition 6.24. There is an exotic extension

ν2(ν∆6a[0, 0]) = κ̄2∆4a[17, 3].

To prove this extension, we need some intermediate results.

Lemma 6.25. In Ext∗,∗Λ′ (A′, A′/(2, a1)⊗F∗(Y )), there is a Massey product

〈η, ν,∆4a[12, 2]〉 = ∆4a[17, 3].

Proof. Since ∆4a[12, 2] = η∆4a[11, 1] (see Figure 12), we have that

〈η, ν,∆4a[12, 2]〉 = 〈η, ν, η∆4a[11, 1]〉 ⊇ 〈η, ν, η〉∆4a[11, 1] = ν2a[11, 1] = a[17, 1].

The indeterminacy is zero since

ηExt2,114
Λ′ (A′, A′/(2, a1)⊗F∗(Y )) + Ext1,6

Λ′ (A′, A′/(2))∆4a[12, 2] = 0. �

Proposition 6.26. In Ext∗,∗Λ′ (A′,F∗(Y )), there is a Massey product

〈η, ν,∆4a[12, 2]〉 = ∆4a[17, 3].

Proof. Let f∗ : Ext∗,∗Λ′ (A′,F∗(Y )) → Ext∗,∗Λ′ (A′, A′/(2, a1) ⊗ F∗(Y )) be the map
induced by the Λ-comodule homomorphism F∗(Y )→ A′/(2, a1)⊗F∗(Y ). By nat-
urality of Massey products, we have that

f∗(〈η, ν,∆4a[12, 2]〉) ⊆ 〈η, ν, f∗(∆4a[12, 2])〉.
Further, f∗(∆

4a[12, 2]) = ∆4a[12, 2]. By Lemma 6.25, the above equation gives

f∗(〈η, ν,∆4a[12, 2]〉) = ∆4a[17, 3].

The pre-image of ∆4a[17, 3] is the same-named class. The indeterminacy is zero. �
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Lemma 6.27. There is an element of π108(tmf ∧ Y ) detected by ∆4a[12, 2] and
annihilated by κ̄2.

Proof. We have already determined E∞(Y ) in stems t− s = 108, 148. We see that
there is a short exact sequence

0→ Z/2{κ̄2∆2a[20, 2]} → G→ Z/2{∆4a[12, 2]} → 0

where G ⊆ π108(tmf∧Y ) is the subgroup of elements detected in positive filtration.
At the E∞-term in stem t − s = 148, the only non-zero class in positive filtration
is κ̄4∆2a[20, 2]. In particular, κ̄2∆4a[12, 2] = 0. So, one of the classes detected by
∆4a[12, 2] satisfies the claim. �

We will denote also by ∆4a[12, 2] the element in π108(tmf∧Y ), which is detected
by ∆4a[12, 2] and is annihilated by κ̄2.

Proposition 6.28. There are the following relations in π∗(tmf ∧ Y ):

(1) ν2[ν∆6a[0, 0]] 6= 0
(2) η[ν∆6a[0, 0]] = 0

Proof. The class detected by ν∆6a[0, 0] lifts to π∗(tmf ∧ V (0)) and there is a lift
detected by ν∆6. But in π∗(tmf ∧ V (0)), ν2[ν∆6] is not divisible by η. �

Now, we use the truncated spectral sequences of Section 2.2, applied to the
elliptic spectral sequence of tmf ∧ Y . As in Section 2.2, let

sk16(tmf ∧ Y ) = X0/X17

for Xn the nth term of the X(4)-Adams tower of tmf ∧ Y . Then E∗,∗r,<17(Y ) as

in Section 2.2 is a spectral sequence computing π∗sk16(tmf ∧ Y ), and it satisfies
Es,∗r,<17(Y ) = 0 for s ≥ 17. Furthermore, we have a map of spectral sequences

T s,tr : Es,tr (Y )→ Es,tr,<17(Y ).

Proposition 6.29. In π∗(sk16(tmf ∧ Y )), we have

〈η, ν,∆4a[12, 2]〉 = ∆4a[17, 3].

