
Ann. Henri Poincaré 24 (2023), 541–604
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Abstract. We show that four-dimensional superconformal algebras admit
an infinite-dimensional derived enhancement after performing a holomor-
phic twist. The type of higher symmetry algebras we find is closely related
to algebras studied by Faonte–Hennion–Kapranov, Hennion–Kapranov,
and the second author with Gwilliam in the context of holomorphic QFT.
We show that these algebras are related to the two-dimensional chiral al-
gebras extracted from four-dimensional superconformal theories by Beem
and collaborators; further deforming by a superconformal element induces
the Koszul resolution of a plane in C

2 ∼= R
4. The central charges at the

level of chiral algebras arise from central extensions of the higher symme-
try algebras.
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1. Introduction

Superconformal field theories are an important and interesting class of super-
symmetric quantum field theories, characterized, at least roughly speaking,
by their lack of any characteristic energy scale. Algebraically, superconformal
theories admit an action of the superconformal super-Lie algebra. This algebra
contains both the algebra of conformal transformations and the super-Poincaré
algebra. The super-Poincaré algebra saff(d,N) is a super-Lie algebra contain-
ing the algebra of infinitesimal affine symmetries on R

d, together with odd
symmetries saff(d,N)− in spinor representations of so(d) ⊂ aff(d). The integer
(or pair of integers) N labels the number of copies of the minimal set of odd
generators that are present and so can be thought of as the degree of extended
supersymmetry. Superconformal algebras should thus sit in a commuting dia-
gram of inclusions of super-Lie algebras:

conf(d)

aff(d) sconf(d,N).

saff(d,N)
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A superconformal algebra, if it exists, is a completion of this diagram which
is a simple super-Lie algebra, and for which

dim sconf(d,N)− = 2dim saff(d,N)−.

Unlike super-Poincaré algebras, algebras describing superconformal symme-
tries cannot be constructed in every dimension; examples exist only up to
spacetime dimension six. (The first classification of superconformal algebras
is due to Nahm [39], making use of Kac’s classification of simple super-Lie
algebras [34].)

It is well known that the algebra of conformal vector fields in two di-
mensions is infinite-dimensional; as such, all two-dimensional superconformal
algebras have the same property. In spacetime dimensions from three to six,
however, superconformal algebras are finite-dimensional. The goal of this pa-
per is to provide an infinite-dimensional enhancement of the four-dimensional
superconformal algebra which exists after performing a twist of the supersym-
metric field theory.

At root, a twist of a supersymmetric field theory is obtained by taking the
invariants of an appropriate fermionic element of the super-Poincaré algebra.
This generally means asking that the chosen supercharge be a Maurer–Cartan
element and therefore defines a deformation of the classical action; the twist
is then precisely the corresponding deformation. Maurer–Cartan elements in
super-Poincaré algebras have been classified [18,20]; since the internal dif-
ferential is here trivial, the Maurer–Cartan equation reduces to the familiar
condition {Q,Q} = 0.

The most heavily studied examples of twists are topological. Such twists
extract a topological quantum field theory from a supersymmetric theory as
studied in physics. Such twists are of enormous interest, since topological quan-
tum field theories are amenable to axiomatization and provide invariants of
manifolds. However, as tools for studying the full field theory, topological twists
leave much to be desired: They are only available in the presence of sufficient
extended supersymmetry and forget much of the data of the supersymmetric
theory from which they arose.

The minimal twists are in fact not topological, but rather are holomor-
phic. These have been studied by many authors over the last 25 years; we cite
[11,12,31,40] just for example. As tools for the study of the original supersym-
metric theory, these have three distinct advantages over other twists: Firstly,
they are more often available, appearing in any even-dimensional theory for
which nontrivial Maurer–Cartan elements are present. For example, any four-
dimensional supersymmetric theory admits a holomorphic twist. Secondly, the
holomorphic twist is the least forgetful twist; the space of nilpotent super-
charges is naturally stratified [18] and as such lives naturally over a poset.
Holomorphic twists always form the minimal elements of this poset and there-
fore can be used to study any other twist by further deformation. This also
means that, even for theories that do admit topological twists—such as N = 2
theories in four dimensions—the holomorphic twist can be used to extract
much finer information about the original theory.
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The third and final point is that holomorphic theories have a richer and
more intricate structure than topological theories, admitting (for example)
nontrivial operator product expansions that depend holomorphically on the
spacetime. The familiar example to keep in mind is the distinction between
two-dimensional topological field theories (which, by a simple and familiar
classification, correspond to finite-dimensional Frobenius algebras) and vertex
algebras.

Vertex algebras—and, relatedly, the familiar phenomenon of symmetry
enhancement in two-dimensional chiral theories, which replaces finite-
dimensional global or conformal symmetries by infinite-dimensional Kac–Moody
or Virasoro algebras—have long been seen as peculiar to two-dimensional
physics. One main philosophical point of this note is to argue that these phe-
nomena, which have been of such enormous importance and profit to theoret-
ical physics at least since the foundational work of [7], occur in holomorphic
theories much more generally and are not at all peculiar to two dimensions per
se.

The reason that attention has largely been restricted to two-dimensional
theories thusfar has to do with two distinct phenomena. The first of these
is that the wave equation, on which free field theory is based, factors into
left- and right-moving (or holomorphic and anti-holomorphic) sectors. This
means that ordinary field theory in two dimensions is very closely related to
holomorphic field theory, even in the absence of supersymmetry. In higher
dimensions, this of course fails; as outlined above, though there is still a close
connection between supersymmetric and holomorphic theories.

The second, perhaps more subtle, reason is often alluded to in the physics
literature by citing Hartogs’ theorem, which implies that every holomorphic
function on C

n\0 (for n ≥ 2) extends to a holomorphic function on C
n. It

thus seems to be hopeless to make sense of an analogue of the Kac–Moody
construction in more than one complex dimension. Let us give a brief outline
of the usual argument for this enhancement in two dimensions that shows how
it seems to break down for n ≥ 2.

Suppose a theory has a global symmetry by a Lie algebra g. The only
obstruction to a local symmetry is the presence of derivatives in the kinetic
term; as such, the holomorphic theory admits a symmetry by all holomorphic
functions with values in g, since only the ∂ operator appears in the action
functional. On the local operators, there is a symmetry by any holomorphic
function on the punctured affine plane,

Ohol(Cn\0) ⊗ g
n=1−−−→ C[z, z−1] ⊗ g. (1)

When n = 1, there is then a central extension by the residue pairing, which
gives rise to the Kac–Moody algebra and is represented in interesting fashion
on the local operators. When n > 1, there are no meromorphic functions and
no such pairing on Ohol(Cn\0) exists.

However, a natural analogue of the residue map does exist. It is, however,
not defined on Ohol itself, but rather on its derived replacement: the Dolbeault
complex Ω0,•(Cn\0). (It is worth emphasizing here that a twist of a physical
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field theory will always produce such a derived replacement, since the original
sheaves of fields or currents are locally free over C

∞ functions at the cochain
level.) The homotopy type of C

n\0 is, of course, that of the (2n − 1)-sphere,
and so the wedge product followed by integration over the top class defines a
pairing on differential forms. The integration map is a trace of degree n−1 on
the cdga of Dolbeault forms, defined by taking

α �→
∫

S2n−1
α ∧ Ω, (2)

where Ω is a holomorphic Calabi–Yau form on C
n\0. The degree of the pairing

on Dolbeault cohomology is therefore n−1, which is zero precisely in complex
dimension one. In general, Dolbeault cohomology of punctured affine space
is supported in degrees 0 and n − 1 and can be thought of as consisting of
holomorphic functions on affine space in degree zero, together with their dual
(multiples of the Bochner–Martinelli kernel) in degree n − 1. These are super-
imposed, purely by accident, in complex dimension one, and form the positive-
and negative-degree parts of the Laurent polynomials C[z, z−1]. Thus, in our
view, the second confusing coincidence in complex dimension one is the fact
that Dolbeault cohomology is supported only in degree zero in this case, and
the residue map is defined without any shift of grading.

At this stage, it is worth remarking on a connection between the structure
at hand and recent work [4] studying higher operations in topological quantum
field theory arising from the homology of the operad of little n-disks (i.e.,
of configuration spaces of points in R

n). The ghost number in our higher
algebras is essentially Dolbeault form degree, and a holomorphic analogue
of topological descent is possible, making use of those supercharges which
witness a nullhomotopy of the antiholomorphic translations in the twisted
theory. The graded pairing that gives rise to higher central extensions, as we
have emphasized, arises from the top class in the homology of C

n\0, which is
the same class that gives rise to the bracket operation on local operators in
TQFT discussed in [4], albeit paired with the Calabi–Yau form. In a sense,
for us, C

n\0 is playing the role of a holomorphic analogue of Conf2(R2n);
one physical interpretation of our higher symmetry algebras is that nonlocal
operators play an important role, giving rise to algebraic structures on local
operators via holomorphic descent. We expect that it is possible to study a
holomorphic analogue of the operad of little disks, and to use it to characterize
secondary operations in holomorphic theories at the level of operads which can
imposed concretely via a holomorphic analog of descent; however, we do not
pursue this here, reserving such questions for future work.

Using the formalism of factorization algebras and the pairing discussed
above, higher analogues of Kac–Moody algebras were recently introduced in
[22,27]. It was then argued in [27,44] that these algebras appear naturally in
holomorphic twists of four-dimensional field theory as twists of the current
supermultiplet associated with a global symmetry. A natural higher analogue
of the Virasoro algebra in holomorphic theories was also proposed in [28,48];
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there is a model which uses the Dolbeault resolution of the Lie algebra of holo-
morphic vector fields on C

n\0. (The reader will recall that the Virasoro algebra
is a central extension of the Witt algebra of holomorphic vector fields on C\0.)
Central extensions generalizing the well-known Kac–Moody and Virasoro cen-
tral extensions were shown to exist. The space of local central extensions of
the higher Virasoro algebra was shown in [48] to be two-dimensional; it is nat-
ural to guess that these cocycles correspond to the a and c central charges of
four-dimensional conformal field theory, and we hope to make this connection
explicit in future work.

In the present work, our aim is to explore the relation of the four-
dimensional higher Virasoro algebra to superconformal symmetry in the full
theory. We compute the holomorphic twist of the four-dimensional supercon-
formal algebra in Sect. 2, and argue that the resulting algebra, sl(3|N− 1) (or
psl(3|3) when N = 4), acts naturally as a finite-dimensional closed subalgebra
of the holomorphic vector fields on an appropriate holomorphic superspace,
C

2|N−1. See Theorem 2.10 for the precise statement.
In Sect. 3, we define the main holomorphic symmetry algebras of inter-

est which are natural from the point of view of complex geometry. In Sect. 4,
we show that the holomorphic twists of supersymmetric theories in four di-
mensions admit natural actions of these holomorphic symmetry algebras (at
the classical level). At this stage, it plays no role if the untwisted theory is
in fact superconformal or not. For the precise results pertaining to symmetry
enhancements of twists of four-dimensional theories, see Propositions 4.6–4.9.

In Sect. 5, we introduce factorization algebras associated with the various
symmetry algebras and theories. Section 6 then goes on to consider further de-
formations of the enhanced symmetry algebra as a factorization algebra, which
play a role in other twists of the theory. We consider, in particular, the defor-
mation of the centrally extended higher Kac–Moody and Virasoro factorization
algebras by a Maurer–Cartan element arising from a special supersymmetry in
the global superconformal algebra, making connection with the work of Beem
and collaborators [5]. For us, this deformation appears as a simple odd vector
field implementing the Koszul resolution of a subspace C ⊂ C

2. The main
results of Sect. 6 can be summarized as follows.

Theorem 1.1. Let FKM and FVir be the N = 2 higher Kac–Moody and Virasoro
factorization algebras of level κ and charge c, respectively, on (z1, z2) ∈ C

2.
(See Definitions 5.4 and 5.9, respectively). Let F′

KM and F′
Vir be the correspond-

ing factorization algebras deformed by the Maurer–Cartan element z2
∂
∂ε aris-

ing as a special supercharge in the global superconformal algebra (see Sect. 6).
Then:

• F′
KM is equivalent to a stratified factorization algebra on C

2 which is
trivial away from z2 = 0 and along the plane Cz1 = {z2 = 0} is equivalent
to the Kac–Moody vertex algebra at level −κ/2.

• F′
Vir is equivalent to the stratified factorization algebra on C

2 which is
trivial away from z2 = 0 and along the plane Cz1 = {z2 = 0} is equivalent
to the Virasoro vertex algebra at level −12c.
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In words, at the level of stratified factorization algebras, the deformations
of our higher symmetry algebras reproduce the chiral algebras studied in [5];
these are strictly contained within the full higher Virasoro and Kac–Moody
symmetries and are obtained from them by a further twist. We also reproduce
the correct correspondence between four- and two-dimensional central exten-
sions of these algebras; this is strong evidence that the central extensions of the
higher algebra correspond precisely to the higher-dimensional central charges
of the physical theory, just as in two dimensions.

Other examples of chiral algebras have been extracted from four-
dimensional N = 2 theories, and we expect that the higher Virasoro and
Kac–Moody algebras can profitably be used to understand all of them. Many
of these appear from further twists; for example, the half-holomorphic twist
of [35] is implemented by a natural further deformation. We expect that the
recent results of [42], producing chiral algebras isomorphic to those of [5] from
this half-holomorphic twist in the presence of an Ω-deformation, can be swiftly
understood in our setting. The first study of infinite-dimensional symmetry at
the level of the holomorphic twist was performed in [32], but was restricted to
the setting of a product of Riemann surfaces; for us, the essential geometry for
the study of local operators in four dimensions is that of C

2\0. However, it is
worth noting that the formalism of factorization algebras allows us to think of
symmetries by local Lie algebras across all complex surfaces uniformly.

In addition, we emphasize that the symmetry enhancement in the holo-
morphic theory means that many more deformations of the differential are
available after the holomorphic twist. Of course, any appropriate Maurer–
Cartan element of the global superconformal algebra gives rise to such a de-
formation, but new deformations appear in the holomorphic twist which are
not visible at the level of the full theory. While we reserve a full analysis for
future work, we explore some of these new deformations briefly in Sect. 6.4,
arguing that the higher Virasoro algebra in N = 2 supersymmetric theories
admits a deformation that localizes it to the holomorphic vector fields on any
smooth affine curve in C

2, not just to planes. We expect even more interest-
ing behavior in the case of singular or nonreduced curves, though we do not
explore this direction further here.

In Sect. 7, we turn to some explicit examples of theories, and in particu-
lar to N = 2 super-QCD. We demonstrate that the higher Virasoro symmetry
is, in fact, anomalous and can be realized in the quantum theory precisely
when the familiar condition Nf = 2Nc is satisfied—i.e., when the full theory
is in fact superconformal. The beta function of the full theory is thus visible
as an anomaly in the holomorphic twist—in spite of the fact that the holo-
morphic theory itself is automatically scale-invariant. We then offer a precise
characterization of the chiral algebras (or two-dimensional holomorphic theo-
ries) that appear upon deforming N = 2 superconformal QCD as above, again
reproducing results of [5] in our formalism.
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2. Superconformal Algebras and Their Twists

2.1. The Conformal and Superconformal Symmetry Algebras

We here review some basic notions of conformal and superconformal symmetry
in physical theories. Our index conventions are standard; indices for the vector
representation of an orthogonal group are raised and lowered with the metric.
We sometimes use the isomorphism between the vector representation of so(4)
and the tensor product of its two chiral spinors; spinor indices are raised and
lowered with the su(2)-invariant alternating form εαβ .

Definition 2.1. The conformal algebra in dimension d > 2, with signature
(p, q), is so(p + 1, q + 1).

Proposition 2.2. (Standard; see for example [23]) The conformal algebra acts
by vector fields on R

p,q.

Proof. This is essentially by definition, since the conformal group is the set of
diffeomorphisms of R

p,q that act by local rescaling on the metric. We remind
the reader that the relevant vector fields form a finite-dimensional algebra in
dimensions greater than two and can be explicitly given as

Pμ =
∂

∂xμ
,

Mμν = xμ
∂

∂xν
− xν

∂

∂xμ
,

Δ = −E,

Kμ = |x|2 ∂

∂xμ
− 2xμE.

(3)

Here, E = xμ∂μ is the Euler vector field. It is straightforward to check that
these satisfy the commutation relations

[D,Pμ] = Pμ,

[D,Kμ] = −Kμ,

[Mμν ,Kρ] = gρνKμ − gμρKν ,

[Mμν , Pρ] = gρνPμ − gμρPν ,

[Kμ, Pν ] = 2Mμν + 2gμνE,

[Mμν ,Mρσ] = gμσMνρ + gνρMμσ − gμρMνσ − gνσMμρ,

(4)

with other commutators vanishing. For a proof that these vector fields span
the space of solutions to the conformal Killing vector field equations, see [23].

�
Remark 2.3. In dimension four, the accidental isomorphism so(6) ∼= su(4)
gives rise to a convenient way of thinking about the vector fields defined above.
Let us pass to using complex coefficients. We can realize the action of the com-
plexified conformal group on complexified Minkowski space C

4 by considering
the quotient of GL(4, C) by a particular parabolic subgroup:

Fl(2; 4) = GL(4, C)/P, P =
[∗ ∗
0 ∗
]

. (5)
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(We choose to use GL(4, C), rather than SL, for the sake of convenience; note,
however, that the unit-determinant condition can be imposed everywhere and
does not affect our discussion.) Here, P consists of two-by-two blocks with the
lower left block zero and other blocks arbitrary. The resulting symmetric space
is the space of 2-flags in C

4; it has an open dense subset isomorphic to C
4,

given by cosets represented by matrices of the form[
1 0

xαα̇ 1

]
∈ GL(4, C). (6)

The reader will recall that the chiral (or antichiral) spinor of Spin(6), equivalent
to the fundamental (or antifundamental) representation of SU(4), becomes
one chiral and one anti-chiral spinor of Spin(4) ∼= SU(2) × SU(2), which can
be thought of as sitting block-diagonally inside SU(4). Our index convention
in (6) is meant to suggest this. The vector fields witnessing the natural action
of GL(4, C) on Fl(2; 4) from the left become the conformal vector fields of (3)
when restricted to the image of this embedding of Minkowski space in Fl(2; 4).

