
Friday, 26 February 2021  

1 

 

Title: 1 

Increased region of surround stimulation 2 

enhances contextual feedback and feedforward 3 

processing in human V1 4 

Abbreviated title:  How context enhances cortical feedback to V1 5 

 6 

Author names and affiliations: 7 

Yulia Revina1* 8 

Lucy S. Petro1 9 

Cristina B. Denk-Florea1 10 

Isa S. Rao1 11 

Lars Muckli1,2 12 

1 Centre for Cognitive Neuroimaging, Institute of Neuroscience & Psychology, University of 13 

Glasgow, G12 8QB, Glasgow, United Kingdom. 14 

2 Imaging Centre of Excellence, College of Medical, Veterinary and Life Sciences, University of 15 

Glasgow and Queen Elizabeth University Hospital, G51 4LB, Glasgow, United Kingdom. 16 

Email addresses: yurevina@cbs.mpg.de (YR); lucy.petro@glasgow.ac.uk (LSP); c.denk-17 

florea.1@research.gla.ac.uk (CBD-F); isa.rao@gmx.de (ISR); Lars.Muckli@glasgow.ac.uk (LM) 18 

Corresponding Author: Lars Muckli, 62 Hillhead Street, Glasgow, G12 8QB, UK. 19 

Lars.Muckli@glasgow.ac.uk 20 

 21 

Number of pages: 31 22 

Number of figures: 6 23 

Number of tables: 4 24 

Number of words | Abstract: 190 25 

Number of words | Introduction: 628 26 

Number of words | Discussion: 1493 27 

Conflict of interest: The authors declare no competing financial interests. 28 

Acknowledgements: This work was supported by the European Research Council grant (ERC 29 

StG 2012_311751-‘Brain reading of contextual feedback and predictions’ awarded to LM) and 30 

BBSRC DTP Studentship (YR). This project has received funding from the European Union’s 31 

Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant 32 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2021. ; https://doi.org/10.1101/2021.02.27.433018doi: bioRxiv preprint 

mailto:c.denk-florea.1@research.gla.ac.uk
mailto:c.denk-florea.1@research.gla.ac.uk
mailto:Lars.Muckli@glasgow.ac.uk
https://doi.org/10.1101/2021.02.27.433018
http://creativecommons.org/licenses/by/4.0/


Friday, 26 February 2021 

2 

 

Agreement No. 720270, 785907, and 945539 (Human Brain Project SGA1-3). We thank Frances 33 

Crabbe for assistance with data collection. 34 

*Author YR current affiliation: Max Planck Institute for Human Cognitive and Brain Sciences, 35 

Leipzig, Germany. 36 

 37 

 38 

Abstract 39 

The majority of synaptic inputs to the primary visual cortex (V1) are non-feedforward, instead 40 

originating from local and anatomical feedback connections. Animal electrophysiology 41 

experiments show that feedback signals originating from higher visual areas with larger receptive 42 

fields modulate the surround receptive fields of V1 neurons. Theories of cortical processing 43 

propose various roles for feedback and feedforward processing, but systematically investigating 44 

their independent contributions to cortical processing is challenging because feedback and 45 

feedforward processes coexist even in single neurons. Capitalising on the larger receptive fields 46 

of higher visual areas compared to primary visual cortex (V1), we used an occlusion paradigm 47 

that isolates top-down influences from feedforward processing. We utilised functional magnetic 48 

resonance imaging (fMRI) and multi-voxel pattern analysis methods in humans viewing natural 49 

scene images. We parametrically measured how the availability of contextual information 50 

determines the presence of detectable feedback information in non-stimulated V1, and how 51 

feedback information interacts with feedforward processing. We show that increasing the visibility 52 

of the contextual surround increases scene-specific feedback information, and that this contextual 53 

feedback enhances feedforward information. Our findings are in line with theories that cortical 54 

feedback signals transmit internal models of predicted inputs.  55 
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Significance Statement  56 

The visual system has circuit mechanisms for processing scene context. These circuits involve 57 

lateral and feedback inputs to neurons. These inputs interact with feedforward inputs and 58 

modulate neuronal responses to visual stimuli presented outside their receptive fields. 59 

Systematically investigating independent contributions of feedback and feedforward processes is 60 

challenging because they coexist even in single neurons. Here we use an occlusion paradigm to 61 

isolate feedback and lateral signals in human participants viewing natural scene images in fMRI. 62 

We show that increasing the visibility of the contextual surround increases scene-specific 63 

feedback information, which also enhances feedforward signals. Our findings are in line with 64 

theories that cortical feedback signals carry abstract internal models that combine with more 65 

detailed representations in primary visual cortex.  66 

 67 

Introduction  68 

Sensory stimulation triggers a cascade of processing in a hierarchy of visual areas. This 69 

feedforward processing meets recurrent activity from the previous sensory input and triggers 70 

recurrent activity that will meet the next expected visual input. Recurrent processing 71 

contextualises and predicts the incoming signal and updates internal models and future recurrent 72 

streams. The contextualisation of feedforward information by feedback signals is essential for our 73 

understanding of cortical processing (Gilbert and Li, 2011). We know from animal recordings that 74 

cortical neurons are contextually modulated when their response to a feedforward stimulus 75 

feature is modified by the presence of surrounding features (Sugita, 1999; Shushruth, 2011). In 76 

visual cortex, this contextual information can be located far in the surround of a neuron’s 77 

receptive field. Consequently, contextual modulation of neurons is exerted by cortical feedback 78 

and lateral inputs (Angelucci, 2002). Cortical feedback inputs, at least in non-human primate 79 

cortex, arrive to discrete portions of cortical pyramidal neurons; mainly to the apical dendrites 80 

that branch up to layer 1 (Douglas and Martin, 2007). Feedback inputs are therefore 81 
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computationally distinct from feedforward inputs arriving to basal dendrites. Recent conceptual 82 

shifts in our understanding of neuronal computation are contributing to a developing perspective 83 

on the significance of cortical feedback inputs in determining neuronal information processing 84 

