Supporting Information: Axisymmetric diffusion kurtosis imaging with Rician bias correction: A simulation study

Jan Malte Oeschger^{1,*}

Karsten Tabelow²

Siawoosh Mohammadi^{1,3}

September 1, 2022

- 1 University Medical Center Hamburg Eppendorf, Institute of Systems Neuroscience, Hamburg, Germany
- ${\bf 2}\,$ Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
- 3 Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurophysics, Leipzig, Germany
- * Corresponding author:
 - Name Jan Malte Oeschger
- Institute University Medical Center Hamburg-Eppendorf, Institute of Systems Neuroscience
- Address Martinistraße 52, 20246 Hamburg, Germany
 - E-mail j.oeschger@uke.de
 - **Phone** +49-40-7410-27301

¹ S1 Supporting Information

² S1.1 Parameter estimation and the Rician noise bias (detailed)

Standard DKI or axisymmetric DKI parameter estimation would typically be done using the acquired magnitude signals $S_{b,\vec{g}}$ and Eq. (2.1a, main text) or (2.3, main text) in the least-squares approach^{1;2;3} (found fit results are denoted with a hat, i.e., $\hat{S}_0, \hat{D}, \hat{W}$):

$$(\hat{S}_0, \hat{D}, \hat{W}) = \operatorname{argmin}_{\widetilde{S}_0, D, W} \sum_i (S_{b, \vec{g}_i} - \widetilde{S}_{b, \vec{g}_i} (\widetilde{S}_0, D, W))^2$$
[S1.1]

However, this least-squares approach is built on the assumption of Gaussian distributed noise in $S_{b,\vec{q_i}}$ 6 which is not true in reality. $S_{b,\vec{g}}$ is a magnitude signal computed from the noise contaminated k-space 7 data described by a complex Gaussian (standard deviation σ) as the sum of squares of the measured 8 signal intensity⁴ from the receiver coil after it was Fourier transformed into real space. Computing 9 the sum of squares rectifies the composite magnitude signal and leads to Rician distributed noise 10 for one receiver coil (L=1). Therefore, assuming Gaussian noise in MRI magnitude signals leads 11 to a bias that propagates into the estimated parameters which is referred to as the "Rician noise 12 bias". Eq. (S1.1) is therefore biased. 13

14

¹⁵ More generally, if one assumes uncorrelated noise and statistically independent receiver coils with ¹⁶ an equivalent noise variance⁵, the resulting probability density function of the noisy magnitude ¹⁷ data is given by a non-central χ -distribution⁴, where 2L is the number of degrees of freedom of the ¹⁸ distribution. L = 1 results in the Rician distribution^{6;7}.

19

²⁰ The severity of the Rician noise bias depends on the SNR⁸ because the sum of squares rectifies

the composite magnitude signal: the lower the SNR, the larger the bias. For RBC, we rely on an approach outlined in⁸ that uses the expectation value $\mathbf{E}(S_{b,\vec{g}})$ of the noisy composite magnitude signal. The probability density function of $S_{b,\vec{g}}$ is a non-central χ distribution whose expectation value $\mathbf{E}(S_{b,\vec{q}})$ is given by⁸:

$$\mathbf{E}(S_{b,\vec{g}}) = \mathbf{E}(\widetilde{S}_{b,\vec{g}}(\widetilde{S}_0, D, W), \sigma) = \sigma \sqrt{\frac{\pi}{2}} \cdot \mathbf{L}_{1/2}^{(L-1)}(\frac{\widetilde{S}_{b,\vec{g}}(\widetilde{S}_0, D, W)^2}{2\sigma^2})$$
[S1.2]

where $\mathbf{L}_{1/2}^{(L-1)}(x) = \frac{\Gamma(L+1/2)}{\Gamma(3/2)\Gamma(L)}\mathbf{M}(-1/2,L,x)$ is the generalized Laguerre polynomial which can be 25 expressed using a confluent hypergeometric function \mathbf{M} , the Gamma function Γ and the number of 26 receiver coils L. Only for simplicity of notation, in the text we neglect any possible dependence of σ 27 on b, \vec{q} or location, the employed RBC algorithm used the same σ in every image voxel. The SNR 28 dependent expectation value Eq. (S1.2) differs from the noise-free signal, $\mathbf{E}(\widetilde{S}_{b,\vec{g}}(\widetilde{S}_0, D, W), \sigma) > 0$ 29 $\widetilde{S}_{b,\vec{g}}(\widetilde{S}_0, D, W)$ with the difference decreasing with increasing SNR. Following⁸, we implemented a 30 time-efficient fitting algorithm that, unlike Equation (S1.1), accounts for Rician noise in magnitude 31 dMRI data by solving the optimization problem: 32

$$(\hat{S}_0, \hat{D}, \hat{W}) = \operatorname{argmin}_{\widetilde{S}_0, D, W} \sum_i (S_{b, \vec{g_i}} - \mathbf{E}(\widetilde{S}_{b, \vec{g_i}}(\widetilde{S}_0, D, W), \sigma))^2$$
[S1.3]

Estimating parameters this way is referred to as "quasi-likelihood" estimation and is denoted as "RBC ON" in this paper. It was shown, that parameter estimation using the non-central χ noise statistic in a quasi-likelihood framework yields asymptotically unbiased parameter estimates^{9;8}.

36

37 Rician bias corrected, standard DKI or axisymmetric DKI parameter estimation can be done by

using Equation (2.1a, main text) or Equation (2.3, main text) to compute the noise-free signal predictions $\tilde{S}_{b,\vec{g}}$, then using Equation (S1.2) to compute $\mathbf{E}(\tilde{S}_{b,\vec{g}}(\tilde{S}_0, D, W), \sigma)$ and finally minimize Equation (S1.3) to estimate the framework parameters $(\hat{S}_0, \hat{D}, \hat{W})$ for standard DKI or Ω for axisymmetric DKI.

42

In reality, noise correlations between receiver coils occur and are non-negligible, especially for a higher number of receiver coils (32 or 64). This affects the degrees of freedom of the underlying noise statistic. However, the non-central χ distribution can still be used as a good approximation, if an effective number of coils L_{eff} and noise variance σ_{eff}^2 are used⁵ for which $L \ge L_{\text{eff}}$ and $\sigma^2 \le \sigma_{\text{eff}}^2$ can be shown. Similarly, the generalized autocalibrating partially parallel acquisition (GRAPPA) scheme can be accounted for by specifying an effective number of coils L_{eff} , while L = 1 for sensitivity encoding (SENSE)⁵.

⁵⁰ S1.2 Parameter estimation with the Gauss-Newton algorithm

To minimize Eq. (S1.1) or Eq. (S1.3) time-efficiently, we have implemented a Gauss-Newton 51 minimization algorithm¹⁰ in Matlab for slice-wise and parallelizable parameter estimation on MR-52 images instead of using standard Matlab optimization functions. The used tools are freely avail-53 able online within the ACID toolbox (http://www.diffusiontools.com/) for SPM. Slice-wise fit-54 ting refers to fitting all voxels of an image-slice at the same time which improves run-time. The 55 implemented algorithm is highly adaptable and can fit any signal model (especially non-linear 56 models). Gauss Newton parameter estimation approximates the search direction in parameter 57 space based on the Jacobian and is sensitive to the initial guess. For the initial guess of the ax-58 isymmetric DKI fit implementation, we used code from the repository of Sune Nørhøj Jespersen: 59 https://github.com/sunenj/Fast-diffusion-kurtosis-imaging-DKI¹¹. 60

⁶¹ S1.3 Simulation study: Datasets and overview (detailed)

We assessed estimation accuracy of the five AxTM as a function of the SNR in a simulation study 62 with two classes of datasets. The first class consisted of three synthetic voxels with varying fiber 63 alignment (defined in¹²). This dataset is referred to as "synthetic dataset" because it was de-64 rived in the context of another study¹² by random sampling of the parameter space of biophysical 65 parameters and consequent derivation of the corresponding AxTM. The other class of datasets was 66 based on an in-vivo measurement and consisted of either twelve major white matter fiber tract vox-67 els ("in-vivo white matter dataset") or twelve voxels from typical gray matter areas ("in-vivo 68 gray matter dataset"). Details on both classes of datasets are given below and in Figure 2 (main 69 manuscript). For all datasets, magnitude diffusion MRI data were simulated for varying SNRs 70 and fitted with standard DKI and axisymmetric DKI, with and without RBC (as described in 71 Section 2.3, main manuscript or Section S1.1) to obtain estimates of the five AxTM. Accuracy of 72 the obtained AxTM estimates were evaluated as the absolute value of the mean percentage error 73 (A-MPE): 74

$$A-MPE = 100 \cdot \frac{|GT - FitResults(SNR)|}{GT}$$
[S1.4]

Here GT refers to the ground truth and FitResults refers to the average of the fit results over the 75 noise samples. We evaluated the accuracy of the AxTM estimates for each estimation method by 76 looking for the SNR after which the A-MPE was smaller 5%. The 5% threshold was considered an 77 acceptable error in a trade-off between estimation accuracy and SNR requirement. The different 78 setup of both simulation studies enables an isolated investigation of the effectiveness and tissue 79 dependence of the RBC and to test the fitting methods in in-vivo data. As a summary to compare 80 each method, we looked at the maximum SNR needed across the five AxTM for which A-MPE 81 consistently < 5% for all AxTM ("Maximum" column in Figure 6, main manuscript). 82

83

Datasets: The synthetic dataset consisted of three synthetic sets of AxTM (from ¹²) describing three voxels with varying fiber alignment, one with fibers with low alignment ("LA", FA=0.067), one with fibers with moderate alignment ("MA", FA=0.24) and one with highly aligned fibers ("HA", FA=0.86). The AxTM of the three synthetic voxels are summarized in Supporting Information Table S1. Figure 4 (main manuscript) shows two areas of typical brain regions in a map of the mean of the kurtosis tensor \overline{W} where LA and HA voxels can be found and the corresponding idealized fiber stick model.