The construction of Remark 2.3 becomes even more important in the
context of superconformal symmetry. In a limited number of cases classified
by Nahm [39]—in particular, when the spacetime dimension does not exceed
six—the conformal algebra can be extended to supersymmetric theories, which
then admit the action of a simple superconformal algebra c(d,N) containing
both the conformal algebra and the N-extended super Poincaré algebra. A
complete list of such algebras for dimension greater than two is

sconf(d,N) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

osp(N|4), d = 3;
su(2, 2|N), d = 4, N �= 4;
psu(2, 2|4), d = 4, N = 4;
f(4), d = 5, N = 1;
osp(6, 2|N), d = 6.

(7)

In each case, the construction relies on an accidental isomorphism of Lie al-
gebras, akin to that used in Remark 2.3, that allows one to fit the spinor
representations of low-dimensional spin groups into Kac’s classification of sim-
ple super-Lie algebras [34], where no infinite families with odd elements in
spinor representations appear.1

We now specialize to four-dimensional theories, and thus to the alge-
bras su(2, 2|N) for N = 1 and 2, and psu(2, 2|4) in the case N = 4. In our
considerations, we will always complexify and thus deal with the complex Lie
algebras sl(4|N) or psl(4|4). (The change for N = 4 comes about because
sl(k|k) has a one-dimensional center and is therefore not simple; algebras with
N > 4 exist, but are not of physical relevance, as they cannot be represented

1We have avoided N = 3 superconformal symmetry, which makes sense and is studied in
the physics literature. However, as far as supersymmetric field theories are concerned, there
are no weakly-coupled N = 3 theories (which are not also N = 4). Since we mostly deal in
the perturbative formalism, we will not consider such theories.
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on interacting theories [9].) One can helpfully think of the generators of this
algebra as arranged in the following diagram:

Pαα̇

Qi
α Q̄α̇i

Mαβ Δ, Ri
j M̄α̇β̇

Sα
i S̄α̇i

Kαα̇

(8)

Here, vertical position in the diagram represents the conformal weight2 of the
corresponding generator, and horizontal position is determined by the differ-
ence in number of chiral and antichiral spinor indices. If vertical position is
interpreted as a Z-grading, parity is determined by its value modulo two. The
charges Qi

α and S̄α̇i together form a chiral spinor of O(4, 2), which is equiv-
alent to the antifundamental representation of su(2, 2); they transform in the
fundamental representation of the R-symmetry group. Likewise, Q̄α̇i and Sα

i

together sit in the fundamental representation of su(2, 2) and the antifunda-
mental representation of R-symmetry. (We generally follow the conventions of
[15].)

The superconformal algebra acts naturally by vector fields on superman-
ifolds. For example, the usual superspace for N = 1 supersymmetry in four
dimensions is R

4|4, with one odd copy of each chiral spinor representation; it
admits an action of su(2, 2|1) by supervector fields that extends the natural
action of super-Poincaré by supertranslations. The vector fields were written
explicitly in [16], and shown to arise (as in the bosonic case) from conjugating
super-Poincaré transformations by the superspace analogue of the inversion
transformation. This generalizes to extended superconformal symmetry; see
[29] for details. Here, a consistent real structure can be imposed, such that the
odd part of R

4|4 is the Majorana spinor of SO(3, 1). However, this will play
no role in our further considerations.

However, the standard (unconstrained) superspace is not the only super-
space where the superconformal algebra naturally acts. Of particular interest
for us will be an action on superfields satisfying a chiral constraint.

Proposition 2.4. The complexified four-dimensional superconformal algebra
sl(4|N) acts geometrically by supervector fields on the chiral superspace

C
4|2N ∼= V ⊕ Π(S+ ⊗ R), (9)

where V and S+ denote, respectively, the fundamental and chiral spinor rep-
resentations of Spin(4) and R the defining representation of the U(N) R-
symmetry.

2Conformal weight is the weight under the scaling operator Δ.
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Proof. As in Proposition 2.2, this is almost a proof by definition, although the
characterizations involved seem to be less well known in this case. One can in
fact define the four-dimensional superconformal algebra to be the collection of
vector fields on unconstrained superspace, R

4|4N, that (after complexification)
act compatibly with every possible chiral constraint. That is,

[X,Dαi] ∼ Dαi, [X, D̄j
α̇] ∼ Dj

α̇. (10)

For general N, this characterization is given, for instance, in [30]; see [43] for
further discussion and an explicit treatment of the case N = 1.

Since the superconformal transformations act preserving chiral subspaces,
they also act on each chiral subspace. In the case N = 1, the explicit super-
vector fields involved are

Pαα̇ = ∂αα̇, Mαβ = xαα̇∂βα̇ + θα∂β + (α ↔ β), M̄α̇β̇ = xαα̇∂αβ̇ + (α̇ ↔ β̇)

(11)

for generators of affine transformations, as well as

Δ = E +
1
2
θα∂α, R = θα∂α, Kαα̇ = |x|2∂αα̇ − 2xαα̇E + θαxβα̇∂β (12)

for dilatations and U(1) R-symmetry, and special conformal transformations,
and lastly

Qα = ∂α,

Q̄α̇ = θα∂αα̇,

Sα = −xαα̇θβ∂βα̇ + θ2∂α,

S̄α̇ = xαα̇∂α

(13)

for the fermionic transformations. Here, E again denotes the Euler vector
field. We further note that when N = 4, the action factors through the simple
quotient psl(4|4). �

Remark 2.5. Note that the action of the conformal algebra is modified from its
purely bosonic form! While the supervector fields realizing supertranslations
remain unaffected, K now contains fermion-dependent terms. However, under
the quotient map from functions on superspace to functions on (bosonic) C

4,
the vector fields of Proposition 2.2 are reproduced.

As in Remark 2.3, it is extremely helpful to justify the existence of such
vector fields by relating the affine superspace that carries this group action
to a symmetric space constructed directly from the superconformal group. In
doing this, we follow the excellent discussion in [29]; the interested reader is
referred there for more information.

Definition 2.6. Let C
m|n be a supervector space. A flag is a sequence of sub-

objects in the category of supervector spaces,

0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ C
m|n, dim Vi = mi|ni, (14)

where each containment is strict. As in the usual case, flags are characterized
by their type, which is the list of dimensions {mi|ni}. These must form a
strictly increasing sequence inside of the poset Z+ × Z+. We will denote the
space of flags of a fixed type by Fl(mi|ni;m|n).
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Observation 2.7. The flag manifold Fl(mi|ni;m|n) naturally carries an action
of GL(m|n, C), exhibiting it as a symmetric space. As in the usual case, we can
see this by exhibiting the space of flags as the right quotient of GL(m|n, C) by
the stabilizer of a standard flag of appropriate type. We form a standard flag
of type m′|n′ by fixing an ordered basis of C

m|n, considered as a GL(m|n, C)
module in the standard way, and taking the flag spanned by the first m′ even
and the first n′ odd basis vectors. The left GL(m|n, C) action on the flag
variety remains unbroken and gives rise to a subalgebra of the vector fields
on Fl(mi|ni;m|n) representing gl(m|n). For example, the parabolic subgroup
stabilizing a standard flag of type m′|n′ consists of block matrices of the form⎡

⎢⎢⎣
∗ ∗ ∗ ∗
0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∗
0
∗
0

⎤
⎥⎥⎦ (15)

as a subgroup of GL(m|n, C).

We are now equipped to give supersymmetric analogues of the construc-
tion of the conformal compactification Fl(2; 4) of four-dimensional affine space
in Remark 2.3.

Proposition 2.8. [29] The left-chiral N-extended superspace in four dimensions
is a dense open subset in Fl(2|0; 4|N). Similarly, the right-chiral superspace is
a dense open subset in Fl(2|N; 4|N), and the full superspace C

4|4N admits a
compactification to Fl(2|0, 2|N; 4|N).

We note that the map for the chiral superspaces can be represented by
matrices of the form ⎡

⎣ 1 0 0
xαα̇ 1 0
θα

i 0 0

⎤
⎦ ,

⎡
⎣ 1 0 0

xαα̇ 1 θ̄α̇i

0 0 0

⎤
⎦ , (16)

respectively. The reader is referred to [29] for the proof and further discussion.

Remark 2.9. For future use, it is helpful to summarize the correspondence for
the reader between superconformal generators as tabulated above and a matrix
presentation of sl(4|N) with the following diagram:⎡
⎢⎣

Mα
β Kαβ̇ Sα

j

Pαβ̇ M̄ β̇
α̇ Q̄α̇j

Qi
α S̄α̇i Ri

j

⎤
⎥⎦ ; Δ =

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦ , r =

1
N − 4

⎡
⎣N 0 0

0 N 0
0 0 4

⎤
⎦ . (17)

2.2. Twisted Superconformal Symmetry

We now proceed to consider consequences of superconformal symmetry for
holomorphic twists of superconformal theories. Recall that the four-dimensional
(complexified) supertranslation algebra is a super-Lie algebra of the form

C
4 ⊕ Π(S+ ⊗ W ⊕ S− ⊗ W ∗)
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where S± ∼= C
2 are the irreducible two-dimensional semi-spin representations

of so(4) and W is a complex vector space of dimension N = 1, 2, 4. A su-
percharge Q ∈ Σ satisfying [Q,Q] = 0 is called a holomorphic supercharge
if Im[Q,−] ⊂ C

4 is two-dimensional and is spanned by the anti-holomorphic
translations ∂z1 , ∂z2 . We will fix a holomorphic supercharge Q once and for
all.

Given any square-zero supercharge in the supersymmetry algebra the
twist of a four-dimensional supersymmetric field theory is constructed—we
refer to [11,21] for more details. For a holomorphic supercharge, the result-
ing theory is manifestly holomorphic in the sense that the anti-holomorphic
translations act homotopically trivially.

The supertranslation algebra is a subalgebra of the full superconformal
algebra. The holomorphic twist of the superconformal algebra sconf(4,N) is
simply the Q-cohomology where Q acts by the adjoint, or commutator. By
construction, the resulting algebra will act on the holomorphic twist of any
superconformal theory.

Theorem 2.10. Let sconf(4,N) be the complexified superconformal algebra in
four dimensions. The cohomology of sconf(4,N) with respect to a holomorphic
supercharge is sl(3|N − 1) for N = 1 and 2, or psl(3|3) for N = 4.

We proceed by computing the cohomology directly; it is a quotient of
the commutant of a holomorphic supercharge Q. To begin, we change from
Lorentz indices to holomorphic notation, adapted to the symmetry group left
unbroken in Q-cohomology; upon breaking SO(4) to U(2), the left-chiral spinor
index becomes a pair of charged singlets, labeled by ±, and the right-chiral
spinor becomes the fundamental of the unbroken SU(2). As for R-symmetry
indices, we break U(N) to U(1) × U(N − 1); label the corresponding indices 0
and i, with position of the index recording fundamental versus antifundamental
representations of the corresponding groups.

After having done this, we can represent a basis for the algebra using a
diagram analogous to (8):

P+
α̇ , P −

α̇

Qi
+, Qi

−, Q0
+, Q0

− Q̄α̇i, Q̄α̇0

M++, M−−, M+− Δ, Ri
j , R

0
j , R

i
0, R

0
0 M̄α̇β̇

S+
0 , S−

0 , S+
i , S−

i S̄α̇i, S̄α̇0

Kα̇
+, Kα̇

−

(18)

In this decomposition, the holomorphic supercharge is Q = Q0
+. One can then

simply use the commutation relations given above to determine exact pairs; the
conclusion is that the holomorphic momenta P−

α̇ and superconformal transfor-
mations Kα̇

+ survive, together with M̄α̇β̇ and the traceless R-symmetry Rj
i . The

surviving fermions are Q̄i
α̇ and Qi

− from the Poincaré supercharges, and S̄α̇i
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and S−
i from the conformal supersymmetries. Together with two additional

central generators, these implement the algebra sl(3|N − 1).
We have included this discussion to orient those readers with a physics

background, using relatively standard notation, as to which of the conformal
symmetries survive in the holomorphically twisted theory. However, a proof of
the proposition that is both less cumbersome and more useful can be given by
just considering the matrix group GL(4|N) together with a parabolic subgroup,
and computing the holomorphic twist directly. The advantage is that one di-
rectly obtains a description of the twist of the symmetric space GL(4|N)/P ,
with its action of the twisted superconformal algebra. (As above, it is con-
venient to ignore the traceless condition for the moment and restore it later
on.)

Proof of Theorem 2.10. Identifying the conformal algebra with sl(4|N) as in
(17), the holomorphic supercharge corresponds to the elementary matrix gener-
ator e0+. (We continue to use the index set α, α̇, i for a basis of the supervector
space C

4|N; + and 0, as in the previous discussion, denote specific values of
these indices, and we will use μ for any element of this basis, chosen without
specifying parity or spin.) Using the standard commutation relations, we see
that

[e0+, eμν ] = δ+μe0ν − (−)|μν|δν0eμ+, (19)

which immediately implies that ker(adQ) is spanned by elementary matrices
with μ �= + and ν �= 0, together with e00 + e++, and that im(adQ) is spanned
by the elementary matrices e0ν and eμ+ (allowing only the diagonal combina-
tion e00 + e++). The cohomology is therefore isomorphic to sl(3|N − 1); if we
follow the parabolic subgroup defining the chiral superspace through the same
computation, we find matrices of the form⎡

⎢⎢⎣
− − − ∗
0 − − ∗
0 − − ∗
0 ∗ ∗ ∗

⎤
⎥⎥⎦ (20)

Looking just at the bosonic part of this calculation (or, equivalently, setting
N = 1), the reader will recognize the parabolic subgroup defining Fl(1; 3) ∼=
CP 2 as a maximally symmetric space for the group SL(3). In general, the
resulting coset space is Fl(1|0; 3|N − 1). Very similarly to the untwisted case,
an open dense subset is the holomorphic affine superspace C

2|N−1 = Spec
C[z1, z2; εi], where εi (1 ≤ i < N) are fermionic scalars. �

Corollary 2.11. The twisted superconformal algebra sl(3|N − 1) acts geometri-
cally by holomorphic supervector fields on C

2|N−1.

Indeed, it is easy to describe these vector fields explicitly. In the case
N = 1, no fermions remain, so that we just need to give an action of sl(3) by
holomorphic vector fields on C

2. A straightforward calculation shows that the
vector fields
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pi =
∂

∂zi
, mij = zi

∂

∂zj
, ki = zie (21)

give the desired module structure. Here e = zi∂/∂zi = tr(m) is the holomor-
phic Euler vector field.

In the general case, we need to add additional even vector fields to im-
plement the R-symmetry, as well as fermionic vector fields in the appropriate
representations of sl(3) × sl(N − 1). We must also modify the vector field im-
plementing the conformal weight to

zi
∂

∂zi
+

1
2
ε

∂

∂ε
, (22)

although this of course just amounts to a change of basis in the Cartan subal-
gebra. Further, we must replace the Euler vector field in the definition of the
generators ki by ê = zi∂/∂zi + ε∂/∂ε (in the case N = 2). The needed odd
vector fields in this case are

∂

∂ε
, ε

∂

∂zi
(23)

for positive conformal weight, and

zi
∂

∂ε
, εe (24)

for negative conformal weight. In general, we obtain one copy of this for every
odd parameter; the R-symmetry is of course implemented by the vector fields
εi∂/∂εj .

3. Derived Structures in Complex Geometry

We will demonstrate that there are natural enhancements of the twisted su-
perconformal algebras computed above to certain infinite-dimensional Lie al-
gebras. The Lie algebras will be defined as the derived global holomorphic
sections of certain (graded) holomorphic vector bundles which enlarge the holo-
morphic tangent bundle. We will use a convenient model for derived sections
given by the Dolbeault resolution of a holomorphic vector bundle. Through-
out, the reader should bear in mind the familiar process in two dimensions by
which the holomorphic Möbius transformations are enhanced to the Witt al-
gebra of holomorphic vector fields on C

× and subsequently centrally extended
in the quantum theory to the Virasoro algebra; central extensions of higher
symmetry algebras will be discussed in Sect. 5.

In parallel, we introduce a similar enhancement of global symmetry in
holomorphically twisted theories to a local Lie algebra, analogous to Kac–
Moody symmetry in two dimensions. Additionally, we review results on holo-
morphic twists of supersymmetric field theories in four dimensions.
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3.1. Local Lie Algebras and Symmetries

A local Lie algebra is a graded vector bundle L• on X equipped with differential
and bi-differential operators which turn the corresponding sheaf of sections L•

into a sheaf of dg Lie algebras.3 For a precise definition we refer the reader to
[13, Definition 6.2.1].

Throughout this section, we fix a smooth complex surface X. There are
two varieties of local Lie algebras on X that will be of interest to us: (1)
Lie algebras of holomorphic currents which arise as resolutions of the sheaf
of holomorphic g-valued functions on X and (2) Lie algebras of holomorphic
vector fields on X.

3.1.1. Lie Algebras of Holomorphic Currents. These local Lie algebras are the
natural enhancements of global (flavor) symmetries in holomorphically twisted
theories.

Definition 3.1. Let g be a Lie algebra. The local Lie algebra of N-extended
holomorphic g-currents on a complex surface X is

G•
N(X) = Ω0,•(X, g ⊗C A), (25)

where A = O(CN−1[1]) = C[ε1, . . . , εN−1], and εi are variables of cohomologi-
cal degree −1. The differential is ∂ (which acts by the identity on g ⊗ A) and
the bracket is [α ⊗ X ⊗ a, β ⊗ Y ⊗ b] = (α ∧ β) ⊗ [X,Y ] ⊗ (ab) where α, β are
Dolbeault forms, X,Y ∈ g and a, b ∈ A.

The algebras just mentioned live naturally over a complex manifold X
of any dimension. Indeed, when N = 1, it is simply given as the Dolbeault
complex on X with values in g. For extended supersymmetry, we can also give
a geometric interpretation that thinks of them as objects living over a certain
graded space.

Let X be a complex manifold of dimension d. For any m ≥ 0, define the
graded space Xd|m to have graded sheaf of functions

O(Xd|m) = O(X)[ε1, . . . , εm] = O(X) ⊗ O(Cm[1]),

where εi are variables of cohomological degree −1. Note that we here treat
the odd directions as completely algebraic, and will persist in this convention.
Thus, for instance, when we write Ωp,q(Xd|m), we mean forms of type (p, q)
on X with values in the graded ring C[ε1, . . . , εm].

