
Supporting Information: Axisymmetric diffusion kurtosis imaging

with Rician bias correction: A simulation study

Jan Malte Oeschger1,∗ Karsten Tabelow2 Siawoosh Mohammadi1,3

September 1, 2022

1 University Medical Center Hamburg Eppendorf, Institute of Systems Neuroscience, Hamburg,

Germany

2 Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

3 Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurophysics,

Leipzig, Germany

* Corresponding author:

Name Jan Malte Oeschger

Institute University Medical Center Hamburg-Eppendorf, Institute of Systems Neuroscience

Address Martinistraße 52, 20246 Hamburg, Germany

E-mail j.oeschger@uke.de

Phone +49-40-7410-27301

1



1



S1 Supporting Information1

S1.1 Parameter estimation and the Rician noise bias (detailed)2

Standard DKI or axisymmetric DKI parameter estimation would typically be done using the ac-3

quired magnitude signals Sb,g⃗ and Eq. (2.1a, main text) or (2.3, main text) in the least-squares4

approach1;2;3 (found fit results are denoted with a hat, i.e., Ŝ0, D̂, Ŵ ):5

(Ŝ0, D̂, Ŵ ) = argmin
S̃0,D,W

∑
i

(Sb,g⃗i − S̃b,g⃗i(S̃0, D,W ))2 [S1.1]

However, this least-squares approach is built on the assumption of Gaussian distributed noise in Sb,g⃗i6

which is not true in reality. Sb,g⃗ is a magnitude signal computed from the noise contaminated k-space7

data described by a complex Gaussian (standard deviation σ) as the sum of squares of the measured8

signal intensity4 from the receiver coil after it was Fourier transformed into real space. Computing9

the sum of squares rectifies the composite magnitude signal and leads to Rician distributed noise10

for one receiver coil (L= 1). Therefore, assuming Gaussian noise in MRI magnitude signals leads11

to a bias that propagates into the estimated parameters which is referred to as the "Rician noise12

bias". Eq. (S1.1) is therefore biased.13

14

More generally, if one assumes uncorrelated noise and statistically independent receiver coils with15

an equivalent noise variance5, the resulting probability density function of the noisy magnitude16

data is given by a non-central χ-distribution4, where 2L is the number of degrees of freedom of the17

distribution. L = 1 results in the Rician distribution6;7.18

19

The severity of the Rician noise bias depends on the SNR8 because the sum of squares rectifies20
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the composite magnitude signal: the lower the SNR, the larger the bias. For RBC, we rely on an21

approach outlined in8 that uses the expectation value E(Sb,g⃗) of the noisy composite magnitude22

signal. The probability density function of Sb,g⃗ is a non-central χ distribution whose expectation23

value E(Sb,g⃗) is given by8:24

E(Sb,g⃗) = E(S̃b,g⃗(S̃0, D,W ),σ) = σ

√
π

2
· L(L−1)

1/2 (
S̃b,g⃗(S̃0, D,W )2

2σ2
) [S1.2]

where L(L−1)
1/2 (x) = Γ(L+1/2)

Γ(3/2)Γ(L)M(−1/2, L, x) is the generalized Laguerre polynomial which can be25

expressed using a confluent hypergeometric function M, the Gamma function Γ and the number of26

receiver coils L. Only for simplicity of notation, in the text we neglect any possible dependence of σ27

on b, g⃗ or location, the employed RBC algorithm used the same σ in every image voxel. The SNR28

dependent expectation value Eq. (S1.2) differs from the noise-free signal, E(S̃b,g⃗(S̃0, D,W ),σ) >29

S̃b,g⃗(S̃0, D,W ) with the difference decreasing with increasing SNR. Following8, we implemented a30

time-efficient fitting algorithm that, unlike Equation (S1.1), accounts for Rician noise in magnitude31

dMRI data by solving the optimization problem:32

(Ŝ0, D̂, Ŵ ) = argmin
S̃0,D,W

∑
i

(Sb,g⃗i − E(S̃b,g⃗i(S̃0, D,W ),σ))2 [S1.3]