91

The simulated in-vivo white matter dataset is based on an in-vivo DWI measurement with 92 the following measurement parameters: The sequence was a mono-polar single-shot spin-echo EPI 93 scheme, consisting of 16 non-diffusion-weighted images (b = 0 image). The diffusion weighted 94 images were acquired at three b values (500s/mm², 1250s/mm², 2500s/mm²), sampled for 60 unique 95 diffusion-gradient directions for the 1250s/mm² and 2500s/mm² shells and 30 unique directions for 96 the $500 \mathrm{s/mm^2}$ shell. The entire protocol was repeated with reversed phase encoding directions 97 ("blip-up", "blip-down" correction) to correct for susceptibility-related distortions so that in total 98 $166 \cdot 2$ images were acquired. Other acquisition parameters were: an isotropic voxel size of (1.6mm^3) , 99 FoV of 240x230x154 mm³, TE = 73ms, TE = 5300 ms and 7/8 partial Fourier imaging. Signal 100 simulation in our simulation study was done with only one b = 0 signal, so that the simulated 101 sequence consisted of 151 signals per noise realization. 102

The in-vivo white matter dataset consists of twelve voxels extracted from four major white matter tracts (three voxels from each of the four fiber tracts, see Figure 3, main manuscript) from an in-vivo brain measurement (SNR=23.4) of a healthy volunteer. The twelve voxels were extracted from the in-vivo measurement by fitting the standard DKI framework in 12 white matter voxels

of the acquired in-vivo DWI magnitude images to get the corresponding 22 standard DKI tensor 107 metrics, the derived data are therefore referred to as "in-vivo white matter". Three voxels each with 108 HA to MA (defined through the fractional anisotropy (FA) threshold $FA \ge 0.4^{13}$) were extracted 109 from these four major white matter fiber tracts based upon the Jülich fiber atlas: the callosum body 110 (cb), the corticospinal tract (ct), the optic radiation (or) and the superior longitudinal fasciculus 111 (slf), see Figure 3, main manuscript. The selected voxels differ from the synthetic voxels in that 112 here only HA and MA voxels were selected. The sets of the 12x22 in-vivo white matter standard 113 DKI tensor metrics are documented in Table S2, the derived AxTM are found in Table S3. 114

The in-vivo gray matter dataset was produced according to the same procedure used for the in-vivo white matter dataset, only that the voxels were selected from typical gray matter areas. The sets of the 12x22 in-vivo gray matter standard DKI tensor metrics are documented in Supporting Information Table S4, the derived AxTM are found in Supporting Information Table S5. Since white matter is the focus of this manuscript, details and results on the in-vivo gray matter dataset can be found in Supporting Information Section S1.3.

121

122

¹²³ Signal framework used for simulation: The three synthetic voxels of AxTM were simulated ¹²⁴ with the axisymmetric DKI framework to first obtain noise-free diffusion MRI signals $\tilde{S}_{noise-free}$. ¹²⁵ The twelve in-vivo white matter and gray matter voxels were simulated with the standard DKI ¹²⁶ framework to first obtain noise-free diffusion MRI signals $\tilde{S}_{noise-free}$.

127

Contamination with noise: For both the synthetic and the in-vivo dataset (white matter or gray matter), the noise-free diffusion MRI signals $\tilde{S}_{\text{noise-free}}$ were contaminated with noise for SNRs [1, 2, 3...200] and magnitude signals S_{cont} were computed. The noisy magnitude signals were computed according to $S_{\text{cont}} = |\tilde{S}_{\text{noise-free}} + \alpha + \beta i|$, where $\alpha, \beta \in \mathcal{N}(0, \sigma)$ are drawn from a zero mean Gaussian with standard deviation σ , yielding different $\text{SNR} = \sqrt{2}S_0/\sigma$ (for one receiver coil) for a given $S_0 = 1$.

134

Estimating the five AxTM: Both, the simulated signals S_{cont} from the synthetic and the in-vivo dataset were fitted with axisymmetric DKI and standard DKI, with and without RBC (Section 2.3, main manuscript or Section S1.1) to obtain estimates of the AxTM whose accuracy could then be investigated as a function of SNR.

¹³⁹ S1.4 Simulation studies: Details

We simulated 200 SNRs: SNR = [1, 2, 3, ...200]. Noise was added according to $S_{\text{cont}} = |\widetilde{S}_{\text{noise-free}} + \alpha + \beta i|$, 140 where $\alpha, \beta \in \mathcal{N}(0, \sigma)$ are drawn from a zero mean Gaussian with standard deviation σ , yielding 141 different SNR = $\sqrt{2}\frac{S_0}{\sigma}$ (for one receiver coil) for a given $S_0 = 1$. For every SNR, 2500 noise sam-142 ples were realized, i.e., $2500 \cdot 151$ pairs (α, β) were drawn and $2500 \cdot 151$ S_{cont} were calculated per 143 SNR for every simulated voxel. These diffusion MRI magnitude signals were then fitted with the 144 four proposed methods. For each of the 2500 noise samples per SNR, 2500 parameter estimates 145 of $D_{\parallel}, D_{\perp}, W_{\parallel}, W_{\perp}, \overline{W}$ were obtained and averaged to find the SNR above which the average over 146 these 2500 noise samples had a A-MPE < 5% (synthetic datset). For the in-vivo datsets 147 the A-MPE was averaged per SNR across the 12 simulated voxels and the SNR above which this 148 averaged A-MPE < 5% is reported. 149

150

For simulation of the three synthetic voxels, the axis of symmetry $\vec{c} = (1, 0, 0)^T$ was fixed throughout the study. For data fitting, the two angles θ and ϕ that define the axis of symmetry within the axisymmetric DKI framework were variable but constrained to $\theta, \phi \in [-2\pi, 2\pi]$ which improved ¹⁵⁴ convergence of the fitting algorithm. Data were simulated according to the simulation scheme ¹⁵⁵ described in (Section 2.5, main text).

¹⁵⁶ S1.5 Simulation of in-vivo gray matter

To test whether the results found for the "LA" voxel translates to in-vivo applications, we additionally performed a simulation and analysis of in-vivo gray matter voxels according to the same procedure already used for the in-vivo white matter simulation. For this, 12 voxels were extracted from four gray matter areas (three voxels from each gray matter area) analogously to extraction of the white matter voxels described in Section 2.5 in the main text. The four gray matter areas were the frontal cortex (fc), the motor cortex (mc), the thalamus (th) and the visual cortex (vc).

Figure S1: Signal-to-noise ratio (SNR) above which the absolute value of the mean percentage error (A-MPE, Eq. (2.8) in main text) < 5% for the in-vivo gray matter dataset (bottom) and for the LA synthetic voxel (top). For the in-vivo gray matter dataset the A-MPE was computed in accordance with the procedure for the in-vivo white matter dataset, i.e., the A-MPE was averaged across the 12 simulated in-vivo gray matter voxels and the SNR above which this average A-MPE < 5% is shown. The number above the barplots indicates the barplot's height. Blue encodes standard DKI, red encodes axisymmetric DKI, the hatched barplots show the results if RBC is used. "Maximum" shows the maximum SNR needed to achieve A-MPE < 5% across all five AxTM.

