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Abstract

Over a decade, genome-wide association studies (GWASs) have provided insight-

ful information into the genetic architecture of complex traits. However, the vari-

ants found by GWASs explain just a small portion of heritability. Meanwhile,

as large scale GWASs and meta-analyses of multiple phenotypes are becoming

increasingly common, there is a need to develop computationally efficient mod-

els/tools for multi-locus studies and multi-phenotype studies. Thus, we were

motivated to focus on the development of tools serving for epistatic studies and

to seek for analysis strategy jointly analyzed multiple phenotypes.

By exploiting the technical and methodological progress, we developed three R

packages. SimPhe was built based on the Cockerham epistasis model to simulate

(multiple correlated) phenotype(s) with epistatic effects. Another two packages,

episcan and gpuEpiScan, simplified the calculation of EPIBALSTER and epiHSIC

and were implemented with high performance, especially the package based on

Graphics Processing Unit (GPU). The two packages can be employed by epis-

tasis detection in both case-control studies and quantitative trait studies. Our

packages might help drive down costs of computation and increase innovation in

epistatic studies.

Moreover, we explored the gene-gene interactions on developmental dyslexia,

which is mainly characterized by reading problems in children. Multivariate

meta-analysis was performed on genome-wide interaction study (GWIS) for reading-

related phenotypes in the dyslexia dataset, which contains nine cohorts from dif-

ferent locations. We identified one genome-wide significant epistasis, rs1442415

and rs8013684, associated with word reading, as well as suggestive genetic in-

teractions which might affect reading abilities. Except for rs1442415, which has

been reported to influence educational attainment, the genetic variants involved

in the suggestive interactions have shown associations with psychiatric disorders

in previous GWASs, particularly with bipolar disorder. Our findings suggest
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making efforts to investigate not just the genetic interactions but also multiple

correlated psychiatric disorders.
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Zusammenfassung

Über ein Jahrzehnt haben GWASs aufschlussreiche Informationen zur genetis-

chen Architektur komplexer Merkmale geliefert. Die von GWASs gefundenen

Varianten erklären jedoch nur einen kleinen Teil der Erblichkeit. In der Zwis-

chenzeit, da sich GWASs im großen Maßstab und Meta-Analysen für mehrere

Phänotypen immer mehr durchsetzen, besteht die Notwendigkeit, recheninten-

sive Modelle/Werkzeuge für Multi-Locus-Studien und Multi-Phänotyp-Studien

zu entwickeln. Daher haben wir Programme und Analysestrategien für epistatis-

che Studien entwickelt, die mehrere Phänotypen gemeinsam behandeln.

Wir nutzten den technischen und methodischen Fortschritt aus und entwickel-

ten drei R-Pakete. SimPhe basiert auf dem Epistasemodell von Cockerham, um

(mehrfach korrelierte) Phänotyp(en) mit epistatischen Effekten zu simulieren.

Die beiden anderen Pakete, episcan und gpuEpiScan, vereinfachen die Berech-

nung von EPIBLASTER und epiHSIC und wurden mit hoher Rechenleistung imple-

mentiert, insbesondere das auf GPU basierende Paket. Die beiden Pakete können

zum Epistasisnachweis sowohl in Fall-Kontroll-Studien als auch in quantitativen

Merkmalsstudien eingesetzt werden. Unsere Pakete könnten dazu beitragen, die

Rechenkosten zu senken und die Innovation bei epistatischen Studien zu steigern.

Darüber hinaus untersuchten wir die Gen-Gen-Wechselwirkungen bei Entwick-

lungsstörungen, die hauptsächlich durch Leseprobleme bei Kindern gekennze-

ichnet sind. Multivariate Meta-Analysen wurden an GWIS für lesebezogene

Phänotypen in den Dyslexie-Daten durchgeführt, die neun Kohorten aus ver-

schiedenen Orten enthält. Wir identifizierten eine genomweit signifikante Epis-

tase, rs1442415 und rs8013684, die mit dem Lesen von Wörtern assoziiert sind,

sowie suggestive genetische Interaktionen, die die Lesefähigkeiten beeinflussen

könnten. Mit Ausnahme von rs1442415, von dem berichtet wurde, dass es den

Bildungserfolg beeinflusst, haben die genetischen Varianten, die an den sugges-

tiven Interaktionen beteiligt sind, Assoziationen mit psychiatrischen Störungen in

früheren GWASs gezeigt, insbesondere mit bipolaren Störungen. Unsere Ergeb-
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Zusammenfassung

nisse legen nahe, Anstrengungen zu unternehmen, um nicht nur die genetischen

Interaktionen zu untersuchen, sondern auch die Beziehungen zwischen verschiede-

nen psychiatriSchen Störungen.
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1 Introduction

High-throughput technologies, producing dense SNPs information across the

whole genome, and current automated phenotyping technologies have enabled

the study of the relationship between genotype and phenotype (using GWAS) at

an unprecedented level of detail. GWASs have detected a large number of genetic

variants associated with various complex traits. However, they fail to explain

much of the phenotypic variation and meanwhile epistasis has been suggested to

be considered for better understanding the genetic architecture of complex traits

[1, 2, 3].

1.1 Motivation for epistasis related tools development

Epistasis analysis on the whole-genome level is facing many challenges. It ac-

quires not only the appropriate statistical methods but also the efficient imple-

mentation to accelerate the calculation process. Due to the technological and

computational advances in the past years, there are several statistical methods

as well as related software (tools) which have been developed to identify epis-

tasis. Some of them have taken advantage of the General Purpose Graphics

Processing Units (GPGPUs), especially with the CUDA parallel model, which

succeed in reducing the computational burden causing by the exhaustive search

[4, 5, 6, 7, 8, 9]. Most of them have limitations in the phenotypic type, only

case-control or quantitative phenotype studies, or in the accessibility owing to

the requirement of command line knowledge for their deployment.

Motivated by the importance of epistasis studies, the development of comput-

ing architectures, the advantages of GPU utilization, and providing tools easily

exploited by domain experts with the knowledge to interpret the epistasis re-

sults, we were aiming to develop R packages with high performance for epistasis

detection in both case-control and quantitative phenotype studies.

1



1 Introduction

Besides, these methods (tools) are developed in diverse mathematical ways indi-

cating that the performance of their results is difficult to compare. A controllable

simulation tool can be used to evaluate type I error rates or to perform power

comparisons for the different statistical tests [10]. Nevertheless, the current simu-

lation tools rarely take into account epistatic effects when generating quantitative

phenotypes. Thus, we were also motivated to develop a tool which can simulate

single or multiple (correlated) quantitative phenotypes based on genotypes with

additive, dominance, and epistatic effects.

1.2 Motivation in multi-phenotype studies

With the availability of cheaper and accurate assays to quantify multiple pheno-

types in large population cohorts, large scale GWASs, as well as meta-analyses,

of multiple phenotypes are becoming increasingly common and many efforts have

been made on developing methods for multi-phenotype studies [11, 12, 13, 14,

15, 16, 17, 18, 19]. There is an increasing need to develop models and computa-

tionally efficient algorithms for joint analysis of multi-SNP and multi-phenotype

data [20]. Moreover, Webber et al. have discussed the problem in epistasis anal-

ysis from phenotype definition and suggested to study the similar behavioral

traits or endophenotypes, which might be more likely to detect epistatic effects

influencing the disease [21]. Therefore, we were motivated to find an effective

analytical strategy to detect epistasis to conduct multi-phenotype studies, with

expectations to gain a deeper understanding of the genetic architecture of com-

plex traits.

Dyslexia, one of the most common neurodevelopmental disorders affecting chil-

dren across languages, writing systems, and educational approaches, is usually

diagnosed by collecting several psychological and psychometric measures which

are statistically or functionally correlated [22]. Previous linkage and association

analysis only partly reveal the genetic architecture for dyslexia [23, 24, 25]. By

considering the interplay of genetic factors on the endophenotypes determining

dyslexia, we aimed to find novel genetic variants interacting in an epistatic way

influencing the reading abilities in children.

2



1.3 Overview of the thesis structure

1.3 Overview of the thesis structure

Apart from the chapter of a real case application on dyslexia utilizing the tool

described in the method development part, the chapters of this thesis are self-

contained which allows reading each of them without having to know the details

in the previous one(s).

Being an interdisciplinary work combining human genetics, statistics, and com-

puter science, a brief introduction of the research interests is presented as Chap-

ter 1 (Introduction). The background related to the general issues in the human

genome, the computational burden from the whole-genome analysis, and the cur-

rent research trends in solving the related problems is given in Chapter 2 (State of

the Art). Specifically, it covers the discussion about the GWAS limits, the reason

to conduct GWIS, the analytic and computational challenges for epistatic analy-

sis, and the methods to be considered for epistasis detection in multi-phenotype

studies.

Chapter 3 (Methods and Tools Development) describes the algorithms and imple-

mentations of the three R packages, SimPhe, episcan, and gpuEpiScan, developed

according to our interests (see motivations in Section 1.1). Each R package was

presented with examples. The efficiency of the key function in GPU based R

package, gpuEpiScan, is discussed.

Chapter 4 (A Real Dataset Application: Dyslexia) provides an application on

reading abilities with our analytical strategy in multiple phenotypes study, which

is related to the motivations in Section 1.2. The strategy is provided and evalu-

ated before being applied on entire dyslexic data. The details and novel findings

of the epistasis analysis are given. Functional meanings of the results are explored

and discussed to gain more valuable knowledge on the general correlations among

psychiatric disorders.

In Chapter 5 (Conclusion & Outlook), we conclude the findings, discuss the

contributions and limitations, and provide perspectives for future developments,

of which some attempts are already shown. Supplementary information on the

algorithms, the datasets, and the detailed results which have not presented in

previous chapters are given in the Appendix A and B.
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2 State of the Art

2.1 Genome-wide association study and epistasis

2.1.1 Genome-wide association study

GWASs are aimed at detecting variants at genomic loci associated with human

diseases or other complex traits in the population and, in particular, at detecting

associations between common SNPs and phenotypes.