Estimating parameters this way is referred to as "quasi-likelihood" estimation and is denoted as33

"RBC ON" in this paper. It was shown, that parameter estimation using the non-central χ noise34

statistic in a quasi-likelihood framework yields asymptotically unbiased parameter estimates9;8.35

36

Rician bias corrected, standard DKI or axisymmetric DKI parameter estimation can be done by37
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using Equation (2.1a, main text) or Equation (2.3, main text) to compute the noise-free signal38

predictions S̃b,g⃗, then using Equation (S1.2) to compute E(S̃b,g⃗(S̃0, D,W ),σ) and finally minimize39

Equation (S1.3) to estimate the framework parameters (Ŝ0, D̂, Ŵ ) for standard DKI or Ω for ax-40

isymmetric DKI.41

42

In reality, noise correlations between receiver coils occur and are non-negligible, especially for a43

higher number of receiver coils (32 or 64). This affects the degrees of freedom of the underlying44

noise statistic. However, the non-central χ distribution can still be used as a good approximation, if45

an effective number of coils Leff and noise variance σ2
eff are used5 for which L ≥ Leff and σ2 ≤ σ2

eff46

can be shown. Similarly, the generalized autocalibrating partially parallel acquisition (GRAPPA)47

scheme can be accounted for by specifying an effective number of coils Leff , while L = 1 for sensitivity48

encoding (SENSE)5.49

S1.2 Parameter estimation with the Gauss-Newton algorithm50

To minimize Eq. (S1.1) or Eq. (S1.3) time-efficiently, we have implemented a Gauss-Newton51

minimization algorithm10 in Matlab for slice-wise and parallelizable parameter estimation on MR-52

images instead of using standard Matlab optimization functions. The used tools are freely avail-53

able online within the ACID toolbox (http://www.diffusiontools.com/) for SPM. Slice-wise fit-54

ting refers to fitting all voxels of an image-slice at the same time which improves run-time. The55

implemented algorithm is highly adaptable and can fit any signal model (especially non-linear56

models). Gauss Newton parameter estimation approximates the search direction in parameter57

space based on the Jacobian and is sensitive to the initial guess. For the initial guess of the ax-58

isymmetric DKI fit implementation, we used code from the repository of Sune Nørhøj Jespersen:59

https://github.com/sunenj/Fast-diffusion-kurtosis-imaging-DKI11.60
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S1.3 Simulation study: Datasets and overview (detailed)61

We assessed estimation accuracy of the five AxTM as a function of the SNR in a simulation study62

with two classes of datasets. The first class consisted of three synthetic voxels with varying fiber63

alignment (defined in12). This dataset is refereed to as "synthetic dataset" because it was de-64

rived in the context of another study12 by random sampling of the parameter space of biophysical65

parameters and consequent derivation of the corresponding AxTM. The other class of datasets was66

based on an in-vivo measurement and consisted of either twelve major white matter fiber tract vox-67

els ("in-vivo white matter dataset") or twelve voxels from typical gray matter areas ("in-vivo68

gray matter dataset"). Details on both classes of datasets are given below and in Figure 2 (main69

manuscript). For all datasets, magnitude diffusion MRI data were simulated for varying SNRs70

and fitted with standard DKI and axisymmetric DKI, with and without RBC (as described in71

Section 2.3, main manuscript or Section S1.1) to obtain estimates of the five AxTM. Accuracy of72

the obtained AxTM estimates were evaluated as the absolute value of the mean percentage error73

(A-MPE):74

A-MPE = 100 · | GT− FitResults(SNR) |
GT

[S1.4]

Here GT refers to the ground truth and FitResults refers to the average of the fit results over the75

noise samples. We evaluated the accuracy of the AxTM estimates for each estimation method by76

looking for the SNR after which the A-MPE was smaller 5%. The 5% threshold was considered an77

acceptable error in a trade-off between estimation accuracy and SNR requirement. The different78

setup of both simulation studies enables an isolated investigation of the effectiveness and tissue79

dependence of the RBC and to test the fitting methods in in-vivo data. As a summary to compare80

each method, we looked at the maximum SNR needed across the five AxTM for which A-MPE81

consistently < 5% for all AxTM ("Maximum" column in Figure 6, main manuscript).82
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83