162

163 **Results**:

Axisymmetric DKI not clearly superior to standard DKI in in-vivo gray matter: Esti-164 mation of D_{\parallel} and D_{\perp} was improved by using the axisymmetric DKI framework instead of standard 165 DKI. E.g., it only required an SNR= 14 (axisymmetric DKI) instead of SNR= 18 (standard DKI) 166 to achieve A-MPE <5% for D_{\parallel} . However, axisymmetric DKI performed much worse than standard 167 DKI for W_{\parallel} where it needed SNRs above 200 to achieve A-MAPE < 5% both with and without RBC 168 which is in contrast to the results found for the synthetic "LA" dataset (see Figure S1). Another 169 difference to the synthetic "LA" dataset is that RBC could substantially improve performance of 170 the axisymmetric DKI framework for W_{\perp} where it reduced the SNR requirements from 95 without 171 RBC to 16 with RBC. 172

173

174 S1.6 Evaluation of precision

Analogous the absolute value of the mean percentage error (A-MPE) for the bias, we have quantified 175 the precision of the four investigated methods (standard DKI and axisymmetric DKI with and 176 without RBC) by calculating the standard deviation in reference to the ground truth (R-STD): 177 $R-STD = 100 \cdot \frac{std(Distribution_{Estimator})}{GroundTruth}$. Here $std(Distribution_{Estimator})$ is the standard deviation over 178 the distribution of fit results for each AxTM per method and SNR. The distribution of fit results for 179 a specific AxTM per method and SNR is made up of the 2500 fit results obtained from the simulated 180 2500 noise samples per SNR. Analogous to the evaluation of the A-MPE, we were then interested 181 to see at what SNR the R-STD < 5%, i.e., at what SNR is the precision of a certain method within 182 5% of the corresponding ground truth value. We did this analysis for the in-vivo white matter and 183 synthetic voxels (Figure S2). We additionally calculated the outlier-robust version of the R-STD, the 184 "R-IQR", R-IQR = $100 \cdot \frac{\frac{IQR(Distribution_{Estimator})}{1.3490}}{GroundTruth}$. Here IQR(Distribution_{Estimator}) is the interquartile 185 range¹⁴ of the distribution of fit results and the computed quantity $\frac{IQR(Distribution_{Estimator})}{1.3490}$ is a robust 186

Standard DKI Axisymmetric DKI Standard DKI, RBC ON Axisymmetric DKI, RBC ON W W D D W_{\perp} Maximum >200>200>200>200>200| [>200>200>200>200 >200>200>200>200>200 200 HA Ž₁₀₀ 124 124 124 124 92 92 92 92 34 33 34 **199 199>200⊳200** >200>200>200>200>200 >200>200>200>200 200 SNR MA 67 65 72 70 100 49 54 56 46 41 41 41 41 200 LA ž 98 103 98 103 98 103 98 103 100 63 58 62 56 57 56 57 58 57 57 47 26 25 26 26 0 195 195 195 195 200 In-vivo 121 SNR 121 121 121 white matter 60 63 63 100 60 58 60 58 60 30 31 30 32 19 19 21 20

187 estimator for the standard deviation and hence the precision.

Figure S2: Signal-to-noise ratio (SNR) above which the standard deviation in reference to the ground truth (R-STD) < 5% for the synthetic dataset with high, medium and low fiber alignment ("HA", "MA", "LA") and the in-vivo white matter dataset. For the in-vivo white matter dataset, the R-STD was averaged across the 12 simulated voxels and the SNR above which this average R-STD < 5% is shown. The number above the barplots indicates the barplot's height. Blue encodes standard DKI, red encodes axisymmetric DKI, the hatched barplots show the results if RBC is used. "Maximum" shows the maximum SNR needed to achieve R-STD < 5% across all five AxTM.

188 Results:

Precision is not improved by RBC or axisymmetric DKI: Generally, higher SNRs were re-189 quired to reach the R-STD < 5% threshold than reaching the A-MPE < 5% threshold. Within each 190 dataset (HA, MA, LA, in-vivo white matter) and for each AxTM, all four methods almost always 191 performed very similar to each other, regardless of RBC or DKI framework. A larger difference be-192 tween methods was only observed for W_{\perp} of the in-vivo white matter dataset where standard 193 DKI both with and without RBC required an SNR of 121 to reach the R-STD < 5% threshold while 194 axisymmetric DKI both with and without RBC required an SNR of 195, see Figure S2. Further 195 investigation of this case revealed that the axisymmetric DKI fit results were affected by outliers for 196 W_{\perp} in the in-vivo white matter dataset. Figure S3 shows the outlier-robust R-IQR computed 197

for the synthetic and the in-vivo white matter dataset. It can be seen that in this case the invivo white matter results for W_{\perp} obtained with both DKI frameworks are similar (SNR of 120 for standard DKI and 119 for axisymmetric DKI). Since estimation of the R-IQR is an outlier-robust measure for the R-STD, this finding indicates that the observed difference in SNR requirements between standard DKI and axisymmetric DKI for W_{\perp} in Figure S2 was caused by outliers in the results of the axisymmetric DKI fit.

Figure S3: Signal-to-noise ratio (SNR) above which the R-IQR < 5% for the synthetic dataset with high, medium and low fiber alignment ("HA", "MA", "LA") and the in-vivo white matter dataset. For the in-vivo white matter dataset, the R-IQR was averaged across the 12 simulated voxels and the SNR above which this average R-IQR < 5% is shown. The number above the barplots indicates the barplot's height. Blue encodes standard DKI, red encodes axisymmetric DKI, the hatched barplots show the results if RBC is used. "Maximum" shows the maximum SNR needed to achieve R-IQR < 5% across all five AxTM.

205 S1.7 Ground truth DKI datasets

Table S1: Set of synthetic AxTM, \tilde{S}_0 and axis of symmetry \vec{c} used to simulate the synthetic dataset based on axisymmetric DKI. The synthetic dataset consisting of three voxels with sets of $\{D_{\parallel}, D_{\perp}, W_{\parallel}, W_{\perp}, \overline{W}\}$ was taken from¹², diffusivities are in $[\frac{\mu m^2}{ms}]$, S_0 is in arbitrary units.

Dataset	D.,	D .	W	W.	\overline{W}	$\widetilde{\mathbf{S}}_{\alpha}$	\vec{c}
Dataset		D_{\perp}		VV _	VV	\mathcal{D}_0	L
Fibers with high alignment (HA)	1.503	0.195	1.456	0.291	0.926	1	$(1, 0, 0)^T$
Fibers with moderate alignment (MA)	1.557	1.048	0.396	0.708	0.330	1	$(1, 0, 0)^T$
Fibers with low alignment (LA)	0.457	0.408	2.901	2.702	2.770	1	$(1, 0, 0)^T$

Table S2: Ground truth in-vivo standard DKI voxels for the in-vivo white matter dataset (Figure 3, main text), shown are the diffusion and kurtosis tensor components and \tilde{S}_0 , the diffusivities are in $\left[\frac{\mu m^2}{ms}\right]$.