Proof. In π∗(tmf∧Y ), the product ν∆4a[12, 2], if not trivial, is detected in filtration
17. It follows that ν∆4a[12, 2] is equal to zero in π∗(sk16(tmf∧Y )). Thus, the Toda

bracket 〈η, ν,∆4a[12, 2]〉 can be formed. Proposition 6.26 means that in Es,t2,<17(Y ),
there is Massey product

〈η, ν,∆4a[12, 2]〉 = ∆4a[17, 3].

The conditions of the Moss Convergence Theorem [Mos70] are satisfied, so the Toda
bracket 〈η, ν,∆4a[12, 2]〉 contains ∆4a[17, 3] and the indeterminacy is zero. �

Proposition 6.30. In the elliptic spectral sequence for tmf ∧Y , there is an exotic
extension

ηa[152, 2] = κ̄2∆4a[17, 3].
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Proof. Since κ̄2∆4a[17, 3] lives in filtration s = 11, it suffices to prove that extension
in the E∞-term of the spectral sequence for sk16(tmf ∧ Y ). The above proposition
and the choice of ∆4a[12, 2] imply that

κ̄2∆4a[17, 3] = 〈η, ν,∆4a[12, 2]〉κ̄2 = η〈ν,∆4a[12, 2], κ̄2〉.
Since κ̄2∆4a[17, 3] 6= 0 at E∞, 〈ν,∆4a[12, 2], κ̄2〉 must be non-trivial, and it must
be detected by a class which is not in the kernel of η. This forces 〈ν,∆4a[12, 2], κ̄2〉
to be detected by a[152, 2], and so ηa[152, 2] is detected by κ̄2∆4a[17, 3]. �

Proof of Proposition 6.24. Let β = [ν∆6a[0, 0]]. By Proposition 6.28, ηβ = 0 and
we can form the Toda bracket 〈ν, η, β〉. Then

η〈ν, η, β〉 = 〈η, ν, η〉β = ν2β

On the other hand, ν2β 6= 0 by Proposition 6.28. It follows that 〈ν, η, β〉 6= 0. We
see that it must be detected by a[152, 2]. So ηa[152, 2] = ν2β and Proposition 6.30
implies that ν2β is detected by κ̄2∆4a[17, 3]. �

Lemma 6.31. There are differentials:

(1) d13(∆6a[30, 2]) = κ̄3∆4a[17, 3]
(2) d19(∆6a[30, 0]) = κ̄4∆2a[45, 3]

Proof. Let

tmf ∧ Y ← (tmf ∧ Y )1 ← (tmf ∧ Y )2 ← . . .

be the Adams tower associated to the X(4)-based resolution of tmf ∧ Y . We
consider its 1-co-truncated tower and the induced map of spectral sequences

cT s,tr : Es,tr,≥1 → Es,tr .

By Lemma 2.2, cT s,tr is surjective for s ≥ 1.

Let a = ν2∆6a[0, 0] ∈ E2,150+2
2 . This is a permanent cycle representing a unique

non-zero element of π150(tmf ∧ Y ), which in this proof we denote by α. Since a

has positive filtration, there is a class ā ∈ E2,150+2
2,≥1 such that cT2(ā) = a and the

surjectivity of cT∞ guarantees that we can choose ā to be a permanent cycle. It
then detects classes ᾱ ∈ π150((tmf ∧ Y )1) that map to α.

Since να is detected by b = κ̄2∆4a[17, 3] ∈ E11,153+11
∞ (Proposition 6.24), νᾱ

must be detected in Es,153+s
∞ (cT1) for 3 ≤ s ≤ 11. Since Es,153+s

2 (cT1) = 0 for
3 ≤ s ≤ 10 (this is true for E∗,∗2 ), νᾱ must be detected by a lift b̄ of b.

The relation κ̄ν = 0 ∈ π∗tmf implies that κ̄νᾱ = 0 ∈ π∗((tmf ∧ Y )1). This

implies that dr(c̄) = κ̄b̄ for some non-trivial element c̄ ∈ E
15−r,174+(15−r)
r,≥1 . As

E0,∗
2,≥1 = 0, c̄ must live in filtration 1 ≤ s ≤ 13, and hence so does cTr(c̄). In

particular, cTr(c̄) 6= ∆6a[30, 0]. However, we find that

dr(cTr(c̄)) = cTr(κ̄b̄) = κ̄ · cTr(b̄) = κ̄3∆4a[17, 3].