2.1.1.1 Genetic variants

The term of DNA refers to a double-stranded molecule mainly located within

the cell nucleus. A genetic variation, in which a nucleotide on a certain genomic

position in the DNA is exchanged, is called single nucleotide polymorphism (SNP,

Figure 2.1). Chemically (Figure 2.2) and most frequently, the exchange happens

between adenine (A) and guanine (G) or between cytosine (C) and thymine (T).

SNPs are the most common type of genetic variation on humans. SNPs may

fall within coding sequences, non-coding regions, or in the intergenic regions

of genes (regions between genes). Generally, SNPs are more frequent in non-

coding regions than in more conserved coding-regions [27]. SNPs within a coding

sequence do not necessarily change the amino acid sequence of the protein that is

produced, due to the degeneracy of the genetic code. SNPs in non-coding regions

may still affect gene splicing, transcription factor binding, messenger ribonucleic

acid (RNA) degradation, or the sequence of noncoding RNA. A SNP upstream

or downstream of a gene could affect the gene expression, which is referred to as

an expression single nucleotide polymorphism (eSNP).

Since 2005 [28], SNPs are considered as the biological markers in GWASs to

map the association between genetic factors and measurable phenotypes, for ex-

ample complex diseases. With the progress of modern technologies, especially
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a SNPs

b Haplotypes

c Haplotype-
tagging SNPs

A
or
G

T
or
C

C
or
G

Chromosome 1 A A C A C G C C A ... T T C G G G G T C ... A G T C G A C C G ...

Chromosome 2 A A C A C G C C A ... T T C G A G G T C ... A G T C A A C C G ...

Chromosome 3 A A C A T G C C A ... T T C G G G G T C ... A G T C A A C C G ...

Chromosome 4 A A C A C G C C A ... T T C G G G G T C ... A G T C G A C C G ...

SNP1 SNP2 SNP3

Haplotype 1 C T C A A A G T A C G G T T C A G G C A

Haplotype 2 T T G A T T G C G C A A C A G T A A T A

Haplotype 3 C C C G A T C T G T G A T A C T G G T G

Haplotype 4 T C G A T T C C G C G G T T C A G A C A

Figure 2.1: SNPs, haplotypes and haplotype-tagging SNPs [26].
a. SNPs are shown in a short stretch of deoxyribonucleic acid (DNA) in four
versions of the same chromosomal region taken from different individuals.
Most of the DNA sequence is identical in these chromosomes, but variation
is shown to occur at three bases. Each SNP has two possible alleles; the
first SNP (SNP1) has the alleles C and T.
b. A haplotype consists of a particular combination of alleles at nearby
SNPs. Shown here are the observed genotypes for 20 SNPs that extend
across 6 000 bases of DNA. Only the variable bases are shown, including
the three SNPs that are shown in panel a. For this region, most of the
chromosomes in a population survey have haplotypes 1–4.
c. Genotyping of just the 3 haplotype-tagging SNPs out of the 20 SNPs
is sufficient to uniquely identify these 4 haplotypes. For example, if a
particular chromosome has the sequence A-T-C at these three haplotype-
tagging SNPs, this sequence matches the pattern determined for haplotype
1. Note that many chromosomes carry the common haplotypes in the
population.
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(a)

(b)

Figure 2.2: Base pairs (from https://en.wikipedia.org/wiki/Base_pair).
(a) An A.T base pair with two hydrogen bonds.
(b) A G.C base pair with three hydrogen bonds. Non-covalent hydrogen
bonds between the bases are shown as dashed lines. The wiggly lines stand
for the connection to the pentose sugar and point in the direction of the
minor groove.

the development of microarray platforms and sequencing strategies, several hun-

dred thousand to more than a million SNPs are usually assayed in thousands of

individuals in a typical GWAS.

Though SNPs are the most common genetic variants utilized in GWAS, there are

also other variants which are nowadays included in the analysis, e.g., indels, the

genetic variations referring to the insertions or deletions of bases in the genome,

which are the second most common type of genetic variation on humans. The

public genetic variation database, dbSNP, from the National Center for Biotech-

nology Information (NCBI) contains a large number of SNPs and indels. In 2015,

the 1000 Genomes Project Consortium has contributed or validated 80 million of

7
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the 100 million variants in dbSNP1. They reported that over 99.9 % of variants

consist of SNPs and short indels and the number of different sites between a

typical genome and the reference human genome ranges from 4.1 to 5.0 million.

The range comes from the different total number of observed non-reference sites

among populations (Figure 2.3) [29].

SNPs and indels provide researchers a powerful way to study the genetic root of

the differences that are apparent across the human race.

2.1.1.2 Linkage and association analysis

Considering the experimental design and the coverage of the genome, the first

well-established GWAS, was reported in 2007 by Wellcome Trust Case Control

Consortium (WTCCC) [30] while a precursor study was conducted in 2005 [28].

Before that, linkage analysis was the commonly used tool to map genomic loci,

which have effects on complex traits in the past decades. Gene mapping by

linkage relies on the cosegregation of causal variants, causing the observed asso-

ciation signal, with marker alleles within pedigrees [31]. It succeeded in mapping

genes and gene variants affecting Mendelian traits (e.g., single-gene disorders) [32]

while failed to reliably identify complex-trait loci in human pedigrees. GWAS,

based upon the principle of LD (details in Section 2.2.3) at the population level,

performs the unbiased scan of the genome compared with linkage analysis in

which only a few genetic markers per chromosome were used to tag a causal

variant since the number of recombination events per meiosis is relatively small

[31]. GWAS represents an important step beyond family-based linkage studies

and a powerful tool for investigating the genetic architecture of complex traits.

2.1.1.3 Missing heritability

The continuous success is achieving by GWASs in the over ten years (staged re-

viewed in [31, 34], Figure 2.4). However, most variants identified by GWASs so

far explain only a small proportion (typically < 50 %) of estimated heritability

— the proportion of variation in a particular trait that is attributable to genetic

1 By the early of this year (2019), there are over 113 million validated of the 660 million
recorded variants in dbSNP (version 151, https://www.ncbi.nlm.nih.gov/projects/SNP/

snp_summary.cgi).
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factors [2, 3]. For example, the 697 genetic variants with genome-wide signifi-

cance on adult height explain only 20 % of the phenotypic variance [35]. The

unexplained heritability is so-called missing heritability. Many explanations for

the missing heritability have been suggested, including much larger numbers of

variants with smaller effect yet to be found; rarer variants (possibly with larger

effects) which are poorly detected by available genotyping arrays that focus on

variants present in 5 % or more of the population; structural variants poorly

captured by existing arrays; low power to detect gene-gene interactions; and

inadequate accounting for shared environment among relatives (summarized in

[1]).

2.1.2 Epistasis

Due to the fact that gene-gene interaction could be an explanation of the miss-

ing heritability (discussed in Section 2.1.1.3), epistasis, defined generally as the

interaction between different genes, is a hot topic of discussion in complex trait

genetics in recent years [36, 37, 38, 39, 3, 21, 40].

2.1.2.1 Genotypic contexts of epistasis

The term “epistasis” has many different meanings. Over one hundred year ago,

Bateson and Punnett coined the term (“epistatic”) to describe a masking effect

whereby a variant or allele at one locus (denoted at that time as an “allelomorphic

pair”) prevents the variant at another locus from manifesting its effect on a

phenotype [41]. In this sense, the variants must be interacting with one another,

at least in the loose sense that they exist within pathways that both influence

the same phenotype. Later, Fisher [42] used a derivative of the term “epistacy”

to average any statistical deviation from the additive combination of two loci in

their effects on a phenotype, which has been rapidly adopted as “epistasis” by

population geneticists.

Since then, the term “epistasis” has been expanded to describe nearly any set of

complex interactions among genetic loci, which was condensed into three main

categories by Phillips [37]:

functional epistasis addresses the molecular interactions that any genetic ele-

ments have with one another, e.g., the interaction consist of proteins that

11
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operate within the same pathway or of proteins that directly complex with

one another [43].

compositional epistasis describes the ways a specific genotype is composed and

the influence that this specific genetic background has on the effects of a

given set of alleles. It can be expanded to include genetic interactions be-

yond those that are exposed in the double mutant homozygote, which is

the definition of epistasis used in modern systems biology. Since enumerat-

ing all possible genetic interactions for any real population is not possible,

a compositional epistasis approach can not be formally applied to natural

populations.

statistical epistasis attributed to Fisher is the average deviation of combinations

of alleles at different loci estimated over all other genotypes present within

a population. It does not simply mean that phenotypes are measured

quantitatively, but that they are sampled from a population as opposed to

being intentionally constructed, as is described by compositional epistasis

[37].

Functional epistasis and compositional epistasis are jointly considered by Sackton

as physiological epistasis [44], in a broad sense, referring to any situation in which

the genotype at one locus modifies the phenotypic expression of the genotype at

another locus [3]. Statistical epistasis, according to Cordell, mostly relies on the

concept of a linear model that describes the relationship between an outcome

variable and a predictor variable or variables [45].

Ultimately, the variety of the meaning for epistasis may be the reason that there

are various uses or applications of epistasis.

2.1.2.2 Epistasis as a tool

Since the first application conducted by Bateson and Punnett revealed a pattern

of epistasis influencing flower color in sweet peas [41], epistasis analysis has utility

in the human genetic analysis of biosynthetic pathways, developmental pathways,

and other genetic networks. For instance, with WTCCC data, Wan et al. have

found many gene-gene interactions in the MHC region for type 1 diabetes (T1D)

and one SNP pair for Crohn disease (CD) [46]. While Lippert et al. performed

an exhaustive epistatic search on expanded WTCCC data and did not detect any

genetic interaction for CD. Instead, they identified several genetic interactions
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associated with coronary artery disease (CAD) and one epistatic interaction for

bipolar disorder (BD) [47]. The difference between the results from Wan et

al. and Lippert et al. might come from that the different amount of data and

different calculation methods they used [47]. The failure of replication may be

the reason for the debate on the role of epistasis on human genetics.

