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Abstract

In this work, we apply conditional invertible neural networks (cINN) to inversely design multilayer
thin-films given an optical target in order to overcome limitations of state-of-the-art optimization
approaches. Usually, state-of-the-art algorithms depend on a set of carefully chosen initial thin-film
parameters or employ neural networks which must be retrained for every new application. We aim
to overcome those limitations by training the cINN to learn the loss landscape of all thin-film
configurations within a training dataset. We show that cINN’s can generate a stochastic ensemble of
proposals for thin-film configurations that are reasonably close to the desired target depending
only on random variables. By refining the proposed configurations further by a local optimization,
we show that the generated thin-films reach the target with significantly greater precision than
comparable state-of-the-art approaches. Furthermore, we tested the generative capabilities on
samples which are outside of the training data distribution and found that the cINN was able to
predict thin-films for out-of-distribution targets, too. The results suggest that in order to improve
the generative design of thin-films, it is instructive to use established and new machine learning
methods in conjunction in order to obtain the most favorable results.

1. Introduction

In optics, being able to develop devices that manipulate light in a desired way is a key aspect for all
applications within the field such as illumination [1] or integrated photonics [2]. Recent developments in
machine learning, deep learning and inverse design offer new possibilities to engineer such optical and
photonic devices [3—8]. Nanophotonics in particular benefits from the recent advancements in optimization
and design algorithms [9, 10]. For example the development of meta optics or the design of scattering nano
particles was greatly improved by employing gradient-based inverse design and deep learning [11-13].
Multilayer thin-films are another instance of nanophotonic devices which are employed to fulfill a variety of
different functionalities. They are particularly interesting for industrial applications because the standard
fabrication processes are so mature that the predicted optical properties of thin-films generally match the
properties of the fabricated thin-films very well. Application examples are vertical-cavity surface-emitting
lasers [14, 15], anti-reflection coatings [16] and wavelength demultiplexers [17]. Recently, they were
successfully employed to enhance the directionality of a white LED while maintaining the desired color
temperature [18]. Designing multilayer thin-films [19-21] has long been a task in the nanophotonics
community, and sophisticated techniques have been developed to synthesize thin-films that exhibit the
desired optical properties, as the problem becomes computationally intractable when using simple
combinatorics, since the number of possible thin-film designs scales exponentially with the number of layers.
To design multilayer thin-films, many open-source or commercial software solutions are available that
employ different approaches to optimize thin-films [22-26]. Methods such as the Fourier method [27, 28] or

© 2023 The Author(s). Published by IOP Publishing Ltd
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the needle method [21, 28-30] compute the position inside the thin-film where the introduction of a new
layer is most beneficial. Then the software will continue with a refinement process, often based on a
gradient-based optimization such as the Levenberg—Marquardt algorithm [28, 31], until it reaches a local
minimum where it will then introduce another layer. Although the software will usually converge to a
satisfying solution with respect to the given target, the presented solutions often use excessive amounts of
layers and the optimization is still limited by the selected parameters in the beginning of the optimization.
The problem of converging to local optima was tackled in the past by the development of numerous global
optimization techniques which have been introduced and tested in the field of thin-film optimization
[32-36]. Recently, the innovations of machine learning attracted much interest in the thin-film community
and resulted in interesting new ways to create thin films [5, 37]. Particularly, deep reinforcement learning or
Q-learning showed promising results in designing new and efficient multilayer thin-films while punishing
complicated designs, which employ many layers [38, 39] and require targets that are difficult to achieve with
conventional optimization.