Another way of describing this operation is to say that we are forming
the trivial holomorphic bundle with fiber C

m over X, and then defining Xd|m

to be its parity shift. Of course, there are many other supermanifolds with
body X—we could, for example, consider the parity shift of an arbitrary holo-
morphic bundle—but this family are appropriate for our present purposes.
This is indicated by the fact that, after the holomorphic twist of the module
of chiral superfields in Sect. 2, all remaining fermions transformed as scalars
under the structure group.

3There is also a version of this for L∞-algebras, in which the structure maps are required
to be poly-differential operators.
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We can thus interpret the N-extended holomorphic currents as just con-
sisting of the Dolbeault complex with coefficients in g, but taken on the N-
extended space X2|N−1:

G•
N(X) = Ω0,•(X, g) ⊗C O(CN−1[1]) = Ω0,•(X2|N−1, g). (26)

For us, the Dolbeault complex Ω0,•(X2|N−1) is, by definition, the graded alge-
bra Ω0,•(X)⊗CO(CN−1[1]). We point out that elements of this graded algebra
are not the same as de Rham forms on a supermanifold (see [41], for example).

3.1.2. Holomorphic Vector Fields. Let TX be the holomorphic tangent bundle.
There is a natural resolution of this sheaf by vector bundles given by the
Dolbeault complex

X•
1(X) = Ω0,•(X,TX)

which is equipped with its natural ∂ operator. (The subscript 1 is to be consis-
tent with notation that we will introduce momentarily.) On a ∂-acyclic open
set, this resolution is quasi-isomorphic to holomorphic vector fields. The Lie
bracket of holomorphic vector fields extends naturally to X•

1(X) to give it the
structure of a sheaf of dg Lie algebras.

The differential and bracket on X•
1(X) are given by differential and bidif-

ferential operators, respectively. Thus, X•
1(X) defines a local Lie algebra on X.

As a sheaf of dg Lie algebras, X•
1(X) is equivalent to the sheaf of holomorphic

vector fields. However, the sheaf of holomorphic vector fields is not a local Lie
algebra since it is obviously not given as the C∞-sections of a vector bundle.
We will refer to X•

1(X) as the local Lie algebra of holomorphic vector fields
(and will omit the bullet for cohomological degree unless necessary).

Let us introduce an extended version of this dg Lie algebra. For A a
graded commutative algebra, we denote its graded Lie algebra of derivations
by Der(A).

Definition 3.2. The local Lie algebra of N-extended holomorphic vector fields
on a complex surface X is

X•
N(X) =

(
Ω0,•(X,TX) ⊗C A

)
��
(
Ω0,•(X) ⊗C Der(A)

)
where A = O(CN−1[1]) as above. (Note that N = 1 extended holomorphic
vector fields are just holomorphic vector fields again, since no fermions survive
the twist of the N = 1 algebra.)

The symbol �� here denotes a direct sum of dg vector spaces, but equipped
with a different Lie algebra structure. The desired dg Lie structure can be
described concretely as follows:

• the differential is ∂ on both summands in the above decomposition;
• the Lie bracket on Ω0,•(X,TX) ⊗C A is obtained from tensoring the or-

dinary Lie bracket on vector fields with the graded commutative product
on A. That is, if X ⊗ a and X ′ ⊗ a′ are sections, then the bracket is

[X ⊗ a,X ′ ⊗ a′] = [X,Y ] ⊗ aa′;
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• the Lie bracket on Ω0,•(X) ⊗C Der(A)) is obtained from tensoring the
graded commutative wedge product on differential forms with the Lie
bracket on derivations on A. That is, if ω ⊗ D and ω′ ⊗ D′ are sections,
then the bracket is

[ω ⊗ D,ω′ ⊗ D′] = (ω ∧ ω′) ⊗ [D,D′];

• the remaining brackets are through the Lie derivative of holomorphic
vector fields on X and the natural action of Der(A) on A:

[X ⊗ a, ω ⊗ D] = (LXω) ⊗ aD − (ω ∧ X) ⊗ (Da).

Just as in the case of the current algebras associated with a Lie algebra,
there is an interpretation of these local Lie algebras of vector fields as vector
fields living on a certain graded manifolds. If X is a complex manifold and
N ≥ 1, we have the graded manifold Xd|N−1. Its holomorphic tangent bundle
TXd|N−1 has as its space of sections Γ(Xd|N−1, TXd|N−1) which splits as a
vector space Γhol(X,TX)[ε1, . . . , εN−1]⊕Ohol(X)⊗Der(C[ε1, . . . , εN−1]). The
local Lie algebra XN is a resolution of this sheaf of holomorphic section, where
we only resolve by forms on the manifold and treat the odd directions as
algebraic.

Notation 3.3. When X = C
2, we will abbreviate the local Lie algebras GN(C2)

and XN(C2) by GN and XN, respectively.

3.2. Holomorphic Theories on Complex Surfaces

In this section, we introduce some classes of holomorphic field theories defined
on complex surfaces. We work inside of the BV formalism so that the space
of fields is equipped with a (−1)-shifted symplectic pairing, see [10,11,14] for
the requisite background. We recall how these theories arise as holomorphic
twists of N = 1, 2, 4 supersymmetric Yang–Mills theory in four dimensions in
the next section.

We start with the simplest holomorphic gauge theory, which is a holo-
morphic analog of a familiar topological theory.

Definition 3.4. Let h be a Z-graded Lie algebra4 and X a complex surface.
Holomorphic BF theory on X with values in h is the BV theory whose

fields are

A ∈ Ω0,•(X, h)[1]

B ∈ Ω2,•(X, h∨).

with action functional

S(A,B) =
∫

X

〈B ∧ FA〉h =
∫

X

〈B ∧ ∂A〉h +
1
2

∫
X

〈B ∧ [A,A]〉h

where 〈−,−〉h denotes the graded symmetric pairing between h and h∨.

4A similar definition applies for any L∞ algebra.
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If h is equipped with a graded skew-symmetric invariant pairing 〈−〉 and
X is equipped with a holomorphic volume form Ω, then there is a different
action we can write down

S(A) =
∫

X

Ω ∧ CS(A) =
1
2

∫
X

〈A ∧ ∂A〉 +
1
6

∫
X

〈A ∧ [A,A]〉

which only depends on the field A. We refer to this as holomorphic Chern–
Simons theory on X with values in h.

In all of these action functionals, the only term that survives the integra-
tion is the top class of Dolbeault type (2, 2). Even when X is not compact, one
should interpret these expressions as local functionals, or equivalence classes
of Lagrangian densities on X.
3.2.1

We now turn to field theories describing holomorphic analogs of matter
and linear σ-models.

Definition 3.5. Let V be a finite dimensional graded vector space and L a line
bundle on a complex surface X. The holomorphic βγ system on X, twisted by
L, with values in V, is the BV theory whose fields are

γ ∈ Ω0,•(X,L) ⊗ V

β ∈ Ω2,•(X,L∨) ⊗ V
∨[1]

with action functional

S(β, γ) =
∫

X

〈β ∧ ∂γ〉L⊗V.

Here, the braces 〈−,−〉L⊗V denote the graded symmetric pairing between sec-
tions of L ⊗ V and L∨ ⊗ V

∨ = (L ⊗ V)∨.

The graded vector space V may not be concentrated in a single degree,
as this example indicates.

Example 3.6. A typical example concerns the graded vector space V = V [ε] =
V [1] ⊕ V , where V is an ordinary vector space and ε is a formal parameter of
degree −1. In this case, we can use the Berezin integral to identify

V
∨ ∼= V ∨[ε][−1].

The pairing between V and V
∨ is

(v + εv′, φ + εφ′) �→
∫

C0|1
〈v + εv′, φ + εφ′〉V = 〈v, φ′〉 + 〈v′, φ〉

where 〈−,−〉V is the dual pairing between the ordinary vector spaces V and
V ∨.

Thus, for this particular V = V [ε] we can think of the βγ system twisted
by L as a theory on the graded manifold X2|1, where the fields are

γ ∈ Ω0,•(X2|1, L) ⊗ V

β ∈ Ω2,•(X2|1, L∨) ⊗ V ∨



560 I. Saberi, B. R. Williams Ann. Henri Poincaré

and the action is

S(β, γ) =
∫

X2|1
〈β ∧ ∂γ〉.

Example 3.7. We can further simplify a special case of this theory when we
have made an additional choice on the complex surface X. Suppose we choose
a square root of the canonical bundle on X. Since KX ⊗ K

− 1
2

X = K
1
2
X , the βγ

system twisted by L = K
1
2
X with values in V = V [ε] is equivalent to the theory

with complex of fields

ϕ = (γ, β) ∈ Ω0,•(X,K
1
2
X) ⊗ T ∗V ⊗ C[ε] = Ω0,•(X2|1,K

1
2
X) ⊗ T ∗V

where the action is

S(ϕ) =
∫

X2|1
〈ϕ ∧ ∂ϕ〉.

This example leads us to the following special case of a higher βγ system.

Definition 3.8. Let (U, ω) be a symplectic vector space and K
1
2
X a choice of a

square root of the canonical bundle on the complex surface X. The holomorphic
symplectic boson system on X with values in U is the BV theory whose fields
are

ϕ ∈ Ω0,•(X2|1,K
1
2
X) ⊗ U

which we write in components as ϕ = ϕ + εϕ′ ∈ Ω0,•(X,K
1
2
X) ⊗ U [ε]. The

action is

S(ϕ) =
1
2

∫
X2|1

ω(ϕ ∧ ∂ϕ) =
∫

X

ω(ϕ ∧ ∂ϕ′).

Remark 3.9. More generally, one can consider a σ-model of the form

X → T [−1]U

where (U, ω) is an arbitrary holomorphic symplectic manifold. After twisting by

K
1
2
X , the AKSZ construction endows the (derived) space of maps

Map(X,T [−1]U) form with a (−1)-shifted symplectic structure.

To write the theory in the notation of the βγ system, we simply take the
symplectic vector space Z = T ∗V .

It makes sense to “couple” holomorphic gauge theory to any of these
holomorphic theories. For example, if V is a graded h-module, then we can
consider the BV theory whose fields comprise of β, γ,B,A as above and whose
action is ∫

X

〈B ∧ FA〉h +
∫

X

〈β ∧ ∂γ〉L⊗V +
∫

X

〈β,A · γ〉L⊗V.

The first two terms are the actions of the original uncoupled theories and the
last term uses the h-module structure on V.
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3.3. Holomorphic Noether Currents

In the BV formalism, the space of local functionals Oloc is equipped with
the BRST operator which can be written as {S,−} with S the classical BV
action. Furthermore, the BV bracket {−,−} endows the cohomological shift
by one Oloc[−1] of the space of local functionals with the structure of a dg Lie
algebra. The first cohomology H1 of this dg Lie algebra encodes infinitesimal
deformations of the theory. The zeroth cohomology H0 encodes infinitesimal
automorphism. A symmetry by a Lie algebra g is given by a map of Lie algebras
I : g → Oloc[−1]. For X ∈ g, the local functional IX should be thought of as
a local version of the Noether current associated with the symmetry X. For
more on this perspective, we refer to [14, Chapters 10–12].

Consider holomorphic BF theory for the graded Lie algebra g[ε1, . . . , εN−1].
This theory has a symmetry by the Lie algebra XN of holomorphic vector fields
on X2|N−1 defined by the following Noether current

I(ξ) =
∫

X

〈B ∧ LξA〉. (27)

where Lξ denotes the Lie derivative by the graded vector field ξ ∈ XN.
It is immediate to check that ξ �→ I(ξ) defines a map of Lie algebras from

XN to the space of local functionals. This is equivalent to the following master
equation

dCEI + {S, I} +
1
2
{I, I} = 0

where dCE is the Chevalley–Eilenberg differential for holomorphic vector fields,
S is the classical action of BF theory, and {−,−} denotes the BV bracket.

Abstractly, the existence of this symmetry is manifest. Consider the case
N = 1, for simplicity. Holomorphic BF theory describes the formal moduli
space of holomorphic G-bundles on X near the trivial G-bundle. Deformations
of the ∂ operator on the trivial G-bundle are of the form ∂ + A, where A is
some Ω0,1(X) form satisfying the Maurer–Cartan equation ∂A + 1

2 [A,A] = 0.
We can also consider deformations of the complex structure which modifies
the ∂-operator to ∂ + μ with μ ∈ Ω0,1(X,TX) satisfying the Maurer–Cartan
equation ∂μ + 1

2 [μ, μ] = 0. The space of infinitesimal automorphisms of such
a deformation is holomorphic vector fields on X.

For the βγ system valued in V = V [ε1, . . . , εn], there is a similar formula
for the symmetry by N-extended holomorphic vector fields. Next, suppose that
V is a g-representation. Then, the N-extended holomorphic current algebra GN

is also a symmetry with local Noether currents defined by

I(α) =
∫

〈β ∧ (α · γ)〉. (28)

There is a similar formula for a current algebra symmetry on theory of the
holomorphic symplectic boson.



562 I. Saberi, B. R. Williams Ann. Henri Poincaré

4. Derived Symmetry Enhancement

In this section, we reach the main conceptual leap of this work. We show that
upon performing the holomorphic twist of a four-dimensional supersymmetric
gauge theory there is a significant enhancement of symmetries. We focus on
two classes of symmetries present in the (untwisted) supersymmetric theory:
global (flavor) symmetries and superconformal symmetries. Global symmetries
are described by a finite dimensional Lie group. Further, in Sect. 2 we have
recalled the finite dimensional algebras describing superconformal symmetries.
In both cases, we find an enhancement of symmetries to infinite dimensional
Lie algebras which are of a similar spirit to affine and Virasoro algebras in
chiral CFT.

4.1. A Catalog of Results About Twisting

We summarize the characterization of the holomorphic twists of four-dimensional
supersymmetric Yang–Mills theories, see [11,21] for a formulation of these re-
sults in a manner which is closest to our setup.

Recall, the (complexified) supertranslation algebra in four dimensions is
the Z/2-graded Lie algebra

tN = C
4 ⊕ Π(S+ ⊗ C

N ⊕ S− ⊗ C
N)

where C
4 is the complexified abelian Lie algebra of translations, and S± are

the positive/negative spin representations of so(4). There is a nontrivial Lie
bracket determined by Clifford multiplication

Γ : S+ ⊗ S− → C
4.

For more details on supersymmetry algebras, we recommend [18] or [20, §3.1].
In Sect. 2.2, we introduced the notion of a holomorphic supercharge. This

is an odd square-zero element Q ∈ tN such that the image of [Q,−] (which lies
in C

4) is of rank two. From this data, one defines the holomorphically twisted
theory as in [11, §15]. It was observed in [11,20] that such a supercharge always
exists in four dimensions, and any two choices of a holomorphic supercharge
give rise to equivalent theories up to conjugation.

We summarize the results of twisting with respect a holomorphic super-
charge, starting with N = 1 supersymmetry.

Proposition 4.1. (Well known; for various treatments, see [11,12,21,33,44])
The holomorphic twist of N = 1 super-Yang–Mills with values in an ordinary
Lie algebra g coupled to the chiral multiplet with values in a representation
V is equivalent to the coupled holomorphic BF -βγ system where h = g and
V = V .

Next, we move on to N = 2 supersymmetry.

Proposition 4.2. [11,21] The holomorphic twist of N = 2 super-Yang–Mills
with values in an ordinary Lie algebra g coupled to the hypermultiplet with
values in a symplectic representation V is equivalent to holomorphic BF theory
with values in h = g[ε] coupled to the holomorphic symplectic boson with values
in T ∗V .
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Remark 4.3. On affine space X = C
2, the canonical bundle is trivial so the

theory of the holomorphic symplectic boson with values in the symplectic
vector space V is equivalent to the βγ system with values in W where W is
any subspace satisfying V = T ∗W . Thus, the holomorphic twist of the N = 2
hypermultiplet on C

2 is equivalent to a particular βγ system on C
2.

Remark 4.4. This is a general remark about a convention that we are taking
for the holomorphic twist of N = 2. As explained in [11,21], part of the data
one needs to twist a field theory is that of a twisting homomorphism. This is
a group homomorphism

ρ : C
× → GR

where GR is the R-symmetry group, with the property that the weight of the
twisting supercharge Q under ρ is +1. For N = 2, the R-symmetry group
is GL2(C), so there are different choices for ρ one can make given a fixed
supercharge. Recall, the odd part of the supertranslation algebra for N = 2 is
of the form

S+ ⊗ C
2 ⊕ S− ⊗ C

2

where S± are the positive and negative irreducible spin representations of
so(4, C). The holomorphic twist corresponds to choosing a Q of the form

Q = q ⊗
[
1
0

]
∈ S+ ⊗ C

2.

Up to conjugation, there are two choices for ρ for which such a Q has weight
+1. They are

ρ1(t) =
[
t 0
0 t

]
and ρ2(t) =

[
t 0
0 t−1

]

Both ρ1 and ρ2 lead to holomorphic theories, but they differ in their respective
presentations as a BV theory.

One can show that ρ1 leads to the description of twisted N = 2 su-
persymmetry that we present here. The choice of ρ2 leads to a very similar
holomorphic theory, with the only difference that the cohomological degree of
ε is +1, instead of the −1 that we use.

Finally, we finish with the result of the holomorphic twist of maximal
supersymmetry.

Proposition 4.5. [3,11,17,21] The holomorphic twist of N = 4 super-Yang–
Mills with values in an ordinary Lie algebra g is equivalent to holomorphic
BF theory with values in g[ε1, ε2]. When g is equipped with a nondegener-
ate symmetric invariant pairing (for instance, if g is semi-simple), it admits
an equivalent description as holomorphic Chern–Simons theory with values
in g[ε1, ε2, ε3].
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The isomorphism between holomorphic Chern–Simons for the graded Lie
algebra g[ε1, ε2, ε3] and holomorphic BF theory for the graded Lie algebra
g[ε1, ε2] can be seen as follows. Holomorphic Chern–Simons on C

2|3 has fields

A ∈ Ω0,•(C2, g[ε1, ε2, ε3]).