However, the unreplicable situation was broken in 2014. Hemani et al. identified

30 pairs of SNPs that interacted to affect the expression of 19 different gene

transcripts [38]. These interactions were robust to adjustment for multiple testing

and were successfully replicated across two independent studies. Most of the

replicated apparently interacting SNP pairs were associated with gene expression

in cis and were located close to each other on the same chromosome (all <

520 kilo base pairs (Kb)). Wood et al. replicated 11 of the cis–cis pairs in

the InCHIANTI dataset [48]. The phenomenon of cis–cis interaction was also

observed in a recent large-scale statistical interaction analysis, in which one SNP

pair at the LPA locus have identified that epistatically affects CAD susceptibility

[49].

Apart from the lack of replication across different datasets, the epistasis concept

is controversial in human genetics also due to the lack of well-characterized exam-

ples. Nevertheless, recently, some researchers from New Zealand and Australia

have shown the clinic evidence that two mutations of TNFRSF13B/TACI as well

as TCF3 genes interact in an epistatic way causing severe immunodeficiency and

autoimmunity in the digenic proband [50, 51]. Though epistasis has not been re-

ported to be widespread, the clinical findings encourage researchers to put more

efforts into epistasis studies.

2.2 Analysis challenge

The studies using epistasis to analyze the structure of genetic pathways have

utilized a small set of genes that had previously been identified to affect the

trait with single-mutant analysis. Nevertheless, the entire premise of epistasis

is that genetic interaction can influence phenotypes when found in combination

with one another. It is better to conduct a large-scale systematic study of the

possible pairwise interactions between all genes [37]. The datasets investigated

with GWAS can be appropriate sources to search for pairwise epistasis.
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However, searching for epistatic effects on a genome-wide level is confronted with

many challenges, including the same statistical issues as in GWAS resulting from

the genetic part, e.g., false positive caused by population heterogeneity, and the

computational expense due to the increasing sample sizes and scale of genotyping.

2.2.1 Genotype call rate and allele frequencies

Genotype call rate, calculated by number of genotyped individuals
total number of individuals , is a good indica-

tor of marker quality. Large variations exist in DNA sample quality which can

have substantial effects on genotype call rate and genotype accuracy. The below-

average call rates and accuracy usually happen in samples of low DNA quality

or concentration. Thus, genotype failure rate, also called missing genotype rate,

can be one measure of DNA sample quality. Typically, SNPs (or variants, de-

pending on the studies) with lower call rate than, approximately, 98 % to 99 %

are recommended to be removed from analysis while the threshold may vary from

study to study based on the sample size.

Allele frequency, defined as the relative occurence of every single allele in the

population, can be calculated by number of individuals with specific allele
2×total number of individuals . The minor

allele frequency (MAF) refers to the frequency of the allele in a locus appearing

with a low rate in the population. It is important to filter SNPs based on MAF

since the statistical power is extremely low for rare SNPs. Besides, the SNPs

with extremely low MAF also have the potential to lead to spurious associations

due to either genotyping errors or population stratification [52]. The clustering

algorithms can be challenged for making genotype calls when SNP with low MAF

are involved, usually resulting in poor clusters. Fake associations, caused by

potential stratification issues rather than disease association, happen if specific

alleles are present only in certain ancestral populations, with low MAF in those

populations.

In order to avoid misclassification, bias, high false positive or negative rates,

classically, a MAF threshold of 1 % to 5 % is applied to remove all SNPs with

very low MAF. Studies with small sample sizes may require a higher threshold

[53].
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2.2.2 Hardy-Weinberg equilibrium

Hardy-Weinberg equilibrium (HWE) is a principle stating that allele and geno-

type frequencies in a population will remain constant from one generation to the

next in the absence of disturbing factors. In a natural population, the mating

is random (without disturbation) which means the frequencies, theoretically, are

constant. However, HWE can be influenced by many factors, for example, ge-

netic drift, mate choice, mutation, gene flow, population bottleneck, and founder

effect. The Hardy-Weinberg equation states as

p2 + 2pq + q2 = 1 (2.1)

where assumes the frequency of major allele (A) is p and the frequency of minor

allele (a) is q. p2 is the predicted frequency of homozygous people with major

alleles (AA) in a population, 2pq is the predicted frequency of heterozygous (Aa)

people, and q2 is the predicted frequency of homozygous people with minor alleles

(aa).

For each genetic variant in genome-wide dataset, a χ2 goodness-of-fit test is com-

monly used to examine whether observed genotypes conform to Hardy-Weinberg

expectations. Wigginton proposed exact tests to control type I error inflating

in χ2 test [54]. The test statistics can show the deviations from HWE which

may suggest problems with genotyping or population structure or imputation

inconsistencies or, in samples of affected individuals, an association between the

genetic variants and disease susceptibility. The p-value threshold for declaring ge-

netic variants to be in HWE has varied significantly between studies. The reason

is that although departure from HWE can indicate potential genotyping error,

disequilibrium can also result from a true association. It has been consistently

noted that many more SNPs are out of HWE at any given significance thresh-

old than would be expected by chance [52]. SNPs severely out of HWE should

therefore not be eliminated from the analysis while flagged for further analysis

after the association analyses are performed while in practice, the variants with

HWE p-value < 5× 10−5 are typically removed from the study.
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2.2.3 Linkage disequilibrium

LD, the non-random association of alleles at different loci in a given population,

can also be affcted by the factors influencing HWE. The LD concept is related

to chromosomal linkage, where two variants on a chromosome remain physi-

cally joined on a chromosome through generations of a family. As Figure 2.2.3

from Bush described, chromosomal segments are broken apart by recombination

events within a family from generation to generation. Through generations, the

effect is amplified. Until all alleles in the population are in linkage equilibrium

or are independent, repeated random recombination events keep breaking apart

segments of a contiguous chromosome (containing linked alleles) [55]. Namely,

the rate of LD decay decreases according to the increasing number of genera-

tions (Figure 2.2.3). Since more recombination events have been accumulated

in African-descent populations, the most ancestral, they have smaller regions of

LD than European-descent and Asian-descent populations, created by founder

events (a sampling of chromosomes from the African population).

The level of LD between two loci with allele A (minor allele: a) and allele B

(minor allele: b) is commonly measured by D′ and r2. If f(A), f(B), f(a), and

f(b) represent the frequency of allele A, B, a, and b, respectively. f(AB), f(Ab),

f(aB), and f(ab) represent the different combinations among alleles. Then D′

is defined as

D′ =


f(AB)f(ab)−f(Ab)f(aB)
min(f(A)f(b),f(a)f(B)) when f(AB)f(ab)− f(Ab)f(aB) > 0

f(AB)f(ab)−f(Ab)f(aB)
max(−f(A)f(B),−f(a)f(b)) when f(AB)f(ab)− f(Ab)f(aB) < 0

(2.2)

and

r2 =
(f(AB)f(ab)− f(Ab)f(aB))2

f(A)f(B)f(a)f(b)
(2.3)

Both values, D′ and r2, range from 0 to 1, where 0 implies frequent recombina-

tion between the two variants and statistical independence under principles of
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Figure 2.5: Linkage and LD. Within a family, linkage occurs when two genetic markers
(points on a chromosome) remain linked on a chromosome rather than being
broken apart by recombination events during meiosis, shown as red lines.
In a population, contiguous stretches of founder chromosomes from the
initial generation are sequentially reduced in size by recombination events.
Over time, a pair of markers or points on a chromosome in the population
move from linkage disequilibrium to linkage equilibrium, as recombination
events eventually occur between every possible point on the chromosome
[55].
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Figure 2.6: Indirect association . Genotyped SNPs often lie in a region of high linkage
disequilibrium with an influential allele. The genotyped SNP will be statis-
tically associated with disease as a surrogate for the disease SNP through
an indirect association [55].

HWE and 1 means a complete LD, indicating no recombination between the two

variants within the population.

The existence of LD creates the different outcomes from a genetic association

study. In GWAS, tag SNPs refer to the SNPs selected specifically to capture

the variation at nearby sites in the genome. If a tag SNP is associated with

a specific trait, it can be the exact signal (direct association) or the indirect

association indicating within the LD region of the tag SNP, there is a risk SNP

(Figure 2.6) [55]. Thus, the detected SNP might not be the causual variant due

to the presence of indirect association. For the interaction analysis, strong LD

between the tested SNP pair, according to Cordell [45], might cause the fake

interaction suggesting that reducing the number of variants in the variant set

might be required, not only for computational reasons, but also to ensure that

the variants are in low LD.

2.2.4 Population stratification

The above has explained several factors which influence the genetic studies, in

which “population” has been mentioned frequently. Figure 2.3 shows only the

difference in the number of genetic variant sites among different populations.

Besides, the allele frequencies and LD structures can also differ through popula-

tions. In modern genome-wide studies, large sample size and admixture cohorts
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have been involved. The allele frequency differences between different cohorts or

the hidden groups within the cohort can lead to false positive associations driven

for instance by unexpected relatedness of individuals. The population stratifi-

cation, allele frequency differences between different groups due to systematic

ancestry differences, is also an issue for genetic studies.