Datasets: The synthetic dataset consisted of three synthetic sets of AxTM (from12) describing84

three voxels with varying fiber alignment, one with fibers with low alignment ("LA", FA=0.067), one85

with fibers with moderate alignment ("MA", FA=0.24) and one with highly aligned fibers ("HA",86

FA=0.86). The AxTM of the three synthetic voxels are summarized in Supporting Information87

Table S1. Figure 4 (main manuscript) shows two areas of typical brain regions in a map of the88

mean of the kurtosis tensor W where LA and HA voxels can be found and the corresponding89

idealized fiber stick model.90

91

The simulated in-vivo white matter dataset is based on an in-vivo DWI measurement with92

the following measurement parameters: The sequence was a mono-polar single-shot spin-echo EPI93

scheme, consisting of 16 non-diffusion-weighted images (b = 0 image). The diffusion weighted94

images were acquired at three b values (500s/mm2, 1250s/mm2, 2500s/mm2), sampled for 60 unique95

diffusion-gradient directions for the 1250s/mm2 and 2500s/mm2 shells and 30 unique directions for96

the 500s/mm2 shell. The entire protocol was repeated with reversed phase encoding directions97

("blip-up", "blip-down" correction) to correct for susceptibility-related distortions so that in total98

166·2 images were acquired. Other acquisition parameters were: an isotropic voxel size of (1.6mm3),99

FoV of 240x230x154mm3, TE = 73ms, TE = 5300ms and 7/8 partial Fourier imaging. Signal100

simulation in our simulation study was done with only one b = 0 signal, so that the simulated101

sequence consisted of 151 signals per noise realization.102

The in-vivo white matter dataset consists of twelve voxels extracted from four major white103

matter tracts (three voxels from each of the four fiber tracts, see Figure 3, main manuscript) from104

an in-vivo brain measurement (SNR=23.4) of a healthy volunteer. The twelve voxels were extracted105

from the in-vivo measurement by fitting the standard DKI framework in 12 white matter voxels106
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of the acquired in-vivo DWI magnitude images to get the corresponding 22 standard DKI tensor107

metrics, the derived data are therefore referred to as "in-vivo white matter". Three voxels each with108

HA to MA (defined through the fractional anisotropy (FA) threshold FA≥ 0.413) were extracted109

from these four major white matter fiber tracts based upon the Jülich fiber atlas: the callosum body110

(cb), the corticospinal tract (ct), the optic radiation (or) and the superior longitudinal fasciculus111

(slf), see Figure 3, main manuscript. The selected voxels differ from the synthetic voxels in that112

here only HA and MA voxels were selected. The sets of the 12x22 in-vivo white matter standard113

DKI tensor metrics are documented in Table S2, the derived AxTM are found in Table S3.114

The in-vivo gray matter dataset was produced according to the same procedure used for the115

in-vivo white matter dataset, only that the voxels were selected from typical gray matter areas.116

The sets of the 12x22 in-vivo gray matter standard DKI tensor metrics are documented in Supporting117

Information Table S4, the derived AxTM are found in Supporting Information Table S5. Since white118

matter is the focus of this manuscript, details and results on the in-vivo gray matter dataset119

can be found in Supporting Information Section S1.3.120

121

122

Signal framework used for simulation: The three synthetic voxels of AxTM were simulated123

with the axisymmetric DKI framework to first obtain noise-free diffusion MRI signals S̃noise−free.124

The twelve in-vivo white matter and gray matter voxels were simulated with the standard DKI125

framework to first obtain noise-free diffusion MRI signals S̃noise−free.126

127

Contamination with noise: For both the synthetic and the in-vivo dataset (white matter128

or gray matter), the noise-free diffusion MRI signals S̃noise−free were contaminated with noise for129