Recall, in order to construct holomorphic Chern–Simons theory we need a
graded skew-symmetric invariant pairing on the Lie algebra and a holomorphic
volume form on the complex surface. For the graded Lie algebra g[ε1, ε2, ε3],
the invariant pairing is defined by

(X1,X2) �→
∫

C0|3
d3ε 〈X1,X2〉

for X1,X2 ∈ g[ε1, ε2, ε3], where 〈−〉 is the symmetric pairing on g. On the
complex surface C

2 we choose the holomorphic volume form d2z = dz1dz2.
With these choices, the action of holomorphic Chern–Simons theory on the
odd Calabi–Yau space C

2|3 can be written as∫
C2|3

d2z d3ε

(
〈A ∧ ∂A〉 +

1
6
〈(A ∧ [A,A])〉

)
.

The invariant pairing identifies g with g∗. Thus, we can write the fields
of holomorphic BF theory as

(A,B) ∈ Ω0,•(C2, g[ε1, ε2])[1] ⊕ Ω2,•(C2, g[ε1, ε2])

A + δB ∼= Ω0,•(C2, g[ε1, ε2])[1][δ]

where δ is a parameter of degree one. The correspondence between fields of
holomorphic Chern–Simons and BF theory can be realized by ε1 ↔ ε1, ε2 ↔ ε2,
and ε3 ↔ δ.

4.2. Holomorphic Symmetry Enhancement

There are two type of symmetries of supersymmetric theories that we focus on.
The first is a global (or flavor) symmetry by a Lie algebra g. For instance, any
supersymmetric theory of matter in some g-representation has such a symme-
try. The other is superconformal symmetry, which makes sense in N = 1, 2 or
4 supersymmetry. In this section, we see how the twists of the supersymmetric
theories we have just cataloged have enhanced symmetries by enlargements of
the (twists) of a global g symmetries and a superconformal symmetry.

For instance, if a classical supersymmetric theory has a classical global
symmetry by a Lie algebra g, then the holomorphically twisted theory has a
symmetry by the local Lie algebra GN. Likewise, the superconformal algebra
gets enhanced to a symmetry by the Lie algebra of (graded) holomorphic vector
fields XN.

The precise statement for N = 1 is the following.

Proposition 4.6. Suppose we start with a theory on R
4 with N = 1 supersym-

metry and a classical global symmetry by a Lie algebra g which commutes
with the supersymmetry algebra. Then, for any holomorphic supercharge Q,
the twisted theory has a classical symmetry by the following local Lie algebras:
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• holomorphic g-currents: G1 = Ω0,•(C2, g);
• holomorphic vector fields: X1 = Ω0,•(C2, TC

2).

Proof. By Proposition 4.1, the twist of a general N = 1 theory is equal to
holomorphic BF theory coupled to a holomorphic βγ system. Since the global
g symmetry commutes with Q, it follows that g is a symmetry of the twisted
theory. In particular, the action of g commutes with ∂ and hence extends to
an action by the local Lie algebra Ω0,•(C2, g) in such a way that the original
global symmetry by the Lie algebra g is compatible with the embedding g ↪→
Ω0,•(C2, g) by the constant functions. We wrote the explicit local Noether
current for G1 in Eq. (28), in the case N = 1.

For the second part, we recall that local Lie algebra of holomorphic vector
fields X1 acts on the fields of the BF − βγ system by Lie derivative. The local
Noether current for X1 was constructed in Eq. (27), in the case N = 1. �

There is an anomaly to quantizing the G1 symmetry, see [27], and an
anomaly to quantizing the X1 symmetry, see [48].

The statement for N = 2 is similar.

Proposition 4.7. Suppose is a theory on R
4 with N = 2 supersymmetry and

a classical global symmetry by a Lie algebra g which commutes with the su-
persymmetry algebra. Then, for any holomorphic supercharge Q, the twisted
theory has a classical symmetry by the following local Lie algebras:

• holomorphic g-currents on C
2|1: G2 = Ω0,•(C2, g[ε]);

• holomorphic vector fields on C
2|1: X2.

Proof. By Proposition 4.2, the holomorphic twist is equivalent to holomorphic
BF theory for the Lie algebra g[ε] coupled to the holomorphic symplectic boson
valued in a symplectic vector space (U, ωU ). We wrote the explicit local Noether
current for G2 in Eq. (28), in the case N = 2 (this used a description in terms
of the βγ system).

For the second part, we observe that holomorphic vector fields X2 act on
the fields of the BF theory and the symplectic boson by Lie derivative. The
local Noether current for X1 was constructed in Eq. (27), in the case N = 2.

�

There is no anomaly to quantizing the symmetry by G2. We will see that
there is an anomaly to quantizing the symmetry by X2 in Sect. 7. We leave a
full characterization of the anomaly to future work.

The case N = 4 is slightly more subtle due to the two equivalent descrip-
tions we just discussed. Firstly, we ignore any global (flavor) symmetries and
focus just on symmetries by graded holomorphic vector fields. On the one hand,
the holomorphic twist of N = 4 can be described by holomorphic BF theory for
the Lie algebra g[ε1, ε2]. On the other hand, after choosing a holomorphic vol-
ume form on C

2 it admits a description as holomorphic Chern–Simons theory
for the Lie algebra g[ε1, ε2, ε3].

The presentation in terms of holomorphic BF theory endows the theory
with a similar symmetry as in the N = 1, 2 cases above. The holomorphic twist
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of N = 1, 2, 4 pure gauge theory is BF theory valued in a Lie algebra with one,
two, or three parameters which admits a symmetry by X1,X2,X3, respectively.
On the other hand, holomorphic Chern–Simons theory has a larger symmetry
algebra.

Consider C
2|3 equipped with its odd holomorphic volume form d2zd3ε.

The action of holomorphic Chern–Simons theory is only invariant under graded
vector fields which preserve this odd holomorphic volume form:{

ξ ∈ Vecthol(C2|3) | Lξ(d2zd3ε) = 0
}

.

Just as with all sheaves of holomorphic vector fields, this is not a local Lie
algebra. To present it as a local Lie algebra, we resolve the conditions that the
vector be holomorphic and (super) divergence-free. We have constructed X4

as the local Lie algebra which resolves the sheaf of holomorphic vector fields
on C

2|3.

Definition 4.8. Let Xdiv
4 be the following local Lie algebra on C

2. As a bundle
of cochain complexes, it is

0 1

X4 Ω0,•(C2|3)∂

where

∂ =
∑

i=1,2

∂

∂zi

∂

∂(∂zi
)

−
∑

a=1,2,3

∂

∂εa

∂

∂(∂εa
)

is the super-divergence operator. The Lie bracket extends the bracket on X4

by declaring that graded vector fields act on Ω0,•(C2|3) by Lie derivative.

Proposition 4.9. Consider N = 4 supersymmetric Yang–Mills theory on R
4.

For any holomorphic supercharge Q, the twisted theory has a classical symme-
try by the local Lie algebra Xdiv

4 of super-divergence-free holomorphic vector
fields on C

2|3.

Proof. By Proposition 4.5, the twist of N = 4 super-Yang–Mills theory with
gauge algebra g is given by the holomorphic Chern–Simons theory whose fields
are

A ∈ (Ω0,•(C2, g)[ε1, ε2, ε3]
) ∼= Ω0,•(C2|3, g), (29)

The action of Xdiv
4 is the obvious geometric one by graded Lie derivative. The

local Noether current for Xdiv
4 is

1
2

∫
C2|3

d2zd3ε 〈ALξA〉

where ξ ∈ X4. �
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From this symmetry by Xdiv
4 , we can restrict to a symmetry by the smaller

local Lie algebra X3 which most obviously acts on the description in terms of
holomorphic BF theory. Indeed, there is an embedding of local Lie algebras

X3 ↪→ Xdiv
4

defined by

ζ �→ ζ + (∂ζ)ε3
∂

∂ε3
.

In this expression, ζ is a graded vector field on C
2|2 and ∂ denotes the graded

divergence operator on this space. The graded vector field on the right-hand
side is automatically graded divergence-free.
Remark 4.10. We expect the algebra Xdiv

4 to play a role for other holomor-
phic twists of theories with N = 4 supersymmetry. However, these all contain
gravitational multiplets. We restrict our considerations in this work to theories
with rigid supersymmetry, deferring consideration of holomorphically twisted
supergravity to future work.

5. Factorization Algebras and Holomorphic Symmetries

One of the central ideas of [13,14] is that the observables of a quantum field
theory form a factorization algebra. In essence, the structure maps of a fac-
torization algebra generalize the notion of the “operator product expansion.”
For instance, in complex dimension one, holomorphic factorization algebras re-
cover the notion of a vertex algebra [13, §5]. Likewise, there is a precise sense
in which the symmetry algebra of a theory also forms a factorization algebra.
So far, we have described symmetries using (sheaves of) Lie algebras. The
associated factorization algebra is called the enveloping factorization algebra;
see below for a recollection.

There is a sense in which one can “twist,” or deform, an enveloping
factorization algebra.5 For quantum phenomena, it is necessary to take these
twists into account. Like central extensions of Lie algebras, local cocycles of
a local Lie algebra parameterize such twists. We will be most concerned with
cocycles of degree +1, as these correspond to ordinary central extensions at
the level of Lie algebras or vertex algebras that we get back to in the later
sections. We characterize certain local cocycles in the local Lie algebras GN

and XN introduced in the last section.

5.1. Enveloping Factorization Algebras

The local cohomology of a local Lie algebra L is version of Lie algebra co-
homology where the cochains are required to satisfy a locality axiom. Such a
local cochain is a functional L⊗k → C which must be given as the integral of
a Lagrangian density involving differential operators applied to the sections of
L. We denote by C•

loc(L) the local Chevalley–Eilenberg cochain complex which
computes local Lie algebra cohomology. For a precise definition see [13, §3.4].

5We are not referring to a twist by a supercharge.
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The (twisted) enveloping factorization algebra is defined from the follow-
ing two pieces of data:

• a local Lie algebra L, and
• a local cocycle φ ∈ C•

loc(L) of cohomological degree +1.

The value of the enveloping factorization algebra on an open set U asso-
ciated with this data is defined as a deformation of the Chevalley–Eilenberg
cochain complex computing Lie algebra homology of Lc(U):

C•(Lc(U)) = (Sym (Lc(U)[1]) ,dCE + φ) .

We denote the enveloping factorization algebra by Uφ(L). For more detailed
definition, we refer to [13, §6.3]. This construction is simultaneously a gener-
alization of the enveloping algebra of a Lie algebra and the chiral enveloping
algebra of a Lie� algebra as in [6].

There is a very natural reason for considering central extensions in the
context of field theory. Local Lie algebras, such as GN and XN, exist as classical
symmetries of a field theory, as we saw above in the twists of four-dimensional
N = 1, 2, 4. A natural question is whether or not these symmetries persist
at the quantum level. In general, there are two possible scenarios. The first
scenario occurs when there is an internal anomaly present in the symmetry.
This can arise when the local Lie algebra acts on some interacting field theory
(such as a gauge theory). In order for the symmetry to exist at the quantum
level, it must be the case that all internal anomalies vanish. Second, even if
internal anomalies vanish, it may be the case that the symmetry algebra only
acts projectively. This means that while the original algebra does not act at
the quantum level, a central extension does.

We remark that in field theory all anomalies and central extensions that
we study are local. So it is necessary to characterize the local cohomology of
the local Lie algebras which act as symmetries.

5.2. Extensions in Complex Dimension One

As a warm-up, we review the types of central extension present for local Lie
algebras on Riemann surfaces. For any Riemann surface Σ, and Lie algebra g,
we have the current algebra

G2d = Ω0,•(Σ, g)

as introduced in Sect. 3. Given an invariant pairing κ ∈ Sym2(g∗)g, one obtains
a local cocycle φ1(κ) ∈ C•

loc(G2d) of degree +1 defined by

φKM(κ) : (α, β) �→ 1
2πi

∫
Σ

κ(α∂β).

It is shown in [13, §5.4, Theorem 5.4.2] that the vertex algebra corresponding to
the twisted factorization enveloping algebra Uφ1(κ)(G2d) on Σ = C is equivalent
to the Kac–Moody vertex algebra at level κ. The global sections of the twisted
factorization enveloping algebra over a general surface Σ recover the conformal
blocks of the affine Kac–Moody algebra.
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For vector fields, one proceeds similarly. Look at the local Lie algebra

X2d = Ω0,•(Σ, TΣ)

where TΣ is the holomorphic tangent bundle. Up to scale, there is one nontrivial
cocycle of degree +1:

H1
loc(X2d) ∼= C

generated by the cocycle ψVir ∈ C•
loc(X2d) defined by the formula

ψVir :
(

α(z)
∂

∂z
, β(z)

∂

∂z

)
�→ 1

24
1

2πi

∫
Σ

∂zα(z)∂(∂zβ(z)). (30)

It is shown in [46] that the vertex algebra corresponding to the twisted fac-
torization enveloping algebra UcψVir(X2d) is equivalent to the Virasoro vertex
algebra of central charge c. The global sections of the twisted factorization
enveloping algebra over a general surface Σ recover the conformal blocks of
the Virasoro algebra.

5.3. Extensions of Kac–Moody Type

We turn our attention to factorization algebras associated with the local dg
Lie algebra GN on a complex surface X introduced in Sect. 3.

5.3.1. The Case N = 1. We have G1 = Ω0,•(X, g). Twisted enveloping al-
gebras in this case have been studied in [27]. It is shown that any invariant
polynomial of degree three θ ∈ Sym3(g∗)g gives rise the local cocycle

(α0, α1, α2) �→ 1
(2πi)2

∫
X

θ(α1∂α2∂α3)

on G1.

Definition 5.1. The (N = 1) higher Kac–Moody factorization algebra on X is
the twisted factorization enveloping algebra Uθ (G1) .

In [27] it is shown that on X = C
2\0 the twisted factorization enveloping

algebra gives rise to the two-variable Kac–Moody algebra [22].

5.3.2. The Case N = 2. Let’s move on to the case N = 2, so we are looking
at Dolbeault forms valued in the graded Lie algebra g[ε], where ε is of degree
−1. As above, we write α+εα′ ∈ Ω0,•(X, g[ε]) where α, α′ are Dolbeault forms
with no ε-dependence.

Lemma 5.2. Let ω ∈ Ω1,hol(X) be a ∂-closed holomorphic one-form. There are
maps of cochain complexes

φ
(2)
ω : Sym2(g∗)g[−1] → C•

loc (G2)

κ �→
(

(α, εα′) �→ 1
(2πi)2

∫
κ(α ∧ ∂α′) ∧ ω

)
(31)

and
φ(3) : Sym3(g∗)g[−1] → C•

loc (G2)

θ �→
(

(α0, α1, α2) �→ 1
(2πi)2

∫
θ(α0 ∧ ∂α1 ∧ ∂α2)

)
.
(32)
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Proof. The result for φ(3) follows from the result for N = 1 in [27]. So, all we
need to check is that for each κ ∈ Sym2(g∗)g that dφ

(2)
ω (κ) = 0 where d is the

differential on the local Chevalley–Eilenberg complex. This differential splits
into two parts d = ∂ + dCE where ∂ is the usual ∂-operator on X extended to
functionals in the natural way, and dCE encodes the Lie bracket on g[ε]. The
term dCEφ

(2)
ω (κ) vanishes since κ is invariant. The term ∂φ

(2)
ω (κ) vanishes by

the following:

(∂φ(2)
ω (κ))(α, εα′) =

1
(2πi)2

∫
X

∂ (κ(α ∧ ∂α′)) ∧ ω

=
1

(2πi)2

∫
X

∂ (κ(α ∧ ∂α′) ∧ ω)

=
1

(2πi)2

∫
X

ddR (κ(α ∧ ∂α′) ∧ ω)

= 0.

In the second line, we used the fact that ω is holomorphic. In the third line,
we have used the fact that ∂ω = 0. �

Remark 5.3. One can write these local cocycles as an integrals over superspace
C

2|1. For instance, φ
(2)
ω (κ) can be written as

1
(2πi)2

∫
C2|1

κ(α ∧ ∂β) ∧ ω.

where α = α + εα′ ∈ G2 = Ω0,•(C2|1, g).

We arrive at the following definition.

Definition 5.4. Fix a ∂-closed holomorphic one-form ω on X and invariant
polynomials κ, θ on g of degree 2, 3, respectively. The N = 2 higher Kac–Moody
factorization algebra on X is the twisted factorization enveloping algebra

Uω,κ,θ (G2) .

In Theorem 1.1, we parameterized this factorization algebra on C
2 with

respect to a single “level” κ. In this notation, this corresponds to taking ω =
dz2.

5.4. Extensions of Virasoro Type

We now describe some local cocycles of the local Lie algebra of (possibly
graded) holomorphic vector fields on a complex manifold.

5.4.1. Holomorphic Vector Fields. Recall that X(X), introduced in Sect. 3.1.2,
is the local dg Lie algebra given by the Dolbeault resolution of holomorphic
vector fields on X. The local cohomology was computed in [48].
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Theorem 5.5. [48, §4.5] There is an isomorphism of graded vector spaces

H•
loc(X(X)) ∼= H•

dR(X) ⊗ H•
GF (w2)[4].

Here, w2 is the Lie algebra of formal vector fields on the formal 2-disk, and
H•

GF (w2) is its (reduced) Gelfand–Fuks cohomology.

In particular, this result implies that on X = C
2, the local cohomology

of X(C2) is isomorphic to a shift of the Gelfand–Fuks cohomology of the Lie
algebra of formal vector fields w2.

Remark 5.6. For any graded vector bundle E, there is an embedding of local
functionals inside of all functionals Oloc(E ) ↪→ Ored(E ). This translates to an
embedding of sheaves of cochain complexes C∗

loc(L) ↪→ C∗
red(Lc) for any local

Lie algebra L. In the case of vector fields, there is a related cochain com-
plex that has been studied extensively in the context of characteristic classes
of foliations [8,24,25,38], and more recently in [28]. Suppose, for simplicity,
that X is a compact manifold. The (reduced) diagonal cochain complex is the
subcomplex

C•
Δ,red(X(X)) ⊂ C•

red(X(X))

consisting of cochains ϕ : X(X)⊗k → C satisfying ϕ(X1, . . . , Xk) = 0 if⋂k
i=1 Supp(Xi) = ∅. That is, the cocycle vanishes unless all of the supports

of the inputs overlap nontrivially. The inclusion of the local cochain complex
C∗

loc(X(X)) ⊂ C∗
red(X(X)) factors through this subcomplex to give a sequence

of inclusions

C•
loc(X(X)) ↪→ C•

Δ,red(X(X)) ↪→ C•
red(X(X)).