Efforts have been made to remove or reduce the effect of population stratification

through the removal of individuals of divergent ancestry. Price and his colleagues

have reported the limitations of using genomic control [56] and structured associa-

tion [57, 58] for population stratification correction [59]. The uniform adjustment

in genomic control may lead it to be insufficient for markers having unusually

strong differentiation across ancestral populations and be superfluous for markers

devoid of such differentiation, resulting in a loss in power. Structure association

is limited by the computational cost on large datasets and the predefined number

of clusters. They proposed correcting for stratification with Principal Compo-

nent Analysis (PCA), known as EIGENSTRAT, which identifies continuous axes

with large genetic variation estimated by several top eigenvectors of the pair-

wise correlation matrix for subjects, and then treats those axes as continuous

covariates in the association analyses. The linear projections are assumed to

suffice to correct for the effect of stratification while Kimmel presented evidence

from a simulation study that EIGENSTRAT correction will often be inaccurate

(details in [60]). Meanwhile, Patterson recommended filtering out loci with high

LD in large data to minimize distortion in PCA due to high correlation in adja-

cent SNPs based on multivariate regression analysis for each marker in the SNP

matrix [61]. Later, a method using classical Multidimensional Scaling (MDS)

corroborates the use of independent SNPs [62]. The open-source tool PLINK

[63] has provided a MDS-based approach to population stratification which uses

whole genome SNP data to measure the pairwise identity-by-state (IBS) distance

matrix of each individual then conduct MDS. It turns out that the approaches

based on PCA and MDS become widely applied on genome-wide genetic studies

for population stratification and the PCA-components or MDS-components are

utilized as covariates in the statistical analysis.

2.2.5 Haplotype and imputation

A haplotype is a group of alleles on the same chromosome that are inherited

together from a single parent (Figure 2.1). In genetic study of populations, it is
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common to estimate haplotypes since the precise sequence (phase) of alleles on

each homologous copy of a chromosome is not directly observed by genotyping

and must be inferred by statistical methods [64]. Estimated haplotypes can be

further used for genotype imputation to increase the power of association studies

by inferring missing genotypes, harmonizing data sets for meta-analyses, and

increasing the overall number of markers available for association testing [65].

The process of haplotype estimation before genotype imputation is called pre-

phasing [66]. Figure 2.7 explains how genotype imputaion is processed.

Several programs have been developed to perform genotype imputation, such as,

PLINK, Beagle [68], and IMPUTE2 [69]. Among them, IMPUTE2 is computation-

ally intensive but provides a better estimate of missing genotypes compared with

other methods because it takes into account all available markers when imputing

each missing genotype [65]. The phasing process in IMPUTE2 has been reported

to be less accurate than the phasing method called SHAPEIT2 [66, 70]. Thus, it

is recommended to utilize SHAPEIT2 to estimate the haploptypes from genotype

or sequencing data then impute the genotypes with IMPUTE2.

2.3 Computational challenge

Despite the challenges on the genetic issues, due to the impressively fast progress

in high-throughput sequencing, the massive data production confronts genetic

researchers with challenges in the areas of data mining, memory on device, and

computational efficiency. Performing a genome-wide pair-wise epistasis study for

n SNPs requires n×(n−1)
2 tests, indicating GWIS faces a more serious computa-

tional challenge compared to GWAS.

2.3.1 High performance computing with central processing unit(s)

The development of programming models and standards have facilitated the

deployment of parallel applications. For example, the widely used techniques:

Message Passing Interface (MPI) [71] for distributed memory systems and Open

Multi-Processing (OpenMP) [72] for shared memory systems. Upton and his

colleagues compared these two models on the advantages and disadvantages from

the programming flexibility and scalability to the performance (see [73]). Hybrid

MPI+OpenMP can be applied on modern clusters that connect multiple shared
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Figure 2.7: How genotype imputation works.
a. Genotype data with missing data at untyped SNPs (grey question
marks). The raw data consist of a set of genotyped SNPs that has a large
number of SNPs without any genotype data. Genotyped SNPs often lie in
a region of high linkage disequilibrium with an influential allele.
b. Testing association at typed SNPs may not lead to a clear signal. Testing
for association at just these SNPs may not lead to a significant association.
c. Each sample is phased and the haplotypes are modelled as a mosaic of
those in the haplotype reference panel. The figure highlights three phased
individuals.
d. Reference set of haplotypes, for example, HapMap. These haplotypes
are compared to the dense haplotypes in the reference panel.
e. The reference haplotypes are used to impute alleles into the samples to
create imputed genotypes (orange).
f. Testing association at imputed SNPs may boost the signal [67].
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memory nodes with multi-core CPUs. MPI enables communications between the

nodes on the cluster and OpenMP feeds the cores on each node. The use of this

hybrid programming model can bring improved reduced memory consumption

and reduced communication needs [73].

Performing epistatic analysis on clusters can reduce the runtime from years to

days due to the benefits from parallel computing environments. A resource man-

ager, such as SLURM [74], provides the cluster users opportunity to define re-

sources, from which epistatic analysis can be deployed across multiple cores in

parallel on a cluster. Linear or near-linear speed-ups in execution time can be

achieved depending on the algorithm, implementation, and optimization. One

example shown by Upton [73] is that a 600-days-running task would be completed

in just over 2 days when using 300 cores.

Accessing High Performance Computing (HPC) facilities via a cluster to paral-

lelize the task of epistatic analysis across multiple cores is one of the solutions to

manage the computational burden.

2.3.2 Graphics processing unit and CUDA

An alternative approach is to harness the power of modern consumer graphics

cards. The GPGPU2 is the form of stream processor (or a vector processor),

running compute kernels. GPGPU turns the massive computational power of

a modern graphics accelerator’s shader pipeline into general-purpose computing

power, as opposed to being hard wired solely to do graphical operations. The

programmable GPU, driven by the insatiable market demand, has evolved into

a highly parallel, multithreaded, manycore processor.

Several companies are making efforts on the development of the GPU. Among

them, NVIDIA currently has the most successfuls GPU products. The NVIDIA

Tesla-class GPUs are composed of an array of Graphics Processing Clusters

(GPCs), Texture Processing Clusters (TPCs), Streaming Multiprocessors (SMs),

and memory controllers. For example, a full Tesla P100 consists of six GPCs,

60 Pascal SMs, 30 TPCs (each including two SMs), and eight 512-bit mem-

ory controllers (4096 bits total). Each SM of Tesla P100 is partitioned into

two processing blocks, each having 32 single-precision CUDA Cores (also called

2 The GPU term in this thesis is used in the sense of the GPGPU, going to general computations
beyond the originally intended graphics applications.
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Streaming Processors (SPs)), an instruction buffer, a warp scheduler, and two

dispatch units (Figure 2.8).

CUDA is the hardware and software architecture that enables NVIDIA GPUs to

execute programs written with C, C++, and other languages. A CUDA program

calls parallel kernels, which execute in parallel across a set of parallel threads.

The GPU instantiates a kernel program on a grid of parallel (pre-defined number

of) thread blocks. Each thread within a thread block executes an instance of the

kernel and has a thread ID within its thread block, program counter, registers,

per-thread private memory, inputs, and output results (Figure 2.9). The CUDA

parallel model distributes efficiently the data from the global memory into shared

memory on the device (GPU). Besides, similar to the idea using a CPU cluster,

it distributes the task into a number of independent subtasks.

The development of GPU and CUDA parallel programming model enable re-

searchers to evolve the tools for epistatic analysis. A number of epistasis analysis

tools, taking advantage of CUDA, have been proposed, such as, SHEsisEpi [4],

GBOOST [5], cuGWAM [6], GLIDE [7], SNPsyn [8], and SingleMI [9].

Except CUDA, OpenCL is an alternative open-standard Application Program-

ming Interface (API) for GPUs, not only NVIDIA GPUs but also for the others,

which was originally geared toward a heterogeneous mix of target devices such

as cable set top boxes, smart phones, and desktop CPUs. Hemani developed

epiGPU employing OpenCL for exhaustive pairwise epistasis scans [76]. While

OpenCL code is more portable, developing in OpenCL is more labor-intensive

than in CUDA [77].

2.4 Multi-phenotype studies

Apart from the analysis of binary phenotype or single quantitative phenotype,

researchers are paying close attention to multiple phenotypes studies. Jointly

analyzing multiple traits may boost power to detect novel associations [13], mea-

sure heritable covariance between traits [14], and has the potential to make causal

inference between traits [78].

3 GPU clock is the GPU clock speed, measured in megahertz (MHz), also called engine clock.
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Figure 2.8: NVIDIA Fermi architecture. Eash SM features 32 single-precision CUDA
cores, 16 load/store units (LD/STs), four Special Function Unitss (SFUs),
a 64 Kilobyte (KB) block of high speed on-chip shared memory (L1+Shared
Memory subsection) and an interface to the L2 cache. LD/ST allows source
and destination addresses to be calculated for 16 threads per clock3. It
loads and stores the data from/to cache or DRAM. Each SFU executes
one instruction per thread, per clock. The SM executes threads in groups
of 32 threads called a warp, which conducts over eight clocks. The SFU
pipeline is decoupled from the dispatch unit, allowing the dispatch unit to
issue to other execution units while the SFU is occupied. Each core has
both floating-point (FP) and integer (INT) execution units. Convention in
figures: orange for scheduling and dispatch, green for execution, and light
blue for registers and caches [75].
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Figure 2.9: CUDA Hierarchy of threads, blocks, and grids, with corresponding per-
thread private, per-block shared, and per-application global memory spaces
[75].

2.4.1 Multiple correlated phenotypes

A phenotype is defined from physical or chemical measure(s) to represent the

specific biological function(s), e.g., human height. For complex disease, the def-

inition of phenotype (case or control) remains somewhat ad-hoc [13]. Usually,

the diagnosis relies on a complex range of overlapping clinical characteristics,

especially for neuropsychiatric disorders. These clinical characteristics can be

also called endophenotypes which are typically correlated.

Furthermore, family (including twin and adoption) studies suggest correlated

familial-genetic liabilities to psychiatric disorders. Phenotypic and genetic over-

lap has also been observed, for example, Lee and co-workers have provided molec-

ular evidence for the sharing of genetic risk factors across key psychiatric disor-

ders [15] and estimated a significant positive genetic correlation between risk of

type 2 diabetes (T2D) and hypertension [14].
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2.4.2 Multivariate analysis of multiple phenotypes

Correlated phenomena among endophenotypes and multiple disorders of interest

lead the attention to multi-phenotype studies, from developing suitable methods

for joint-analysis to applications on diverse complex traits. For example, O’Reilly

and Bottolo have developed MultiPhen and R2GUESS to provide approaches

for multi-phenotype analysis [13, 20]. They also reported more genetic factors

detected from multi-phenotype studies which are associated with several blood

lipid traits and have not been identified by single phenotype studies.