In this work we employ so called conditional invertible neural networks (cINNs) [40] to directly infer the
loss landscape of all thin-film configurations with a fixed number of layers and material choice. The cINN
learns to map the thin-film configuration to a latent space, conditional on the optical properties, i.e. the
reflectivity of a thin-film. During inference, due to the invertibility of the architecture, the cINN maps
selected points from the latent space to their most likely thin-film configurations, conditional on a chosen
target. This results in requiring only a single application of the cINN to obtain the most likely thin-film
configuration given an optical target. Additionally, the log-likelihood training makes the occurrence of
mode-collapse [41] almost impossible. For thin-films, many different configurations lead to similar optical
properties. For conventional optimization, this leads to the convergence of the optimization to possibly
unfavorable local minima. A cINN circumvents this due to the properties of the latent space—by varying the
points in the latent space, a perfectly trained cINN is able to predict any possible thin-film configuration that
satisfies the desired optical properties. In this work, we investigated how good the generative capabilities of a
cINN are for finding suitable thin-film configurations in a real-world application. We present an
optimization algorithm, which is suitable to improve the thin-film predictions of the cINN. Then, we
compared the optimization results of the presented algorithm to state-of-the-art software. Finally, we discuss
the limitations of the approach and give a guideline when the application of a cINN is advantageous.

2. Normalizing flows and cINNs

Invertible neural networks are closely related to normalizing flows, which were first popularized by Dinh et al
[42]. A normalizing flow is an architecture that connects two probability distributions by a series of
invertible transformations. The idea is to map a complex probability distribution to a known and simple
distribution such as a Gaussian distribution. This can be used both for density estimation and therefore also
for sampling. A sample can be easily be drawn with a Gaussian distribution by selecting z ~ N (i1, 7). The
generated points z are then mapped mapped to the complex distribution via the normalizing flow. The
architecture of a normalizing flow is constructed from the following. Assume two probability distributions, 7
which is known and for which z ~ 7(z) holds and the complex, unknown distribution p. The mapping
between both is given by the change-of-variables formula

0z
. 1
Pl = m(a) et | o
Consider a transformation f which maps f(x) = z. Then the change-of-variables formula can be written as
fix)
det . 2
po) = (2)dee | 22| @

The transformation f can be given by a series of invertible transformations f= fx o fx_1 ... o fo with
x=zx = flzg) = (fy© ... ofo)(20). Then, the probability density at any intermediate point is given by
pi(xi) = zi = fi(zi—1). By rewriting the change-of-variables formula and taking the logarithm one obtains
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To be practical, a key component of any transformation of a normalizing flow is that the Jacobian
determinant of the individual transformations must be easy to compute. A suitable invertible
transformation, which is sufficiently expressive is the so called real-valued non-volume preserving
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transformation (RNVP block) [43]. The input z is split into two separate vectors u; and u, and is processed
with the help of two transformation functions, s, and t,, while the other input u; is kept fixed

filur @uy) = {u @ exp(s(w2)) B ta(1h) Qur } = {vi Qup }. (4)

©,®,0 and @ denote element wise computation while ® denotes a concatenation. The inverse of this
transformation is given by

T @u) = {(v1 ©t(12)) @ exp(sy(2)) @ s} (5)

To invert the entire transformation, no inversion of the transformations s, and ¢, is required. Therefore, a
neural network can be used as a transformation to make the normalizing flow expressive. The Jacobian of the
transformation is given by an upper triangular matrix. Therefore, the Jacobian determinant is easy to
compute since only the diagonal elements contribute.

ol 14 0
det {52] = det [32 diag(exp(s2(12) + 2(u2))) | ©

Since only one part of the input is transformed by a neural network, the RNVP block is repeated and applied
to the yet untransformed part of the input u, with two additional transformation functions s; and #;. Other
transformations, which can be advantageous depending on the specific application are the GLOW
transformation [44], which utilizes invertible 1x1 convolutions or the masked autoregressive flow with a
generalized implementation of the RNVP block [45].

Utilizing normalizing flows for the task of a generative neural network for the proposition of thin-films
requires some modification of the normalizing flow. Ardizzone et al [40] propose a so called cINN which
extends the change-of-variables formula to conditional probability densities with condition ¢

det [af(“)] ‘ . 7)

plxic) = m(2) |det | T

By assuming a Gaussian probability distribution for 7 and taking the logarithm, the conditional maximum
likelihood loss function is derived by Ardizzone et al for training of a cINN as

Lon=E {w — log |det [8@’;”} H . (8)

The condition ¢ can be the result of another neural network ((c) = s, which extracts features from the given
condition c. The features are then passed to the RNVP transformations by appending the features to the
input vectors u; and u,. By jointly training the cINN via the conditional maximum likelihood loss,
Ardizzone et al showed that the feature extraction network learns to extract useful information for the
invertible transformation. The condition ¢ can be thought of as the target of the cINN. During inference, the
cINN transforms Gaussian samples z to the learned distribution, conditional on the target c. The inferred
result returned by the cINN is then given by x = f~!(z,o(c)) while f denotes the invertible neural network.
Ardizzone et al also provide a Python implementation FrEIA® for conditional and regular invertible neural
network based on the Pytorch® Deep Learning library.