The theorem implies that local cohomology classes on any complex man-
ifold are characterized by a pair of a de Rham cohomology class on X together
with a Gelfand–Fuks class. On C

2, there is an explicit formula for generating
local cocycles of this cohomology. If ξ is a holomorphic vector field on C

2, its
Jacobian is the function valued 2 × 2 matrix whose ij entry is ∂zi

ξj(z), where
ξi(z) is the ith component of the vector field ξ. Similarly, if

ξ = ξ1(z, z)
∂

∂z1
+ ξ2(z, z)

∂

∂z2
∈ X(C2)

is a Dolbeault valued vector field, then its Jacobian Jξ is the 2 × 2 Dolbeault
valued matrix whose ij entry is

L∂zi
ξj ∈ Ω0,•(C2).

In degree one, the local cohomology of holomorphic vector fields on C
2

is two-dimensional

H1
loc(X(C2)) ∼= H3

GF (w2) ∼= C〈[K1], [K2]〉,
spanned by the cocycles K1,K2 which have the following explicit descriptions:

K1(ξ) =
∫

C2
Tr(Jξ) ∧ Tr(∂Jξ) ∧ Tr(∂Jξ)



572 I. Saberi, B. R. Williams Ann. Henri Poincaré

K2(ξ) =
∫

C2
Tr(Jξ) ∧ Tr(∂Jξ ∧ ∂Jξ) −

∫
C2

Tr(Jξ ∧ Jξ) ∧ Tr(∂Jξ).

These two cocycles are the holomorphic analogs of the so-called a and c
cocycles which describe conformal anomalies for theories on R

4 [48].

5.4.2. Graded Vector Fields. Next, we turn to local cohomology classes for
the local Lie algebra X(X2|N−1), which in Sect. 3 we understood as the local
dg Lie algebra of holomorphic vector fields on the graded manifold X2|N−1.
The graded generalization of Theorem 5.5 is:

Theorem 5.7. Let X be a complex manifold of dimension 2 and suppose N ≥ 1
is an integer. There is an isomorphism of graded vector spaces

H•
loc(X(X2|k)) ∼= H•

dR(X) ⊗ H•
GF,red(w2|N−1)[4].

where w2|N−1 is the graded Lie algebra of formal vector fields on the formal
graded 2|N − 1-disk

w2|N−1 = Der (C[[z1, z2, ε1, . . . , εN−1]]) .

Here, εi have cohomological degree −1.

We will not prove, or explicitly use, this result. We postpone its proof to
future work.

Just as in the nongraded cases, the local cohomology of graded holomor-
phic vector fields is whittled down to an understanding of the Gelfand–Fuks
cohomology of the corresponding graded Lie algebra of formal vector fields.

• We do not know of a computation of the full cohomology of w2|1. The exis-
tence of the cocycle we introduce in Definition 5.8 implies dim H5

GF (w2|1)
≥ 1. The claim that it represents a nontrivial class follows from the fact
that it localizes to the ordinary Virasoro cocycle, see Sect. 6.

• When N = 3 a result of [1] implies H•
GF (w2|2) = H•−4

dR (U(2)).
• For N ≥ 4 one has H•

GF (w2|N−1) ∼= H•
dR(S5) by [1].

• There is a completely similar version of this theorem in complex dimen-
sion one. It is shown in [1] that H•(w1|N−1) ∼= H•

dR(S3) for all N ≥ 1.
This agrees with the well-known fact [34] that up to scale there is a unique
central extension of vector fields on the graded punctured disk giving rise
to the super-Virasoro Lie algebras.
We will only be concerned with the case N = 2 from hereon. In fact,

there is just one class of cocycles we need to pay attention to. A complete
characterization like in the case of N = 1 will be the subject of future work.

The definition is the following.

Definition 5.8. For i = 1, 2, define the local cocycle ψi ∈ C•
loc(X2) by the

formula

ψi (ξ, εξ′) =
1

(2πi)2

∫
tr(Jξ) ∧ ∂tr(Jξ′) ∧ dzi

where ξ, ξ′ ∈ Ω0,•(C2, T 1,0) are Dolbeault valued vector fields on C
2. The

cochain ψi is independent of odd vector fields of the form f(z1, z2, ε) ∂
∂ε .
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The verification that ψi is a cocycle is a direct calculation similar to the
Kac–Moody case above, and the details are left to the reader. We remark
that as ψi is a cocycle, we can then form the twisted factorization enveloping
algebra.

Definition 5.9. The N = 2 higher Virasoro factorization algebra on C
2 is the

twisted factorization enveloping algebra

Uc1ψ1+c2ψ2 (X2) .

where c1, c2 ∈ C.

In Theorem 1.1, we parameterized this algebra with respect to a single
“central charge” c ∈ C. In this notation, this is c = c1.

6. Superconformal Localization and Holomorphic Factorization
Algebras

In this section, we study instances of deformations of the higher dimensional
holomorphic factorization algebras introduced in Sect. 4. These deformation
arise from a class of Maurer–Cartan elements of XN (N = 1, 2, 4) which, in
turn, define deformations of the Lie algebra of holomorphic currents, holomor-
phic vector fields, and holomorphic field theories such as those arising from
twists of supersymmetry. The algebra XN is the Dolbeault resolution of some
graded extension of holomorphic vector fields; for any N there is a familiar class
of Maurer–Cartan elements describing deformations of complex structure on
the underlying complex manifold X. We focus mostly on the case N = 2 and
deformations that are not of this type.6

One such deformation, which in the untwisted superconformal algebra
arises from a special supersymmetry, is given by the holomorphic vector field

z2
∂

∂ε
∈ X2(C2). (33)

This is the supercharge considered by Beem et al. [5]; we will show in this
section that the chiral algebras they consider agree precisely with the corre-
sponding truncations of our higher symmetry algebras.

In Definition 5.4, we have defined a factorization algebra on X = C
2 for

any choice of a closed holomorphic one-form on C
2 and invariant polynomials

κ, θ of degree 2, 3 on g. We fix such polynomials once and for all and also
consider the holomorphic one-form dz2. For any k4d ∈ C, we have an associated
twisted enveloping factorization algebra Udz2,k4dκ,θ(G2) on C

2. Here, k4d is the
four-dimensional avatar of the level, and it simply scales the fixed symmetric
bilinear form κ.

In Sect. 6.2, we will see how the Maurer–Cartan element (33) determines
a deformation of this enveloping factorization algebra to a factorization algebra
that we will denote by Fk4d

(g).

6Tautologically, any Maurer–Cartan element describes a deformation of the complex struc-
ture on the graded complex manifold X2|1, however.
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Theorem 6.1. The factorization algebra Fk4d
(g) is trivial away from {z2 =

0} ↪→ C
2. The localized factorization algebra Fk4d

(g)|Cz1
is holomorphic, and

its associated vertex algebra is isomorphic to the Kac–Moody vertex algebra of
level −k4d

2 .

We point out that the dependence on the cubic polynomial θ has com-
pletely disappeared upon deforming by (33). The point is that the local cocycle
(32) determined by θ is rendered homotopically trivial upon performing this
deformation.

The result for the Virasoro algebra is similar in spirit. We consider the
deformation Fc4d

of the N = 2 Virasoro factorization algebra on C
2 associated

with the cocycle c4dψ2 (see notation from Sect. 5.4 by the Maurer–Cartan
element z2∂ε).

Theorem 6.2. The factorization algebra Fc4d
is trivial away from {z2 = 0} ↪→

C
2. The localized factorization algebra Fc4d

|Cz1
is holomorphic, and its asso-

ciated vertex algebra is isomorphic to the Virasoro vertex algebra of central
charge −12c4d.

This localization phenomena can also be used to see the conformal blocks
of the Kac–Moody and Virasoro vertex algebras. In terms of factorization
algebras, this amounts to studying the factorization algebras not on affine
space C

2 but on the complex surface Σz1 × Cz2 where Σz1 is some arbitrary
genus Riemann surface. The results we have stated go through without much
more difficulty to show that these factorization algebras localize to the Kac–
Moody and Virasoro factorization algebras on Σz1 . The global sections, or
factorization homology, along Σ1 recover the conformal blocks of the respective
vertex algebras.

We remark that there are new classes of deformations available from the
point of view of factorization algebras that did not exist in the symmetry
algebras of untwisted N = 2 supersymmetric field theories. For instance, as
a generalization of the above example, for any holomorphic polynomial f ∈
C[z1, z2], one can consider the graded vector field

f(z1, z2)
∂

∂ε
∈ X2(C2). (34)

This is a Maurer–Cartan element in the dg Lie algebra X2(C2) and hence
determines a deformation (at least at the classical level) of any holomorphic
twist of a four-dimensional N = 2 theory. While we do not consider these new
deformations explicitly in great detail here, we will offer some remarks on them
in Sect. 6.4.

6.1. Localization for Factorization Algebras

Suppose X ↪→ Y is a closed embedding. A factorization algebra on a manifold
Y can be restricted to any open subset. We say a factorization algebra on Y is
trivial away from X if F|Y \X is equivalent to the trivial factorization algebra
which takes value C on every open subset. One can think of the factorization
algebra F as being “localized” along the submanifold X.
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We will define an explicit model for such a factorization algebra on Y as
a factorization algebra on the closed submanifold X. Of course, factorization
algebras do not “restrict” to closed submanifolds in a naive sense. To define the
localized factorization algebra on the closed submanifold X, we will utilize a
tubular neighborhood. Let NX → X be the normal bundle. For concreteness,
we restrict to the case Y = R

n and will fix a neighborhood of the zero section
in NX which is diffeomorphic to a tubular neighborhood Tub(X) of X in R

n.

Definition 6.3. Suppose X ↪→ R
n is a closed submanifold with tubular neigh-

borhood π : Tub(X) → X. The restriction of a (pre)factorization algebra F on
R

n to X is the (pre)factorization algebra

F|X = π∗
(
F|Tub(X)

)

on X.

In the case that F is trivial away from X ⊂ R
n, we say that F localizes

to the factorization algebra F|X .

Remark 6.4. Generally, the notion of restriction will depend on the choice of a
tubular neighborhood. When the factorization algebra localizes the restriction
is independent of this choice. Since we only consider the restriction of factor-
ization algebras which localize to a closed submanifold we set aside the issue
of dependence on the tubular neighborhood.

6.2. A Deformation of the Current Algebra

We focus on the case N = 2, but similar constructions work for any N ≥ 2. We
deform the holomorphic current algebra G = G2 = Ω0,•(C2, C[ε]) by modifying
the differential using the Maurer–Cartan element z2

∂
∂ε . Define the local Lie

algebra on C
2:

G′ =
(

Ω0,•(C2, g[ε]), ∂ + z2
∂

∂ε

)
. (35)

Leaving the internal ∂ differential implicit, we can view this deformation as a
two-term complex

−1 0

ε Ω0,•(C2, g) Ω0,•(C2, g)
z2

∂
∂ε

(36)

The Lie bracket remains unmodified, identical to that on Gg[ε]. This deforma-
tion is clearly given by a differential operator on C

2, and hence this deformation
remains a local Lie algebra on C

2.
At the level of sheaves, the two-term complex (36) is a Dolbeault resolved

version of the usual Koszul resolution of the pushforward of the structure sheaf
OCz1

along the map i : Cz1 ↪→ C
2 which is the embedding of Cz1 at z2 = 0:( −1 0

ε O(C2) ⊗ g
z2

∂
∂ε−−−→ O(C2) ⊗ g

)
�−→ i∗O(Cz1) ⊗ g (37)
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The quasi-isomorphism is the restriction map that takes a holomorphic func-
tion on C

2 to its restriction along Cz1 ; an explicit quasi-inverse is given, for
example, by pulling back a holomorphic function on Cz1 along the obvious
projection map π : C

2 → Cz1 and placing the result in degree zero.
As with any local Lie algebra, we can consider both its sheaf of sections

G′ and its cosheaf of compactly supported sections G′
c. Just as in the case of the

sheaf of sections, in cohomology there is an isomorphism of graded cosheaves
on C

2:

H∗ (G′
c) ∼= i∗H∗ (Ω0,•

c (Cz1 , g)
)
. (38)

This statement for cosheaves follows formally from the result about sheaves,
but only at the level of cohomology. We are interested in a cochain level of
this localization result—not only at the level of cosheaves of Lie algebras, but
at the level of the corresponding factorization algebras.

In the notation of Theorem 6.1, the factorization algebra of study is the
enveloping factorization algebra F0(g) = U(G′). This factorization algebra is
trivial away from the z1-plane.

Lemma 6.5. The factorization enveloping algebra U(G′) is trivial away from
Cz1 × {0} ↪→ C

2.

Proof. This follows from a statement just about cosheaves of Lie algebras.
Indeed, the cosheaf G′

c, when restricted to the large open stratum, is equivalent
to the trivial cosheaf:

G′
c|C2\Cz1

� 0

To see this, it suffices to notice that restricting to z2 �= 0 amounts to inverting
z2 in the ring of holomorphic functions on C

2, over which Ω0,•(C2) is a module.
Multiplication by an invertible element acts by an isomorphism on the module,
so that the complex (37) is obviously acyclic after localization at z2. �

Next, we would like to characterize the factorization algebra U(G′) on the
stratum Cz1 . As explained in the previous section, the general idea is to use an
open tubular neighborhood of the small stratum, and then to push forward the
restriction of the factorization algebra U(G′) to Cz1 along the projection map.
In the case at hand, there is already an obvious projection map π : C

2 → Cz1 ,
but we want to emphasize that our considerations likely generalize to arbitrary
curves in C

2, as considered in Sect. 6.4.
We consider the restricted factorization algebra U(G′)|Cz1

defined by

π∗
(

U(G′)|Tub(Cz1 )

)

In this example, it suffices to take the tubular neighborhood to the entire affine
space C

2.
Our goal is to find the explicit relationship between this restricted factor-

ization algebra and the factorization algebra C•
(
Ω0,•

c (Cz1 , g)
)
. In order to do

this, we must fix some additional data. Let ρ : C
2 → C be a smooth function

on C
2 and U1 ⊂ U1 ⊂ U2 ⊂ U be open tubular neighborhoods of Cz1 × {0}

satisfying the following two conditions:
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• ρ|U1 ≡ 1, and
• ρ|C2\U2 ≡ 0.

We will refer to ρ as a bump function along z2 = 0; it can be taken to have
image in [0, 1] ⊂ C, but this does not play a role.

Using ρ, define the following map of cosheaves of cochain complexes on
Cz1

sρ : Ω0,•
c (Cz1 , g) → π∗G′

c

α �→ ρ π∗α − ε
∂(ρ)
z2

∧ π∗α.

Note that by assumption ∂(ρ) ≡ 0 along z2 = 0, so the expression above is
well defined.

Proposition 6.6. For every choice of ρ as above, the map

sρ : Ω0,•
c (Cz1 , g)

�−→ π∗G′
c

is a quasi-isomorphism of cosheaves of cochain complexes on Cz1 .

Remark 6.7. One can view sρ as an approximation to the map which “pulls
back” a compactly supported Dolbeault form along the map π : C

2 → C.
The first problem is that since π is not proper, pulling back does not preserve
compact support. So, in order to make sense of the pulled back map we must
weight it with the function ρ. The second problem arises due to the fact that
ρ is not holomorphic, and so the assignment α �→ ρ π∗α is not compatible
with the ∂-operator. It is, however, compatible up to a term proportional to
z2. Hence, we can add the ε-dependent term to correct this naive assignment
to a cochain map.

Remark 6.8. The map sρ is independent of the bump function ρ up to homo-
topy. Indeed, a different choice of a bump function ρ′ will result in homotopy
equivalent maps sρ ∼ sρ′ .

Proof of Proposition 6.6. First, we check that sρ is a cochain map. Since the
statement is independent of the Lie algebra g, we will assume g = C is the
trivial Lie algebra for this proof.

For α ∈ Ω0,•
c (Cz1), note(

∂ + z2
∂

∂ε

)
(sρ(α)) = ∂(ρ) ∧ π∗α + ρπ∗∂(α) − ε

∂(ρ)
z2

∧ π∗∂(α) − ∂(ρ) ∧ π∗α

= ρπ∗∂(α) − ε
∂(ρ)
z2

∧ π∗∂(α)

This is precisely sρ(∂α), as desired.
We now compute the cohomology of the cosheaf π∗G′

c. On an open set
U ⊂ Cz1 , the value of this cosheaf is Ω0,•

c (U × Cz2). Using Serre duality, we
can identify

Ω2,•(U × Cz2)
∨ ∼= Ω

0,•
c (U × Cz2)[2].
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This leads to an embedding

(π∗G′
c)(U) ↪→

(
Ω2,•(U × Cz2)

∨[ε][−2], ∂ + z2
∂

∂ε

)
.

Since the operator ∂ + z2
∂
∂ε is elliptic, we can apply the Atiyah–Bott lemma

[2] to see that this embedding is a quasi-isomorphism.
Thus, it suffices to compute the cohomology of(

Ω2,•(U × Cz2)
∨[ε][−2], ∂ + z2

∂

∂ε

)
.

By the ∂-Poincaré lemma, this is a equivalent to two-term cochain complex(
Ω2,hol(U × Cz2)

∨[ε][−2], z2
∂

∂ε

)
.

where Ω2,hol denotes the sheaf of holomorphic sections of the canonical bundle
on C

2. We recognize this cochain complex as being linear dual to the ordinary
Koszul resolution (37) of Ω1,hol(U)[−1]. Thus, we can identify the cohomology
of π∗G′

c(U) with

Ω1,hol(U)∨[−1]

where Ω1,hol(U) is the holomorphic sections of the canonical bundle on U .
Finally, by one-dimensional Serre duality on Cz1 and by applying Atiyah–Bott
lemma again, this is precisely the ∂-cohomology of Ω0,•

c (U), as desired. �

A simple observation reveals that sρ is certainly not compatible with
the Lie brackets and hence is not a map of precosheaves of dg Lie algebras.
However, the failure for sρ to be compatible with the Lie brackets is exact
for the differential. In other words, sρ can be corrected to an L∞ map of
precosheaves of dg Lie algebras. This L∞-map will be enough to deduce the
statement about factorization algebras, as any L∞ map induces a map on the
Chevalley-Eilenberg cochain complexes.