(Larkum, 2013). This perspective requires techniques to probe brain processing that detect 85 

neuronal inputs, advancing previous studies that mainly measure neuronal outputs (i.e. spiking 86 

activity Larkum et al., 2018; Muckli et al., 2015). Functional magnetic resonance imaging (fMRI) 87 

is one such technique that detects pre- and postsynaptic inputs, offering a means to measure 88 

contextual feedback information to a region of cortex. 89 

Understanding the nature of contextual modulation transmitted by cortical feedback and 90 

lateral interaction is vital for understanding the brain in behavioural and cognitive contexts 91 

(Gilbert and Sigman, 2007). This importance of cortical feedback and lateral interaction arises 92 

because contextual modulations on a neuron include influences from higher-level top-down 93 

processes including expectation, prior experience and goal-directed behaviour, which originate in 94 

higher cortical areas (Muckli and Petro, 2013). Therefore, describing neuronal substrates of 95 

cognition in brain networks including sensory areas requires us to measure not only stimulus-96 

driven neuronal responses under discrete states of top-down influences (e.g. attention, 97 

expectation, task, working memory), but also feedback-driven responses in isolation from 98 

feedforward processing. Measuring feedback-driven modulations separate from stimulus-driven 99 

activity allows us to investigate the information contained in top-down influences. These signals 100 

alter neuronal responses to stimuli (Li et al., 2004; Schwiedrzik and Freiwald, 2017; Petro and 101 

Muckli, 2018), which may depend on other state variables (e.g. being conscious, Philips et al., 102 

2016), therefore functionally determining the brain’s response to its environment (Friston, 2010; 103 

Clark, 2015). 104 

We used fMRI, a brain imaging measure of energy consumption, and multivoxel pattern 105 

analysis (MVPA) to investigate how global natural scene features contextually modulate human 106 

V1. Our approach complements non-classical receptive field studies in rodent and monkey cortex, 107 

that measure spikes in response to a feedforward stimulus relative to contextual surround 108 
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stimulation. However, the proposed tuning to pre-and post-synaptic activity in apical dendrites 109 

that might be detectable by fMRI allows us to capitalise on a signal that might not always be 110 

available in sharp electrode electrophysiology, where the input at the apical dendrites might not 111 

lead to a change in spiking output. Using partially occluded images, we parametrically vary the 112 

amount of global contextual information that we provide and measure the resulting contextual 113 

feedback (and lateral interaction) information to V1 both in the absence of feedforward 114 

information, and when feedback is integrated with feedforward information. If global features in 115 

the surround contextually modulate human V1, we hypothesized that scene information in non-116 

feedforward-stimulated V1 voxels should decrease with progressive masking of the surround, and 117 

increased surround stimulation should modulate detectable scene information even when V1 118 

voxels receive feedforward stimulation. 119 

  120 

Materials and Methods 121 

Subjects 122 

We compensated twenty-nine subjects from the University of Glasgow to participate in the 123 

experiment (n = 13 males; mean age: 24.28 years, range: 19-41 years). Subjects provided informed 124 

written consent and the experiment was approved by the local ethics committee at the University 125 

of Glasgow (CSE01063). We excluded subjects if their data was at chance level classification 126 

performance in at least one feedforward control condition (n = 5) or poorly aligned (anatomically) 127 

between functional runs (n = 3, see Voxel Selection and Analysis, indicating substantial body 128 

movement between scans). Below we report results from 21 subjects with stable classification in 129 

feedforward control conditions (n = 10 males; mean age: 25.29 years, range 19-41 years). 130 

Stimuli 131 

Feedback vs Feedforward condition 132 

We used occluded natural scene stimuli to investigate cortical feedback signals in the 133 

absence of feedforward stimulation (Smith and Muckli, 2010; Muckli et al., 2015; Revina et al., 134 

2018; Morgan et al., 2019). For the feedback conditions, the lower right image quadrant was 135 
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occluded by a white rectangle. Here we expect that the retinotopic region of V1 responding to the 136 

white portion of the image receives no meaningful feedforward input and only cortical feedback 137 

signals (and lateral inputs). The white rectangle was placed 0.5° of visual angle diagonally from 138 

the centre of the image and spanned 11.6° × 9.2°. In the so-called ‘feedforward’ conditions, the 139 

corresponding quadrant of the scene was shown; V1 voxels responding to the lower image 140 

quadrant in this condition contain a mixture of feedforward, lateral and feedback inputs. 141 

Scenes 142 

We used two natural scene images for each participant, as natural scenes induce a lot of 143 

contextual associations (Bar 2004). Each scene was 600 x 480 pixels and spanned 24° × 19.2° of 144 

visual angle. We did not normalize the images in terms of low-level visual features, such as 145 

luminance, contrast or energy at each spatial frequency because we wanted the scenes to look as 146 

natural as possible. Smith and Muckli (2010) previously showed that contextual feedback signals 147 

in V1 cannot be solely attributed to these low-level visual features. 148 

To investigate the contribution of surrounding contextual information on the brain activity 149 

patterns corresponding to the lower right quadrant, we manipulated the visibility of the 150 

surrounding ¾ of the scene with a Gaussian aperture in each quadrant (“bubbles”, Gosselin and 151 

Schyns, 2001) of various sizes to reveal the scene and produce the following types of stimuli: ¼ 152 

(no surrounding scene shown), Small Bubbles (standard deviation [SD] = 50 × 32 pixels), 153 

Medium Bubbles (SD = 90 × 56 pixels), Large Bubbles (SD = 125 × 100 pixels) and Full (surround 154 

fully visible). The study consisted of four experiments, with each subject participating in only one 155 

(n = 6; n = 4; n = 6; n = 5 respectively). In each experiment, stimuli were shown in four (out of 156 

the five possible) different conditions (Figure 1A). In Experiment 1, we used stimuli in the Full 157 

Feedback occluded condition, ¼ feedforward, Small Bubbles feedforward and Medium Bubbles 158 

feedforward conditions. In Experiment 2, we replaced Small and Medium Bubbles with Large 159 

Bubbles and the Fully Visible scene. In Experiment 3, we added the Fully Visible scene to test 160 

whether more contextual feedback would be seen in the Small and Medium Bubbles conditions if 161 

participants were more familiar with the full scene. In Experiment 4, we tested the effect of 162 
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reducing the surrounding information around the occluded region using Small, Medium and 163 