The only way for this to make sense is if cTr(c̄) is equal to ∆6a[30, 2] and this is
the desired differential (1).

This differential then determines (2) as noted in Remark 6.23. �

Remark 6.32. From, this discussion, we also learn that there is a non-trivial class
in i∗π150V (0) which is detected by a[153, 11].
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6.4. Exotic extensions. In this section we resolve the exotic 2, η, ν and v1 ex-
tensions in the elliptic spectral sequence of tmf ∧ Y . The extensions are depicted
in Figures 21 and 22.

We begin with the exotic η-extensions, which are few. To determine them, we
use the following strategies. First, the long exact sequence

. . .→ tmf∗+1V (0)
η−→ tmf∗V (0)

i∗−→ tmf∗Y
p∗−→ tmf∗−1V (0)→ . . .

We use the following basic, but useful facts.

Lemma 6.33. For a ∈ tmf∗Y and b ∈ tmf∗V (0),

(1) if a = i∗b, then ηa = i∗ηb = 0,
(2) p∗ηa = ηp∗a = 0, and
(3) v1ηa = ηv1a.

Proof. These are easy consequences of the long exact sequence on homotopy groups
combined with the fact that composition as well as the smash product induces the
π∗S

0-module structure in the stable homotopy category. �

Note further that Corollary 2.10 as described in Remark 2.14 gives a way to
relate extensions in different stems between the v1-power torsion classes. We also
use Lemma 2.19 and Lemma 2.21

A stem-by-stem analysis using the above techniques then allows us to determine
that the only non-trivial exotic η-extensions are as follows:

Lemma 6.34. In the elliptic spectral sequence of Y , there are exotic extensions

(1) η[∆2νa[5, 1]] = κ̄2a[17, 3]
(2) η[∆4νa[5, 1]] = κ̄5a[5, 1]
(3) η[∆6νa[5, 1]] = κ̄2[∆4a[17, 3]]
(4) η[∆6νa[20, 2]] = κ̄5[∆2a[20, 2]]

There are no other exotic η-extensions.

Proof. The first extension (1) follows from Lemma 2.21. The extension (2) and (4)
follow from duality: (2) from η[∆2a[20, 2]] = [∆2v2

1a[17, 3]] and (4) from ηa[5, 1] =
ν2a[0, 0]. Finally, (3) is Proposition 6.30.

All possible exotic η-extensions are shown not to occur using Lemma 6.33, duality
and Lemma 2.21. In particular, the possible η-extensions with source in stems
52 ≤ t− s ≤ 57 are shown not to occur using Lemma 2.21 and v1-linearity. �

Now, we turn to the exotic 2-extensions.

Theorem 6.35. There are no exotic 2-extensions in the elliptic spectral sequence
for Y and, consequently,

2(π∗tmf ∧ Y ) = 0.

Proof. Since we have a cofiber sequence

tmf ∧ Cη 2−→ tmf ∧ Cη j−→ tmf ∧ Y q−→ Σtmf ∧ Cη,
we can apply Lemma 2.19 with X = tmf ∧ Cη, i = j and p = q. From this, we
deduce that if a′ ∈ π∗tmf ∧ Y is in the image of j∗, then it has order 2 and that if
q∗(a

′) = a, then 2a′ = j∗(ηa). It follows that if 2a′ 6= 0, then 2a′ is divisible by η.
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This leaves one possible extension in stem 57. But such a 2-extension would lead,
by duality, to a 2-extension in stem 116. However, there are no η-divisible classes
in that stem. Since the E2-term was 2-torsion and there are no exotic 2-extensions,
π∗tmf ∧ Y is annihilated by 2. �

Next, we turn to the ν extensions.

Remark 6.36. We will use without mention that κ̄ν = 0 in tmf∗-modules. This
allows us to eliminate many possible exotic ν-extensions.