In what follows, we set s
(1)
ρ = sρ. Define the 2-ary map of degree (−1):

s
(2)
ρ : i∗Ω0,•

c (Cz1 , g) × i∗Ω0,•
c (Cz1 , g) → G′

c[−1]

(α, β) �→ ε
ρ(ρ − 1)

z2
[π∗α, π∗β].

Note that the expression is well defined since 1 − ρ ≡ 0 along z2 = 0.

Proposition 6.9. The pair of maps (s(1)
ρ , s

(2)
ρ ) determine an L∞ quasi-

isomorphism of precosheaves of dg Lie algebras on Cz1 :

(s(1)
ρ , s(2)

ρ ) : Ω0,•
c (Cz1 , g) � π∗G′

c.

Proof. By Proposition 6.6, all we need to check is that the pair define a L∞-
morphism. The L∞ relation we need to check is of the form

[s(1)
ρ (α), s(1)

ρ (β)] −s(1)
ρ ([α, β]) =

(
∂ + z2

∂

∂ε

)
s(2)

ρ (α, β) − s(2)
ρ (∂α, β)
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−(−1)|α|s(2)
ρ (α, ∂β) (39)

for α, β ∈ Ω0,•
c (Cz1 , g). We prove this relation directly. For sake of reducing

clutter, we omit the pullback along π notation: α ↔ π∗α ∈ Ω0,•(C2, g).
On the one hand, the left-hand side of (39) is[

ρα − ε
∂(ρ)
z2

∧ α, ρβ − ε
∂(ρ)
z2

∧ β

]
−
(

ρ[α, β] − ε
∂(ρ)
z2

∧ [α, β]
)

.

Combining terms, we see this is equal to

ρ(ρ − 1)[α, β] − ε
∂(ρ)(2ρ − 1)

z2
∧ [α, β].

Now, the right-hand side of (39) is(
∂ + z2

∂

∂ε

)(
ε
ρ(ρ − 1)

z2
[α, β]
)

− ε
ρ(ρ − 1)

z2
[∂α, β] − (−1)|α|ε

ρ(ρ − 1)
z2

[α, ∂β]

which matches with the left-hand side by inspection. �

Corollary 6.10. Let π : C
2 → Cz1 and ρ be as above. The L∞ map (s(1)

ρ , s
(2)
ρ ) of

Proposition 6.9 defines a quasi-isomorphism of factorization algebras on Cz1 :

C•(sρ) : C•
(
Ω0,•

c (Cz1 , g)
) �−→ U(G′)|Cz1

.

Proof. This is a formal consequence of Proposition 6.9 and the fact that
pushing forward commutes with taking Chevalley–Eilenberg chains. Indeed,
if f : X → Y is any map and L is a local Lie algebra on X, then there is a
natural isomorphism of cosheaves

C•(f∗Lc)
∼=−→ f∗C•(Lc).

�

6.2.1. Central Extensions. We now consider the case where we turn on some
nontrivial central extension of the deformed local Lie algebra G′ and consider
the full deformed factorization algebra Fk4d

= Udz1,k4dκ,θ(G′).
Recall that G′ is a deformation of the current algebra G = G2. In Sect. 5.3,

we introduced classes in the local cohomology of the undeformed algebra G.
We are interested in the classes

φ
(2)
dz1

(k4dκ), φ(3)(θ).

Explicitly, these local cocycles are defined by

φ
(2)
dz2

(k4dκ) : (α, εα′) �→ k4d

(2πi)2

∫
C2

κ(α∂α′)dz2

φ(3)(θ) : (α0, α1, α2) �→ 1
(2πi)2

∫
θ(α0 ∧ ∂α1 ∧ ∂α2)

where α, α′, αi ∈ Ω0,•(C2, g).
Upon deforming G � G′, each of these remain cocycles in the local coho-

mology of the deformed algebra. However, only the first cocycle remains to be
nontrivial.
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Lemma 6.11. The local cohomology class of φ(3)(θ) is trivial in C•
loc(G

′) for
any θ as above.

Recall from Sect. 5.2 that an invariant pairing κ also defines a local
cocycle on for the g-valued holomorphic currents on Cz1 . This is the local
cocycle that gives rise to the ordinary affine algebra.

We have already checked the level zero version of localization. Theo-
rem 6.1 follows from the following computation.

Proposition 6.12. Under the pullback along sρ = (s(1)
ρ , s

(2)
ρ ), we have

s∗
ρφ

(2)
dz1

(k4dκ) = −k4d

2
φ2d(κ) = φ2d(−k4dκ/2). (40)

Remark 6.13. Recalling that the scale of κ plays the role of the level, this
matches with the result in [5] that k2d = −k4d/2.

Proof. For type reasons, only the pullback along the component s
(1)
ρ will

contribute a nontrivial class in the cohomology of Ω0,•
c (Cz1 , g). Let α, β ∈

Ω0,•
c (Cz1 , g), then

(s(1)
ρ )∗φ(2)

dz1
(α, β) = φ4d

κ (s(1)
ρ (α), s(1)

ρ (β))

= φ4d
κ

(
ρπ∗α − ε

∂(ρ)
z2

∧ π∗α, ρπ∗β − ε
∂(ρ)
z2

∧ π∗β
)

= − 1
(2πi)2

∫
C2

dz2 ∧ κ

(
∂(ρ)
z2

∧ π∗α ∧ ∂ (ρπ∗β)
)

= − 1
(2πi)2

∫
C2

dz2
∂(ρ2)
2z2

∧ κ (π∗α ∧ ∂(π∗β))

− 1
(2πi)2

∫
C2

dz2
∂(ρ)∂(ρ)

z2
∧ κ (π∗α ∧ π∗β)

= − 1
4πi

∫
Cz1

κ(α∂β)

= −1
2
φ2d

κ (α, β).

In the fifth line, we have applied Stokes’ theorem on an annulus, followed by
the residue theorem, in the z2-direction. But the integral over Cz2 is also simple
to compute by elementary methods, and this is perhaps more illuminating. We
imagine that our bump function depends only on the radial direction in Cz2 ;
that is, ρ = f(r2) = f(z2z2) for some appropriate function f . (The result
remains true even if ρ is a more generic bump function.) It is then easy to see
that ∫

Cz2

dz2 ∧ dz̄2
ρ

z2

∂ρ

∂z̄2
=
∫

dz2 ∧ dz̄2 ff ′

= −2i

∫ ∞

0

πd(r2) · 1
2
df2(r2)

= −πi (f2)
∣∣∞
0
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= +πi, (41)

independent of the choice of f . �

Remark 6.14. On G, there are the local cocycles φ
(2)
dzi

(k4dκ) for i = 1, 2. Upon
making our deformation by z2∂ε, only the cocycle i = 1 remains nontrivial since
the deformation has the effect of localizing to the plane {z2 = 0}. Without
much more difficulty, one can generalize this result to a general hyperplane.
Consider the localization of the factorization algebra to the complex plane

P : {c1z1 + c2z2 = 0}
which is implemented by the Maurer–Cartan element c1z1∂ε + c2z2∂ε. Denote
by projP : C

2 → P the orthogonal projection along P . We can then consider
the twisted enveloping factorization algebra of G′ (where the prime now indi-
cated deformation by this new Maurer–Cartan element) in the presence of the
local cocycle

(a1φ
(2)
dz1

+ a2φ
(2)
dz2

)(k4dκ).

Upon localizing to the plane P , in the same sense as above, one finds the
ordinary Kac–Moody factorization algebra supported on P of level

−|projP (a)|k4d

2
κ

where a =
(
a1 a2

)
.

6.3. A Deformation of the Higher Virasoro Algebra

As above, we deform the local Lie algebra of N = 2 holomorphic vector fields
X2 by the element z2

∂
∂ε . So, consider the local Lie algebra

X′ =
(

Ω0,•(C2|1, TC
2|1), ∂ +

[
z2

∂

∂ε
,−
])

. (42)

Here, z2∂ε is acting via the adjoint, or commutator, action.
Consider the map of sheaves

r : X → i∗
(
Ω0,•(Cz1 , TCz1)

)
which sends a graded vector field to the restriction of the z1-component to the
plane z2 = 0. That is, if we write a graded vector field as

ξ = ξ1(z1, z2, ε)
∂

∂z1
+ ξ2(z1, z2, ε)

∂

∂z2
+ ξε(z1, z2, ε)

∂

∂ε

, then r(ξ) = ξ1(z1, z2 = 0, ε = 0) ∂
∂z1

. The map r commutes with the Lie
bracket with the graded vector field z2

∂
∂ε , so r also defines a map from the

deformed N = 2 holomorphic vector fields

r : X′ → i∗
(
Ω0,•(Cz1 , TCz1)

)
that we denote by the same letter.
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Proposition 6.15. Applied to the deformed N = 2 holomorphic vector fields,
the map

r : X′ �−→ i∗
(
Ω0,•(Cz1 , TCz1)

)
defines a quasi-isomorphism of sheaves on C

2.

Proof. The proof is a simple calculation. We can represent the complex X′
N=2

by the following diagram:

ε Ω0,•(C2) ∂
∂z1

Ω0,•(C2) ∂
∂z1

z2
∂
∂ε (43)

The key observation is that the right quadrilateral forms an acyclic sheaf.
Indeed, both the top right and bottom left diagonal maps are isomorphisms
of sheaves of dg vector spaces. We thus conclude that the deformed sheaf X′

is quasi-isomorphic to the sheaf

ε Ω0,•(C2) ∂
∂z1

Ω0,•(C2) ∂
∂z1

z2
∂
∂ε (44)

appearing at the top left of (43) in degrees −1 and 0. From here, the argument
is identical to that in the previous section, since we are once more dealing with
the Dolbeault resolution of the Koszul complex representing Cz1 ; only the Lie
structure is different. �

For the cosheaf version of the deformation, we proceed as we did with the
current algebra in the previous section. Let ρ : C

2 → C be a bump function
along z2 = 0 as in Sect. 6.2. Define the map of cosheaves

sρ : Ω0,•
c (Cz, TCz) → π∗ X′

c|U
begineqnarray∗1ex]ξ

∂

∂z
�→ (ρ π∗ξ)

∂

∂z1
− ε

(
∂(ρ)
z2

∧ π∗ξ
)

∂

∂z1
.

(45)

Proposition 6.16. The map sρ is a quasi-isomorphism of cosheaves of cochain
complexes. It can be corrected to an L∞ morphism of precosheaves of dg Lie
algebras.

Proof. We first check that sρ is a cochain map. For simplicity of notation, we
omit the pullback symbol π∗. Observe that[(

∂ + z2
∂

∂ε

)
, sρ(ξ∂z)

]
=
[(

∂ + z2
∂

∂ε

)
,

(
ρξ − ε

∂ρ

z2
∧ ξ

)
∂

∂z1

]

=
((

∂ + z2
∂

∂ε

)(
ρξ − ε

∂ρ

z2
∧ ξ

))
∂

∂z1
,

(46)

so that the computation reduces to that done for Dolbeault forms in the proof
of Proposition 6.6.

We proceed further by showing that the cohomologies on each side agree.
This is sufficient, since sρ has an obvious one-sided inverse given by the re-
striction map. But the argument of Proposition 6.15 is then enough to reduce
the computation of the cohomology in this case to that done for Dolbeault
forms in the proof of Proposition 6.6.
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The L∞ correction term takes a familiar form:

s(2)
ρ : Ω0,•

c (Cz1 , TCz1) ⊗ Ω0,•
c (Cz1 , TCz1) → X′

c[−1]

begineqnarray∗1ex]
(

ξ
∂

∂z1
, λ

∂

∂z1

)
�→ ε

ρ(ρ − 1)
z2

[
ξ

∂

∂z1
, λ

∂

∂z1

]
.
(47)

The proof that (s(1)
ρ , s

(2)
ρ ) together define an L∞ map proceeds by a straight-

forward calculation identical to that given above in the Kac–Moody case; the
key fact is that ∂ also obeys a Leibniz rule with respect to the Lie bracket of
Dolbeault-valued vector fields. �

6.3.1. Central Extensions. We now consider the case where we turn on some
nontrivial central extension of the deformed local Lie algebra X′ and consider
the full deformed factorization algebra Fc4d

= Uc4dψ2(X
′).

Given the result for c4d = 0 in the last section, this will follow from the
analogue of Proposition 6.12 in the Virasoro case. We again will find agreement
with the result of [5]. Recall from Definition 5.8 that the relevant cocycle takes
the form

ψi(ξ, εξ′) =
1

(2πi)2

∫
tr(Jξ) ∧ ∂tr(Jξ′) ∧ dzi. (48)

We have already checked the central charge zero version of localization in the
previous subsection. Theorem 6.2 follows from the following computation.

Proposition 6.17. Pulling back along the L∞ map sρ, we have that

s∗
ρψ2 = −1

2
ψ2d, s∗

ρψ1 = 0. (49)

Accounting for a factor of 24 related to the normalization of ψ2d and discussed
in Sect. 5.2, this matches the claim in [5] that c2d = −12c4d.

Proof. Just as in the previous case, the calculation amounts to computing the
pullback of this cohomology class along sρ, which can be done as follows: Let
ξa(z1)∂1 be a Dolbeault-valued vector fields on Cz1 for a = 1, 2. Then,

s∗
ρψi(ξ1(z1), ξ2(z1)∂1) = ψ2(sρξ1(z1)∂1, sρξ2(z1))

= ψi

(
ρπ∗ξ1

∂

∂z1
− ε

(
1
z2

∂̄ρ ∧ π∗ξ1

)
∂

∂z1
, ρπ∗ξ2

∂

∂z1

−ε

(
1
z2

∂̄ρ ∧ π∗ξ2

)
∂

∂z1

)
. (50)

Setting the arguments equal to λa + ελ′
a, and omitting the pullback symbol

π∗ for simplicity of notation, we can now directly compute that

Jλa =
[
L∂1(ρξa) 0
L∂2(ρξa) 0

]
=
[
ρL∂1ξa 0

ρ̇ξa 0

]
(51)

and

Jλ′
a = −

⎡
⎣L∂1

(
1
z2

∂̄ρ ∧ π∗ξa

)
0

L∂2

(
1
z2

∂̄ρ ∧ π∗ξa

)
0

⎤
⎦ =

[
z2

−1∂ρ ∧ L∂1ξa 0(
z2

−2∂ρ − z2
−1 ∂

∂z2
(∂ρ)
)

∧ ξa 0

]
.(52)
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Taking traces, applying the ∂ operator, and multiplying, we obtain

tr(Jλ1) ∧ ∂tr(Jλ′
2) = ρL∂1ξ1 ∧ z2

−1∂ρ ∧ ∂ (L∂1ξ2) . (53)

We now note that L∂1ξa = ∂ξa/∂z1, so that the cocycle reduces to

s∗
ρψi(ξ1∂z, ξ2∂z) =

1
(2πi)2

∫
C2

1
2z2

∂ξ1

∂z1
∧ ∂(ρ2) ∧ ∂

(
∂ξ2

∂z1

)
∧ dzi

= −1
2

1
(2πi)2

∫
C2

(
dz2 ∧ ∂(ρ2)

z2

)(
∂ξ1

∂z1
∧ ∂

∂ξ2

∂z1

)
.

(54)

Since ξa is a Dolbeault form on Cz1 , it is clear just by reasons of form degree
that ψ1 pulls back to the trivial cocycle. Performing the integral over Cz2 as
in Proposition 6.12, we obtain

s∗
ρψ2(ξ1∂z, ξ2∂z) = −1

2
1

2πi

∫
Cz1

∂ξ1

∂z1
∧ ∂

∂ξ2

∂z1
= −12ψ2d(ξ1∂z, ξ2∂z), (55)

reproducing precisely the description of the familiar Virasoro cocycle in one
complex dimension given in [46] and recalled in Sect. 5.2. �

6.4. Exotic Deformations of Higher Symmetry Algebras

In the preceding subsections, we have shown that the deformation considered
by Beem and collaborators (which originates in the global superconformal alge-
bra) appears naturally in our context, taking the form of a Koszul differential,
and that their chiral algebras arise from the corresponding deformation of our
higher symmetry algebras. However, we wish to emphasize that there are ad-
ditional possible deformations of our algebras, which are not visible at the
level of global superconformal symmetry. While we reserve detailed study of
such exotic deformations for future work, we will offer a few remarks below
to demonstrate their interest and will argue in particular that there exist de-
formations of X2 that localize to the holomorphic vector fields on any affine
algebraic curve in C

2, and not just to planes. Our remarks are schematic;
in particular, we do not here discuss the correct statements at the level of
cosheaves.

Consider the following general setup: Let A denote a commutative dif-
ferential graded algebra, or more generally a sheaf of such objects. We will
ask that A be nonnegatively graded with cohomological differential and will
denote a basis of Der(A), the degree-zero derivations of A, as a left A-module
with the symbols ∂i. For example, if A = C[z1, z2], then ∂i = ∂/∂z1 or ∂/∂z2.

We then form the tensor product A ⊗ C[ε], with ε an odd variable of
degree −1. A priori, this is a bigraded cdga, when equipped only with the
internal differential on A. We are interested in the dg-Lie algebra of its (super)
derivations, which was described above in the example of holomorphic vector
fields on superspace. As a left A-module, graded by ε-degree, we can describe
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its content with the following table:
−1 0 1

A · ε ∂
∂ε

A · ε∂i A · ∂
∂ε

A · ∂i

(56)

Now, we ask for deformations of the differential, of total cohomological degree
+1, that arise from the adjoint action of an element of this dg Lie algebra
on itself. Any Maurer–Cartan element gives rise to such a deformation of the
differential. The simplest class of such elements consist of odd derivations that
have vanishing self-bracket and also anticommute with the internal differential
on A, so that both terms of the Maurer–Cartan equation are independently
zero. In this case, for degree reasons, there are two possible choices:

• an element of the form f ∂
∂ε , where f is a closed element of degree zero

in A; or
• an element of the form fi ∂i, where fi are degree-one elements of A, such

that the result commutes with the internal differential.

Both types of deformation are interesting; for example, if A is the Dolbeault
complex, we can generate the deformation of the ∂̄ differential to the de Rham
differential by an operator of the second type. However, such deformations
have essentially only to do with A itself, and so we will be interested in the
first class of deformations here; these include the deformations made possible
by extended superconformal symmetry.