3. Application of cINNs to generating multilayer thin-films

Multilayer thin-films are an optical component that consists of a sequence of planar layers with different
materials stacked on top of each other with a varying layer thickness. Light, which irradiates the thin-film,
can be transmitted and reflected at the layer interfaces and absorbed within the layer, as depicted in figure 1.
This interaction of reflection, transmission and absorption is different for different wavelengths of light A
and angles of incidence ©. A fast and convenient way to compute the optical response of a thin-film is to
employ the transfer matrix method (TMM) [46]. In a previous work, we developed the Python package
TMM-Fast’ [47] which allows to compute the optical response of a thin-film. The package also implements
convenience functionality for thin-film-dataset generation, which is especially important for machine

5 https://github.com/VLL-HD/FrEIA#papers.
6 https://pytorch.org/.
7 https://github.com/MLResearchAtOSRAM/tmm_fast.

3


https://github.com/VLL-HD/FrEIA#papers
https://pytorch.org/
https://github.com/MLResearchAtOSRAM/tmm_fast

10P Publishing Mach. Learn.: Sci. Technol. 4 (2023) 015014 A Luce et al

®

n,

n,

‘\H‘ ‘dl
¥ dz

Figure 1. Schematic depiction of a multilayer thin-film. The two different materials have complex refractive indices n; and n,.
In this depiction, all layers with material n; have thickness d; and n, have thickness d>, but the layer thicknesses can be chosen
differently for any layer. The light is reflected and transmitted at every boundary and is also absorbed in the thin-film.

reflectivity
spectra C

thin-film
configurations X

Figure 2. Visualization of the latent space. In the depiction, two thin-films from space X have the same (or very similar)
reflectivity, which is given via the condition in C. During training, they are mapped to different regions in the latent space Z. The
latent space sample drawn during generation decides which solution is presented by the cINN. Other thin-films, which have a
different reflectivity can be mapped to the same latent space point. They are distinguished by the condition i.e. their reflectivity.

learning. By changing the layer thicknesses, the behavior of the thin-film can be modified, which are the
parameters p that are up to optimization.

Finding a thin-film design, which fulfills the optical criteria while employing only a very limited number
of layers is a challenging task since the loss landscape is highly non-convex and high-dimensional. The loss
landscape is given by a mapping of the optical characteristics M of the thin-films by a loss function
L(M(O, ), Miarger(©,N)) = E with E € R. The results of any local optimization, which is performed on the
thin-film is highly dependent on the initial choice of the thin-film parameters as in any non-convex
optimization. The idea of this paper is to interpret the loss landscape of the thin-films parameters as a
probability distribution and train a cINN to find a mapping between the Gaussian latent space and the true
loss landscape. The condition is then given by the optical characteristic of the thin-film M.

An important aspect of thin-films is also the possibility of ambiguity, which is a byproduct of the
non-convex loss landscape. Two distinct thin-films p; # p, can have a very similar optical characteristic
M (p1) = M;(p,). Many generative models suffer under mode collapse [41], which slows the training of
the neural network and often leads the neural network to ignore possible solutions or give wrong solutions
altogether if ambiguity is present within the problem. The log-likelihood training of the cINN makes mode
collapse virtually impossible to occur [48] and turns ambiguous solutions distinguishable via the latent
space, see figure 2. Therefore, it is possible to scan the latent space systematically for favorable design
configurations.