Lemma 6.37. In the elliptic spectral sequence of Y , there are exotic extensions

(1) νa[26, 0] = a[29, 5]
(2) νa[41, 3] = a[44, 8]
(3) νa[52, 0] = a[55, 7]
(4) νa[54, 2] = κ̄2a[17, 3]
(5) νa[67, 3] = κ̄2a[30, 0]
(6) νa[98, 0] = a[101, 15]
(7) νa[102, 2] = κ̄5a[5, 1]
(8) νa[103, 1] = a[106, 16]
(9) νa[124, 0] = a[127, 15]

(10) νa[129, 1] = a[132, 16]
(11) νa[150, 2] = a[153, 11]
(12) νa[155, 3] = a[158, 16]
(13) νa[165, 3] = a[168, 22]

Proof. The extensions (1) and (6) follow from the extensions νa[26, 0] = a[29, 5] and
a[98, 0] = a[101, 7], respectively, in π∗tmf ∧ V (0) by applying i∗. The extensions
(2), (3), (5) and (9) follow from examining the effect of p∗ and the extensions
νa[39, 3] = a[42, 10], νa[50, 2] = a[53, 7], νa[65, 3] = a[68, 10] and νa[122, 2] =
a[125, 21] in π∗tmf ∧ V (0), respectively.

Extensions (4), (7), (12) and (13) are obtained by duality from algebraic exten-
sions. The extensions (10) and (8) follow by duality from (2) and (5).

The extension (11) is proved in Proposition 6.24. �

Lemma 6.38. In the elliptic spectral sequence of Y , there are exotic extensions

(1) νa[57, 1] = κ̄2a[20, 2]
(2) νa[62, 2] = κ̄a[45, 3]

Dually, we have
(3) νa[108, 2] = a[111, 17]
(4) νa[113, 3] = a[116, 18]

Together with Lemma 6.37, there are no other non-trivial exotic ν-extensions.

To prove Lemma 6.38, we use the tmf -based Atiyah–Hirzebruch spectral se-
quence for Y , whose filtration comes from the cellular filtration of Y . To set up
notation, we have the E1-page of this spectral sequence

E1 = ⊕3
n=0π∗tmf =⇒ π∗+ntmf ∧ Y.

For a homotopy class β in π∗tmf ∧ Y , we denote by α[n] the element that detects
it in the E1-page of the tmf -based Atiyah–Hirzebruch spectral sequence, where n



48 AGNÈS BEAUDRY, IRINA BOBKOVA, VIET-CUONG PHAM, AND ZHOULI XU

is the Atiyah–Hirzebruch filtration of β, and α is a class in π∗tmf . The stem of β
is then the stem of α plus n.

Proof of Lemma 6.38. In our Atiyah–Hirzebruch notation, we can rewrite the two
ν-extensions of Lemma 6.38 as

(1) ν · κ̄2κ[3] = ∆ηκκ̄[1],
(2) ν · κ̄3[2] = ∆2νκ[0].

We first prove (2), namely, that ν · κ̄3[2] = ∆2νκ[0]. In π∗tmf ∧ Cη, we have

ν · κ̄3[2] = 〈ν, κ̄3, η〉[0]

by Lemma 5.3 of [WX18]. By Moss’s Theorem and the differential d11(∆2κ) = ηκ̄3

in the elliptic spectral sequence of tmf , we have

〈ν, κ̄3, η〉 = ∆2νκ.

Mapping this relation along the inclusion Cη → Y gives us (2).

For (1), note that in π∗tmf ∧ ΣCη, we have

ν · κ̄2κ[3] = 〈ν, κ̄2κ, η〉[1]

by Lemma 5.3 of [WX18]. Since κ̄2κ is ν-divisible in π∗tmf , we may shuffle

〈ν, κ̄2κ, η〉 = 〈κ̄2κ, ν, η〉.
By Moss’s theorem and the differential d5(∆κκ̄) = νκ̄2κ in tmf , we have

〈κ̄2κ, ν, η〉 = ∆ηκκ̄.

Pulling back this relation along the quotient map Y → ΣCη gives (1).