The adjoint action of such an element generates the following differentials
(which are maps of left A-modules) on our diagram from above:

A · ε ∂
∂ε

A · ε∂i A · ∂
∂ε

A · ∂i

f

f

∂if

−∂if

(57)

Observation 6.18. The cohomology of (57), in ε-degree −1, is the left A-
module ⊕

i

{x ∈ A : f · x = (∂if) · x = 0} · ε∂i. (58)

In particular, when f is not a zero divisor in A, there is no cohomology in this
degree. Furthermore, the cohomology in ε-degree +1 is the left A-module

A/〈f, ∂if〉 · ∂

∂ε
. (59)
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Thus, when A is (for example) a polynomial ring in degree zero, the cohomol-
ogy is precisely the coordinate ring of the singular locus of the affine hypersur-
face f = 0 and vanishes when f is a smooth and reduced hypersurface. When,
on the other hand, f = pn for some irreducible (smooth) polynomial p, the
cohomology will be the quotient of the polynomial ring by the ideal pn−1; this
is a typical example of behavior in the unreduced case.

Let us now consider the cohomology in degree zero. We can describe it
as the set of elements of the form

gi∂i + gεε
∂

∂ε
, (60)

where the g’s are elements of A and a summation over i is understood. These
elements are subject to the single relation

gεf = gi∂if, (61)

and are considered modulo the ideal consisting of elements of the form

gi = fhi, gε = hi∂if, (62)

which are the image of the differential on elements hiε∂i of degree −1.
Let us simplify now to the case where A = C[z1, . . . , zd] is the coordinate

ring of affine d-space. We can analyze the cohomology of stratum by stratum,
as we did previously, according to whether we are on the zero locus of f
or in its complement. If we assume that f is invertible, it is clear that the
cohomology is trivial. As a sheaf, the cohomology is therefore supported only
along the stratum f = 0. However, if we restrict to this locus (under the
assumption that f is smooth and reduced), it is easy to see that the gi are
subject to the single linear relation gi∂if = 0, so that the vectors appearing
in cohomology resolve the tangent sheaf to f = 0. gε is subject to no relation,
but the image of the differential is generated by ∂if , so that—by the Jacobian
criterion for smoothness—it contributes nothing in cohomology. In general,
the gi contribute a copy of the naive tangent space to the hypersurface, and
gε contributes a copy of functions on the singular locus, accompanied by ∂

∂ε .

6.5. More Supersymmetry

Instead deforming the N = 2 version of the current and graded algebras of
holomorphic vector fields, it is natural to consider similar deformations for the
N = 4 versions. We do not include the detailed calculation here, but we survey
the approach.

Consider the version of holomorphic vector fields with two odd directions,
which we called X3. This is a resolution of the sheaf of holomorphic vector fields
on C

2|2. For the odd directions, introduce the degree −1 variables ε1, ε2. We
consider the deformation

X′
3 =
(

Ω0,•(C2|2, TC
2|2), ∂ +

[
z2

∂

∂ε2
,−
])

.

From Theorem 5.7 and the discussion afterward, we know that classes in
H5(U(2)) ∼= C give rise to local cocycles of degree +1 on X3. So, up to scale
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and homotopy there is a unique such local cocycle that we will denote by ψ̃.
For the present depth of the discussion, the explicit form of ψ̃ will not be used.

Consider the associated enveloping factorization algebra Uψ̃(X′
3) on C

2

(or Σ × C). As above, this localizes to the z1-plane and defines a holomor-
phic factorization algebra on Cz1 . The following result follows from a similar
analysis as above.

Theorem 6.19. The factorization algebra Uψ̃(X′
3) is trivial away from {z2 =

0} ↪→ C
2. The localized factorization algebra is holomorphic and its associated

vertex algebra is isomorphic to the N = 2 topological Virasoro vertex algebra.

Recall that the ordinary Virasoro vertex algebra arises from the factor-
ization enveloping algebra of the sheaf of holomorphic vector fields on C. The
N = 2 topological Virasoro vertex algebra arises from the sheaf of holomorphic
vector fields on C

2|1.
The Lie algebra X3 is a symmetry of the holomorphic twist of N = 4

supersymmetric Yang–Mills theory. Recall that this symmetry enlarges to a
symmetry by the local Lie algebra that we denoted Xdiv

4 ; this is a resolution for
the sheaf of divergence-free holomorphic vector fields on C

2|3. Call the three
odd directions ε1, ε2, ε3. Notice that the graded vector field z2∂ε1 is divergence-
free so it makes sense to deform Xdiv

4 by this element. With the proper choice
of a twisting cocycle we expect this deformation to localize to a twisted version
of the small N = 4 superconformal vertex algebra. We leave a proof of this for
later work.

7. Deformations of N = 2 Theories

In the previous section, we have focused on deformations of symmetry algebras
present in twists of four dimensional supersymmetric theories. We now turn to
deformations of four-dimensional quantum field theories themselves from the
point of view of the holomorphic twist. We choose to focus on the holomorphic
twist of theories with N = 2 supersymmetry, and a specific deformation which
arises from the N = 2 superconformal algebra.

Classically, we start with a holomorphic gauge theory on C
2 which con-

sists of a pure gauge sector and a holomorphic matter (or σ-model) sector.
This is the holomorphic twist of N = 2 QCD with hypermultiplets valued in a
(complex) symplectic representation, see Proposition 4.2. In other words, the
theory we consider is the holomorphic twist of N = 2 supersymmetric QCD
with Lie algebra g and matter valued in a representation V .

The free limit of the equations of motion of the theory require that all
fields be ∂-closed. Like in the previous section, we consider deforming this ∂
operator via ∂ � ∂ + z2

∂
∂ε . For a more explicit description of the deformation,

see Eq. (67). The existence of this deformation is manifest from our results
of Sect. 4. Indeed, we know by Proposition 4.7 that the N = 2 symmetry
algebras G2, X2 act on the holomorphic twist of any N = 2 theory. Furthermore,
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the deformed symmetry algebras G′
2, X

′
2 we considered in Sect. 6 act on this

deformation of the holomorphic twist of any N = 2 theory.
We stress that at the classical level, the theory we start with makes sense

for any such N = 2 gauge theory, but at the quantum level we find an anomaly
in the deformed theory which agrees with the condition that the theory we
started with be superconformal. Specifically, we will show the following.

Proposition 7.1. The holomorphic twist of N = 2 supersymmetric QCD on
C

2 with Lie algebra g and matter valued in the symplectic representation T ∗V ,
exists at the quantum level. There is an anomaly to quantization of N = 2 QCD
in the presence of the holomorphic deformation we will introduce in Eq. (67).
This anomaly vanishes if and only if

Trgad(X2) − TrV (X2) = 0 (63)

for all X ∈ g.

Remark 7.2. This condition can be rewritten in terms of the quadratic Casimir
invariant and the dimension of the given representations; it then takes the form

c2(g) dim(g) = c2(V ) dim(V ). (64)

For semisimple gauge algebras of type A and matter in fundamental hyper-
multiplets, this can be rewritten simply using the typical physics parameters
Nf and Nc, which indicate gauge algebra su(Nc) and matter representation
V = fund⊕Nf . Using familiar expressions for the quadratic Casimir invariants
[45], the condition becomes

Nc(N2
c − 1) =

N2
c − 1
2Nc

· NfNc ⇒ Nf = 2Nc, (65)

which reproduces the well-known condition for N = 2 QCD to be supercon-
formal. One can thus interpret the theorem as indicating that the failure of
the original theory to be superconformal is manifested as an anomaly that
prevents realization of the higher symmetry algebra at the quantum level.

Like the deformed symmetry algebras we met above, the factorization
algebra of observables of the deformed theory localizes to the Cz1 plane.

Theorem 7.3. Suppose the anomaly condition (63) is satisfied and let Obs(g, V )
be the factorization algebra of quantum observables on C

2 associated with the
holomorphic theory. Then, Obs(g, V ) is equivalent to a stratified factorization
algebra on C

2, which is trivial away from Cz1 ⊂ C
2, and equivalent to a holo-

morphic translation invariant factorization algebra Obsz1(g, V ) on Cz1 .

The final goal is to characterize the factorization algebra Obsz1(g, V ) in
a more familiar algebraic description. By [14, Theorem 2.2.1], a holomorphic
translation invariant factorization algebra F on C (satisfying some natural
conditions) defines a vertex algebra that we will denote V[F]. We then utilize
results of [14,37] which will allow us to relate solutions of the QME, which
we have produced by the method of renormalization, and vertex algebras. The
conclusion is the following.
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Proposition 7.4. As a vertex algebra, V [Obsz1(g, V )] is equivalent to the g-
BRST reduction of the βγ system valued in V .
7.1. A Holomorphic Deformation of N = 2
The holomorphic theory we start with is a coupled holomorphic BF − βγ
system, as we introduced in Sect. 3.2. We assume the holomorphic BF theory
has underlying Lie algebra h = g[ε] where g is an ordinary Lie algebra7 and ε is
a parameter of degree −1. The βγ system we consider is valued in the graded
vector space V = V [ε] where V is a g-representation, and ε is as above.

Physically, as we recollected in Proposition 4.2, this theory is equivalent
to the holomorphic twist of N = 2 supersymmetric QCD with Lie algebra g
and matter transforming in the symplectic g-representation T ∗V .

The coupled theory is abstractly summarized by thinking about it as the
holomorphic BF theory for the semi-direct product graded Lie algebra

gV
def= g[ε] � V [ε][−1]

where the semi-direct product is induced by the g representation V . With this
notation, the fields of the theory can be written succinctly as

Ω0,•(C2) ⊗ gV [1] ⊕ Ω2,•(C2) ⊗ g∗
V .

In the first component lives the pair of fields (A, γ) and in the second compo-
nent are the conjugate fields (B, β).

The full action can be written as

S(A,B, γ, β) =
∫

C2|1
〈B,FA〉g +

∫
C2|1

〈β, ∂Aγ〉V (66)

where FA = ∂A + 1
2 [A,A] and ∂Aγ = ∂γ + [A, γ]. More explicitly, in terms of

the components α = α + εα′, we can expand the action as

S =
∫

C2
〈B′, ∂A +

1
2
[A,A]〉g +

∫
C2

〈B, ∂A′ + [A,A′]〉g

L +
∫

C2
〈β′, ∂γ + [A, γ]〉V +

∫
C2

〈β, ∂γ′ + [A, γ′] + [A′, γ]〉V

The first and second lines correspond to the first and second terms in (66).
Note that due to the nature of the pairing between fields and anti-fields, the
primed fields (−)′ appear precisely once in each term in the action.

We turn on the following deformation of the holomorphic twist of the free
hypermultiplet

IS(β′, γ′) =
∫

C2
z2〈B′ ∧ A′〉g +

∫
C2

z2〈β′ ∧ γ′〉V . (67)

Equivalently, as an integral over the graded space C
2|1 we can write this action

as

IS(β, γ) =
∫

C2|1
〈B ∧ z2

∂

∂ε
A〉g +

∫
C2|1

〈β ∧ z2
∂

∂ε
γ〉V .

7Taking g to be an ordinary Lie algebra as opposed to a dg or L∞ algebra is for simplicity
here, and to match with the familiar situation in the N = 2 untwisted theory. What is
important is that we have this extra odd direction labeled by ε.
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The deformed theory is completely described by a local Lie algebra that
we denote by L(g, V ). In other words, the Maurer–Cartan elements of L(g, V )
are equivalent to solutions to the classical equations of motion of the deformed
theory S + IS . The underlying graded Lie algebra is of the form

L(g, V ) = Ω0,•(C2) ⊗ gV [1] � Ω2,•(C2) ⊗ g∗
V . (68)

The differential has two components ∂ + z2
∂
∂ε .

7.2. An Exact Quantization and the QME

Holomorphic field theories admit very well-behaved one-loop quantizations in
any dimension. The approach to renormalization for holomorphic theories in
the BV formalism that we take is developed in [47]. We refer to this work for
the notation and conventions used below.

There are two approaches to producing a renormalized BV action in the
case of the deformed holomorphic theory we study here:

(1) Treat the deformation z2
∂
∂ε as part of the kinetic term in the action. This

amounts to deforming the linear BV operator

∂ � ∂ + z2
∂

∂ε
.

Since this deformation does not commute with the gauge fixing operator
QGF = ∂

∗
, the approach of [47] does not directly apply, and some extra

work must be done in producing the renormalized action.
(2) Consider the deformation as a particular background of the theory. This

means that we treat the deformation as prescribing a one-parameter fam-
ily of theories over the ring C[c], where the deformed action has the ad-
ditional interaction term

c

∫
z2〈β′γ′〉.

In general, treating quadratic terms as deformations of the interacting
part of theory is ill-posed since RG flow can produce connected diagrams
of infinite size. Due to the particular form of this deformation, however,
the graph expansion is still well defined even in the presence of this qua-
dratic term.

In principle, by the general formalism to constructing BV theories de-
veloped in [10], both approaches to quantization will yield equivalent results.
However, one approach may involve significantly more complicated analysis in
order to evaluate the respective Feynman diagrams. We will take approach (2)
to studying the quantization of the deformed holomorphic theory, since we can
most directly borrow the calculations performed in [47].

In doing this, it is convenient to split up the action in the following way:

S + IS = Sfree + I + IS (69)

where Sfree is the free part of the action in (66), I is the interacting part of
the action in (66), and IS is the deformation in (67).
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The gauge fixing condition we choose is given by the operator

QGF = ∂
∗ ⊗ 1

which acts on the fields of the theory Ω0,•(C2) ⊗ gV [1].
There is a simple combinatorial observation of the allowable Feynman

diagrams that can appear in the graph expansion of the holomorphic theory in
the presence of the deformation. Without the deformation, the theory admits a
quantization that is exact at one-loop. Even in the presence of the deformation,
at one-loop the only possible diagrams that can appear must have external
edges labeled by the fields A = A + εA′ or γ = γ + εγ′. Moreover, since the
propagators trade a A for a B and a γ for a β, this means that the holomorphic
gauge still provides an exact quantization at one-loop.

The next thing we need to know is that the renormalization group flow
acts trivially at one-loop in the presence of the deformation. Indeed, by a slight
variant of [47, Lemma 3.12], we have the following:

Lemma 7.5. The limit

I[L] + IS [L] def= lim
ε→0

W (Pε<L, I + IS)

exists. Here, the right-hand side denotes the ε → 0 limit of the sum over weights
of all Feynman diagrams whose edges are labeled by the cutoff propagator Pε<L

and whose vertices are labeled by I + IS—see [10] for further details. Thus,
there exists a one-loop finite prequantization of holomorphic theory, even in
the presence of the deformation IS.

Proof. The first observation is algebraic. Ordinarily, for the weight expansion
to be well defined one must look at graphs with vertices of valence ≥ 3. See
[10, Chapter 2]. The interaction IS is only quadratic in the fields, but it is
nilpotent: {IS , IS} = 0. Thus, the weight expansion over graphs with bivalent
vertices labeled by IS and trivalent vertices labeled by I is well defined.

The remainder of the proof is analytic. In fact, the proof is nearly identical
to the analysis performed in the proof of [47, Lemma 3.12], so we only point
out the key additional argument necessary to handle this case.

For finite ε and L, a general term in the weight of a wheel diagram will
be of the form∫

(C2)k

(
k∏

α=1

dzα
1 dzα

2

)
Φ(z1, . . . , zk)

(
k∏

α=1

Pε<L(zα, zα+1)znα
2

)
.

This integral corresponds to taking the weight of a wheel diagram with k
vertices. Here:

• Φ is a compactly supported smooth function on (C2)k;
• Pε<L is the propagator on C

2 obtained from the holomorphic gauge fixing
condition;

• nα ∈ {0, 1} for α = 1, . . . , k.
For the situation considered in [47], it is assumed that the interactions (or
vertex labels) are translation invariant; this corresponds to taking nα = 0 for
each α = 1, . . . , k in the above formula. In the general case, we simply observe
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that we can absorb the factors of znα
2 into the compactly supported function

Φ:

Φ(z1, . . . , zk) → Φ′(z1, . . . , zk) =

(
k∏

α=1

znα
2

)
Φ(z1, . . . , zk).

The new function Φ′ is still compactly supported, and so we can apply an
identical analysis carried out in [47]. �

In order for the effective family {I[L]}L>0 to define a quantum field
theory, it must satisfy the quantum master equation (QME). The renormalized
QME exists at each fixed L > 0 and is of the form

∂I[L] +
1
2
{I[L], I[L]}L + �ΔLI[L] = 0.

Since our theory is one-loop exact and satisfies the classical master equation,
the only possible anomaly appears at one-loop. Thus, if the equation is not
satisfied, then the effective family is said to be anomalous and the scale L
anomaly is given by

Θ[L] = �
−1

(
∂(I[L] + IS [L]) +

1

2
{I[L] + IS [L], I[L] + IS [L]}L + �ΔL(I[L] + IS [L])

)

By general manipulations of RG flow and the QME, we know that the
limit L → 0 of Θ[L] exists

Θ = lim
L→0

Θ[L]

Moreover, the functional Θ is local and since Θ is an obstruction, it is also a
cocycle. We now turn to computing this cocycle.

7.3. Anomaly Cocycle

The quantization I[L] + IS [L] is defined as a sum over graphs of genus ≤ 1. It
is clear that the anomaly Θ[L] is also given as a sum over graphs. In fact, as
L → 0, for the holomorphic theories we consider it is shown in [47, Proposition
4.4] that this sum concentrates over graphs given by wheels with a particular
number of vertices.

Proposition 7.6. see [47, Proposition 4.4] The anomaly Θ = limL→0 Θ[L] is
given as the sum over wheels with precisely three vertices:

�Θ = lim
L→0

lim
ε→0

∑
Γ∈Wheel3,e

WΓ,e (Pε<L,Kε, I + IS) .

Here, the sum is over wheels with 3 vertices equipped with a distinguished edge
e. A general term in the sum is depicted in Fig. 1.

For a wheel Γ with distinguished internal edge e, the weight WΓ,e(Pε<L,
Kε, I) is the graph integral where the heat kernel Kε is placed on the distin-
guished edge and the propagators Pε<L are placed on the other internal edges.
The vertices are labeled by I as usual.