3.1. Multilayer thin-film dataset

As noted before, the TMM-Fast package is used to create a dataset for training. In the presented case, we
consider nine-layer thin-films and fix the material choice to an alternating sequence of niobium pentoxide
(Nb205) and silicon dioxide (SiO2), while the light injection layer consists of gallium nitride and the
ambient outcoupling layer consists of air. For the dataset, one million thin-films are created for which the
layer thickness of the nine layers of Nb205 and SiO2 are uniformly sampled from a thickness range of
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Figure 3. Generation of thin-films via the cINN. A thin-film (Original) with its respective reflectivity is drawn from the test
dataset. The reflectivity is used as the target for the cINN. Four different latent space points are sampled and evaluated by the
cINN together with the extracted features of the target reflectivity by the feature extraction network. The four predicted thin-films
(stack 1-4) are depicted next to the original thin-film. They are then evaluated employing the tmm-fast package to validate if the
prediction match the requested target. The best prediction is stack 1 with a log-score of £}, = 0.516. Typically, a log-score of > 1
is desired.

[10 nm, 200 nm)]. 10% of the created thin-films are separated as test dataset. As optical response, we compute
the reflectivity of the thin-film for normal incidence at 100 equidistant points in a range of [400 nm,700 nm].
The computations were performed with our self-developed open-source transfer matrix solver [47] and took
about 40min on a Intel(R) Xeon(R) E5-2697v2 CPU. To test the generative capabilities, 600 so called target
reflectivities are generated, which implement a selection of potentially interesting targets for which a priori
no ground-truth thin-film with such an optical response is known. The dataset is normalized to mean =0
and standard deviation o = 1 before it is processed by the neural networks.

3.2. Layout of the cINN
As explained in section 2, a cINN consists of two neural networks, the invertible part and the feature
extraction network, which processes the condition. The used feature extraction network is based on a ResNet
architecture adapted to 1D convolutions. It features two residual shortcuts with 20-channel 1D convolutions,
batch normalization, ReLU activation and a final dense layer with ReLU activation function. The feature
extraction network receives the appropriate reflectivity spectrum (training or target), depending on whether
the network is in training or inference mode. The output of the feature network is passed to the invertible
neural network. The invertible part consists of eight ‘all_in_one_blocks’ from the FrEIA package. These
blocks implement the RNVP transformation of the normalizing flow with additional functionality, such as
active normalization [44]. Here, a dense neural network with three layers, 512 neurons each and ReLU
activations are used as secondary transformations for every RNVP block. Additionally, batch normalization
is performed in the secondary transformations.

The training consists of 40 epochs of training, with an initial learning rate of 0.001 and a step decay of
0.08 of the learning rate after 20 and 35 epochs. We used Adam as optimizer with standard hyper-parameters.
Training was performed on a GPU server with a Nvidia Tesla P100 graphics card and took less than one hour.

3.3. Evaluation of the generative capabilities of the cINN

To test the generative capabilities of the trained cINN qualitatively, the reflectivity of a test dataset sample is
taken and four random samples from the latent space are drawn. First, the reflectivity is processed by the
feature extraction network. Then, the four drawn latent space samples and the extracted features are passed
to the invertible network and processed by it. The generated thin-films (stack 1-4) are shown in figure 3
together with the thin-film that generated the target during the dataset generation (labeled Original). To
validate the performance of the generated thin-films, the TMM is used to compute the reflectivity. The
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Algorithm 1. Pseudocode for the optimization of a thin-film with initialization by the cINN. The user
needs to specify the loss function L : X — I, where X denotes the optical properties of interest of the
thin-film. £ measures the performance of the thin-film such that the requirements are fulfilled if = 0.

Sample latent space values via z = N (0, o)

Choose target t

features = conditional_network(t)

proposals = invertible_network(z, features)

parameters = argmax( L (proposals))

while (iter < maxiter) and (error > tolerance) do
parameters, error = downhill_simplex_step(parameters)

end while

return parameters, error

R A T AT

performance metric displayed is the log-score (Lys), which is the transformed mean squared error between the
target and the validated reflectivity. The log-score is given by L1, = —0.43log (% />, (xi — Xiarger,i)?) — 0.52.
By performing a logarithmic transformation of the mean squared error the performance metric becomes
more human-readable to quickly judge whether a thin-film is sufficiently approximating the target. The
prefactors of the log-score are chosen arbitrarily in such a way that £j; = 1 is a threshold below which a
generated thin-film is not acceptable although log-scores >1 are still desired. The validated reflectivities of
the propositions of the cINN capture the general trend of the target, they fail to match the target sufficiently
and have a log-score of <1. Repeating the experiment with different targets yields similar results.