Parameter	cb voxel 1	cb voxel 2	cb voxel 3	ct voxel 1	ct voxel 2 $$	ct voxel 3
D_{11}	1.92726	1.62057	1.86790	0.53951	0.78384	0.73087
D_{22}	0.31583	0.38127	0.41435	0.36193	0.42447	0.49957
D_{33}	0.39808	0.39813	0.36425	1.54966	1.37428	1.29096
D_{12}	-0.00731	-0.26198	-0.11110	-0.15777	-0.08699	-0.05191
D_{13}	0.04079	-0.25240	0.09536	0.00094	-0.08181	-0.03291
D_{23}	0.03170	-0.09149	-0.03971	-0.04121	0.15430	0.03331
\widetilde{S}_0	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
W_{1111}	4.26728	4.20207	3.73642	0.58735	1.16398	1.12725
W_{2222}	0.30183	0.43656	0.36961	0.22285	0.51330	0.74976
W_{3333}	0.43632	0.59204	0.26940	3.41702	2.14949	2.30314
W_{1112}	-0.15654	-0.41618	-0.18526	-0.07888	-0.06150	-0.08996
W_{1113}	0.10051	-0.64422	0.18910	0.00636	-0.02166	0.02767
W_{2221}	0.19206	-0.46340	-0.26578	-0.08910	-0.06061	-0.09517
W_{3331}	-0.08171	-0.15145	0.12274	-0.08214	-0.17008	-0.09078
W_{2223}	0.06537	-0.17548	-0.08403	0.09611	0.10937	-0.04710
W_{3332}	0.07430	-0.16995	-0.09129	-0.12567	0.28125	-0.09293
W_{1122}	0.45163	0.51896	0.50221	0.20913	0.21167	0.25976
W_{1133}	0.45000	0.53712	0.43661	0.52253	0.56751	0.30986
W_{2233}	0.15867	0.16724	0.07048	0.32234	0.42040	0.39227
W_{1123}	-0.00501	-0.08834	-0.03636	0.07669	0.03705	-0.00512
W_{2213}	-0.00262	0.00521	0.08195	-0.02098	-0.08206	-0.02479
W_{3312}	0.03732	-0.13410	-0.11029	-0.16710	-0.06077	-0.02733
Parameter	or voxel 1	or voxel 2	or voxel 3	slf voxel 1	slf voxel 2	slf voxel 3
Parameter D_{11}	or voxel 1 1.06085	or voxel 2 0.67273	or voxel 3 0.69468	slf voxel 1 0.46699	slf voxel 2 0.68565	slf voxel 3 0.63911
Parameter D_{11} D_{22}	or voxel 1 1.06085 0.59047	or voxel 2 0.67273 0.75000	or voxel 3 0.69468 1.79639	slf voxel 1 0.46699 0.43803	slf voxel 2 0.68565 0.48026	slf voxel 3 0.63911 0.61127
Parameter D_{11} D_{22} D_{33}	or voxel 1 1.06085 0.59047 1.36088	or voxel 2 0.67273 0.75000 1.48673	or voxel 3 0.69468 1.79639 0.49756	slf voxel 1 0.46699 0.43803 1.69614	slf voxel 2 0.68565 0.48026 1.23269	slf voxel 3 0.63911 0.61127 1.22297
Parameter D_{11} D_{22} D_{33} D_{12}	or voxel 1 1.06085 0.59047 1.36088 0.12149	or voxel 2 0.67273 0.75000 1.48673 0.04143	or voxel 3 0.69468 1.79639 0.49756 -0.43159	slf voxel 1 0.46699 0.43803 1.69614 0.05648	slf voxel 2 0.68565 0.48026 1.23269 0.02784	slf voxel 3 0.63911 0.61127 1.22297 0.08187
Parameter D_{11} D_{22} D_{33} D_{12} D_{13}	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247	or voxel 3 0.69468 1.79639 0.49756 -0.43159 0.19896	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981	slf voxel 2 0.68565 0.48026 1.23269 0.02784 -0.07817	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450
$\begin{array}{c} {\rm Parameter} \\ D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023	or voxel 3 0.69468 1.79639 0.49756 -0.43159 0.19896 -0.21783	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981 -0.20355	slf voxel 2 0.68565 0.48026 1.23269 0.02784 -0.07817 -0.15512	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252
$\begin{array}{c} {\rm Parameter} \\ D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000	or voxel 3 0.69468 1.79639 0.49756 -0.43159 0.19896 -0.21783 1.00000	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981 -0.20355 1.00000	slf voxel 2 0.68565 0.48026 1.23269 0.02784 -0.07817 -0.15512 1.00000	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252 1.00000
$\begin{array}{c} {\rm Parameter} \\ D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417	$\begin{array}{c} \text{or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \end{array}$	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981 -0.20355 1.00000 0.38485	slf voxel 2 0.68565 0.48026 1.23269 0.02784 -0.07817 -0.15512 1.00000 1.27168	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252 1.00000 0.65976
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486	$\begin{array}{c} \text{ or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \end{array}$	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981 -0.20355 1.00000 0.38485 0.51498	slf voxel 2 0.68565 0.48026 1.23269 0.02784 -0.07817 -0.15512 1.00000 1.27168 0.72106	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252 1.00000 0.65976 0.83091
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702	$\begin{array}{c} \text{or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \end{array}$	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981 -0.20355 1.00000 0.38485 0.51498 3.25042	slf voxel 2 0.68565 0.48026 1.23269 0.02784 -0.07817 -0.15512 1.00000 1.27168 0.72106 2.56281	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252 1.00000 0.65976 0.83091 1.96113
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750 0.09557	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945	$\begin{array}{c} \text{ or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \\ -0.18369 \end{array}$	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981 -0.20355 1.00000 0.38485 0.51498 3.25042 0.03519	slf voxel 2 0.68565 0.48026 1.23269 0.02784 -0.07817 -0.15512 1.00000 1.27168 0.72106 2.56281 0.11477	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252 1.00000 0.65976 0.83091 1.96113 0.00824
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750 0.09557 0.42320	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945 0.11965	$\begin{array}{c} \text{ or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \\ -0.18369 \\ 0.04012 \end{array}$	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981 -0.20355 1.00000 0.38485 0.51498 3.25042 0.03519 0.01711	$\begin{array}{c} {\rm slf\ voxel\ 2}\\ 0.68565\\ 0.48026\\ 1.23269\\ 0.02784\\ -0.07817\\ -0.15512\\ 1.00000\\ 1.27168\\ 0.72106\\ 2.56281\\ 0.11477\\ 0.05484 \end{array}$	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252 1.00000 0.65976 0.83091 1.96113 0.00824 0.06571
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750 0.09557 0.42320 0.22072	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945 0.11965 -0.01878	$\begin{array}{c} \text{or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \\ -0.18369 \\ 0.04012 \\ -0.49678 \end{array}$	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981 -0.20355 1.00000 0.38485 0.51498 3.25042 0.03519 0.01711 0.11049	$\begin{array}{c} \text{slf voxel 2} \\ 0.68565 \\ 0.48026 \\ 1.23269 \\ 0.02784 \\ -0.07817 \\ -0.15512 \\ 1.00000 \\ 1.27168 \\ 0.72106 \\ 2.56281 \\ 0.11477 \\ 0.05484 \\ -0.03851 \end{array}$	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252 1.00000 0.65976 0.83091 1.96113 0.00824 0.06571 -0.10122
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750 0.09557 0.42320 0.22072 0.70421	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945 0.11965 -0.01878 0.13580	or voxel 3 0.69468 1.79639 0.49756 -0.43159 0.19896 -0.21783 1.00000 0.60364 2.21601 0.37346 -0.18369 0.04012 -0.49678 0.03943	slf voxel 1 0.46699 0.43803 1.69614 0.05648 0.07981 -0.20355 1.00000 0.38485 0.51498 3.25042 0.03519 0.01711 0.11049 0.15730	$\begin{array}{c} \text{slf voxel 2} \\ 0.68565 \\ 0.48026 \\ 1.23269 \\ 0.02784 \\ -0.07817 \\ -0.15512 \\ 1.00000 \\ 1.27168 \\ 0.72106 \\ 2.56281 \\ 0.11477 \\ 0.05484 \\ -0.03851 \\ -0.32397 \end{array}$	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252 1.00000 0.65976 0.83091 1.96113 0.00824 0.06571 -0.10122 -0.13608
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{3331} \\ W_{2223} \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750 0.09557 0.42320 0.22072 0.70421 0.13593	$\begin{array}{c} \text{or voxel 2} \\ 0.67273 \\ 0.75000 \\ 1.48673 \\ 0.04143 \\ 0.22247 \\ 0.26023 \\ 1.00000 \\ 0.74417 \\ 0.71486 \\ 1.99702 \\ 0.04945 \\ 0.11965 \\ -0.01878 \\ 0.13580 \\ -0.00500 \end{array}$	$\begin{array}{c} \text{ or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \\ -0.18369 \\ 0.04012 \\ -0.49678 \\ 0.03943 \\ -0.40378 \end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 1}\\ 0.46699\\ 0.43803\\ 1.69614\\ 0.05648\\ 0.07981\\ -0.20355\\ 1.00000\\ 0.38485\\ 0.51498\\ 3.25042\\ 0.03519\\ 0.01711\\ 0.11049\\ 0.15730\\ -0.02510\end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 2}\\ 0.68565\\ 0.48026\\ 1.23269\\ 0.02784\\ -0.07817\\ -0.15512\\ 1.00000\\ 1.27168\\ 0.72106\\ 2.56281\\ 0.11477\\ 0.05484\\ -0.03851\\ -0.32397\\ 0.06858\end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 3}\\ 0.63911\\ 0.61127\\ 1.22297\\ 0.08187\\ -0.04450\\ -0.09252\\ 1.00000\\ 0.65976\\ 0.83091\\ 1.96113\\ 0.00824\\ 0.06571\\ -0.10122\\ -0.13608\\ 0.06213\\ \end{array}$