Extensions (3) and (4) follow by duality. The fact that there are no other exotic
ν-extensions is discussed below. �

Most possibilities for other exotic ν-extensions are ruled out in a straightforward
way by analyzing i∗ and p∗, duality, the fact that κ̄ν = 0. However, the following
two extensions require us to analyze the classical Adams Spectral Sequence. The
following proof depends on checking algebraic extensions in

ExtA((HF2)∗(tmf ∧ Y ), (HF2)∗)

using Bruner’s Ext-program [Bru]. See Figure 18 for classical Adams E2-charts for
tmf ∧ V (0) and tmf ∧ Y , and see [DFHH14, Chapter 13] for tmf .

Lemma 6.39. In π∗tmf ∧ Y ,

(1) νa[31, 1] = 0
(2) νa[36, 2] = 0

Dually, we have
(3) νa[134, 2] = 0
(4) νa[139, 3] = 0

Proof. To show this, we need to prove that

(1) νa[31, 1] 6= a[34, 6],
(2) νa[36, 2] 6= a[39, 7].

In our Atiyah–Hirzebruch notation, we can rewrite these extensions as

(1) ν · κ2[3] 6= κκ̄[0],
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(2) ν ·∆ν3[3] 6= ∆ηκ[0].

We give a proof for (1) that ν · κ2[3] 6= κκ̄[0] using the classical Adams Spectral
Sequence. We consider the Adams Spectral Sequence for tmf ∧ Y and its subquo-
tients. We will show that the Adams filtration of κ2[3] is 7 and the Adams filtration
of κκ̄[0] is 8. The fact that there is no such ν-extension follows from the algebraic
fact that on the Adams E2-page, the h2-multiple of the first element is not the
second element, which is checked by a computer program.

For the class κκ̄[0], it is clear that the Adams filtration of κκ̄ in π34tmf is 8, (it
is detected by the element d0g,) and it maps nontrivially on the Adams E2-pages
along the map tmf → tmf ∧ Y . The image under this map, which we denoted by
d0g[0], is a permanent cycle. It cannot be killed due to filtration reasons. Therefore,
the class κκ̄[0] is detected by d0g[0] and, in particular, it has Adams filtration 8.

For the class κ2[3], we first consider the class κ2[1] in π29tmf ∧ V (0). Since
π29tmf = 0, π30tmf = 0, we have π30tmf ∧ V (0) = 0. This forces three nonzero
Adams differentials eliminating the three elements in the Adams E2-page for tmf ∧
V (0). In particular, we learn that κ2[1] in π29tmf ∧V (0) is detected by the only re-
maining element j[0] in Adams filtration 7, and that there is a nonzero d3-differential
from (t− s, s)-bidegrees (31, 6) to (30, 9).

Considering the quotient map tmf ∧ Y → tmf ∧ Σ2V (0), we learn that κ2[3]
is detected in Adams filtration at most 7. Considering the induced map on the
Adams E2-pages, we also learn that it is an isomorphism on the (t− s, s)-bidegrees
(31, 6) and (30, 9). So, in particular, the element in (t− s, s)-bidegree (31, 6) does
not survive. Therefore, κ2[3] is detected in Adams filtration exactly 7.

For (2), that ν · ∆ν3[3] 6= ∆ηκ[0], we use the Adams spectral sequence again
in a very similar way. We will show that the Adams filtration of ∆ν3[3] is 8 and
the Adams filtration of ∆ηκ[0] is 9. The fact that there is no such extensions then
follows as in (1).

For the class ∆ηκ[0], it is clear that the Adams filtration of ∆ηκ in π39tmf is 9,
(it is detected by the element u,) and it maps nontrivially on the Adams E2-pages
along the map tmf → tmf ∧ Y . The image under this map, which we denoted by
d0g[0], is a permanent cycle. It cannot be killed due to filtration reasons. Therefore,
the class ∆ηκ[0] is detected by u[0], and in particular it has Adams filtration 9.

For the class ∆ν3[3], we first consider the class ∆ν3 in π33tmf . The class ∆ν3

in π33tmf is detected in the Adams filtration 8. Considering the quotient map
tmf ∧ Y → Σ3tmf , we learn that ∆ν3[3] is detected in Adams filtration at most
8. To show that it is detected in Adams filtration 8, we will show that the only
other element in lower filtration, the class in (t − s, s)-bidegree (36, 7), supports a
nonzero d2-differential.