SNRs [1, 2, 3...200] and magnitude signals Scont were computed. The noisy magnitude signals were130
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computed according to Scont = |S̃noise−free + α+ βi|, where α,β ∈ N (0,σ) are drawn from a zero131

mean Gaussian with standard deviation σ, yielding different SNR =
√
2S0/σ (for one receiver coil)132

for a given S0 = 1.133

134

Estimating the five AxTM: Both, the simulated signals Scont from the synthetic and the135

in-vivo dataset were fitted with axisymmetric DKI and standard DKI, with and without RBC136

(Section 2.3, main manuscript or Section S1.1) to obtain estimates of the AxTM whose accuracy137

could then be investigated as a function of SNR.138

S1.4 Simulation studies: Details139

We simulated 200 SNRs: SNR = [1, 2, 3, ...200]. Noise was added according to Scont = |S̃noise−free + α+ βi|,140

where α,β ∈ N (0,σ) are drawn from a zero mean Gaussian with standard deviation σ, yielding141

different SNR =
√
2S0

σ (for one receiver coil) for a given S0 = 1. For every SNR, 2500 noise sam-142

ples were realized, i.e., 2500 · 151 pairs (α,β) were drawn and 2500 · 151 Scont were calculated per143

SNR for every simulated voxel. These diffusion MRI magnitude signals were then fitted with the144

four proposed methods. For each of the 2500 noise samples per SNR, 2500 parameter estimates145

of D∥, D⊥,W∥,W⊥,W were obtained and averaged to find the SNR above which the average over146

these 2500 noise samples had a A-MPE < 5% (synthetic datset). For the in-vivo datsets147

the A-MPE was averaged per SNR across the 12 simulated voxels and the SNR above which this148

averaged A-MPE < 5% is reported.149

150

For simulation of the three synthetic voxels, the axis of symmetry c⃗ = (1, 0, 0)T was fixed throughout151

the study. For data fitting, the two angles θ and ϕ that define the axis of symmetry within the152

axisymmetric DKI framework were variable but constrained to θ, ϕ ∈ [−2π, 2π] which improved153
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convergence of the fitting algorithm. Data were simulated according to the simulation scheme154

described in (Section 2.5, main text).155

S1.5 Simulation of in-vivo gray matter156

To test whether the results found for the "LA" voxel translates to in-vivo applications, we addi-157

tionally performed a simulation and analysis of in-vivo gray matter voxels according to the same158

procedure already used for the in-vivo white matter simulation. For this, 12 voxels were extracted159

from four gray matter areas (three voxels from each gray matter area) analogously to extraction of160

the white matter voxels described in Section 2.5 in the main text. The four gray matter areas were161

the frontal cortex (fc), the motor cortex (mc), the thalamus (th) and the visual cortex (vc).

Figure S1: Signal-to-noise ratio (SNR) above which the absolute value of the mean percentage error
(A-MPE, Eq. (2.8) in main text) < 5% for the in-vivo gray matter dataset (bottom) and for
the LA synthetic voxel (top). For the in-vivo gray matter dataset the A-MPE was computed
in accordance with the procedure for the in-vivo white matter dataset, i.e., the A-MPE was
averaged across the 12 simulated in-vivo gray matter voxels and the SNR above which this average
A-MPE < 5% is shown. The number above the barplots indicates the barplot’s height. Blue encodes
standard DKI, red encodes axisymmetric DKI, the hatched barplots show the results if RBC is used.
"Maximum" shows the maximum SNR needed to achieve A-MPE < 5% across all five AxTM.

162

Results:163
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Axisymmetric DKI not clearly superior to standard DKI in in-vivo gray matter: Esti-164

mation of D∥ and D⊥ was improved by using the axisymmetric DKI framework instead of standard165

DKI. E.g., it only required an SNR= 14 (axisymmetric DKI) instead of SNR= 18 (standard DKI)166

to achieve A-MPE <5% for D∥. However, axisymmetric DKI performed much worse than standard167

DKI for W∥ where it needed SNRs above 200 to achieve A-MAPE <5% both with and without RBC168

which is in contrast to the results found for the synthetic "LA" dataset (see Figure S1). Another169

difference to the synthetic "LA" dataset is that RBC could substantially improve performance of170

the axisymmetric DKI framework for W⊥ where it reduced the SNR requirements from 95 without171