Large Bubbles feedback conditions. 164 

 165 
Figure 1. Stimuli. A) In feedback conditions the lower right image quadrant was occluded with a white rectangle, 166 
while in feedforward conditions the corresponding quadrant was visible. We manipulated scene visibility around the 167 
lower right quadrant with bubbles of various sizes to create 5 types of conditions: ¼, Small Bubbles, Medium Bubbles, 168 
Large Bubbles and Full. Dark bars labelled “Surr” illustrate the extent to which the surrounding ¾ of the scene was 169 
revealed. Light bars labelled “¼” illustrate the extent to which the lower right image quadrant was revealed. Bars are 170 
not to scale. B) Checkerboard stimuli were used to retinotopically map the occluded region in V1; left to right Target, 171 
Near Surround, Inner Border. C) The activation for the contrast of (Target – Near Surround) used to map non-172 
stimulated V1 is shown on the occipital cortex on one subject, with V1 in green on the inflated visualization. 173 

Occluded region mapping 174 

We presented subjects with three contrast-reversing checkerboards (5 Hz) twice per run. 175 

The checkerboards either covered an inner rectangular part of the occluded region (Target – 2.5° 176 

diagonally from centre, 10.2° × 7.8° visual angle) or the border between the lower right quadrant 177 

and the rest of the stimulus (Surround). There were two types of surround checkerboard stimuli 178 

(Figure 1B) – Near Surround (0.5° diagonally from fixation, 11.6° × 9.2° visual angle) and Inside 179 
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Border (1.5° diagonally from fixation). The activation in the early visual areas for the (Target – 180 

Near Surround) contrast is shown in Figure 1C. 181 

Experimental Design and Statistical Analysis 182 

Task and procedure 183 

We presented scenes on a uniform grey background using MRI compatible goggles 184 

(NordicNeuroLab) with 800 × 600 pixel screen resolution, which corresponded to 32° × 24° 185 

visual angle. In each experiment there were 8 types of trial (2 scenes in 4 different conditions). In 186 

each 12 second trial the stimulus was flashed on and off (200 ms on/ 200 ms off) 28 times (11.6 187 

secs + variable fixation to account for uncertainty in timing). This flashing increases the signal to 188 

noise ratio compared to continuous presentation (Kay et al., 2008) and gives rise to a greater 189 

BOLD response (Boynton et al., 1996). Each trial type was presented sequentially, with the trial 190 

order randomized in each sequence. Each sequence lasted 96 seconds (8 × 12 s). A 12 second 191 

fixation period was included before and after each sequence of trials. Each experimental run 192 

lasted 10 min 48 seconds, containing four trial sequences and two mapping sequences (each 193 

mapping sequence consisted of Target and two Surrounds). There were four experimental runs 194 

in total. Thus, each stimulus was shown 16 times per experiment. Subjects’ task was to fixate on a 195 

central checkerboard and report a fixation colour change with a button press. Subjects pressed a 196 

different button depending on whether the colour change occurred during scene 1 or scene 2 (right 197 

index and middle fingers respectively). The purposes of the task were to ensure that the subject 198 

paid attention to which scene was being shown and to minimize eye movements. In addition, we 199 

used eye-tracking to make sure subjects were fixating. Subjects were familiarised with the full 200 

non-occluded scenes in a short practice run prior to going into the scanner. This was done to 201 

increase subjects’ contextual associations and thus increase meaningful feedback when viewing 202 

the scenes with reduced information in the experimental trials. 203 

After the experimental runs, we performed a polar angle retinotopic mapping procedure to 204 

estimate the borders of the early visual areas V1-3. This consisted of a single checkerboard wedge 205 

which started in the right horizontal meridian and rotated clockwise (12 rotations per scan, wedge 206 
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angle: 22.5°, scan time: 13 min 28 sec). For 10 subjects, we also performed an eccentricity 207 

mapping procedure. This consisted of an expanding ring which started at the centre and expanded 208 

towards the periphery (8 expansions per scan, ring width increased exponentially towards the 209 

periphery, scan time: 9 min 12 sec). 210 

MRI acquisition 211 

We collected MRI data using a 3T Siemens Tim Trio System with a 12-channel head coil. 212 

We measured blood oxygen level dependent (BOLD) signals with an echo-planar imaging 213 

sequence (echo time: 30 ms, repetition time: 1000 ms, field of view: 210 mm, flip angle: 62°, 18 214 

axial slices). The spatial resolution for functional data was 3 mm3. Each experimental run had 648 215 

volumes. Retinotopic mapping consisted of 808 volumes (polar angle) or 552 volumes 216 

(eccentricity). We positioned 18 slices to maximize coverage of occipital cortex. We recorded a 217 

high-resolution 3D anatomical scan (3D Magnetization Prepared Rapid Gradient Echo, 1 mm3 218 

resolution, 192 volumes). 219 

MRI data processing 220 

We corrected functional data for each experimental run and retinotopic mapping runs for 221 

slice time (cubic spline interpolation) and 3D motion (Trilinear/Sinc interpolation), temporally 222 

filtered (high-pass filtered at 6 cycles with GLM-Fourier, and linearly detrended), and spatially 223 

normalized data into Talairach space with BrainVoyager QX 2.8 (Brain Innovation, Maastricht, 224 

The Netherlands; Goebel, 2012). We used the anatomical data to create an inflated cortical surface 225 

and functional data were overlaid. 226 

Voxel selection and analysis 227 

Excessive subject movement between runs is likely to affect correspondence between 228 

voxels from one run to another. This could introduce noise into our analysis as we selected our 229 

region of interest (ROI) based on the averaged functional data of all 4 runs. As described 230 

previously (Revina et al., 2018), we calculated an alignment value for each subject by measuring 231 

Pearson’s correlation in a ROI in the visual cortex between the four functional runs. Correlations 232 
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were performed in a ROI covering the early visual cortex using intensity values from an 233 

anatomical representation of the first volume of the functional data of every run. High correlations 234 

would suggest a close anatomical alignment between the 4 runs. The median alignment value 235 

across subjects was 98.08% and single subject values ranged from 77.85% to 99.31%. We excluded 236 

data from further analysis if the alignment value was below 90%, which applied to three subjects. 237 