Webber has discussed the problem in epistasis analysis from phenotype definition

and suggested to study the similar behavioural traits or endophenotypes, instead

of treating disease status in the simplest manner as a dichotomous trait (either

present or absent), which might be more likely to detect epistatic effects influenc-

ing the disease [21]. However, to our knowledge, the above packages, MultiPhen

and R2GUESS, and other methods for multi-phenotype analysis fail to address

the genetic interactions. Though R2GUESS can analyze multiple genetic vari-

ants together, the result shows only the assciation between a set of variants and

the phenotypes of interest, which can not explain whether the genetic variants

interacted with each other or not.

To deal with multiple phenotypic dimensions in epistasis analysis, there are sev-

eral solutions from GWASs that can be taken advantage of. For instance, per-

forming dimensionality reduction on the phenotype space then apply more stan-

dard methods for epistasis detection. Some attempts in association studies have

been reported which use PCA to find directions in the phenotypes that explain

most variability [79, 80]. Apart from performing dimensionality reduction on the

phenotypes, there are also methods with abilities to handle multiple correlated

outcomes directly that have been applied to genetic studies, such as multivariate

regression [81, 13, 82], Canonical Correlation Analysis (CCA) (or CCA-based

methods like semiparametric CCA) [17], and Fisher’s product method for test-

ing multiple phenotypes with summary statistics [83]. Although O’Reilly has

proved that the standard CCA and MANOVA (implemented in R2GUESS [20])

can have higher inflated type I error rates when testing case-control or non-

normal continuous phenotypes compared to MultiPhen, there is no comparison

on the performance of the adjusted CCA, PCA, multiple regression, and Fisher’s

product method.
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2.4.3 Multivariate meta-analysis

Since genome-wide genetic studies usually contain many different cohorts, meta-

analysis is commonly used to combine data and identify the common effect or the

reason for the variation of different effects. Currently, the statistical methodolo-

gies for performing meta-analysis of GWASs are oriented towards the “one gene,

one trait” approach. As discussed above, multi-phenotype studies would be a

promising research area. The advantages of multivariate meta-analysis have also

been pointed out by researchers. Dimou and his coworkers hold the view that

the multivariate meta-analysis jointly synthesizes the estimates arising from each

study [84, 85, 86], which provides estimates for all the effect sizes and makes easier

the comparison of the results, avoiding multiple comparisons and consequently,

the inflation of type I error rate [87]. Furthermore, the potential correlation be-

tween the estimates is considered which yields more robust and precise estimates

while the univariate approach ignores such correlation structure [88].

Developing or investigating methods suitable for multivariate meta-analysis is on

demand. Many efforts have been made on multivariate meta-analysis of genetic

association studies. Van Houwelingen and collaborators used a formulation as

following for multivariate meta-analysis

yi ∼MVN(β,Σ + Ci) (2.4)

where yi is the vector containing the p different estimates and by β, the vector of

the overall means. Ci represents a within-studies covariance matrix, the diagonal

elements of which are the study-specific estimates of the variance and are assumed

known [84]. The off-diagonal elements of Ci correspond to the pairwise within-

studies covariances. Σ represents a between-studies covariance matrix, whereas

the off-diagonal elements correspond to the between studies covariances that are

estimated during the fitting procedure. When the number of the freely estimated

parameters increases, a structured specification for Σ can be imposed [87].

Illustrative code was provided in SAS PROC MIXED [84]. Bagos has shown the same

for gllamm in Stata [89], whereas R users can utilize the metafor package [90].

Besides, the Stata command mvmeta can perform not only inferences based on

either Maximum Likelihood (ML) or Restricted Maximum Likelihood (REML)
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by direct maximization of the approximate likelihood using a Newton–Raphson

algorithm [91], but also the DerSimonian and Laird’s method of moments [88, 92].

The same functionality has been implemented in R package mvmeta while the

implementation is more powerful since it contains a regression function to fit the

models, as well as a series of auxiliary functions and data used in examples, then

to summarize the results, extract predictions, residuals, and statistics, perform

statistical tests [93].

Genome-wide interaction analysis in multi-phenotypes studies can take into ac-

cout the overhead methods for multivariate meta-analysis to maximize the power

of epistasis detection and to acchive robust and precise estimates.
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3.1 SimPhe

3.1.1 Introduction

For complex traits, GWAS have been widely used to uncover the genetic basis in

the past fifteen years [94, 95, 96]. However, the variants found through GWAS

only explain a small portion of the heritability of complex traits [2]. This may

be due to complicating factors such as an increased number of contributing loci

and susceptibility alleles, incomplete penetrance, and contributing environmental

effects. Epistasis, generally defined as the interaction between different genes, has

been a hot topic in quantitative genetics for a long time [97, 98, 99]. There still is

a controversy about the role of epistasis because the majority of researchers only

concentrate on additive effects and most genetic variation is currently assumed

additive [100, 101, 36, 102, 39]. Even for the search of epistasis, only few tools can

take dominance effects into consideration. Recently, the detection of dominance

or the interactions it is involved in have been reported [38, 103]. We believe it is

essential to consider all the genetic effects when conducting GWIS. In addition,

the performance of GWIS methods needs to be analyzed before using them in

real applications.

A controllable simulation tool can be used to evaluate type I error rates for new

statistical tests or power comparisons between the new tests and other existing

tests [10]. In the past decade, many simulation programs have been developed

aiming to generate genetic or phenotypic data. Each of them has its own pros

and cons. For example, genomeSIMLA can simulate large scale genomic data in

population-based case-control or family-based samples [104] but is not appropri-

ate to test methods for detecting significant associations between genetic and

phenotypic variation. SITDEM uses the observed parameters in GWAS to sim-

ulate disease/endpoint models in three different approaches (Bayes’s theorem,
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odds ratio, and relative risk) [105] but is limited to single locus studies. Similar

limitations exist in SeqSIMLA, which uses GENOME [106] as default to simulate

sequence data in unrelated case-control or family samples with user-specified dis-

ease or quantitative trait models [10]. To our knowledge, phenosim [107], epiSIM

[108], and the function trio.sim implemented in R [109] package trio [110] on

Bioconductor [111] are the only structured and published tools that can model

epistatic interactions based on SNP genotypes without using HapMap project

data. Among them, epiSIM works for generating realistic case-control samples

and trio.sim in trio is developed for case-parent trios. The Python-based [112]

phenosim is a nice tool to add a phenotype to genotypes simulated by coalescent-

based simulators. It supports multiple output formats, as well as the input taken

from the output of different coalescent simulation tools. However, it is not easy

to use realistic genotype data, e. g., stored in PLINK [63] format (bed, bim, and

fam files) which has been widely adopted in genetic analysis. To embed the

dominance interactions with other genetic items, users have to modify the initial

code in phenosim which further complicates the simulation process.

Here, we present the R package SimPhe [113], to simulate single phenotype or

multiple (correlated) quantitative phenotypes based on genotypes with additive,

dominance, and epistatic effects. Through parameters to the different functions,

users can easily specify the number of quantitative trait loci (QTL), genetic effect

size, the number of quantitative traits, and proportions of variance explained by

the QTLs. It is convenient for GWAS or GWIS tool developers to test their

methods, and for users who would like to compare the performance of such

methods, especially the biological data analyst that wants to apply methods in

real datasets and is interested in knowing which method performs better for a

certain trait or traits with correlation.

3.1.2 Epistasis model

There are different models for modeling epistasis [42, 114, 115, 116]. Among

them, Cockerham’s model [114] has been reported as more appropriate than the

other models for the study of epistasis between genes [117]. In this article, we use

multi-locus-two-allele (G2A), representing the Cockerham model, to simulate the
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phenotype(s) [118]: for a single phenotype, y, the relation to the genetic effects

can be expressed as1

y =
n∑

p=1

Gpij + ε (3.1)

where p ∈ {1, . . . , n} is the index of the epistatic pair (SNP pair). The minor

allele counts at locus A and B are given by i and j, respectively (i. e., i, j ∈
{0, 1, 2}). For the examples presented below we will assume SNP A with genotype

Aa at locus A and SNP B with genotype Bb at locus B (the minor alleles would

be a and b, respectively). The random effect is represented by ε. Under the

assumption of Hardy-Weinberg and linkage equilibrium, for a single interactive

SNP pair the genetic value Gij is given by

Gij = β0 +
8∑

t=1

βGwt
wtij (3.2)

where βGwt
are the regression coefficients with t ∈ {1 . . . 8}. The wtij are the scale

components of genotype ij for the t-th contrast. Four are the linear and quadratic

orthogonal contrasts for locus A (locus B), the statistical linear and quadratic

terms correspond to the genetic additive and dominance terms, respectively. The

remaining four represent the interaction scales:

w1 linear additive of locus A

w2 quadratic dominance of locus A

w3 linear additive of locus B

w4 quadratic dominance of locus B

w5 = w1 × w3 linear× linear additive× additive of locus A and B

w6 = w1 × w4 linear× quadratic additive× dominance of locus A and B

w7 = w2 × w3 quadratic× linear dominance× additive of locus A and B

w8 = w2 × w4 quadratic× quadratic dominance× dominance of locus A and B

1 The equations, tables, and cooresponding descriptions below in Section 3.1.2 are based on the
two publications [117] and [118].
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Due to their orthogonal design, the variables in this model are mutually inde-

pendent to each other and are defined as

w1 =


1 for AA

0 for Aa

−1 for aa

w2 =


−1

2 for AA

1
2 for Aa

−1
2 for aa

w3 =


1 for BB

0 for Bb

−1 for bb

w4 =


−1

2 for BB

1
2 for Bb

−1
2 for bb

w5 = w1 × w3, w6 = w1 × w4, w7 = w2 × w3, w8 = w2 × w4

The vectors of orthogonal contrasts for the nine possible genotype combinations

are given in Table 3.1.