RBC to 16 with RBC.172

173

S1.6 Evaluation of precision174

Analogous the absolute value of the mean percentage error (A-MPE) for the bias, we have quantified175

the precision of the four investigated methods (standard DKI and axisymmetric DKI with and176

without RBC) by calculating the standard deviation in reference to the ground truth (R-STD):177

R-STD = 100 · std(DistributionEstimator)
GroundTruth . Here std(DistributionEstimator) is the standard deviation over178

the distribution of fit results for each AxTM per method and SNR. The distribution of fit results for179

a specific AxTM per method and SNR is made up of the 2500 fit results obtained from the simulated180

2500 noise samples per SNR. Analogous to the evaluation of the A-MPE, we were then interested181

to see at what SNR the R-STD< 5%, i.e., at what SNR is the precision of a certain method within182

5% of the corresponding ground truth value. We did this analysis for the in-vivo white matter and183

synthetic voxels (Figure S2). We additionally calculated the outlier-robust version of the R-STD, the184

"R-IQR", R-IQR = 100 ·
IQR(DistributionEstimator)

1.3490
GroundTruth . Here IQR(DistributionEstimator) is the interquartile185

range14 of the distribution of fit results and the computed quantity IQR(DistributionEstimator)
1.3490 is a robust186
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estimator for the standard deviation and hence the precision.187

Figure S2: Signal-to-noise ratio (SNR) above which the standard deviation in reference to the ground
truth (R-STD) < 5% for the synthetic dataset with high, medium and low fiber alignment ("HA",
"MA", "LA") and the in-vivo white matter dataset. For the in-vivo white matter dataset,
the R-STD was averaged across the 12 simulated voxels and the SNR above which this average R-
STD < 5% is shown. The number above the barplots indicates the barplot’s height. Blue encodes
standard DKI, red encodes axisymmetric DKI, the hatched barplots show the results if RBC is used.
"Maximum" shows the maximum SNR needed to achieve R-STD < 5% across all five AxTM.

Results:188

Precision is not improved by RBC or axisymmetric DKI: Generally, higher SNRs were re-189

quired to reach the R-STD< 5% threshold than reaching the A-MPE < 5% threshold. Within each190

dataset (HA, MA, LA, in-vivo white matter) and for each AxTM, all four methods almost always191

performed very similar to each other, regardless of RBC or DKI framework. A larger difference be-192

tween methods was only observed for W⊥ of the in-vivo white matter dataset where standard193

DKI both with and without RBC required an SNR of 121 to reach the R-STD< 5% threshold while194

axisymmetric DKI both with and without RBC required an SNR of 195, see Figure S2. Further195

investigation of this case revealed that the axisymmetric DKI fit results were affected by outliers for196

W⊥ in the in-vivo white matter dataset. Figure S3 shows the outlier-robust R-IQR computed197
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for the synthetic and the in-vivo white matter dataset. It can be seen that in this case the in-198

vivo white matter results for W⊥ obtained with both DKI frameworks are similar (SNR of 120 for199

standard DKI and 119 for axisymmetric DKI). Since estimation of the R-IQR is an outlier-robust200

measure for the R-STD, this finding indicates that the observed difference in SNR requirements201

between standard DKI and axisymmetric DKI for W⊥ in Figure S2 was caused by outliers in the202

results of the axisymmetric DKI fit.203

204

Figure S3: Signal-to-noise ratio (SNR) above which the R-IQR < 5% for the synthetic dataset
with high, medium and low fiber alignment ("HA", "MA", "LA") and the in-vivo white matter
dataset. For the in-vivo white matter dataset, the R-IQR was averaged across the 12 sim-
ulated voxels and the SNR above which this average R-IQR < 5% is shown. The number above
the barplots indicates the barplot’s height. Blue encodes standard DKI, red encodes axisymmetric
DKI, the hatched barplots show the results if RBC is used. "Maximum" shows the maximum SNR
needed to achieve R-IQR < 5% across all five AxTM.