3.4. Influence of the standard deviation on cINN predictions

The latent space samples for the inverse application of the cINN are drawn from a Gaussian distribution.
During training, the distribution of thin-films is mapped to a normal distribution (zero mean and standard
deviation of one). Since the log-likelihood training preserves the probability density of the mapping between
the thin-film distribution and the latent space, the log-probability of a latent space sample dictates the
likelihood of the predicted thin-film to be the appropriate thin-film for the given condition. It is possible to
think of the standard deviation as a ‘creativity parameter’ for the cINN. Sampling with o = 0 results in only
the most likely thin-films while o > 1 results in explorative behavior of the cINN. Notably, the cINN will also
predict nonphysical thin-films for latent space samples with low likelihood, e.g. layers with negative
thickness.

3.5. Local optimization by Nelder-Mead downhill-simplex algorithm

To improve upon the proposals from the cINN, a subsequent local optimization can be performed by using
the suggested thin-film as initial starting values. The optimization is performed by using the
downhill-simplex algorithm [49] via the implementation of SciPy®. First, latent space values are drawn from
a Gaussian distribution with zero mean and a standard deviation of one. The samples are passed to the
invertible network together with the features extracted from the target. Then the thin-film with the best
approximation is optimized via the downhill-simplex algorithm. The entire algorithm is also depicted as
pseudo-code in algorithm 1.

Applying the sketched out algorithm on the target shown in figure 3 results in selecting Stack 1 from the
four proposed thin-films for further refinement. The optimization yields thin-films with a much better
approximation of the target with £;; = 1.293. The results of one such optimization is shown in figure 4.
Repeating the algorithm with different targets yields similar results.

We can explore if the cINN can also propose thin-films for previously unseen targets by selecting a
reflectivity from the target dataset. Algorithm 1 is employed and the results are shown in figure 5. An
interesting observation is that even though the log-score of the reflectivity of the predicted thin-film is very
poor (L = 0.067), the thin-film parameterizations of the prediction and after the optimization are very
similar. This suggests that the cINN approximated the global loss landscape sufficiently to identify promising
regions but not sufficiently to single out local minima.

3.6. Statistical investigation of the optimization initialization via cINN
Since the cINN cannot achieve the desired accuracy on its own and requires a subsequent optimization, it is
important to investigate if and how much of an advantage is gained by using a cINN as initialization of the

8 https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html.
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Figure 4. A prediction from the cINN (center thin-film) is optimized by the Nelder-Mead downhill-simplex algorithm until
convergence. By performing a subsequent optimization on the thin-films predicted by the cINN, the log-score to the target is
improved significantly. The leftmost thin-film depicts the thin-film in the test dataset which was used to compute the target
reflectivity. Note that the end result of the optimization deviates significantly from the original thin-film while having a similar
reflectivity, underlining the present ambiguity of the optimization problem.
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Figure 5. For this optimization, a sample from the target dataset is drawn. Note that the target reflectivities might be far
out-of-distribution of the training data and no known ground-truth thin-film is known a priori. By using the cINN prediction as
a starting point for the downhill-simplex optimization, a thin-film that closely matches the target reflectivity is reached with

L) = 1.441.