Table 3.1: Eight orthogonal scales based on nine genotypes

Scale AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb

G G00 G01 G02 G10 G11 G12 G20 G21 G22

w1 1 1 1 0 0 0 −1 −1 −1

w2 −1
2 −1

2 −1
2

1
2

1
2

1
2 −1

2 −1
2 −1

2

w3 1 0 −1 1 0 −1 1 0 −1

w4 −1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2 −1

2

w5 1 0 −1 0 0 0 −1 0 1

w6 −1
2

1
2 −1

2 0 0 0 1
2 −1

2
1
2

w7 −1
2 0 1

2
1
2 0 −1

2 −1
2 0 1

2

w8
1
4 −1

4
1
4 −1

4
1
4 −1

4
1
4 −1

4
1
4

3.1.3 Variation and correlation

Due to the changes in allele frequency and LD, the relative strengths of the

genetic effects will be different. Then, the total genetic variance contains the

covariance between different genetic effects through linkage [117]. But while sim-
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ulating, we suppose the two SNPs which have epistatic effects are unlinked. Thus,

the total genetic variance for one pair of interactive SNPs can be partitioned into

eight independent components without covariance as

VG =
8∑

t=1

Vwt (3.3)

Each variance Vwt of genetic effects is contributed by its own genetic parameter

without any covariance with other effects. Based on Equation 3.3, the heritability

of the phenotype, h2, contributed by an epistatic event can be written as

h2 =
VG

VG + Vε
(3.4)

where VG is the total variance of genetic effects and Vε is the variance of the

random effect. According to Cockerham and Kao [119, 117], the variance compo-

nents contributed by one pair of SNPs in a population are shown in Appendix A.1

(Equation A.1, adjusted from [117]).

With the known heritability and given regression coefficients, according to Equa-

tion 3.4 and the detailed genetic variance for each type of epistatic effects in

Equation A.1 (Appendix A.1), it is not difficult to get the variance of the ran-

dom effect. In other words, to simulate a phenotype with specific heritability,

for example, a phenotype with 40 % heritability, only the regression coefficients

and heritability equal to 0.4 need to be given. There is no need to define the

variation of the random effects. By this way, the simulated phenotype can be

similar with the trait under analysis with certain heritability.

For multiple phenotype studies, it is quite common that the phenotypes are

related. To establish the correlation among simulated phenotypes, there are two

ways: one is to set shared QTLs for each phenotype and the other is to build

the correlation matrix and then convert to the independent phenotypes. For

the latter, the correlated phenotypes Ynew can be generated by converting the

correlation matrix on independent simulated phenotypes Y like
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Ynew = LY
′

(3.5)

where Y
′

is normalized (centered and divided by standard deviation). L is a

lower triangular matrix with real and positive diagonal entries in a Cholesky

decomposition

C = LL> (3.6)

where C is a covariance matrix and L> is the transpose of L.

Chosing which way to build the correlation for the simulated phenotypes depends

on the purpose of the simulation. We highly recommend to set shared QTLs since

the major objective for most of the simulations in multiple phenotype studies is

to test whether the used method can find the common QTLs among phenotypes.

However, since the genotypes of the set QTLs are varying, the correlation coef-

ficient cannot be controlled. It might differ from the expected value which may

be not desirable for some relatedness-oriented simulation.

3.1.4 Contents of SimPhe

In this section we describe the functions included in SimPhe and provide some

notes on their implementation. We start by describing the main function of the

package, sim.phe. In the following, we offer details of some of the secondary

functions that could be useful for users. The key input files or parameters for

the main function are also crucial for some secondary functions which are also

explained.

3.1.4.1 Main function

The main function of SimPhe is sim.phe. This function contains steps that how

the simulation works in this package. Among the arguments listed below, the

sim.pars and fgeno are most important as they are the basis of the simulation.
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A flowchart is provided in Figure 3.1 to guide the reader through the specification

of the arguments for sim.phe.

sim.pars: name of the file or name of the prepared list object with genetic

parameter settings.

fgeno: string specifying the filename of genotype information or pre-read data

with genotype information.

ftype: genotype file format for fgeno.

fwrite: whether to write simulated data file.

fphename: name of the phenotype(s) file.

fusepar: name of output file saving the settings for the simulation.

seed: integer seed for the random number generator.

Dskim: the coefficient of linkage disequilibrium.

noise.var: variance of random noise.

pattern: ignore pattern for detecting the phenotype index from the parameter

names.

plink.path: path of the PLINK executable.

genetic.model: a string specifying the genetic model to use for the simulation.

Simulation parameters. All of the information about the parameter settings

related to a simulation should be given either in the prepared list or in the file

named in sim.pars. The file format is shown in the example below:

[P1mean]

mean

10

[P1main]

SNP additive dominance

SNP01 4 2

SNP02 2.5 1.5

SNP03 5.5 1.8

SNP04 -2.5 1

SNP05 8.5 9.8

SNP06 8.7 8.4
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[P1epistasis]

SNPA SNPB additive_additive additive_dominance dominance_additive dominance_dominance

SNP01 SNP02 10 2 2.8 1.8

SNP03 SNP04 8 3 3.5 2.5

SNP05 SNP06 20.5 20.6 20.4 10.2

[P1heritability]

heritability

0.6

[P2mean]

mean

20

[P2main]

SNP additive dominance

SNP01 8 2

SNP02 4.5 1.8

SNP03 6.5 1.5

SNP04 -3.5 -1.2

SNP07 10.4 8.6

SNP08 12.3 11.9

[P2epistasis]

SNPA SNPB additive_additive additive_dominance dominance_additive dominance_dominance

SNP01 SNP02 15 4 3 2

SNP03 SNP04 12 5 3.5 2.5

SNP07 SNP08 21.5 20.9 20.5 20.3

The general structure is blocks with a bracketed headline, each followed by a

plain-text table with one header line followed by a variable number of data lines

up to either an empty line, the next block header, or the end of the file.

The blocks starting with “[P1 . . . ]” refer to phenotype 1, those with “[P2 . . . ]”

to phenotype 2. There should be the following four blocks for each phenotype

with the columns described here (for “P1”):

[P1mean]

mean β0: coefficient parameter of “basic” genetic effects inGij = β0 +
∑8

t=1 βGwt
wtij
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[P1main]

SNP SNP name

additive coefficient of additive effect

dominance coefficient of dominance effect

[P1epistasis]

SNPA first SNP

SNPB second SNP

additive additive coefficient for additive additive interaction

additive dominance coefficient for additive dominance interaction

dominance additive coefficient for dominance additive interaction

dominance dominance coefficient for dominance dominance interaction

[P1heritability]

heritability expected heritability

Similar meanings apply to “[P2mean]”, “[P2main]”, . . . for phenotype 2. Users

can simulate multiple phenotypes by adding more information. The important

and necessary items for each phenotype are “main” and “epistasis” which de-

termine the effect sizes of genetic effects. With the optional block “heritability”,

the simulated phenotype can be designed with a specific propotion of genetic

variance. If “heritability” is missing, there is another way to specify the heri-

tability by assigning noise.var. Otherwise, using the default noise.var (equal

to 1), the heritability of the simulated phenotype could be extremely high. We

also provide some helpful functions associated with the calculation of heritability.

More details can be found in Section 3.1.4.2.

Genotype data. The arguments fgeno and ftype provide information about

the genotypes. Here the genotype file (fgeno) only needs to contain all the

information of SNPs dedicating to genetic effects. In other words, only the SNPs

mentioned in the parameter file for the simulation are sufficient. fgeno should

be a string specifying the filename to get genotyope data from or a dataframe

with the genotype information. If given as character string, the format of the

genotype file must be specified (ftype) to avoid problems when reading the file.

We provide three options for ftype:
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“plink” : genotype file is written in PLINK format. For this option (default),

fgeno needs to be given without suffix and plink.path may need to be

assigned by the user because PLINK will be run from it within SimPhe. We

highly recommend users to check the system settings with R and PLINK

when using genotype with PLINK format. There is always some uncontrol-

lable problem with different devices, we can not guarantee that our general

commands have no trouble to get access to the PLINK from R.

“ind.head” : columns are the indviduals and rows are SNPs.

“snp.head” : columns are SNPs and rows are indviduals.

For the last two options ( “ind.head” and “snp.head” ), fgeno must be the full

name (with suffix and path if necessary) of the genotype file. Of course, this does

not apply if fgeno is provided as a dataframe, in that case SNPs should be in

columns, individuals in rows.

Outputs. After simulation, fwrite determines whether write out the simulated

phenotype(s) into a file and fphename can specify the filename. To achieve clearly

understanding and make future check, all the information in the parameter file

and additional information about the simulation will be automatically recorded

into a file with filename containing in fusepar, for example, allele frequencies

and heritability for each phenotype simulation.

Linkage disequilibrium. The definitions of LD are various but it shows the

nonrandom association of alleles at different loci. More details can be found

in Slatkin’s review [120]. For epistasis simulation, it is essential to know the

relationship of the alleles at the two loci involved in an interaction. The argument

Dskim can specify LD. However, we believe that setting Dskim equal to 0 is enough

because there are other kinds of genetic variants one needs to pay more attention

to in research, e. g., microsatellites, insertions, deletions, and inversions. Also,

assuming no LD is an easy and safe way for simulation.

Other useful arguments. In the parameter file for the simulation, the user does

not need to give the number of phenotypes. This will be detected automatically

by matching character string with pattern. To capture the same simulation

results every time, seed is an option to use. In the current version, the only

option to genetic.model is “epistasis”. Users can set unrequired genetic item(s)

to zero to exclude unexpected genetic effect(s).
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The detail of pipeline to simulate phenotype(s) in main function sim.phe is

shown in Figure 3.1. Each step involves one secondary function.