S1.7 Ground truth DKI datasets205
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Table S1: Set of synthetic AxTM, S̃0 and axis of symmetry c⃗ used to simulate the synthetic
dataset based on axisymmetric DKI. The synthetic dataset consisting of three voxels with sets
of {D∥, D⊥,W∥,W⊥,W} was taken from12, diffusivities are in [µm

2

ms ], S0 is in arbitrary units.

Dataset D∥ D⊥ W∥ W⊥ W S̃0 c⃗

Fibers with high alignment (HA) 1.503 0.195 1.456 0.291 0.926 1 (1, 0, 0)T

Fibers with moderate alignment (MA) 1.557 1.048 0.396 0.708 0.330 1 (1, 0, 0)T

Fibers with low alignment (LA) 0.457 0.408 2.901 2.702 2.770 1 (1, 0, 0)T
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Table S2: Ground truth in-vivo standard DKI voxels for the in-vivo white matter dataset (Fig-
ure 3, main text), shown are the diffusion and kurtosis tensor components and S̃0, the diffusivities
are in [µm

2

ms ].

Parameter cb voxel 1 cb voxel 2 cb voxel 3 ct voxel 1 ct voxel 2 ct voxel 3

D11 1.92726 1.62057 1.86790 0.53951 0.78384 0.73087
D22 0.31583 0.38127 0.41435 0.36193 0.42447 0.49957
D33 0.39808 0.39813 0.36425 1.54966 1.37428 1.29096
D12 −0.00731 −0.26198 −0.11110 −0.15777 −0.08699 −0.05191
D13 0.04079 −0.25240 0.09536 0.00094 −0.08181 −0.03291
D23 0.03170 −0.09149 −0.03971 −0.04121 0.15430 0.03331

S̃0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
W1111 4.26728 4.20207 3.73642 0.58735 1.16398 1.12725
W2222 0.30183 0.43656 0.36961 0.22285 0.51330 0.74976
W3333 0.43632 0.59204 0.26940 3.41702 2.14949 2.30314
W1112 −0.15654 −0.41618 −0.18526 −0.07888 −0.06150 −0.08996
W1113 0.10051 −0.64422 0.18910 0.00636 −0.02166 0.02767
W2221 0.19206 −0.46340 −0.26578 −0.08910 −0.06061 −0.09517
W3331 −0.08171 −0.15145 0.12274 −0.08214 −0.17008 −0.09078
W2223 0.06537 −0.17548 −0.08403 0.09611 0.10937 −0.04710
W3332 0.07430 −0.16995 −0.09129 −0.12567 0.28125 −0.09293
W1122 0.45163 0.51896 0.50221 0.20913 0.21167 0.25976
W1133 0.45000 0.53712 0.43661 0.52253 0.56751 0.30986
W2233 0.15867 0.16724 0.07048 0.32234 0.42040 0.39227
W1123 −0.00501 −0.08834 −0.03636 0.07669 0.03705 −0.00512
W2213 −0.00262 0.00521 0.08195 −0.02098 −0.08206 −0.02479
W3312 0.03732 −0.13410 −0.11029 −0.16710 −0.06077 −0.02733

Parameter or voxel 1 or voxel 2 or voxel 3 slf voxel 1 slf voxel 2 slf voxel 3

D11 1.06085 0.67273 0.69468 0.46699 0.68565 0.63911
D22 0.59047 0.75000 1.79639 0.43803 0.48026 0.61127
D33 1.36088 1.48673 0.49756 1.69614 1.23269 1.22297
D12 0.12149 0.04143 −0.43159 0.05648 0.02784 0.08187
D13 0.61736 0.22247 0.19896 0.07981 −0.07817 −0.04450
D23 0.05184 0.26023 −0.21783 −0.20355 −0.15512 −0.09252