The maps in the zigzag

tmf ∧ S1 tmf ∧ V (0)oo // tmf ∧ Y
are isomorphisms in (t − s, s)-bidegrees (36, 7) and (35, 9) on Adams E2-pages.
So the claimed nonzero d2-differential follows from the one in the Adams spectral
sequence of tmf , from (t− s, s)-bidegrees (35, 7) and (34, 9). �

We now turn to the study of the v1-extensions. First, recall the discussion on v1-
self maps and A1 from Section 2.6. The homotopy groups of tmf∧A1 are studied by
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the third author in [Pha18]. Furthermore, the knowledge of the homotopy groups
of tmf ∧ A1 are sufficient to allow us to deduce much of the action of v1 on the
homotopy groups of tmf ∧ Y , via the long exact sequence on homotopy of the
cofiber sequence

tmf ∧ Σ2Y
v1−→ tmf ∧ Y → tmf ∧A1.

Since the outcome depends on the choice of the v1-self-map, we call a v1-self-map
of type I if its cofiber is A1[01] or A1[10] and of type II, otherwise. Again, see
Section 2.6 for the definition of A1[ij].

Lemma 6.40. (a) For all v1-self maps of Y , there exotic v1-extensions and those
induced by κ̄-linearity:

(1) v1a[9, 1] = a[11, 3]
(2) v1a[15, 1] = a[17, 3]
(3) v1a[30, 2] = κ̄a[12, 2]
(4) v1a[33, 1] = a[35, 3]
(5) v1a[38, 2] = κ̄a[20, 2]
(6) v1∆2a[9, 1] = ∆2a[11, 3]
(7) v1a[99, 1] = κ̄3a[21, 3]
(8) v1a[104, 2] = κ̄4a[26, 0]
(9) v1a[105, 1] = a[107, 3]

(10) v1(v1a[108, 2]) = κ̄3a[52, 0]
(11) v1a[114, 2] = κ̄4a[36, 2]
(12) either v1a[116, 2] = κ̄2a[78, 0] or v1a[116, 2] = κ̄a[98, 0]
(13) v1κ̄a[105, 1] = κ̄3a[67, 3]
(14) v1a[129, 1] = a[131, 3]
(15) either v1a[131, 3] = κ̄2a[93, 3] or v1a[131, 3] = κ̄a[113, 3].
(16) v1a[134, 2] = κ̄a[116, 2]
(17) v1κ̄a[115, 3] = κ̄a[117, 13]
(18) v1(v1a[139, 3]) = κ̄3a[83, 3]
(19) v1κ̄a[120, 3] = κ̄a[122, 14]
(20) v1(v1κ̄a[124, 0]) = κ̄4a[68, 2]
(21) v1a[147, 1] = κ̄a[129, 1]
(22) v1a[152, 2] = κ̄a[134, 2]
(23) v1a[156, 10] = a[158, 16]
(24) v1a[162, 2] = κ̄2a[124, 0]

(b) For v1-self-maps of type I, there are also the following v1-extensions, and
those induced from these by κ̄-linearity:

(1) v1a[68, 2] = κ̄2a[30, 2]
(2) v1a[83, 3] = κ̄4a[15, 1]

Proof. For all parts, except for (9), (12), (15), we see, by inspecting the relevant
parts of the homotopy groups of appropriate tmf ∧ A1[ij], that the targets of the
stated v1 extensions are sent to zero via the natural map

π∗(tmf ∧ Y )→ π∗(tmf ∧A1[ij]).