optimization. To test this, 2000 reflectivities are sampled from the test dataset. These reflectivities are used as
targets for two optimizations, once with initialization via the cINN and once by sampling thin-films from the
same distribution with which the training dataset was generated, see section 3.1. We chose to only evaluate a
sampled reflectivity once in order to prevent the selection bias of the cINN. The results of the optimization
with a sampling standard deviation of ¢ = 0.2 for the latent space is shown in figure 6. On average, by
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Figure 6. Results of the statistical analysis. On the left is a histogram of the distribution of the mean squared error of the thin-film
reflectivity of the optimization result with the optimization target reflectivity. On the right is the same distribution but measured
via the log-score. The results measured by the log-score follow a Gaussian distribution approximately. These distributions are
fitted with a Gaussian distribution (colored dashed line). The gray dashed line indicates the average log-score. On average, the
initialization via cINN results in thin-films with better log-scores and more of the optimizations have converged. A student’s t-test
t-value of t = —25.286 indicates a statistically significant improvement over random initialization of the optimization.

initialization via the cINN the optimization converges more often, with less iterations and to better local
minima than an initialization with random initial values. The same experiment was repeated with standard
deviations o; = [0.05,0.2,0.5,1.0,1.5,2.0]. For all of the evaluated standard deviations, the cINN
initialization was superior than random initialization. The results with ¢ = 0.2 showed the biggest
improvement over random initialization while o = 2.0 showed the least improvement with an average
log-score of £}, = 1.00. Additionally, Student’s t-test is performed which yields a t-value of —25.286, which
suggests that the results for the presented analysis are significant beyond a reasonable doubt.

Next, the same statistical investigation was performed on all 600 target dataset reflectivities. Here,
initialization of the optimization via cINN resulted in better thin-films as well. However, since many of the
target reflectivities lie out-of-distribution of the training dataset and might not even be achievable given the
particular material choice, the average log-score is slightly closer to the random initialization compared to
the investigation of the test dataset reflectivities shown in figure 6. Again, setting the standard deviation to
o =0.2 yields the best results while any initialization with the cINN is superior than using random
initialization. The results are shown in figure 8 in the appendix.

Finally, a single reflectivity from the test dataset was chosen randomly and 1000 initial thin-films are
sampled via the cINN and from the same distribution with which the training dataset was generated. Then,
the initial thin-films were optimized and the found local minima are evaluated via log-score and mean
squared error. The results are shown in figure 9. Note, that one would expect the optimizer to converge to the
same local minimum for a low sampling standard deviation of the cINN. Due to the gradient approximation
of the downhill-simplex algorithm, the optimization might not always converge to exactly the same local
minimum if the initializations differ slightly.

3.7. Comparison to state-of-the-art and discussion

There are many existing software solutions which offer an automated design process to find thin-films
according to some specifications. For a comparison with state-of-the-art, we chose the Software OpenFilters
(OFs) [28], which designs thin-films via a two-step process. First, an initial thin-film must be given by the
user. Then a refinement based on the Levenberg—Marquardt (LM) algorithm is applied to optimize the
thin-film layers. If the LM algorithm has converged, the needle-point method is used and a position to




10P Publishing

Mach. Learn.: Sci. Technol. 4 (2023) 015014 A Luce et al

random+simplex 140 1 |
1000 - avg log-score: 0.77 i

random+OF
avg log-score: 1.07

cINN+simplex

800 + avg log-score: 1.31
cINN+OF
avg log-score: 1.88
600 Oann=0.2

counts
counts

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
MSE(target, result) log-score

Figure 7. Comparison of optimizations with cINN and random initialization by downhill simplex and OpenFilters as local
optimizer. Initializing with the cINN is on average always beneficial. The minima found via the cINN initialization and
optimization via downhill simplex returns better results on average than OpenFilters when used with random starting points.
Using the cINN and OpenFilters achieves the best results on average.

introduce a new layer is chosen [29], from which the LM algorithm continues to refine the thin-film. Here,
the needle-point method is used to circumvent the problem of local minima at the expense of introducing
additional layers and increasing the overall thickness of a thin-film. We chose to turn off the needle-point
method in the following analysis since thin-films with more than nine layers would be created. Then we
repeated the statistical analysis presented in section 3.6. The results are virtually the same as with the
downbhill-simplex algorithm, but with a higher baseline due to the fine-tuned refinement algorithm of OFs.
Again, using the cINN with a sampling standard deviation of o = 0.2 yielded the best results overall while
any initialization via the cINN resulted in better optimization than random initialization on average. All
results for the statistical analysis of 2000 test dataset reflectivities with standard deviation o = 0.2 are shown
in figure 7. Crucially, the initialization via the cINN improves the optimization via OFs as well.