S̃0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
W1111 1.18421 0.74417 0.60364 0.38485 1.27168 0.65976
W2222 0.48582 0.71486 2.21601 0.51498 0.72106 0.83091
W3333 1.72750 1.99702 0.37346 3.25042 2.56281 1.96113
W1112 0.09557 0.04945 −0.18369 0.03519 0.11477 0.00824
W1113 0.42320 0.11965 0.04012 0.01711 0.05484 0.06571
W2221 0.22072 −0.01878 −0.49678 0.11049 −0.03851 −0.10122
W3331 0.70421 0.13580 0.03943 0.15730 −0.32397 −0.13608
W2223 0.13593 −0.00500 −0.40378 −0.02510 0.06858 0.06213
W3332 0.15332 0.36637 0.09475 −0.41687 −0.24668 −0.29428
W1122 0.19154 0.25614 0.52836 0.12737 0.22065 0.18565
W1133 0.61697 0.26980 0.15419 0.49145 0.36651 0.53366
W2233 0.26455 0.40726 0.34763 0.42856 0.14162 0.27141
W1123 0.04012 0.00642 −0.11345 −0.04016 −0.01867 −0.08256
W2213 0.06872 0.07859 0.24902 −0.01085 −0.04099 0.02417
W3312 0.02283 0.04014 −0.03715 0.06156 0.07493 0.17797
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Table S3: Ground truth AxTM of the in-vivo dataset, corresponding to the tensor components
listed in Table S2, the diffusivities are in [µm

2

ms ]. Additionally, the deviation from axial symmetry is
listed as |λ2−λ3|

MD , where λ are the diffusion tensor eigenvalues and MD is the mean diffusivity.

Voxel D∥ D⊥ W∥ W⊥ W |λ2−λ3|
MD

cb voxel 1 1.928 0.356 4.276 0.401 1.425 0.117
cb voxel 2 1.714 0.343 4.549 0.387 1.535 0.346
cb voxel 3 1.883 0.382 3.798 0.240 1.279 0.091
ct voxel 1 1.551 0.450 3.427 0.471 1.267 0.444
ct voxel 2 1.413 0.585 2.373 0.762 1.245 0.461
ct voxel 3 1.295 0.613 2.294 0.903 1.221 0.299
or voxel 1 1.857 0.578 2.891 0.463 1.109 0.126
or voxel 2 1.623 0.643 2.244 0.706 1.064 0.074
or voxel 3 1.995 0.497 2.959 0.498 1.051 0.251
slf voxel 1 1.732 0.435 3.421 0.439 1.249 0.170
slf voxel 2 1.275 0.562 2.715 0.919 1.203 0.283
slf voxel 3 1.242 0.616 2.153 0.725 1.087 0.185
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Table S4: Ground truth in-vivo standard DKI voxels for the in-vivo gray matter dataset, shown
are the diffusion and kurtosis tensor components and S̃0, the diffusivities are in [µm

2

ms ].

Parameter fc voxel 1 fc voxel 2 fc voxel 3 mc voxel 1 mc voxel 2 mc voxel 3

D11 2.50277 1.31597 2.79424 1.61384 1.11080 1.47339
D22 2.63215 1.42647 2.91701 1.54804 1.08889 1.53996
D33 2.64935 1.40526 3.05176 1.51739 0.97417 1.40661
D12 −0.03462 −0.00900 0.01455 0.01249 0.02530 0.02278
D13 0.07854 0.04254 −0.02458 −0.06448 0.03418 −0.02653
D23 −0.06748 0.01904 0.06747 −0.06417 0.02150 0.00347

S̃0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
W1111 0.56370 0.71667 0.42047 0.79404 0.89151 0.74619
W2222 0.58092 0.93726 0.54043 0.65753 0.91672 0.86487
W3333 0.62256 0.86199 0.53516 0.72181 0.84637 0.62263
W1112 −0.00158 0.06715 −0.01741 −0.05272 0.05849 −0.02434
W1113 0.02441 0.03391 0.00434 −0.02477 −0.03365 −0.02214
W2221 −0.00470 −0.03735 0.02543 −0.02886 0.01141 0.03757
W3331 0.01530 −0.01568 −0.01119 −0.01303 0.04189 0.04724
W2223 −0.00684 0.02774 0.00758 −0.02444 0.03554 −0.02079
W3332 −0.00801 −0.00802 0.01668 −0.00738 0.10307 0.05838
W1122 0.19703 0.32119 0.15041 0.19543 0.33747 0.27489
W1133 0.18887 0.32222 0.16831 0.21814 0.35201 0.23772
W2233 0.19620 0.36126 0.15564 0.22378 0.34395 0.30244
W1123 −0.00581 −0.02205 −0.00321 −0.02123 0.00832 −0.04963
W2213 0.00504 0.02109 0.00011 −0.01980 0.04589 −0.01298
W3312 0.00350 −0.02690 −0.00496 0.01040 0.02448 −0.00446