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750 0.09557 0.42320 0.22072 0.70421 0.13593 0.15332	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945 0.11965 -0.01878 0.13580 -0.00500 0.36637	$\begin{array}{c} \text{ or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \\ -0.18369 \\ 0.04012 \\ -0.49678 \\ 0.03943 \\ -0.40378 \\ 0.09475 \end{array}$	$\begin{array}{c} \text{slf voxel 1} \\ 0.46699 \\ 0.43803 \\ 1.69614 \\ 0.05648 \\ 0.07981 \\ -0.20355 \\ 1.00000 \\ 0.38485 \\ 0.51498 \\ 3.25042 \\ 0.03519 \\ 0.01711 \\ 0.11049 \\ 0.15730 \\ -0.02510 \\ -0.41687 \end{array}$	$\begin{array}{c} \text{slf voxel 2} \\ 0.68565 \\ 0.48026 \\ 1.23269 \\ 0.02784 \\ -0.07817 \\ -0.15512 \\ 1.00000 \\ 1.27168 \\ 0.72106 \\ 2.56281 \\ 0.11477 \\ 0.05484 \\ -0.03851 \\ -0.32397 \\ 0.06858 \\ -0.24668 \end{array}$	slf voxel 3 0.63911 0.61127 1.22297 0.08187 -0.04450 -0.09252 1.00000 0.65976 0.83091 1.96113 0.00824 0.06571 -0.10122 -0.13608 0.06213 -0.29428
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ W_{3332} \\ W_{1122} \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750 0.09557 0.42320 0.22072 0.70421 0.13593 0.15332 0.19154	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945 0.11965 -0.01878 0.13580 -0.00500 0.36637 0.25614	$\begin{array}{c} \text{ or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \\ -0.18369 \\ 0.04012 \\ -0.49678 \\ 0.03943 \\ -0.49678 \\ 0.09475 \\ 0.52836 \end{array}$	$\begin{array}{c} \text{slf voxel 1} \\ 0.46699 \\ 0.43803 \\ 1.69614 \\ 0.05648 \\ 0.07981 \\ -0.20355 \\ 1.00000 \\ 0.38485 \\ 0.51498 \\ 3.25042 \\ 0.03519 \\ 0.01711 \\ 0.11049 \\ 0.15730 \\ -0.02510 \\ -0.41687 \\ 0.12737 \end{array}$	$\begin{array}{c} \text{slf voxel 2} \\ 0.68565 \\ 0.48026 \\ 1.23269 \\ 0.02784 \\ -0.07817 \\ -0.15512 \\ 1.00000 \\ 1.27168 \\ 0.72106 \\ 2.56281 \\ 0.11477 \\ 0.05484 \\ -0.03851 \\ -0.32397 \\ 0.06858 \\ -0.24668 \\ 0.22065 \end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 3}\\ 0.63911\\ 0.61127\\ 1.22297\\ 0.08187\\ -0.04450\\ -0.09252\\ 1.00000\\ 0.65976\\ 0.83091\\ 1.96113\\ 0.00824\\ 0.06571\\ -0.10122\\ -0.13608\\ 0.06213\\ -0.29428\\ 0.18565\end{array}$
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ W_{1122} \\ W_{1133} \\ \end{array}$	$\begin{array}{c} \text{or voxel 1} \\ 1.06085 \\ 0.59047 \\ 1.36088 \\ 0.12149 \\ 0.61736 \\ 0.05184 \\ 1.00000 \\ 1.18421 \\ 0.48582 \\ 1.72750 \\ 0.09557 \\ 0.42320 \\ 0.22072 \\ 0.70421 \\ 0.13593 \\ 0.15332 \\ 0.19154 \\ 0.61697 \end{array}$	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945 0.11965 -0.01878 0.13580 -0.00500 0.36637 0.25614 0.26980	$\begin{array}{c} \text{ or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \\ -0.18369 \\ 0.04012 \\ -0.49678 \\ 0.03943 \\ -0.40378 \\ 0.09475 \\ 0.52836 \\ 0.15419 \end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 1}\\ 0.46699\\ 0.43803\\ 1.69614\\ 0.05648\\ 0.07981\\ -0.20355\\ 1.00000\\ 0.38485\\ 0.51498\\ 3.25042\\ 0.03519\\ 0.01711\\ 0.11049\\ 0.15730\\ -0.02510\\ -0.41687\\ 0.12737\\ 0.49145\end{array}$	$\begin{array}{c} \text{slf voxel 2} \\ 0.68565 \\ 0.48026 \\ 1.23269 \\ 0.02784 \\ -0.07817 \\ -0.15512 \\ 1.00000 \\ 1.27168 \\ 0.72106 \\ 2.56281 \\ 0.11477 \\ 0.05484 \\ -0.03851 \\ -0.32397 \\ 0.06858 \\ -0.24668 \\ 0.22065 \\ 0.36651 \end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 3}\\ 0.63911\\ 0.61127\\ 1.22297\\ 0.08187\\ -0.04450\\ -0.09252\\ 1.00000\\ 0.65976\\ 0.83091\\ 1.96113\\ 0.00824\\ 0.06571\\ -0.10122\\ -0.13608\\ 0.06213\\ -0.29428\\ 0.18565\\ 0.53366\end{array}$
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ W_{1122} \\ W_{1133} \\ W_{2233} \\ \end{array}$	$\begin{array}{c} \text{or voxel 1} \\ 1.06085 \\ 0.59047 \\ 1.36088 \\ 0.12149 \\ 0.61736 \\ 0.05184 \\ 1.00000 \\ 1.18421 \\ 0.48582 \\ 1.72750 \\ 0.09557 \\ 0.42320 \\ 0.22072 \\ 0.70421 \\ 0.13593 \\ 0.15332 \\ 0.19154 \\ 0.61697 \\ 0.26455 \end{array}$	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945 0.11965 -0.01878 0.13580 -0.00500 0.36637 0.25614 0.26980 0.40726	$\begin{array}{c} \text{ or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \\ -0.18369 \\ 0.04012 \\ -0.49678 \\ 0.03943 \\ -0.40378 \\ 0.09475 \\ 0.52836 \\ 0.15419 \\ 0.34763 \end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 1}\\ 0.46699\\ 0.43803\\ 1.69614\\ 0.05648\\ 0.07981\\ -0.20355\\ 1.00000\\ 0.38485\\ 0.51498\\ 3.25042\\ 0.03519\\ 0.01711\\ 0.11049\\ 0.15730\\ -0.02510\\ -0.41687\\ 0.12737\\ 0.49145\\ 0.42856\end{array}$	$\begin{array}{c} \text{slf voxel 2} \\ 0.68565 \\ 0.48026 \\ 1.23269 \\ 0.02784 \\ -0.07817 \\ -0.15512 \\ 1.00000 \\ 1.27168 \\ 0.72106 \\ 2.56281 \\ 0.11477 \\ 0.05484 \\ -0.03851 \\ -0.32397 \\ 0.06858 \\ -0.24668 \\ 0.22065 \\ 0.36651 \\ 0.14162 \end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 3}\\ 0.63911\\ 0.61127\\ 1.22297\\ 0.08187\\ -0.04450\\ -0.09252\\ 1.00000\\ 0.65976\\ 0.83091\\ 1.96113\\ 0.00824\\ 0.06571\\ -0.10122\\ -0.13608\\ 0.06213\\ -0.29428\\ 0.18565\\ 0.53366\\ 0.27141\end{array}$
$\begin{array}{c} {\rm Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{111} \\ W_{222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ W_{1122} \\ W_{1133} \\ W_{2233} \\ W_{1123} \\ \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750 0.09557 0.42320 0.22072 0.70421 0.13593 0.15332 0.19154 0.61697 0.26455 0.04012	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945 0.11965 -0.01878 0.13580 -0.00500 0.36637 0.25614 0.26980 0.40726 0.00642	$\begin{array}{c} \text{ or voxel 3} \\ 0.69468 \\ 1.79639 \\ 0.49756 \\ -0.43159 \\ 0.19896 \\ -0.21783 \\ 1.00000 \\ 0.60364 \\ 2.21601 \\ 0.37346 \\ -0.18369 \\ 0.04012 \\ -0.49678 \\ 0.03943 \\ -0.49678 \\ 0.03943 \\ -0.40378 \\ 0.09475 \\ 0.52836 \\ 0.15419 \\ 0.34763 \\ -0.11345 \end{array}$	$\begin{array}{c} \text{slf voxel 1} \\ 0.46699 \\ 0.43803 \\ 1.69614 \\ 0.05648 \\ 0.07981 \\ -0.20355 \\ 1.00000 \\ 0.38485 \\ 0.51498 \\ 3.25042 \\ 0.03519 \\ 0.01711 \\ 0.11049 \\ 0.15730 \\ -0.02510 \\ -0.41687 \\ 0.12737 \\ 0.49145 \\ 0.42856 \\ -0.04016 \end{array}$	$\begin{array}{c} \text{slf voxel 2} \\ 0.68565 \\ 0.48026 \\ 1.23269 \\ 0.02784 \\ -0.07817 \\ -0.15512 \\ 1.00000 \\ 1.27168 \\ 0.72106 \\ 2.56281 \\ 0.11477 \\ 0.05484 \\ -0.03851 \\ -0.32397 \\ 0.06858 \\ -0.24668 \\ 0.22065 \\ 0.36651 \\ 0.14162 \\ -0.01867 \end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 3}\\ 0.63911\\ 0.61127\\ 1.22297\\ 0.08187\\ -0.04450\\ -0.09252\\ 1.00000\\ 0.65976\\ 0.83091\\ 1.96113\\ 0.00824\\ 0.06571\\ -0.10122\\ -0.13608\\ 0.06213\\ -0.29428\\ 0.18565\\ 0.53366\\ 0.27141\\ -0.08256\end{array}$
$\begin{array}{c} \text{Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ W_{1122} \\ W_{1133} \\ W_{2233} \\ W_{1123} \\ W_{2213} \\ \end{array}$	or voxel 1 1.06085 0.59047 1.36088 0.12149 0.61736 0.05184 1.00000 1.18421 0.48582 1.72750 0.09557 0.42320 0.22072 0.70421 0.13593 0.15332 0.19154 0.61697 0.26455 0.04012 0.06872	or voxel 2 0.67273 0.75000 1.48673 0.04143 0.22247 0.26023 1.00000 0.74417 0.71486 1.99702 0.04945 0.11965 -0.01878 0.13580 -0.00500 0.36637 0.25614 0.26980 0.40726 0.00642 0.07859	or voxel 3 0.69468 1.79639 0.49756 -0.43159 0.19896 -0.21783 1.00000 0.60364 2.21601 0.37346 -0.18369 0.04012 -0.49678 0.03943 -0.40378 0.09475 0.52836 0.15419 0.34763 -0.11345 0.244902	$\begin{array}{c} \text{slf voxel 1} \\ 0.46699 \\ 0.43803 \\ 1.69614 \\ 0.05648 \\ 0.07981 \\ -0.20355 \\ 1.00000 \\ 0.38485 \\ 0.51498 \\ 3.25042 \\ 0.03519 \\ 0.01711 \\ 0.11049 \\ 0.15730 \\ -0.02510 \\ -0.41687 \\ 0.12737 \\ 0.49145 \\ 0.42856 \\ -0.04016 \\ -0.01085 \end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 2}\\ 0.68565\\ 0.48026\\ 1.23269\\ 0.02784\\ -0.07817\\ -0.15512\\ 1.00000\\ 1.27168\\ 0.72106\\ 2.56281\\ 0.11477\\ 0.05484\\ -0.03851\\ -0.32397\\ 0.06858\\ -0.24668\\ 0.22065\\ 0.36651\\ 0.14162\\ -0.01867\\ -0.04099\end{array}$	$\begin{array}{c} {\rm slf\ voxel\ 3}\\ 0.63911\\ 0.61127\\ 1.22297\\ 0.08187\\ -0.04450\\ -0.09252\\ 1.00000\\ 0.65976\\ 0.83091\\ 1.96113\\ 0.00824\\ 0.06571\\ -0.10122\\ -0.13608\\ 0.06213\\ -0.29428\\ 0.18565\\ 0.53366\\ 0.27141\\ -0.08256\\ 0.02417\end{array}$