The anomaly Θ is thus given by a sum over weights associated to one-
loop wheel diagrams. By a simple observation on allowable diagrams that can



Vol. 24 (2023) Superconformal Algebras and Holomorphic Field Theories 593

Figure 1. The anomaly

appear, we see that Θ is only a function of the A-field. Thus, it is represented
by a cocycle in the local Chevalley–Eilenberg complex

Θ ∈ C•
loc(Ω

0,•(C2, g[ε])) = C•
loc(GN=2).

We characterized the relevant classes in this local cohomology in Sect. 5.3.

Proposition 7.7. The anomaly cocycle Θ is a nonzero multiple of the local co-
cycle φ

(2),2
N=2(κ(g, V )) ∈ C•

loc(GN=2) where κ(g, V ) is the invariant polynomial

κ(g, V ) = chg
2(g

ad) − chg
2(V ) ∈ Sym2(g∗)g.

In particular, the anomaly vanishes if and only if κ(g, V ) = 0.

Proof. This is a direct calculation applying the formula for the anomaly given
in Proposition 7.6. We will be short in our calculation of the anomaly and will
emphasize the structural features of the calculation.

By Proposition 7.6, the anomaly is given by evaluating the weight of a
wheel where we place the interactions I or IS on the vertices and the propa-
gator on the edges (and the heat kernel on a distinguished edge).

Note that for type reasons (since IS is nilpotent) at most one of the
vertices in the 3-vertex wheel can be labeled by IS , the remaining vertices are
labeled by I. The propagator depends just on the free theory, which has the
form Sfree =

∫
β∂γ +

∫
B∂A. Thus, the propagator splits into two parts:

P = Pβγ + PBA

Enumerating the possible 3-vertex wheels that can appear, we find the
following four cases, depicted in Fig. 2:
(I) All vertices labeled by I and all internal edges labeled by Pβγ ;

(II) All vertices labeled by I and all internal edges labeled by PBA;
(III) Two vertices labeled by I, one vertex labeled by IS and all internal edges

labeled by Pβγ ;
(IV) Two vertices labeled by I, one vertex labeled by IS and all internal edges

labeled by PBA;
By general considerations, the anomaly evaluated on A = α ⊗ X ∈

Ω0,•(C2) ⊗ g[ε] where α is a Dolbeault form and X = X + εX ′ ∈ g[ε], will
have the form

Θ(A) = Θan(α)Θalg(X).
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γ

γ

γ

(I)

A

A

A

(II)

γ

γ

(III)

A

A

(IV)

Figure 2. The anomaly. The trivalent vertices are labeled
by the cubic interaction I. The bivalent vertices labeled by •
are labeled by IS

Here, Θan is a local functional of the abelian local Lie algebra α ∈ Ω0,•(C2)
and Θalg is an algebraic function of the graded Lie algebra X = X+εX ′ ∈ g[ε].

We can read off the algebraic factor directly in each of the cases (I)–
(IV). Note that for type reasons cases (I) and (II) yield functionals that are
independent of ε and hence are just functions of the ordinary Lie algebra g.
For the algebraic factor in case (1), the value on an element X ∈ g is

TrV [ε](X3) = TrV (X3) − TrV (X3) = 0.

Hence, case (I) does not contribute to the anomaly. Similarly, the contribution
to the algebraic factor in case (II) is

Trg[ε](X3) = Trg(X3) − Trg(X3) = 0.

So, case (II) also does not contribute to the anomaly.
In the last two cases (III), (IV), note that the number of external edges is

two (since there is a bivalent vertex). Thus, the algebraic factor is quadratic as
a polynomial on g[ε]. Moreover, it must be linear in X ∈ g and in εX ′ ∈ εg. We
can identify such polynomials as quadratic polynomials just on the ordinary
Lie algebra g. Doing this, we see that the algebraic factor for case (III) is
TrV (X2) and for case (IV) is −Trgad(X2). Notice the sign difference since V
appears shifted by cohomological degree one relative to g in the complex of
fields.

The only thing left to compute is the analytic factor in cases (III) and
(IV). The analytic factor will again be quadratic, since one of the vertices in
bivalent. We can therefore assume that we have an abelian Lie algebra and
simply compute the weight of the wheel Γ with 3-vertices where two of the
external edges are labeled by elements α ∈ Ω0,∗

c (C2) and one is labeled by
the linear function z2. In fact, the general formula for the analytic weight of a
wheel of this shape for any holomorphic theory on C

2 has been computed in
[27, Appendix B]. (There, a formula for the weight in any dimension is given.)
For general differential form inputs α, β, γ the formula is a symmetric sum of
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terms of the form ∫
α0 ∂α1 ∂α2.

In our case, we see that the analytic weight is
∫

α0 ∂α1 ∂(z2) =
∫

α0 ∂α1 dz2

as desired. �

Remark 7.8. The odd vector field z2
∂
∂ε that we are deforming the theory by

sits inside of the graded Lie algebra of holomorphic vector fields X2 on C
2|1,

see Definition 3.2. We argued in Sect. 2 that graded Lie algebra X2 is the
enhancement of the twist of the N = 2 superconformal algebra. Moreover, in
Proposition 4.7 we showed that this enhanced algebra is a classical symmetry
of the holomorphic twist of any four-dimensional N = 2 theory on R

4.
A more general problem than the one we study in this section is whether

we can quantize the symmetry by the full algebra XN=2 acting on the classi-
cal theory. Of course, we will see the same anomaly as above, but a natural
question is whether there are other anomalies. If the Lie algebra g and the
representation V are traceless (that is, Trgad(X) = 0 and TrV (X) = 0 for all
X ∈ g), for instance, when g is semi-simple, then it turns out that there are
no other anomalies. That is, so long as the condition

0 = κ(g, V ) = chg
2(g

ad) − chg
2(V ) ∈ Sym2(g∗)g

is satisfied then the full algebra XN=2 is a symmetry of the theory at the
quantum level.

We have just computed the anomaly to quantizing the holomorphic the-
ory in the presence of the deformation IS . If we assume that the anomaly is triv-
ial, then we obtain a QFT described by the effective family {I[L]+ IS [L]}L>0.
So long as g is semi-simple, this quantization is the unique one-loop exact
quantization (up to homotopy) which preserves translation invariance and is
U(2)-invariant.

By the general formalism of [14], this QFT defines a factorization algebra
of observables which we will denote by Obs(g, V ). This is a factorization al-
gebra on C

2 defined over C[[�]] whose � → 0 limit is the factorization algebra
Obs(g, V )/� which assigns to an open set U ⊂ C

2 the cochain complex

(Obs(g, V )/�) (U) ∼= C• (L(g, V )(U))

where L(g, V ) is the local Lie algebra describing the classical theory as in-
troduced in (68). In other words, (Obs(g, V )/�) (U) is the cochain complex of
classical observables, which are given by functions on the fields supported on
U ⊂ C

2 equipped with the classical BRST differential.

7.4. Localization

The idea of localization is very similar to our analysis of the deformed sym-
metry factorization algebras in Sect. 6. We will show that in the presence of
the deformation IS , the factorization algebra of observables becomes equiva-
lent to a stratified factorization algebra which is trivial away from the plane
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Cz1 . Along the plane Cz1 , in the next section we will characterize the complex
one-dimensional factorization algebra in terms of a vertex algebra.

Our main tool will be a spectral sequence converging to the cohomology
of Obs(g, V ), similar to the one considered in [26]. This filtration also appears
in [19] where it is used in the context of 4d N = 4 supersymmetric Yang–Mills
theory. The key property of this spectral sequence is that the first page com-
putes the cohomology of the observables where we turn off the interactions
which are of cubic order and higher. That is, it is simply the cohomology of
the free theory in the presence of the deformation. We will find that the coho-
mology of the free theory localizes to the Cz1 plane; see Lemma 7.9. Upstairs,
on C

2 the spectral sequence converges to the cohomology of the interacting
quantum field theory. By the fact the the theory localizes at the E1-page,
we conclude that the final page of the spectral sequence also localizes to an
interacting theory on Cz1 . Schematically, the picture is the following:

{Free theory on C
2} {Interacting theory on C

2}

{Free chiral theory on Cz1} {Interacting chiral theory on Cz1}

localize localize (70)

Now, we get into the proofs of the above assertions. As a graded factoriza-
tion algebra, the Obs(g, V ) is given by C•(L(g, V ))[[�]], where we recognize
C•(L(g, V )) is the factorization algebra of classical observables Obs(g, V )/�.
The underlying graded factorization algebra of C•(L(g, V )) is of the form∏

n≥0

Symn (L(g, V )∨[−1])

where (−)∨ denotes the continuous linear dual. Define the following filtration
on Obs(g, V ) by

F p Obs(g, V ) =
∏

2m+n≥k

C�
m ⊗ Symn (L(g, V )∨[−1]) .

The spectral sequence associated with this filtration has first page given
by the cohomology with respect to the linear part of the differential. This is
the free limit of the classical theory. The linear term in the differential has two
terms: ∂ + z2

∂
∂ε , so the E1-page is given by the following factorization algebra

F1 := H•
(

Sym
(
L(g, V )#∨[−1]

)
, ∂ + z2

∂

∂ε

)
. (71)

Here, the # notation L(g, V )# indicates that we are completely forgetting the
Lie structure and only remembering the underlying cochain complex.

At this page, we see the factorization algebra localizes to the z1-plane.
The proof is completely similar to that of Lemma 6.5.

Lemma 7.9. The factorization algebra F1 from (71) restricted to C
2\Cz1 is

equivalent to the constant factorization algebra with stalk C:

F1|C2\Cz1
� C.
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Proof. It suffices to prove that the sheaf of cochain complexes
(
L(g, V )#, ∂

+z2
∂
∂ε

)
restricted to C

2\Cz1 is quasi-isomorphic to the trivial sheaf. This
follows from the familiar short exact sequence (37). �

Just as in Sect. 6, we define the factorization algebra F′
1 on Cz1 by the

pushforward of F1 along π : C
2 → Cz1 :

F′
1 = π∗F1. (72)

The next page in the spectral sequence involves the interacting part of
the theory, and its quantization. Instead of analyzing the full quantization on
C

2, we will only characterize the quantization of the localized theory on Cz1 .
This is sensible, by our analysis of the first page in the spectral sequence, since
we know the factorization algebra becomes completely trivial away from the
z1-plane.

7.5. BRST Reduction

To study the quantization of the chiral theory on Cz1 , we make use of an
elegant result of [37] which sets up a correspondence between quantizations
of chiral theories and vertex algebras. First, we recall the definition of BRST
reduction of a vertex algebra.

Suppose that V is any Z-graded conformal8 vertex algebra, and a field
JBRST(z) of conformal weight one, cohomological degree one, and has trivial
OPE with itself

JBRST(z)JBRST(w) ∼ 0.

One then defines the following endomorphism (of cohomological degree one)
of the vertex algebra

QBRST =
∮

dz

2πi
JBRST(z),

which is called the BRST charge. The condition that JBRST(z) has trivial OPE
with itself implies that (QBRST)2 = QBRST◦QBRST = 0 acting on V, and hence
we can form the complex (V, QBRST). This object is a dg vertex algebra. Its
cohomology

H∗ (V, QBRST)

is a graded vertex algebra, known as the BRST reduction of V with respect to
JBRST(z).

Remark 7.10. To match with the physics literature, it is customary to look
at a slightly different cohomology than we study here. This is obtained by
not considering the full bc ghost system which appears above, but a smaller
cochain complex where one omits the zero mode part of the c-ghost and in-
stead takes the strict invariants of the compact group G where the ghost takes
values. Mathematically, this is obtained by replacing (at least classically) the
Lie algebra cohomology that appears above with a relative version.

8The same definition holds for quasi-conformal vertex algebra, where we do not demand an
action by the full Virasoro, just {Ln}n≥−1.
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Remark 7.11. The use of terminology is potentially confusing here. In the
physics literature, “BRST” typically refers to the familiar homological tech-
nique for quantizing gauge theories by introducing ghosts, closely connected to
the Chevalley–Eilenberg construction. What is called “BRST reduction” here
is essentially a deformation of the differential, which in most examples imposes
the gauge symmetry, but can also be totally unrelated to any Lie algebra ac-
tion. The terminology follows typical usage in the vertex algebra literature; a
special case of the procedure is sometimes referred to as “Drinfeld–Sokolov re-
duction,” especially in parts of the literature more closely connected to physics.

Throughout this article, we have used the term “twist” to describe pre-
cisely the procedure of deforming the differential, but this term is normally
restricted to cases where the origin of the deformation is in the action of the
physical supersymmetry algebra on the full theory; this is not necessarily the
case for the deformations at hand here. The physical origin of the BRST re-
duction at hand lies in passing from the free to the interacting theory, as we
have tried to make clear in (70) and related discussion above. At the four-
dimensional level this is, in typical physics usage, neither a BRST nor a twist-
ing differential, but a general deformation of the differential which induces the
interaction spectral sequence of [26].

There is, however, a somewhat askew sense in which BRST is, perhaps, an
appropriate name even with respect to physics conventions. Recall that any
BRST theory determines a BV theory in canonical fashion, but not all BV
theories arise in this fashion. (Physicists would probably think of such theories
as being ones for which the BV formalism can be safely ignored; except for
supergravity theories, this is usually the case.) In such a theory, the base of
the shifted cotangent bundle is the BRST theory, in which antifields are not
present; when it carries an internal differential, usually due to the presence of
gauge symmetry, this is called the BRST differential.

However, in the twist of such a theory, part of the BRST differential
originates in the twisting supercharge. (This is one origin of the overlap in
nomenclature.) When supersymmetry is realized off-shell through the use of
an auxiliary-field formalism, the twisted theory still arises from a BRST theory,
and twisting can be performed just at the BRST level. The auxiliary fields may
then be eliminated via their equations of motion. However, after eliminating
auxiliary fields, the BRST differential (really, the twisting supercharge) may
depend on interaction terms—in particular, on superpotential terms—in its
action on the component fields. This is the sense in which the introduction
of interactions may be thought of as a deformation of the differential, even
without passing to the BV formalism (where the action functional is encoded
in the BV differential in any case).

We see no possible choice of nomenclature that does not lead to some
confusion or break with tradition and hope that this remark makes readers
sufficiently aware of the existing semantic burden. However, the specific exam-
ple of two-dimensional BRST reduction we consider below is an example both
of a free-to-interacting deformation and of a Chevalley–Eilenberg differential;
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the theory is the twist of a two-dimensional (0,2) theory with purely gauge
interactions.

There is a useful characterization, due to Li [37], of the quantum master
equation for chiral theories on C in terms of vertex algebras.

Theorem 7.12. [37] Suppose E is a free chiral theory on C with corresponding
vertex algebra V[E]. Then, an �-dependent field of the vertex algebra Ihol(z)
of cohomological degree one satisfies the OPE in V[E]:

Ihol(z) · Ihol(w) ∼ 0

if and only if the corresponding family of functionals

I[L] = lim
ε→0

W

(
Pε<L,

∫
dz Ihol

)

satisfies the renormalized QME.

We see that the condition on Ihol(z) in the theorem above is nearly
identical to the condition of the field JBRST(z) in the general definition of
BRST reduction. On the other hand, since the resulting family of renormalized
functionals {I[L]} satisfies the QME, we know by the abstract formalism of
[13,14] that it defines a quantum field theory and hence a factorization algebra
ObsE,I on C.

It is automatic that this factorization algebra is holomorphic and satisfies
the conditions of [13, Theorem 2.2.1]. Thus, by this theorem, it defines a graded
vertex algebra

V[ObsE,I ].

Combining this with Theorem 7.12, Li identifies the current Ihol(z) with the
standard BRST current JBRST (z) at the level of vertex algebras. This is a
characterization of the vertex algebra associated with the observables of the
quantization of the chiral theory.

Remark 7.13. The factorization algebras we consider are all defined over C[�].
When we take the associated vertex algebra we adhere to the convention to
specialize � = 2πi.

We now wish to apply this to the factorization algebra F′
1 as in (72)

associated with the localized free chiral theory on Cz1 and the factorization
algebra of the resulting chiral deformation obtained from the localization of
the interacting theory on C

2.
First off, we note that the factorization algebra F′

1 is equal to the coho-
mology of a factorization algebra associated with a free chiral theory on Cz1 .
This is a free chiral theory consisting of a g-valued ghost a, its antifield b, and
an ordinary βγ system valued in V whose fields we denote γ2d and β2d to not
confuse them with the higher dimensional βγ system. The action functional of
the free chiral theory on Cz1 is∫

Cz1

(b∂a + β2d∂γ2d).
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The factorization algebra of this free chiral theory will be denoted Obsfree
z1

(g, V ).
The cohomology of this factorization algebra is precisely the factorization al-
gebra F′

1. The vertex algebra corresponding to Obsfree
z1

(g, V ) is generated by
the free fields a(z), b(z), γ2d(z), β2d(z) which has nontrivial OPE’s given by

a(z)b(w) ∼ 〈a, b〉g
z − w

γ2d(z)β2d(w) ∼ 〈γ, β〉V

z − w
.

Denote this vertex algebra by V
free[g, V ].

The spectral sequence with E1-pages F1 converges to the cohomology of
the factorization algebra Obs(g, V ) on C

2. For the factorization algebra on
Cz1 , this amounts to taking a further cohomology of F′

1 which depends on the
interacting part of the field theory.

This can be realized by deforming the free chiral theory Obsfree
z1

(g, V ) by
the chiral deformation

I2d =
∫

Cz1

〈β2d, [a, γ2d]〉V + 〈b, [a, a]〉g.

The resulting theory is simply the BF βγ system on Cz1 .
By the discussion above, the associated vertex algebra is given by the

cohomology of the graded vertex algebra V
free[g, V ] with respect to the dif-

ferential Q =
∮

dzIhol(z):

V[Obsz1(g, V )] = H•
(

V
free[g, V ], Q =

∮
〈β(z), [a(z), γ2d(z)]〉V

+
∮

〈b(z), [a(z), a(z)]〉g
)

.

This is the description of the BRST reduction of the βγ system by the affine
Kac–Moody Lie algebra generated by the fields a(z), see, for instance, [36].

Remark 7.14. The results of this section can be interpreted as a proof, in our
formalism, of the descriptions of two-dimensional chiral algebras associated
with Lagrangian theories given in [5, §3], and in particular of the case of
N = 2 super-QCD [5, §5.1–2].
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