Parameter th voxel 1 th voxel 2 th voxel 3 vc voxel 1 vc voxel 2 vc voxel 3

D11 1.55114 0.85394 0.66375 1.11690 1.33449 1.58681
D22 1.85125 0.83582 0.83513 1.12416 1.20188 1.61950
D33 1.73899 0.99126 0.72202 1.19876 1.35827 1.53273
D12 0.09370 −0.02131 0.04164 0.04721 −0.09738 −0.04635
D13 0.07596 −0.07940 −0.03502 −0.03314 −0.05108 0.03868
D23 −0.09738 −0.06603 0.03045 −0.05430 0.00351 0.02261

S̃0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
W1111 0.74150 1.02877 1.07671 0.90363 0.74407 0.63246
W2222 0.88619 1.40701 1.34001 0.69061 0.57022 0.82642
W3333 0.84407 1.28545 1.50206 0.80784 0.83729 0.60003
W1112 0.02028 0.14173 0.27765 0.05292 −0.09488 −0.09342
W1113 0.03574 −0.04782 −0.01630 −0.03856 −0.07960 −0.02566
W2221 0.05168 −0.09366 0.09460 −0.08445 −0.07263 0.02135
W3331 0.03040 −0.12668 −0.18875 0.00338 −0.01054 0.03591
W2223 0.01033 −0.04656 0.19234 −0.02794 −0.00807 −0.00253
W3332 −0.06420 −0.16355 0.09208 −0.00390 −0.02928 0.06912
W1122 0.27604 0.37859 0.75919 0.27710 0.32099 0.20954
W1133 0.26147 0.48093 0.47265 0.27969 0.29104 0.27671
W2233 0.29981 0.31864 0.61072 0.25239 0.26290 0.24716
W1123 −0.01479 0.02698 −0.04394 0.03306 −0.05787 −0.04289
W2213 −0.00818 −0.05220 −0.18916 −0.00695 0.01136 −0.01380
W3312 0.01688 −0.03173 0.06075 0.00558 −0.03849 0.0049016



Table S5: Ground truth AxTM of the gray matter in-vivo dataset, corresponding to the tensor
components listed in Table S2, the diffusivities are in [µm

2

ms ]. Additionally, the deviation from axial
symmetry is listed as |λ2−λ3|

MD , where λ are the diffusion tensor eigenvalues and MD is the mean
diffusivity.

Voxel D∥ D⊥ W∥ W⊥ W |λ2−λ3|
MD

fc Dataset 1 2.738 2.523 0.623 0.560 0.586 0.042
fc Dataset 2 1.440 1.354 1.004 0.880 0.905 0.082
fc Dataset 3 3.081 2.841 0.543 0.466 0.489 0.036
mc Dataset 1 1.662 1.509 0.743 0.669 0.690 0.070
mc Dataset 2 1.137 1.018 1.066 0.878 0.944 0.102
mc Dataset 3 1.547 1.436 0.900 0.714 0.773 0.054
th Dataset 1 1.914 1.614 0.922 0.764 0.829 0.153
th Dataset 2 1.041 0.820 1.519 1.130 1.216 0.102
th Dataset 3 0.849 0.686 1.556 1.257 1.521 0.139
vc Dataset 1 1.248 1.096 0.796 0.799 0.804 0.043
vc Dataset 2 1.422 1.237 0.920 0.701 0.780 0.136
vc Dataset 3 1.652 1.543 0.751 0.638 0.705 0.058
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