Table S3: Ground truth AxTM of the in-vivo dataset, corresponding to the tensor components listed in Table S2, the diffusivities are in $\left[\frac{\mu m^2}{ms}\right]$. Additionally, the deviation from axial symmetry is listed as $\frac{|\lambda_2 - \lambda_3|}{MD}$, where λ are the diffusion tensor eigenvalues and MD is the mean diffusivity.

Voxel	D_{\parallel}	D_{\perp}	W_{\parallel}	W_{\perp}	\overline{W}	$\frac{ \lambda_2 - \lambda_3 }{MD}$
cb voxel 1	1.928	0.356	4.276	0.401	1.425	0.117
cb voxel 2 $$	1.714	0.343	4.549	0.387	1.535	0.346
cb voxel 3	1.883	0.382	3.798	0.240	1.279	0.091
ct voxel 1	1.551	0.450	3.427	0.471	1.267	0.444
ct voxel 2	1.413	0.585	2.373	0.762	1.245	0.461
ct voxel 3	1.295	0.613	2.294	0.903	1.221	0.299
or voxel 1	1.857	0.578	2.891	0.463	1.109	0.126
or voxel 2	1.623	0.643	2.244	0.706	1.064	0.074
or voxel 3	1.995	0.497	2.959	0.498	1.051	0.251
slf voxel 1	1.732	0.435	3.421	0.439	1.249	0.170
slf voxel 2	1.275	0.562	2.715	0.919	1.203	0.283
slf voxel 3	1.242	0.616	2.153	0.725	1.087	0.185