Furthermore, we excluded any subject with chance level performance in any feedforward 238 

condition in single trial analysis (significance above chance was measured using permutation 239 

analysis with 1000 trials). The feedforward conditions have bottom-up stimulation and hence 240 

there should be a difference in activity patterns. If the scenes could not be decoded in these control 241 

conditions in a subject, we excluded them from the analysis, as it suggests that the subject might 242 

not have been fixating properly, not paying enough attention, falling asleep, and so on. It would 243 

not be meaningful to assess feedback classifier performance (or lack of) in such cases. This 244 

excluded a further five subjects. Thus, the following analyses were performed on 21 subjects. 245 

We identified the cortical representation of the occluded region using a general linear 246 

model (GLM) contrast of the Target region against the Near Surround, as described previously 247 

in Smith & Muckli (2010). The ROI was selected from activation in V1 only. To further minimize 248 

spillover activity from neighbouring stimulated areas, we selected voxels from the ROI on the 249 

basis of the difference between Target and Near Surround t-values being greater than 1. 250 

Analyses with extended boundary around the occluded region 251 

To further make sure our findings of scene information in the quadrant were not due to 252 

spillover activity from the feedforward surround, we performed a separate analysis with more 253 

stringent methods of voxel selection. First of all, we selected our region of interest in BrainVoyager 254 

as the contrast of the Target mapping region being higher than both the Near Surround and the 255 

Inner Border mapping conditions. In addition, we selected voxels fitting the criteria of (Target - 256 

Near Surround) > 1 and (Target - Inner Border) > 1. This helped to restrict voxels to the more 257 

peripheral regions and to further minimize any voxels at the inner borders of the quadrant. 258 

Analysis showed the same pattern of results and significant decoding between the two scenes in 259 
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all conditions except Small Bubbles Feedback and Full Feedback (average block analysis, 260 

Experiment 1 only). 261 

Moreover, we performed another analysis using population receptive field (pRF, Dumoulin 262 

and Wandell, 2008) mapping for the subjects which had both the polar angle and eccentricity 263 

retinotopic mapping available (Expt 2: n = 4, Expt 3: n = 2, Expt 4: n = 4). Again, this was done 264 

to restrict our voxel selection to the quadrant. We only included voxels that were both within the 265 

occluded region as defined by pRF and only within our original Target > Near Surround ROI as 266 

defined in BrainVoyager. 267 

Multivariate Pattern Classification Analysis 268 

The voxels matching all the above-mentioned criteria for each analysis were entered into 269 

the linear classifier (Support Vector Machine [SVM], using the LIBSVM toolbox in MATLAB, 270 

Chang and Lin, 2001). For classification analyses, we trained the classifier to decode between the 271 

2 scenes in each condition. For cross-classification analyses we trained the classifier to decode 272 

between the two scenes on one condition and tested on the other. The classifier used single trial 273 

activity patterns (beta values) for training, and was then tested on either “single trial” (ST; 8 trials 274 

× 4 sequences = 32 separate trials) or “average block” (AB) activity patterns for each of the 8 trial 275 

types (average of the 4 repetitions). In other words, for the average block analysis, the training 276 

was the same (single trials of three runs, 32 trials in each run) but the testing was done on the 277 

average per stimulus condition of the fourth run. For both types of analyses, we trained the 278 

classifier on 3 of the runs and tested on the remaining run (i.e. one-run-out cross-validation).  279 

In order to get a robust average and to test how well the classifier would perform when the 280 

labels were randomly assigned (described in more detail in Revina et al. 2018), we used 281 

bootstrapping and permutation analysis. We bootstrapped the classifier performances 10000 282 

times for individual subjects (there were four performances for each condition for each subject 283 

due to the one-run-out method on the four runs), to estimate the single subject mean. We then 284 

bootstrapped these mean values from individual subjects 10000 times to estimate 95% confidence 285 
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intervals (CIs) on the group mean. We counted classifier performances as significantly above 286 

chance (50%) if the 95% CIs did not contain chance-level performance. We used a permutation 287 

test (1000 samples) to compute differences between mean group classifier performances 288 

(reported p values not corrected for multiple comparisons), by shuffling the observed values 289 

across the conditions, and calculating the absolute differences between the conditions. If the 290 

observed difference was in the top 5% of the differences distribution, we considered our 291 

conditions to be significantly different from each other. 292 

Results 293 

Our hypothesis is that the surround stimulation drives higher visual areas with larger 294 

receptive fields to send a contextual feedback signal to voxels in V1 responding to the occluded 295 

quadrant. We can therefore modify the surround stimulation to learn more about the nature of 296 

contextual feedback.  297 

Increased stimulation of the surround receptive field enhances contextual feedback 298 

We have shown previously that scene features eliciting contextual feedback to non-299 

stimulated V1 are not only those features located nearest to the occluded region of the image 300 

(Smith and Muckli 2010). That is, voxels contributing information to scene classification are not 301 

only found near the border of the occluder (Morgan et al., 2019). This finding suggests that scene 302 

classification in non-stimulated voxels is not only related to short-range lateral connections. 303 

Expanding on these findings, we assessed the amount of surrounding scene information required 304 

to elicit scene-relevant information in non-stimulated V1. We parametrically modulated the 305 

availability of surround information and trained the SVM classifier to decode between the two 306 

scenes using voxel patterns responding to the lower right quadrant when it was either occluded 307 

(feedback and lateral, but no feedforward information) or stimulated (feedforward, feedback and 308 

lateral information). SVM classification performance was used as an estimate of the amount of 309 

available information in the activation pattern.  310 
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When the image was occluded, scene classification in non-stimulated voxels improved with 311 

increasing availability of surrounding scene information (Figure 2A, left). Averaging across 312 

experiments, classification was significantly above chance once the bubbles exceeded the smallest 313 

size, except for Large Bubbles Single Trial analysis (Table 1). Classifier performance for the Full 314 

Feedback condition was significantly higher than the Small or Medium Bubbles conditions 315 

(Small: ST: p < 0.001; AB: p = 0.015; Medium: ST only: p = 0.009). Increased surround 316 

information also improved classifier performance during feedforward processing of the scenes 317 