Figure 3.1: Flowchart of main function: sim.phe including secondary functions.
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3.1.4.2 Secondary functions

In real-world datasets, there is always various correlation among different pheno-

types.To simulate this kind of phenotypes, we provide the function build.cor.phe

to build relationships between independent phenotypes. As mentioned before,

there are two ways to specify correlation: either set shared QTLs or use a corre-

lation matrix to convert data. build.cor.phe only works for the latter.

pheno: data to build correlation for.

corMtr: a correlation matrix, e. g.,

(
1 r

r 1

)
for two variables, r is the corre-

lation coefficient for variable 1 and variable 2.

sdMtr: a matrix with standard deviations, e. g.,

(
σ1 0

0 σ2

)
for two variables,

σ1 and σ2 are the standard deviations for variable 1 and variable 2.

margin: a vector giving the subscripts which the function will be applied over.

Among the 4 arguments, sdMtr is optional. If missing, build.sd.matrix will

compute the standard deviation matrix based on the given data.

Below we list some additional functions which are part of the core of sim.phe.

Figure 3.1 shows where these secondary functions are used.

Table 3.2: List of core functions in SimPhe

Generic name Function

calc.gene.var Calculate total genetic variance based on regression coefficients
calc.herit Calculate heritability if it is not given
get.noise.var Get noise variance according to the expected heritability
gene.effect Get genetic effect for each individual based on the genotype
read.geno Read genotype data
read.simu.pars Read file specifying the simulation parameters

Even though the main purpose, simulation, can be achieved by simply running

sim.phe, we believe secondary functions still need to be paid attention to. These

functions are called from sim.phe but they can also be used independently.
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3.1.4.3 Necessary Inputs

SimPhe requires some essential information to simulate phenotypes. They are

the basis for the main function and some secondary functions.

First there are the simulation parameters defined in a file with the special format

described above. The name of this file is specified as a parameter to function

sim.phe. We provide a demo file in the package (for details, see Section 3.1.5).

Users can copy this file and modify the values (numbers) to set their own simu-

lation parameters.

The other is a file with the genotyping information. This can be the whole

genome genotyping data or just the subset including the genotyping information

of the QTLs referenced in the parameters file, but the names of these QTLs

must exist in both files. It means there is no need not preprocess a big dataset

prior to a simulation. Also, a preloaded dataframe with GWAS genotypes can

be used directly from memory (even if not loaded through SimPhe, if it has

SNPs in columns). QTLs not referenced in the simulation parameter file will

be ignored. As shown in Figure 3.1, users can reference either a variable with

the genotype data or give the filename of the genotype data as well as the file

format to the package (for details about the supported types in this package,

see Section 3.1.4.1). Genotype needs to be coded as one of {0, 1, 2}. Therefore,

either a real genotype dataset from sequencing or simulated genotypic data from

some simulators is applicable for SimPhe if it is in the right format.

3.1.5 Sample implementation

Here we demonstrate the use of SimPhe by applying it to a real-world genotype

dataset. The simulation parameters, as shown in the last section, are randomly

set without any special meaning. First, we show how easy it is to get phenotype(s)

by using sim.phe. Before running sim.phe, we need to specify the parameter

file and genotype file for simulation.

If not already available on your system, SimPhe can be installed from Compre-

hensive R Archive Network (CRAN) using

install.packages("SimPhe")

After installing SimPhe, two toy files including the information of simulation
parameters and genotype exist in the package folder:
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library("SimPhe")

fpar.path <- system.file("extdata", "simupars.txt", package="SimPhe")

fgeno.path <- system.file("extdata", "10SNP.txt", package="SimPhe")

Then simulate the phenotypes as designed in the parameter file after loading the
package:

phe <- sim.phe(sim.pars = fpar.path, fgeno = fgeno.path,

ftype = "snp.head", seed = 123, fwrite = FALSE)

In the parameter file, we describe two phenotypes contributed to by two common

SNP pairs with epistatic effects and one independent SNP pair with epistatic ef-

fects, the simulation parameters are taken from the toy example file: simupars.txt.

Users can inspect them by looking at the variable genepars.

genepars

## $P1mean

## mean

## 1 10

##

## $P1main

## SNP additive dominance

## 1 SNP01 4.0 2.0

## 2 SNP02 2.5 1.5

## 3 SNP03 5.5 1.8

## 4 SNP04 -2.5 1.0

## 5 SNP05 8.5 9.8

## 6 SNP06 8.7 8.4

##

## $P1epistasis

## SNPA SNPB additive_additive additive_dominance dominance_additive

## 1 SNP01 SNP02 10 2 2.8

## 2 SNP03 SNP04 8 3 3.5

## 3 SNP05 SNP06 20 21 20.4

## dominance_dominance

## 1 1.8

## 2 2.5

## 3 10.2

##

## $P1heritability

## heritability

## 1 0.6

##

## $P2mean

## mean
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## 1 20

##

## $P2main

## SNP additive dominance

## 1 SNP01 8.0 2.0

## 2 SNP02 4.5 1.8

## 3 SNP03 6.5 1.5

## 4 SNP04 -3.5 -1.2

## 5 SNP07 10.4 8.6

## 6 SNP08 12.3 11.9

##

## $P2epistasis

## SNPA SNPB additive_additive additive_dominance dominance_additive

## 1 SNP01 SNP02 15 4 3.0

## 2 SNP03 SNP04 12 5 3.5

## 3 SNP07 SNP08 22 21 20.5

## dominance_dominance

## 1 2.0

## 2 2.5

## 3 20.3

Phenotype 1 has been set with a certain heritability ($P1heritability) but phe-
notype 2 has not. With the following steps we will check whether the heritability
of the simulated phenotype 1 is the same as the set one. SimPhe includes the
coefficients and the allele frequencies for simulating phenotype 1: gene.coef and
allele.freq, which is extracted from the simulation parameters.

gene.coefficients

## $epi.par1

## SNPA SNPB additiveA dominanceA additiveB dominanceB additive_additive

## 1 SNP01 SNP02 4 2 2.5 1.5 10

## additive_dominance dominance_additive dominance_dominance

## 1 2 2.8 1.8

##

## $epi.par2

## SNPA SNPB additiveA dominanceA additiveB dominanceB additive_additive

## 1 SNP03 SNP04 5.5 1.8 -2.5 1 8

## additive_dominance dominance_additive dominance_dominance

## 1 3 3.5 2.5

##

## $epi.par3

## SNPA SNPB additiveA dominanceA additiveB dominanceB additive_additive

## 1 SNP05 SNP06 8.5 9.8 8.7 8.4 20

## additive_dominance dominance_additive dominance_dominance

## 1 21 20 10
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allele.freq

## SNP major.frequency minor.frequency

## 1 SNP05 0.64 0.36

## 2 SNP01 0.72 0.28

## 3 SNP03 0.74 0.26

## 4 SNP06 0.73 0.27

## 5 SNP02 0.64 0.36

## 6 SNP04 0.66 0.34

genevar <- calc.gene.var(gene.coefficients, allele.freq)

phe1var <- var(phe[, "p1"])

simuht <- genevar / phe1var

simuht

## [1] 0.63

The result is not the exactly 0.6 due to the (pseudo) random numbers generated
in R. To get phenotype 2 with a specific heritability, for example, 0.45, we could
proceed as:

genecoef <- get.gene.coef(

main.pars = specify.pars(genetic.pars = genepars,

effect.type = "main", phe.index = 2),

epi.pars = specify.pars(genetic.pars = genepars,

effect.type = "epistasis",

phe.index = 2))

genotype <- read.geno(fname = fgeno.path, ftype = "snp.head")

freq2 <- get.freq(geno = genotype,

epi.pars = specify.pars(genetic.pars = genepars,

effect.type = "epistasis",

phe.index = 2))

exp.noise.var <- get.noise.var(gene.coef = genecoef,

freq = freq2,

heritability = 0.45)

Then, when simulating a phenotype, just give this value as argument noise.var

to function sim.phe. It will generate a phenotype which has a heritability close

to 0.45.

As mentioned earlier, building the correlation by setting the shared interactive
SNP pairs cannot be controlled. We can take a look at the correlation between
the simulated phenotype 1 and phenotype 2:

cor.test(phe[, "p1"], phe[, "p2"])

##

## Pearson's product-moment correlation
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##

## data: phe[, "p1"] and phe[, "p2"]

## t = 2, df = 100, p-value = 0.03

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## 0.023 0.397

## sample estimates:

## cor

## 0.22

According to the result of the correlation test, the two simulated phenotypes are
significantly correlated but the correlation coefficient is small and its value cannot
easily be predicted. To get a certain value, we can impose correlation by applying
the correlation matrix to two independent variables. For two phenotypes, if we set
different SNP pairs for each, we assume these two phenotypes are independent.
Here we specify another parameter file (for sim.pars) and use another genotype
file with more samples (for fgeno), compared to the genotype file within the
package SimPhe, for sim.phe:

fpar.path <- system.file("extdata", "sep_simupars.txt", package="SimPhe")

fgeno <- 'data/geno.txt'

indphe <- sim.phe(sim.pars = fpar.path, fgeno = fgeno,

ftype = "snp.head", seed = 123, fwrite = FALSE)

We can test the correlation between the initial phenotypes with separated SNP
pairs settings:

cor.test(indphe[, "p1"], indphe[, "p2"])

##

## Pearson's product-moment correlation

##

## data: indphe[, "p1"] and indphe[, "p2"]

## t = 1, df = 5000, p-value = 0.2

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## -0.010 0.047

## sample estimates:

## cor

## 0.018

Apparently, these two phenotypes are not related. To make them correlated, first
specify a correlation matrix:

corm <- matrix(c(1, 0.6, 0.6, 1), ncol = 2)

corm

## [,1] [,2]
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## [1,] 1.0 0.6

## [2,] 0.6 1.0

Before applying the correlation matrix to simulated phenotypes, we would like
to know what the data look like:

apply(indphe, 2, mean)

## p1 p2

## 20 33

apply(indphe, 2, sd)

## p1 p2

## 21 18

Then we can build correlation between the two initial phenotypes:

corphe <- build.cor.phe(indphe, corMtr = corm)

To test the correlation between the two new phenotypes and to see if there is
any difference:

apply(corphe, 2, mean)

## p1 p2

## 20 33

apply(corphe, 2, sd)

## p1 p2

## 21 18

cor.test(corphe[, "p1"], corphe[, "p2"])

##

## Pearson's product-moment correlation

##

## data: corphe[, "p1"] and corphe[, "p2"]

## t = 50, df = 5000, p-value <2e-16

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## 0.59 0.63

## sample estimates:

## cor

## 0.61

While there is no significant difference with regard to mean and standard devia-

tion between the initial and the new phenotypes, the correlation within the latter

is now close to the value specified in corm. This can be visualized in scatter plots

of the independent and correlated simulated phenotypes shown in Figure 3.2.
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Figure 3.2: Scatter plots of the independent and correlated simulated phenotypes. P1
is not affected while P2 is sheared to reach the desired correlation. The
lines indicate mean ± standard deviation and the respective distributions.
The colors indicate the shift in P2, blue meaning downwards, red meaning
upwards.