Parameter	fc voxel 1	fc voxel 2	fc voxel 3	mc voxel 1 $$	mc voxel 2	mc voxel 3 $$
D_{11}	2.50277	1.31597	2.79424	1.61384	1.11080	1.47339
D_{22}	2.63215	1.42647	2.91701	1.54804	1.08889	1.53996
D_{33}	2.64935	1.40526	3.05176	1.51739	0.97417	1.40661
D_{12}	-0.03462	-0.00900	0.01455	0.01249	0.02530	0.02278
D_{13}	0.07854	0.04254	-0.02458	-0.06448	0.03418	-0.02653
D_{23}	-0.06748	0.01904	0.06747	-0.06417	0.02150	0.00347
\widetilde{S}_0	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
W_{1111}	0.56370	0.71667	0.42047	0.79404	0.89151	0.74619
W_{2222}	0.58092	0.93726	0.54043	0.65753	0.91672	0.86487
W_{3333}	0.62256	0.86199	0.53516	0.72181	0.84637	0.62263
W_{1112}	-0.00158	0.06715	-0.01741	-0.05272	0.05849	-0.02434
W_{1113}	0.02441	0.03391	0.00434	-0.02477	-0.03365	-0.02214
W_{2221}	-0.00470	-0.03735	0.02543	-0.02886	0.01141	0.03757
W_{3331}	0.01530	-0.01568	-0.01119	-0.01303	0.04189	0.04724
W_{2223}	-0.00684	0.02774	0.00758	-0.02444	0.03554	-0.02079
W_{3332}	-0.00801	-0.00802	0.01668	-0.00738	0.10307	0.05838
W_{1122}	0.19703	0.32119	0.15041	0.19543	0.33747	0.27489
W_{1133}	0.18887	0.32222	0.16831	0.21814	0.35201	0.23772
W_{2233}	0.19620	0.36126	0.15564	0.22378	0.34395	0.30244
W_{1123}	-0.00581	-0.02205	-0.00321	-0.02123	0.00832	-0.04963
W_{2213}	0.00504	0.02109	0.00011	-0.01980	0.04589	-0.01298
W_{3312}	0.00350	-0.02690	-0.00496	0.01040	0.02448	-0.00446
Parameter	th voxel 1	th voxel 2	th voxel 3	vc voxel 1	vc voxel 2	vc voxel 3
$\frac{\text{Parameter}}{D_{11}}$	th voxel 1 1.55114	th voxel 2 0.85394	th voxel 3 0.66375	vc voxel 1 1.11690	vc voxel 2 1.33449	vc voxel 3 1.58681
$\begin{array}{c} \text{Parameter} \\ \hline D_{11} \\ D_{22} \end{array}$	th voxel 1 1.55114 1.85125	th voxel 2 0.85394 0.83582	th voxel 3 0.66375 0.83513	vc voxel 1 1.11690 1.12416	vc voxel 2 1.33449 1.20188	vc voxel 3 1.58681 1.61950
$\begin{array}{c} \text{Parameter} \\ \hline D_{11} \\ D_{22} \\ D_{33} \end{array}$	th voxel 1 1.55114 1.85125 1.73899	th voxel 2 0.85394 0.83582 0.99126	th voxel 3 0.66375 0.83513 0.72202	vc voxel 1 1.11690 1.12416 1.19876	vc voxel 2 1.33449 1.20188 1.35827	vc voxel 3 1.58681 1.61950 1.53273
$\begin{tabular}{c} \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \end{tabular}$	th voxel 1 1.55114 1.85125 1.73899 0.09370	th voxel 2 0.85394 0.83582 0.99126 -0.02131	th voxel 3 0.66375 0.83513 0.72202 0.04164	vc voxel 1 1.11690 1.12416 1.19876 0.04721	vc voxel 2 1.33449 1.20188 1.35827 -0.09738	vc voxel 3 1.58681 1.61950 1.53273 -0.04635
$\begin{tabular}{c} \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \end{tabular}$	th voxel 1 1.55114 1.85125 1.73899 0.09370 0.07596	th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502	vc voxel 1 1.11690 1.12416 1.19876 0.04721 -0.03314	vc voxel 2 1.33449 1.20188 1.35827 -0.09738 -0.05108	vc voxel 3 1.58681 1.61950 1.53273 -0.04635 0.03868
$\begin{tabular}{c} $Parameter$ \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline \end{tabular}$		th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940 -0.06603	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \end{array}$	vc voxel 2 1.33449 1.20188 1.35827 -0.09738 -0.05108 0.00351	vc voxel 3 1.58681 1.61950 1.53273 -0.04635 0.03868 0.02261
$\begin{tabular}{c} \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \end{tabular}$		th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940 -0.06603 1.00000	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000	vc voxel 1 1.11690 1.12416 1.19876 0.04721 -0.03314 -0.05430 1.00000	vc voxel 2 1.33449 1.20188 1.35827 -0.09738 -0.05108 0.00351 1.00000	vc voxel 3 1.58681 1.61950 1.53273 -0.04635 0.03868 0.02261 1.00000
$\begin{tabular}{c} $Parameter$ \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \end{array}$	$\begin{array}{c} \text{th voxel 2} \\ 0.85394 \\ 0.83582 \\ 0.99126 \\ -0.02131 \\ -0.07940 \\ -0.06603 \\ 1.00000 \\ 1.02877 \end{array}$	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671	vc voxel 1 1.11690 1.12416 1.19876 0.04721 -0.03314 -0.05430 1.00000 0.90363	vc voxel 2 1.33449 1.20188 1.35827 -0.09738 -0.05108 0.00351 1.00000 0.74407	vc voxel 3 1.58681 1.61950 1.53273 -0.04635 0.03868 0.02261 1.00000 0.63246
$\begin{tabular}{c} $Parameter$ \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \end{array}$		th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \end{array}$	vc voxel 2 1.33449 1.20188 1.35827 -0.09738 -0.05108 0.00351 1.00000 0.74407 0.57022	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \end{array}$
$\begin{tabular}{c} $Parameter$ \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ \hline \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \end{array}$	th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940 -0.06603 1.00000 1.02877 1.40701 1.28545	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \end{array}$	vc voxel 2 1.33449 1.20188 1.35827 -0.09738 -0.05108 0.00351 1.00000 0.74407 0.57022 0.83729	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \end{array}$
$\begin{tabular}{c} $Parameter$ \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ \hline \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \end{array}$	$\begin{array}{c} \text{th voxel 2} \\ 0.85394 \\ 0.83582 \\ 0.99126 \\ -0.02131 \\ -0.07940 \\ -0.06603 \\ 1.00000 \\ 1.02877 \\ 1.40701 \\ 1.28545 \\ 0.14173 \end{array}$	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \end{array}$	vc voxel 2 1.33449 1.20188 1.35827 -0.09738 -0.05108 0.00351 1.00000 0.74407 0.57022 0.83729 -0.09488	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \end{array}$
$\begin{tabular}{ c c c c c } \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ \hline \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \end{array}$	$\begin{array}{c} \text{th voxel 2} \\ 0.85394 \\ 0.83582 \\ 0.99126 \\ -0.02131 \\ -0.07940 \\ -0.06603 \\ 1.00000 \\ 1.02877 \\ 1.40701 \\ 1.28545 \\ 0.14173 \\ -0.04782 \end{array}$	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \end{array}$
$\begin{tabular}{ c c c c } \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ \hline \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \\ 0.05168 \end{array}$	th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940 -0.06603 1.00000 1.02877 1.40701 1.28545 0.14173 -0.04782 -0.09366	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630 0.09460	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \\ -0.08445 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \\ -0.07263 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \\ 0.02135 \end{array}$
$\begin{tabular}{ c c c c c } \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ \hline \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \\ 0.03574 \\ 0.05168 \\ 0.03040 \end{array}$	$\begin{array}{c} \text{th voxel 2} \\ 0.85394 \\ 0.83582 \\ 0.99126 \\ -0.02131 \\ -0.07940 \\ -0.06603 \\ 1.00000 \\ 1.02877 \\ 1.40701 \\ 1.28545 \\ 0.14173 \\ -0.04782 \\ -0.09366 \\ -0.12668 \end{array}$	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630 0.09460 -0.18875	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \\ -0.08445 \\ 0.00338 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \\ -0.07263 \\ -0.01054 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \\ 0.02135 \\ 0.03591 \end{array}$
$\begin{tabular}{ c c c c c } \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ \hline \end{array}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.05168 \\ 0.03040 \\ 0.01033 \end{array}$	$\begin{array}{c} \text{th voxel 2} \\ 0.85394 \\ 0.83582 \\ 0.99126 \\ -0.02131 \\ -0.07940 \\ -0.06603 \\ 1.00000 \\ 1.02877 \\ 1.40701 \\ 1.28545 \\ 0.14173 \\ -0.04782 \\ -0.09366 \\ -0.12668 \\ -0.04656 \end{array}$	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630 0.09460 -0.18875 0.19234	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \\ -0.08445 \\ 0.00338 \\ -0.02794 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \\ -0.07263 \\ -0.01054 \\ -0.00807 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \\ 0.02135 \\ 0.03591 \\ -0.00253 \end{array}$
$\begin{tabular}{ c c c c } \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \widetilde{S}_0 \\ \hline W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ \hline \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.05168 \\ 0.03040 \\ 0.01033 \\ -0.06420 \end{array}$	th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940 -0.06603 1.00000 1.02877 1.40701 1.28545 0.14173 -0.04782 -0.09366 -0.12668 -0.12668 -0.16355	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630 0.09460 -0.18875 0.19234 0.09208	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \\ -0.08445 \\ 0.00338 \\ -0.02794 \\ -0.00390 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \\ -0.07263 \\ -0.01054 \\ -0.00807 \\ -0.02928 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \\ 0.02135 \\ 0.03591 \\ -0.00253 \\ 0.06912 \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.05168 \\ 0.03040 \\ 0.01033 \\ -0.06420 \\ 0.27604 \end{array}$	$\begin{array}{c} \text{th voxel 2} \\ 0.85394 \\ 0.83582 \\ 0.99126 \\ -0.02131 \\ -0.07940 \\ -0.06603 \\ 1.00000 \\ 1.02877 \\ 1.40701 \\ 1.28545 \\ 0.14173 \\ -0.04782 \\ -0.09366 \\ -0.12668 \\ -0.04656 \\ -0.16355 \\ 0.37859 \end{array}$	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630 0.09460 -0.18875 0.19234 0.09208 0.75919	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \\ -0.08445 \\ 0.00338 \\ -0.02794 \\ -0.00390 \\ 0.27710 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \\ -0.07263 \\ -0.07263 \\ -0.01054 \\ -0.00807 \\ -0.02928 \\ 0.32099 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \\ 0.02135 \\ 0.03591 \\ -0.00253 \\ 0.06912 \\ 0.20954 \end{array}$
$\begin{tabular}{ c c c c c } \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ W_{3332} \\ W_{1122} \\ W_{1133} \\ \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.05168 \\ 0.03040 \\ 0.01033 \\ -0.06420 \\ 0.27604 \\ 0.26147 \end{array}$	th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940 -0.06603 1.00000 1.02877 1.40701 1.28545 0.14173 -0.04782 -0.09366 -0.12668 -0.12668 -0.16355 0.37859 0.48093	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630 0.09460 -0.18875 0.19234 0.09208 0.75919 0.47265	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \\ -0.08445 \\ 0.00338 \\ -0.02794 \\ -0.00390 \\ 0.27710 \\ 0.27969 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \\ -0.07263 \\ -0.01054 \\ -0.00807 \\ -0.02928 \\ 0.32099 \\ 0.29104 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \\ 0.02135 \\ 0.03591 \\ -0.00253 \\ 0.06912 \\ 0.20954 \\ 0.27671 \end{array}$
$\begin{tabular}{ c c c c c } \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ W_{1122} \\ W_{1133} \\ W_{2233} \\ \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.05168 \\ 0.03040 \\ 0.01033 \\ -0.06420 \\ 0.27604 \\ 0.26147 \\ 0.29981 \end{array}$	th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940 -0.06603 1.00000 1.02877 1.40701 1.28545 0.14173 -0.04782 -0.09366 -0.12668 -0.12668 -0.16355 0.37859 0.48093 0.31864	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630 0.09460 -0.18875 0.19234 0.09208 0.75919 0.47265 0.61072	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \\ -0.08445 \\ 0.00338 \\ -0.02794 \\ -0.00390 \\ 0.27710 \\ 0.27969 \\ 0.25239 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \\ -0.07263 \\ -0.01054 \\ -0.00807 \\ -0.02928 \\ 0.32099 \\ 0.29104 \\ 0.26290 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \\ 0.02135 \\ 0.03591 \\ -0.00253 \\ 0.03591 \\ -0.00253 \\ 0.06912 \\ 0.20954 \\ 0.27671 \\ 0.24716 \end{array}$
$\begin{tabular}{ c c c c c } \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1113} \\ W_{2221} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ W_{1122} \\ W_{1133} \\ W_{2233} \\ W_{1123} \\ \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.05168 \\ 0.03040 \\ 0.01033 \\ -0.06420 \\ 0.27604 \\ 0.26147 \\ 0.29981 \\ -0.01479 \end{array}$	th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940 -0.06603 1.00000 1.02877 1.40701 1.28545 0.14173 -0.04782 -0.09366 -0.12668 -0.12668 -0.16355 0.37859 0.48093 0.31864 0.02698	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630 0.09460 -0.18875 0.19234 0.09208 0.75919 0.47265 0.61072 -0.04394	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \\ -0.08445 \\ 0.00338 \\ -0.02794 \\ -0.00390 \\ 0.27710 \\ 0.27969 \\ 0.25239 \\ 0.03306 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \\ -0.07960 \\ -0.07263 \\ -0.01054 \\ -0.00807 \\ -0.02928 \\ 0.32099 \\ 0.29104 \\ 0.26290 \\ -0.05787 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \\ 0.02135 \\ 0.03591 \\ -0.00253 \\ 0.03591 \\ -0.00253 \\ 0.06912 \\ 0.20954 \\ 0.27671 \\ 0.24716 \\ -0.04289 \end{array}$
$\begin{tabular}{ c c c c c } \hline Parameter \\ \hline D_{11} \\ D_{22} \\ D_{33} \\ D_{12} \\ D_{13} \\ D_{23} \\ \hline S_0 \\ W_{1111} \\ W_{2222} \\ W_{3333} \\ W_{1112} \\ W_{1112} \\ W_{1113} \\ W_{2223} \\ W_{3331} \\ W_{2223} \\ W_{3332} \\ W_{1122} \\ W_{1133} \\ W_{2233} \\ W_{1123} \\ W_{2213} \\ \end{tabular}$	$\begin{array}{c} \text{th voxel 1} \\ 1.55114 \\ 1.85125 \\ 1.73899 \\ 0.09370 \\ 0.07596 \\ -0.09738 \\ 1.00000 \\ 0.74150 \\ 0.88619 \\ 0.84407 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.03574 \\ 0.02028 \\ 0.026147 \\ 0.29981 \\ -0.01479 \\ -0.00818 \end{array}$	th voxel 2 0.85394 0.83582 0.99126 -0.02131 -0.07940 -0.06603 1.00000 1.02877 1.40701 1.28545 0.14173 -0.04782 -0.09366 -0.12668 -0.12668 -0.16355 0.37859 0.48093 0.31864 0.02698 -0.05220	th voxel 3 0.66375 0.83513 0.72202 0.04164 -0.03502 0.03045 1.00000 1.07671 1.34001 1.50206 0.27765 -0.01630 0.09460 -0.18875 0.19234 0.09208 0.75919 0.47265 0.61072 -0.04394 -0.18916	$\begin{array}{c} \text{vc voxel 1} \\ 1.11690 \\ 1.12416 \\ 1.19876 \\ 0.04721 \\ -0.03314 \\ -0.05430 \\ 1.00000 \\ 0.90363 \\ 0.69061 \\ 0.80784 \\ 0.05292 \\ -0.03856 \\ -0.08445 \\ 0.00338 \\ -0.02794 \\ -0.00390 \\ 0.27710 \\ 0.27969 \\ 0.25239 \\ 0.03306 \\ -0.00695 \end{array}$	$\begin{array}{c} \text{vc voxel 2} \\ 1.33449 \\ 1.20188 \\ 1.35827 \\ -0.09738 \\ -0.05108 \\ 0.00351 \\ 1.00000 \\ 0.74407 \\ 0.57022 \\ 0.83729 \\ -0.09488 \\ -0.07960 \\ -0.07263 \\ -0.01054 \\ -0.00807 \\ -0.02928 \\ 0.32099 \\ 0.29104 \\ 0.26290 \\ -0.05787 \\ 0.01136 \end{array}$	$\begin{array}{c} \text{vc voxel 3} \\ 1.58681 \\ 1.61950 \\ 1.53273 \\ -0.04635 \\ 0.03868 \\ 0.02261 \\ 1.00000 \\ 0.63246 \\ 0.82642 \\ 0.60003 \\ -0.09342 \\ -0.02566 \\ 0.02135 \\ 0.03591 \\ -0.02566 \\ 0.02135 \\ 0.03591 \\ -0.00253 \\ 0.06912 \\ 0.20954 \\ 0.27671 \\ 0.24716 \\ -0.04289 \\ -0.01380 \end{array}$