(Figure 2A, right), even though voxels received identical feedforward stimulation. The Fully 318 

Visible condition was significantly higher than the other feedforward conditions (Large: AB only, 319 

p = 0.019; Medium: ST: p = 0.028, AB: p = 0.001; Small: ST only, p = 0.007; ¼: ST: p = 0.034, 320 

AB: p = 0.017). Classification performance for individual experiments is shown in Figure 2B. 321 

Table 1. Classification performance for decoding between the two scenes in each condition, for feedback and 322 
feedforward stimuli, averaged across experiments. 323 

 324 

 325 

 326 

 327 

 328 

 329 

 Single trial 

classification 

% 

Confidence 

interval 

Average block 

classification % 

Confidence 

interval 

Feedback     

Small Bubbles 50.62 0.0687 0.0500 62.50 0.1500, 0.1500 

Medium Bubbles 61.25 0.0750, 0.0750 70.00 0.1750, 0.1500 

Large Bubbles 68.13 0.1875, 0.1563 82.50 0.3000, 0.1750 

Full Feedback 81.84 0.0723, 0.0586 89.84 0.1328, 0.0859 

Feedforward     

Fully Visible 88.12 0.0396, 0.0375 98.33 0.0250, 0.0167 

Large Bubbles 85.16 0.0391. 0.0391 93.75 0.0625 0.0625 

Medium Bubbles 79.95 0.0443 0.0495 91.67 0.0313 0.0313 

Small Bubbles 78.91 0.0413 0.0469 92.71 0.0521. 0.0521 

1/4 80.94 0.0469 0.0500 91.25 0.0625 0.0625 
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 330 

Figure 2. Classification performance for decoding between the two scenes in each condition, for feedback and 331 
feedforward stimuli. Chance level is 50%. Lines represent 95% confidence intervals around the bootstrapped mean 332 
(10000 bootstrap samples of individual subjects’ performances). Classifier performance is significantly above chance 333 
at α = 0.05 (not corrected for multiple comparisons) if the confidence intervals do not intersect with the chance line. 334 
A) Classifier performance for each condition, averaged over the four experiments (solid line = classifier tested on 335 
single trials; dashed line = classifier tested on blocks of conditions averaged over the same type). Small, Medium 336 
and Large Feedback conditions, n = 5; Full Feedback, n = 16; Fully Visible, n = 15; Large Feedforward, n = 4, Medium 337 
and Small Feedforward, n = 12; ¼, n = 10. B) Same data as in (A) but classifier performance split by four experiments 338 
(separate colours). ST (dark hues) show performance when classifier was tested on single trials; AB (light hues) 339 
when tested on blocks of conditions averaged over the same type. Red circles represent individual subjects’ results. 340 

Contextual feedback enhances feedforward processing  341 

Classifier analyses so far reveal that increased presence of the surrounding scene enhances 342 

scene-specific information in non-stimulated V1. This finding is consistent with the hypothesis 343 

that part of V1 neuronal information patterns comprises feedback signals from areas with larger 344 
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receptive fields higher up in the visual hierarchy. Interestingly, feedforward information was also 345 

enhanced with increased surround stimulation. Observing informative feedback signals with and 346 

without feedforward input motivates the question: do feedback and feedforward signals carry the 347 

same information? We used a cross-classification approach to test if the classifier can discriminate 348 

the two scenes in the feedback conditions and then use this information to discriminate scenes in 349 

the feedforward condition. Successful cross-classification would suggest similar information 350 

content in feedforward and feedback signals. 351 

How much does feedback contribute to visual processing?  352 

We trained the classifier to decode between the two scenes in the Full Feedback condition 353 

(with no direct feedforward input in the quadrant) and tested on the feedforward conditions, with 354 

varying amount of feedback from the surround (Figure 3). Cross-classification performance 355 

decreased with decreasing scene information in the surround. The classifier could generalize from 356 

the Full Feedback condition to the Fully Visible and Large Bubbles condition (ST only; Figure 357 

3A and Table 2). However, cross-classification for Medium, Small Bubbles, and ¼ conditions 358 

was at chance level. Averaging across experiments (Figure 3A), the Fully Visible condition was 359 

significantly higher than the Medium Bubbles (ST: p = 0.002; AB: p = 0.021), Small Bubbles (ST: 360 

p < 0.001; AB: p < 0.001) and the ¼ condition (ST: p < 0.001; AB: p = 0.003). These results tell 361 

us that we can train on a feedback signal (that likely has a coarser resolution of information), and 362 

test on a signal that is a combination of fine-grained feedforward signal and (coarse) surround 363 

feedback signal. This cross-classification must be due to the contextual feedback signal rather 364 

than shared information between feedforward and feedback because when the surround stimulus 365 

is reduced to nothing (i.e. with shrinking bubbles), we learn that the content of information or its 366 

scale (coarse or fine) in feedforward and feedback signals differs. 367 

 368 
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Table 2. Cross-classification performance for training on the Full Feedback condition and testing on the feedforward 369 
conditions, averaged across experiments. 370 

 371 

 372 

 373 

 Single trial 

classification 

% 

Confidence 

interval 

Average block 

classification % 

Confidence 

interval 

Fully Visible 72.50 0.0781, 0.0750 75.00 0.1125, 0.1125 

Large Bubbles 63.28 0.0547, 0.0547 62.50 0.1250, 0.1250 

Medium Bubbles 53.91 0.0521, 0.0495 57.29 0.0729, 0.0833 

Small Bubbles 48.70 0.0495, 0.0469 52.08 0.0625, 0.0833 

1/4 50.31 0.0500, 0.0531 50.00 0.0500, 0.0625 
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 374 

Figure 3. Cross-classification performance for training on the Full Feedback condition and testing on the feedforward 375 
conditions. Chance level is 50%. Lines represent 95% confidence intervals around the bootstrapped mean. 376 
Classification performance for the Full Feedback stimulus (training and testing on the same condition) is shown for 377 
comparison. Classifier performance is significantly above chance at α = 0.05 (not corrected for multiple comparisons) 378 
if the confidence intervals do not intersect with the chance line. A) Classifier performance for each condition, averaged 379 
over the four experiments (solid line = classifier tested on single trials; dashed line = classifier tested on blocks of 380 
conditions averaged over the same type). Fully Visible, n = 10; Large, n = 4; Medium and Small, n = 12; ¼, n = 10. 381 
B) Same data as in (A) but classifier performance split by four experiments (separate colours). ST (dark hues) show 382 
performance when the classifier was tested on single trials; AB (light hues) when tested on blocks of conditions 383 
averaged over the same type. The small red circles represent individual subjects’ results. 384 