The analysis shows that initialization via a cINN is always advantageous compared to randomly starting a
local optimization. The cINN learns to identify promising regions of thin-film parameterizations from which
a local optimization converges to a local minimum. The local minima reached from the cINN propositions
are very often better than starting an optimization with random parameters. This advantage could be
alleviated with expert knowledge. If an expert has extensive understanding of the problem and is able to
identify a promising initialization the advantage of employing a cINN may be diminished. However, it might
still be interesting to query a cINN to discover promising new parameterizations. Importantly, the cINN is
able to extrapolate to out-of-distribution problems as demonstrated by the target dataset reflectivities.
Generally, the advantage of employing a cINN is greatest if the target of the problem changes frequently. Since
the cINN learns the entire probability distribution of the input parameters, one obtains the biggest advantage
if the entire loss landscape is also of interest. If the problem consists of finding the best possible parameters
for a single target, there might by other means to obtain local minima closer to the global minimum. Wankerl
et al showed this, by employing Reinforcement learning on a similar problem [39]. This approach lacks the
option to change targets quickly though. A neural network is also restricted in the amount of training data is
obtains. Especially for high dimensional problems, it is impossible to cover the parameterizations sufficiently
to cover the global loss landscape which is a problem for cINNs. The likelihood will be estimated based on a
very small sample size compared to the dimensionality of the problem. Combining a cINN for initialization
and evolutionary algorithm such as in this work from Hedge [5] could increase the efficiency of the
evolutionary algorithm and therefore results in minima that are much closer to the global minimum.

Finally, we realized that the best results can be achieved if Machine Learning is used in tandem with
conventional optimization techniques. This leads to much better local minima concerning the task of finding
suitable thin-films with respect to some target reflectivity. It is therefore instructive to view Machine
Learning as an extension of generative capabilities and to exploit the best of both worlds.
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4, Conclusion

In this work, we presented the application of cINNs on the task of generating multilayer thin-films by
providing a target reflectivity. By sampling points in a Gaussian latent space, and providing a target as a
condition, a cINN yields a thin-film prediction according to the probability density of the sampled latent
space points. Since the learned probability distribution of the thin-film configurations is only an
approximation of the true distribution, a cINN does not suffice to give satisfactory estimations
out-of-the-box. A subsequent optimization via the downhill-simplex algorithm or by OFs improved the
proposed thin-films notably. By comparing the optimization results of randomly selected thin-film
initialization with initialization by the cINN, we showed a significant improvement of the optimization
accuracy on average by employing a cINN.

More generally, the promising results obtained for this specific application indicate that cINN can be a
very effective tool for speeding up inverse design and optimization problems, in optics and beyond.
Depending on the type of problem researchers are challenged with, training a cINN to propose starting
points for a subsequent optimization might be worth the initial overhead of generating a dataset and neural
network training, especially if the task involves changing the optimization target frequently. This would
become particularly beneficial if the loss landscape of the problem is highly non-convex and a local
optimization would converge to an unfavorable local optimum very quickly.

The network architecture of the cINN is available at https://github.com/MLResearchAtOSRAM/OsCINN

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: 10.1364/
josaa.450928; https://github.com/MLResearchAtOSRAM/OsCINN; https://github.com/
MLResearchAtOSRAM/tmm_fast.

Appendix
Additional results
' Tnn=0.2
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Figure 8. Results of the investigation of the reflectivities of the target dataset. Here, initialization with the cINN shows
significantly better log-scores on average compared to random initialization. Some of the targets are far outside of the scope of the
training data and some are probably unachievable with the selected materials. Therefore, the log-scores of this investigations are
worse than the log-scores of the investigation with the validation dataset reflectivities shown in figure 6.
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Figure 9. Comparison of the results of the optimization of the same target with 1000 different random starting thin-films and
1000 starting thin-films from the cINN. Again, sampling starting points from the cINN yields better results from the optimization
on average than random.
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