Table S4: Ground truth in-vivo standard DKI voxels for the in-vivo gray matter dataset, shown are the diffusion and kurtosis tensor components and \tilde{S}_0 , the diffusivities are in $\left[\frac{\mu m^2}{ms}\right]$.

Table S5: Ground truth AxTM of the gray matter in-vivo dataset, corresponding to the tensor components listed in Table S2, the diffusivities are in $\left[\frac{\mu m^2}{ms}\right]$. Additionally, the deviation from axial symmetry is listed as $\frac{|\lambda_2 - \lambda_3|}{MD}$, where λ are the diffusion tensor eigenvalues and MD is the mean diffusivity.

Voxel	D_{\parallel}	D_{\perp}	W_{\parallel}	W_{\perp}	\overline{W}	$\frac{ \lambda_2 - \lambda_3 }{MD}$
fc Dataset 1	2.738	2.523	0.623	0.560	0.586	0.042
fc Dataset 2	1.440	1.354	1.004	0.880	0.905	0.082
fc Dataset 3	3.081	2.841	0.543	0.466	0.489	0.036
mc Dataset 1	1.662	1.509	0.743	0.669	0.690	0.070
mc Dataset 2	1.137	1.018	1.066	0.878	0.944	0.102
mc Dataset 3	1.547	1.436	0.900	0.714	0.773	0.054
th Dataset 1	1.914	1.614	0.922	0.764	0.829	0.153
th Dataset 2	1.041	0.820	1.519	1.130	1.216	0.102
th Dataset 3	0.849	0.686	1.556	1.257	1.521	0.139
vc Dataset 1	1.248	1.096	0.796	0.799	0.804	0.043
vc Dataset 2	1.422	1.237	0.920	0.701	0.780	0.136
vc Dataset 3	1.652	1.543	0.751	0.638	0.705	0.058

206 References

- [1] A. Tabesh, J. H. Jensen, B. A. Ardekani, and J. A. Helpern, "Estimation of tensors and tensorderived measures in diffusional kurtosis imaging," *Magnetic Resonance in Medicine*, vol. 65,
 no. 3, pp. 823–836, 2011.
- [2] J. Veraart, J. Sijbers, S. Sunaert, A. Leemans, and B. Jeurissen, "Weighted linear least squares
 estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls," *NeuroImage*,
 vol. 81, pp. 335–346, Nov. 2013.
- [3] S. Mohammadi, K. Tabelow, L. Ruthotto, T. Feiweier, J. Polzehl, and N. Weiskopf, "High resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing," *Frontiers in Neuroscience*, vol. 8, 2015.
- [4] C. D. Constantinides, E. Atalar, and E. R. McVeigh, "Signal-to-noise measurements in magnitude images from NMR phased arrays," *Magnetic Resonance in Medicine*, vol. 38, pp. 852–857, 12 1997.
- [5] S. Aja-Fernández and A. Tristán-Vega, "Influence of noise correlation in multiple-coil statistical
 models with sum of squares reconstruction," *Magnetic Resonance in Medicine*, vol. 67, no. 2,
 pp. 580–585, 2012.
- [6] S. O. Rice, "Mathematical analysis of random noise," *Bell System Technical Journal*, vol. 23, no. 3, pp. 282–332, 1944.
- [7] H. Gudbjartsson and S. Patz, "The Rician distribution of noisy MRI data," Magnetic Resonance
 in Medicine, vol. 34, no. 6, pp. 910–914, 1995.

226	[8] J. Polzehl	and K. Ta	below, "Low	SNR in	Diffusion	MRI Models,"	Journal of the	he American
227	Statistical	Association	2 vol 111 n	o 516 pr	1480-14	90 2016		

- [9] H. Bunke and W. Schmidt, "Asymptotic results on nonlinear approximation of regression functions and weighted least squares," *Series Statistics*, vol. 11, no. 1, pp. 3–22, 1980.
- ²³⁰ [10] J. Modersitzki, FAIR: Flexible Algorithms for Image Registration. Philadelphia: SIAM, 2009.
- [11] B. Hansen, N. Shemesh, and S. N. Jespersen, "Fast imaging of mean, axial and radial diffusion
 kurtosis," *NeuroImage*, vol. 142, pp. 381–393, Nov. 2016.
- 233 [12] S. Coelho, J. M. Pozo, S. N. Jespersen, D. K. Jones, and A. F. Frangi, "Resolving degeneracy
- in diffusion MRI biophysical model parameter estimation using double diffusion encoding,"
 Magnetic Resonance in Medicine, vol. 82, no. 1, pp. 395–410, 2019.
- [13] A. Benitez, E. Fieremans, J. H. Jensen, M. F. Falangola, A. Tabesh, S. H. Ferris, and J. A.
 Helpern, "White matter tract integrity metrics reflect the vulnerability of late-myelinating
 tracts in Alzheimer's disease," *NeuroImage : Clinical*, vol. 4, pp. 64–71, Nov. 2013.
- 239 [14] P. J. Rousseeuw and C. Croux, "Alternatives to the Median Absolute Deviation," Journal of the
- American Statistical Association, vol. 88, no. 424, pp. 1273–1283, 1993. Publisher: [American
- 241 Statistical Association, Taylor & Francis, Ltd.].