To further test how much surround information contributes to visual processing, we 385 

compared the Fully Visible scene with other feedforward conditions with a reduced scene 386 

surround, as well as the feedback conditions (Figure 4). We trained the classifier on the Fully 387 
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Visible scene and tested on the other conditions. In a fully visible scene both parts of the 388 

information are available simultaneously and the classifier might rely more on the rich, fine-389 

grained feedforward information. However, we found that Fully Visible feedforward to feedback 390 

cross-classification was only possible with large amounts of scene information surrounding the 391 

occluded region (Table 3). Fully Visible to Full Feedback cross-classification was above chance, 392 

while Large, Medium and Small Bubbles did not reach significance in the feedback conditions. In 393 

addition, although we could cross-classify above chance from the Fully Visible to all other 394 

feedforward conditions, cross-classification reduced with decreased scene information in the 395 

surround. Classifier performance was significantly higher for Large Bubbles compared to Small 396 

Bubbles (ST: p = 0.007; AB: p = 0.023) and ¼ (ST only: p = 0.028) conditions. If contextual 397 

feedback did not contribute scene-specific information to V1, we would have observed equal cross-398 

classification across feedforward conditions, regardless of surround stimulation. This suggests 399 

that much of the information in the activity patterns of the Fully Visible scene comes from 400 

feedback from the surround. 401 

Table 3. Cross-classification performance for training the classifier on the Fully Visible scene and testing on the other 402 
feedforward and feedback conditions, averaged across experiments. 403 

 404 

 405 

 406 

 407 

 408 

 409 

 Single trial 

classification 

% 

Confidence 

interval 

Average block 

classification % 

Confidence 

interval 

Feedforward     

Large Bubbles 73.44 0.0469, 0.0469 84.38 0.1563, 0.1250 

Medium Bubbles 66.67 0.0729, 0.0729 70.83 0.1458, 0.1250 

Small Bubbles 58.85 0.0521, 0.0573 60.42 0.0833, 0.0833 

1/4 60.16 0.0547, 0.0625 68.75 0.1250, 0.1250 

Feedback     

Full Feedback 74.06 0.0750, 0.0750 78.75 0.1250, 0.1125 

Large Bubbles 54.37 0.0687, 0.0938 52.50 0.1000, 0.1250 

Medium Bubbles 51.25 0.0375, 0.0313 45.00 0.1750, 0.1250 

Small Bubbles 48.13 0.0375, 0.0438 45.00 0.0500, 0.0500 
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 410 

Figure 4. Cross-classification performance for training the classifier on the Fully Visible scene and testing on the 411 
other feedforward and feedback conditions. Chance level is 50%. Lines represent 95% confidence intervals around 412 
the bootstrapped mean. Classification performance for the Fully Visible stimulus (training and testing on the same 413 
condition) is shown for comparison. Classifier performance is significantly above chance at α = 0.05 (not corrected 414 
for multiple comparisons) if the confidence intervals do not intersect with the chance line. A) Classifier performance 415 
for each condition, averaged over the four experiments (solid line = classifier tested on single trials; dashed line = 416 
classifier tested on blocks of conditions averaged over the same type). Large Feedforward, n = 4; Medium and Small 417 
Feedforward, n = 6; ¼, n = 4; Full Feedback, n = 10; Large, Medium and Small Feedback, n = 5. B) Same data as in 418 
(A) but classifier performance split by four experiments (separate colours). ST (dark hues) show performance when 419 
the classifier was tested on single trials; AB (light hues) when tested on blocks of conditions averaged over the same 420 
type. The small red circles represent individual subjects’ results. 421 

 422 

Interestingly, we found that when the classifier was trained on the Fully Visible image 423 

(Figure 4) it cross-classified better to Full Feedback than to feedforward conditions in which the 424 
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feedback was restricted by reduced contextual information (significantly above chance for Small 425 

Bubbles: ST: p = 0.013; AB: p = 0.035). This suggests that feedback in the occluded region from 426 

full stimulation in the surround is at least as informative about the scene as feedforward 427 

information in the quadrant with minimal surround stimulation. This shows that feedback is an 428 

important part of the information in V1, both when feedforward stimulation is present and when 429 

it is absent.  430 

If surround feedback information interacts with feedforward processing, then increasing 431 

contextual surround information should reduce cross-classification from the ¼ feedforward 432 

condition to feedforward conditions with surround stimulation (Figure 5). Indeed, cross-433 

classifier performance for ¼ to Small Bubbles (Table 4) was higher than to Large (ST only: p = 434 

0.015) or the Fully Visible condition (ST: p = 0.021; AB: p = 0.006). Cross-classifier performance 435 

for ¼ to Medium Bubbles was also significantly higher than to Large (ST only: p = 0.039) or the 436 

Fully Visible condition (ST: p = 0.037; AB: p = 0.036). 437 

Table 4. Cross-classification performance for training the classifier on the 1/4 and testing on the other feedforward 438 
conditions, averaged across experiments. 439 

 Single trial 

classification 

% 

Confidence 

interval 

Average block 

classification % 

Confidence 

interval 

Small Bubbles 83.33 0.0573, 0.0625 91.67 0.0833, 0.0625 

Medium Bubbles 82.81 0.0677, 0.0677 93.75 0.1250, 0.0625 

Large Bubbles 69.53 0.0313, 0.0391 75.00 0.1250, 0.1563 

Fully Visible 67.97 0.0703, 0.0703 65.63 0.1250, 0.1563 
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 440 