Therefore, they are in the image of a v1-multiplication and the stated v1-extensions
are the only possibilities.
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For part (9), consider

sk4(tmf ∧ Y ) = (tmf ∧ Y )/(tmf ∧ Y )5,

where (tmf∧Y )5 is the 5th term in theX(4)-Adams tower of tmf∧Y . It is a module
over sk4(tmf). Since ∆4 ∈ π96(sk4(tmf)), this element acts on π∗sk4(tmf ∧ Y ).
We see that the induced map π∗(tmf ∧ Y ) → π∗sk4(tmf ∧ Y ) sends a[9, 1] and
a[11, 3] to non-trivial elements, which we denote by the same names. Furthermore,
it sends a[105, 1] and a[107, 3] to elements detected by the products ∆4a[9, 1] and
∆4a[11, 3]. Since v1a[9, 1] = a[11, 3] by part (1),

v1∆4a[9, 1] = ∆4v1a[9, 1] = ∆4a[11, 1]

in π∗sk4(tmf ∧ Y ). It follows that v1a[105, 1] must be detected by a[107, 3] in the
E∞-term of the elliptic spectral sequence of tmf ∧ Y . �

Remark 6.41. We are left with two undecided v1-extensions, namely (12) and
(15) in Lemma 6.40. We expect that some of these unsettled v1-extensions can be
resolved using comparison with the classical Adams Spectral Sequence for tmf ∧
V (0), tmf ∧ Y and tmf ∧ V (0)/v4

1 . These will soon appear in upcoming work of
[BR].
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Figure 18. Classical Adams Spectral Sequence E2-pages for
tmf ∧ V (0) (top) and tmf ∧ Y (bottom) computed with Bruner’s
Ext-program [Bru].
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Figure 19. d11 to d23 differentials in stems 46 to 120
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Figure 20. d11 to d23 differentials in stems 120 to 194
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Figure 21. Exotic extensions in the elliptic spectral sequence of

tmf ∧Y . This records tmf∗Y ∼= t̃mf∗+3(RP 2∧CP 2). The zigzags
denote exotic v1-extensions that occur only for certain choices of
v1 self-maps.
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Figure 22. Exotic extensions in the elliptic spectral sequence of

tmf ∧Y . This records tmf∗Y ∼= t̃mf∗+3(RP 2∧CP 2). The zigzags
denote exotic v1-extensions that occur only for certain choices of
v1 self-maps.
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58 AGNÈS BEAUDRY, IRINA BOBKOVA, VIET-CUONG PHAM, AND ZHOULI XU

[Pha18] V.-C. Pham. Homotopy groups of EhG24
C ∧A1. arXiv e-prints, page arXiv:1811.04484,

November 2018.

[Rav78] D. C. Ravenel. A novice’s guide to the Adams-Novikov spectral sequence. In Geometric
applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, volume 658

of Lecture Notes in Math., pages 404–475. Springer, Berlin, 1978.

[Rav86] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres, volume
121 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL, 1986.

[Rav87] D. C. Ravenel. Localization and periodicity in homotopy theory. In Homotopy theory

(Durham, 1985), volume 117 of London Math. Soc. Lecture Note Ser., pages 175–194.
Cambridge Univ. Press, Cambridge, 1987.

[Rez] C. Rezk. Supplementary notes for MATH 512. Online notes.
[Sil86] J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 1986.

[Sto12] V. Stojanoska. Duality for topological modular forms. Doc. Math., 17:271–311, 2012.
[Sto14] V. Stojanoska. Calculating descent for 2-primary topological modular forms. In An

alpine expedition through algebraic topology, volume 617 of Contemp. Math., pages

241–258. Amer. Math. Soc., Providence, RI, 2014.
[WX18] G. Wang and Z. Xu. Some extensions in the Adams spectral sequence and the 51-stem.

Algebr. Geom. Topol., 18(7):3887–3906, 2018.

Department of Mathematics, University of Colorado, Boulder, Boulder, CO, Cam-
pus Box 395, Boulder, CO, 80309, USA

Email address: agnes.beaudry@colorado.edu

Department of Mathematics, Texas A&M University, College Station, TX, 77843,
USA

Email address: ibobkova@math.tamu.edu

Max-Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

Email address: vcpham@math.unistra.fr

Department of Mathematics, UC San Diego, La Jolla, CA 92093, USA

Email address: xuzhouli@ucsd.edu


	1. Introduction
	2. Background
	3. tmf*V(0): The E2-page
	4. tmf*V(0): The differentials and extensions
	5. tmf*Y: The E2-page
	6. tmf*Y: The differentials and extensions
	References