Figure 5. Cross-classification performance for training the classifier on the ¼ condition and testing on the other 441 
feedforward and feedback conditions. Chance level is 50%. Lines represent 95% confidence intervals around the 442 
bootstrapped mean. Classification performance for the ¼ stimulus (training and testing on the same condition) is 443 
shown for comparison. Classifier performance is significantly above chance at α = 0.05 (not corrected for multiple 444 
comparisons) if the confidence intervals do not intersect with the chance line. A) Classifier performance for each 445 
condition, averaged over the four experiments (solid line = classifier tested on single trials; dashed line = classifier 446 
tested on blocks of conditions averaged over the same type). Small and Medium, n = 6; Large and Fully Visible, n = 447 
4; Full Feedback, n = 10. B) Same data as in (A) but classifier performance split by four experiments (separate 448 
colours). ST (dark hues) show performance when the classifier was tested on single trials; AB (light hues) when 449 
tested on blocks of conditions averaged over the same type. The small red circles represent individual subjects’ 450 
results. 451 

Does increased presentation of the entire image change feedback information? 452 

Apart from varying how much surround information is visible in a stimulus, we also 453 

investigated whether knowledge of the full scene would improve feedback in the stimuli with 454 

reduced surround. In Experiment 3, we presented the Fully Visible scenes along with the Medium 455 
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and Small Bubbles stimuli, unlike in Experiment 1 where we had not presented the Fully Visible 456 

scene as one of the stimuli (although all subjects were shown the full scenes in a practice run prior 457 

to the experimental session). Varying the frequency of the Fully Visible scene allowed us to 458 

investigate whether being presented with the full structure of the scene (during the experimental 459 

run) would boost meaningful feedback in stimuli with reduced surround information. We found 460 

that cross-classification from Full Feedback to Small and Medium Bubbles was at chance level for 461 

both Experiment 1 and 3 (Figure 3B), suggesting that reduced feedback to the feedforward 462 

quadrant in the Small and Medium Bubbles stimuli was mainly due to the decreased contextual 463 

surround information in the stimulus as opposed to a reduced implicit memory of the fully visible 464 

scene. 465 

Results with extended safety boundary around occluded region  466 

We performed an additional separate analysis in order to decrease the number of voxels 467 

that are close to the boundary region and hence reduce the possibility of any feedforward 468 

stimulation “spilling over” from the surround. For the conjunction analysis using the contrast of 469 

(Target > Near Surround) & (Target > Inner Border), we found the same pattern of results and 470 

significant decoding between the two scenes in all conditions except Small Bubbles Feedback, and 471 

Full Feedback (AB analysis, Experiment 1 only). 472 

After restricting voxels to the occluded region using pRF mapping, we saw that classifier 473 

performance decreased in some conditions, but the pattern of the results remained the same 474 

(Figure 6). Due to the low numbers of subjects in each experiment for whom we were able to 475 

perform pRF mapping, we did not calculate confidence intervals for some of the mean values. 476 
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[Previous page] Figure 6. Classification and cross-classification performance after applying population receptive 478 
field (pRF) mapping to further constrain voxels to the occluded region. Classifier performance is shown for each 479 
condition for each of the three experiments (separate colours; Expt 2: n = 4; Expt 3: n = 2; Expt 4: n = 4). ST (dark 480 
hues) show performance when the classifier was tested on single trials; AB (light hues) when tested on blocks of 481 
conditions averaged over the same type. The small red circles represent individual subjects’ results. Chance level is 482 
50%. A) Decoding two scenes in the same condition. B) Training on Full Feedback and testing on feedforward 483 
conditions. C) Training on the Fully Visible scene and testing on other feedforward and feedback conditions. D) 484 
Training on the ¼ condition and testing on other feedforward and feedback conditions. 485 

 486 

Discussion  487 

We studied the influence of the scene surround on populations of neurons using fMRI, 488 

complementing what we know from electrophysiology studies investigating classical and non-489 

classical neuronal receptive fields. We established that the availability of contextual information 490 

affects cortical feedback to a non-stimulated region in V1. Specifically, the extent of contextual 491 

modulation in non-stimulated V1 depends on the amount of scene information surrounding the 492 

occluded image quadrant. Furthermore, information in the non-stimulated region does not 493 

represent a direct filling-in of missing feedforward input, and that contextual feedback enhances 494 

information in V1 even when rich feedforward information is available.  495 

V1 neurons integrate signals over a large area beyond the classical receptive field 496 

(Angelucci et al., 2002; Angelucci and Bressloff, 2006). Lateral connections modulate the 497 

response in the central receptive field over short distances. However, feedback from higher areas 498 

accounts for the full extent of the surround modulation effects (Angelucci and Bressloff, 2006). 499 

There was no meaningful feedforward stimulation in our occluded region of V1, and yet we could 500 

decode two scenes using information patterns corresponding to this non-stimulated region. This 501 

differential information must originate from contextual information in the scene surround. 502 

Classical receptive fields are smaller than the surround, hence neurons in the occluded area in V1 503 

most likely receive information about the rest of the scene via cortical feedback from higher areas. 504 

Since we are measuring a population of neurons using fMRI, as opposed to single cells, it is hard 505 

to estimate how widespread the effect of the surround receptive field is. V1 receives feedback from 506 

many cortical areas, which have increasing receptive field sizes moving to higher and more 507 

abstract processing areas (Dumoulin and Wandell, 2008). Therefore, we expect that influence 508 
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from the surround might be restricted to regions close to the occluded region for feedback coming 509 

from V2, for example, but transmit information from a larger area of the surrounding scene for 510 

feedback originating from higher visual areas.  511 

We found that larger bubbles in the surround lead to more informative feedback in the 512 

occluded region. This may be because we are revealing more of the overall scene structure as we 513 

increase the bubble size. Tang and colleagues (2014) demonstrated top-down effects in image 514 

completion by presenting partially revealed images using bubbles. The number of bubbles was 515 

constant, but their location was changed. This suggests that revealing a certain amount of the 516 

global image structure, regardless of the specific parts, can be enough for top-down completion 517 

to take effect. Alternatively, our result could be explained by larger bubbles providing more 518 

information close to the lower right quadrant, compared to small bubbles, because our bubbles 519 

were centred in each quadrant. However, Williams and colleagues (2008) have demonstrated that 520 

feedback can come from distant retinotopic regions, by showing that the fovea receives feedback 521 

about objects in the periphery. Since we did not specifically measure effects of bubble location, it 522 

remains to be seen how varying proximity of surrounding information affects feedback 523 

information in non-stimulated V1. It also remains to be seen how contextual feedback depends on 524 

the presence of task-specific diagnostic features that could be revealed on different trials using 525 

bubbles (Gosselin and Schyns, 2001). Subsets of stimulus features drive information states of 526 

functionally-relevant higher brain regions (e.g. face areas) during the feedforward sweep of visual 527 

processing (e.g. Schyns et al., 2007) and these representations could modulate the content of 528 

cortical feedback signals. For the purpose of this study we kept these parameters constant.  529 

Interaction of feedback and feedforward signals 530 

We found that stimulating the surround increased information in both the occluded region 531 

and when it contains feedforward information. Similarity between identical feedforward 532 

quadrants was reduced if the amount of information in the surround was increased. If feedback 533 

signals from the surround did not combine with feedforward information or only weakly 534 

modulated it, we would have seen similar activity patterns relating to the feedforward quadrant 535 
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regardless of the surround. The feedforward signal has been traditionally considered the 536 

dominant signal, since it drives receptive fields, while feedback has been thought of mostly 537 

modulatory and not necessarily able to trigger spikes (Bullier, 2006; Bastos et al., 2012), but see 538 

Mignard and Malpeli, (1991). By using fMRI which is also sensitive to non-spiking activity 539 

(Logothetis, 2008; Muckli, 2010) we established that this modulation from feedback may be just 540 

as important as the spiking produced by stimuli in a bottom-up manner. fMRI is sensitive to 541 

postsynaptic inputs including the arrival of feedback onto the apical dendrites. Feedback can be 542 

combined with feedforward inputs arriving to the basal dendrites, meaning that individual 543 

neurons integrate internally-generated feedback signals with sensory-derived feedforward signals 544 

(Larkum, 2013), a process which might be a cornerstone of conscious perception (Phillips et al., 545 

2016). Though this neuronal mechanism remains to be observed in the visual cortex, many studies 546 

support the notion that feedback to V1 is a crucial part of visual perception. For example, reducing 547 

feedback from higher areas such as V2, MT or hMT reduces the neuronal response the lower areas 548 

to visual stimulation in the centre RF, (Sandell and Schiller, 1982; Hupé et al., 1998, 2001; 549 

Schmidt et al., 2011) and in humans affects prediction in an apparent motion paradigm (Vetter et 550 

al., 2015). 551 

Information content of feedback 552 

Predictive coding theories (Rao and Ballard, 1999; Friston, 2010; Clark, 2013) hypothesise 553 

that the occluded part of our scenes should be represented in non-stimulated cortex, based on the 554 

expected scene structure behind the occluder. Several authors have demonstrated that an 555 

expected or predicted stimulus evokes activity in V1 which is similar to activity elicited by actual 556 

bottom-up stimulation (e.g. Ban et al., 2013; Gavornik and Bear, 2014; Kok et al., 2014). 557 

Therefore, at first glance, it is surprising that we do not find similarity between the occluded 558 

region and the missing feedforward quadrant. This suggests information in feedback signals does 559 

not represent a direct filling-in of the missing feedforward input. However, a lack of a direct 560 

filling-in is not so counter-intuitive since participants do not report seeing the missing portion of 561 

the scene in occluded trials (i.e. they do not have a hallucination). Hence feedback and 562 
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feedforward information may be coded in different formats, even though both carry information 563 

about the scene. For example, it may be that information is coarser in terms of its content because 564 

of the larger visual fields in higher visual areas or less precise retinotopically (e.g. de-Wit et al., 565 

2012). Alternatively, feedback may provide a more abstract version of the scene. In a previous 566 

study, we have shown that feedback information is comparable to a line drawing completing the 567 

missing quadrant (Morgan et al., 2019). Finally, a difference in neural patterns could be observed 568 

because feedback and feedforward signals project to different cortical layers (Rockland and Virga, 569 

1989; Muckli et al., 2015). Muckli and colleagues (2015) showed using high-resolution fMRI that 570 

during normal visual stimulation, feedforward information peaks in mid-layers of V1, while 571 

contextual feedback information peaks in the superficial layers. Recent data from neural network 572 

modelling also suggests that recurrent processing is not completing or filling-in the information 573 

to make it identical to the feedforward response, but rather it may function by suppressing 574 

occluders and enhancing responses to the hidden target (Spoerer et al., 2017). Recurrent networks 575 

also outperform feedforward models in identifying the occluded target stimulus, suggesting that 576 

feedback enhances feedforward processing. 577 

If feedback signals are carrying expectations and predictions based on prior knowledge we 578 

might find that improved knowledge of the full scene structure would be important for meaningful 579 

feedback in the occluded region. However, it seems that knowledge about the particular scene 580 

being viewed is not necessary. Smith and Muckli (2010) previously found that contextual feedback 581 

in the occluded region is present even if participants never see the fully visible scene and were not 582 

familiarised with it. We also found that increased exposure to the full scene did not improve 583 

feedback in the conditions with reduced surround. Therefore, it appears that the contextual 584 

feedback we observed arises from the scene structure available in each trial, or knowledge of 585 

natural scene properties in general, but familiarity with the specific scene is not required for 586 

informative feedback signals. This could be because natural scenes have predictable scene 587 

statistics and much of the information they contain is redundant (e.g. Attneave, 1954; Barlow, 588 

1961; Torralba and Oliva, 2003).  589 
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Conclusion 590 

We demonstrated that cortical feedback information forms a part of early visual cortex 591 

activity during visual stimulation. Using a brain imaging technique we have corroborated 592 

evidence from animal electrophysiology showing that stimulation in the far-surround receptive 593 

field modulates responses in the classical visual receptive field. We show that increased 594 

information in the scene surround results in increased scene information in both stimulated and 595 

non-stimulated visual field regions. We conclude that cortical feedback carries abstract internal 596 

models of natural scenes which are combined with more spatially-specific, detailed 597 

representations in primary visual cortex, and that the merging of high-level content of cortical 598 

feedback with feedforward signals should constrain our understanding of cortical function during 599 

perception.  600 
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