3.1.6 Discussion

We introduced the R package SimPhe, which implements the methods of the

Cockerham model [114, 117, 118] to simulate phenotypes with epistasis based

on genotyping data. The main features of SimPhe have been explained and

illustrated using the examples of parameter setting through either genepars or

the files in the installation folder which are available with the package. The

simulation of quantitative trait(s) with epistatic interactions based on realistic

genotypes has great potential for the assessment and improvement of GWAS and

GWIS methods because the QTL(s) setting and the simulated data can provide

clear information about whether designed or chosen algorithm(s) are capable of

detecting causal factors associated with complex trait(s). Additionally, SimPhe

might be a valuable addition and a nice complement to the simulators oriented to

generate genotype data. It is a practical tool to build the relationship(s) between

genotypes and phenotype(s). Implemented by R, SimPhe does not require high-

level programming or advanced mathematical skills. It is easy to understand and

use.
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While the current release is stable, we plan enhancements of the package in the

following areas: First, although the Cockerham model is suitable for epistasis

studies, as a simulation tool for the phenotype(s), SimPhe may need to consider

other models as well. Second, the interactions between loci and environment are

not applied as separate items in the current version. This is an active area of

research and we hope to implement a full genetic model in the future. Third, due

to the fact that three locus or even higher order interactions are more compli-

cated, currently only two locus epistatic interactions are allowed in SimPhe but

we would like to investigate the possibility to model high-order interactions. Fur-

thermore, in order to make complex models more easily available to researchers

without the need to write R code, developing a Graphical User Interface (GUI)

using shiny [121] is in progress.
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3.2 episcan and gpuEpiScan

3.2.1 Introduction

Epistasis, the interaction between genes, causes hidden quantitative genetic vari-

ation in natural populations and could be responsible for the small effects, missing

heritability, and the lack of replication that are typically observed for human com-

plex traits [39]. It should be considered in genetic analysis to better understand

the genotype-phenotype map. By allowing for epistatic interactions between po-

tential genetic loci, researchers may succeed in identifying genetic variants which

might otherwise have remained undetected [99]. However, mapping epistatic in-

teractions is computationally challenging in a big dataset, especially nowadays,

due to the increasing number of experimental designs, the decreasing costs of se-

quencing individual genomes and the prospects for high throughput [39]. Besides,

improving the power of detection for exhaustive pairwise epistasis through meta-

analyses on multiple existing GWASs datasets (the data for which are already

readily available) is also demanding [122].

Remarkable activity in the development of methods and tools for detecting epis-

tasis has been seen in the past few years. The developed methods, detecting

whether the joint effect of two or more loci differs from that predicted by their

individual effects, range from conventional regression-based methods to nature-

inspired algorithms (reviewed in [122]). The available tools take advantage of

modern computing facilities to reduce the runtime of the exhaustive search on

epistasis. Different parallel computing models, architectures and devices have

been deployed and exploited, such as MPI and OpenMP for CPU-only machines,

CUDA and OpenCL for GPU machines (reviewed in [73]). However, even though

these valuable methods/tools rooted in HPC make epistasis study much easier

in genome-wide level, the usability is still limited since they are only avaliable

through the command line [73], as well as the potential conflicts caused by the

different operating systems, for example during installation.

Here, we present two R packages, episcan [123] and gpuEpiScan implemented as

described in Kam-Thong’s papers [124, 125], to provide efficient ways to detect

pairwise genetic interactions. Both of the packages support the epistasis analysis

not just in case-control study (binary phenotype) but also in quantitative trait

study (continuous phenotype). To enable the selection to use and avoid the re-

dundant installation on the different computing facilities, episcan built on CPU
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and gpuEpiScan built on GPU have been developed as two independent pack-

ages, which makes users be able to select according to the avaliable computing

resources.

3.2.2 Implementation methodology

3.2.2.1 Epistasis search for case-control study and quantitative trait

Both episcan and gpuEpiScan contain methods for scanning pair-wise epistasis

associated with diseases and quantitative traits.

The method for epistasis detection in case-control studies is a filtering strategy

simplified from the method introduced in Kam-Thong’s paper (called EPIBLASTER)

[124], which uses the difference of Pearson correlation coefficients between cases

and controls. The correlation difference ∆ρ between these two groups for each

pair of variants is calculated as

∆ρ(X(A,B), Y ) =
1

n1 − 1

∑
i:yi=1

x̃Ai x̃Bi −
1

n0 − 1

∑
i:yi=0

x̃Ai x̃Bi (3.7)

where x̃Ai and x̃Bi represent the two variants A and B, which are Z-score normal-

ized within each group (case: yi = 1 and control: yi = 0) indicating all variants

have mean 0 and variance 1. The number of subjects in each group are n1 for

cases and n0 for controls.

The method for epistasis analysis in quantitative trait studies is a fast ap-

proach derived from Hilbert-Schmidt Independence Criterion (HSIC) [126] to

test whether the two variants are independent of the phenotype. It was origi-

nally applied on epistasis detection by Kam-Thong [125] who also showed the

close relationship between HSIC and linear regression by examining the deriva-

tion of estimates using the least squares regression method. Given a finite num-

ber of observations m and for each x ∈ X , y ∈ Y, empirical HSIC as reported by

Gretton [126] is2

2 According to Gretton [126], the empirical HSIC is recovered by replacing the population
expectations with their empirical counterparts, and some additional manipulations.
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HSIC(Z,F ,G) := (m− 1)−2tr(KHLH) (3.8)

where F and G are reproducing kernel Hilbert spaces on X and Y with associated

kernels k : X ×X → R and l : Y×Y → R. Z := {(x1, y1), . . . , (xm, ym)} ⊆ X ×Y.

H, K, L ∈ Rm×m, Kij := k(xi, xj), Lij := l(yi, yj) and Hij := δi,j−m−1 (δi,j = 1,

if i = j; δi,j = 0, otherwise)3. Large HSIC values indicate high correlation of the

tested random variables. HSIC is zero if and only if the random variables are

independent [126].

To measure the dependence between the pair of variants and the phenotype, the

kernels for the phenotype and the potential epistatic variants are defined via

k(xi, xi) = φ(xi)φ(xi) = x̃Ai x̃Bi (3.9)

l(yi, yi) = ϕ(yi)ϕ(yi) = ỹi (3.10)

where x̃Ai , x̃Bi and ỹi represent variant A, variant B, and the phenotype, which

are all Z-score normalized. Then the empirical HSIC for epistasis, called epiHSIC

(or epiHSICempirical), is described as

epiHSIC((X,Y ),F ,G) ∝
m∑
i=1

x̃Ai x̃Bi ỹi (3.11)

where X and Y represent the epistatic effect and phenotypic score, respectively.

In either case, a Z-test is further performed on the correlation differences and

epiHSIC values to obtain the significance for each pair of variants.

3 Here, i and j are the indices in the matrix.
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3.2.2.2 Matrix manipulation

The essential process in EPIBLASTER (Equation 3.7) is the calculation of the

correlation coefficients for the two groups. From Equation 3.7, the correlation

matrix for all pairs of variants represented by R is

R =
1

m− 1
Ã>B̃ (3.12)

where m is the total number of subjects. Ã and B̃ are the matrices obtained

from A and B by column-wise Z-score normalization, of which the rows are the

individual information and the columns are the variant information. If A = B,

then R is a symmetric matrix meaning only the values in the upper or lower

triangle are necessary for further steps.

The key computation of the empirical HSIC is the trace of the underlying product

of gram matrices, which is simplified in empirical epiHSIC (Equation 3.11). If C

represents the epiHSIC matrix for all pairs of variants, then

C = Ã>(Ỹ ◦ B̃) (3.13)

where Ỹ is the phenotype matrix with rows for individuals and one column for

one Z-score normalized phenotype. The operator (◦) between Ỹ and B̃ means

Hadamard product (or Schur/entrywise product), which is an element-wise (or

pointwise) operation. In R, the above can be easily reached with vector(Ỹ) *

matrix(B̃) since R supports vectorized operation.

3.2.2.3 Implementation

Due to the exhaustive search, it is necessary to parallelize the calculation, along

with array programming, to achieve high performance. The first idea is to split

the big dataset into small subsets then run each of those as a computational

unit. For example, if a big dataset is split to 22 small subsets according to the 22
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autosomes, we need 253 (22×(22+1)
2 ) jobs to scan all the interactions4. Expressly,

if there are n small subsets, the resulting n×(n+1)
2 jobs can be parallelized. episcan

and gpuEpiScan are both capable of dealing with only one or with two (genotype)

inputs for the different parallelized jobs (i-th subset vs j-th subset whether i = j).

A single genotype input can be used for both Ã and B̃ in Equations 3.12 and

3.13 leading to symmetric matrices R and C with valuable information in the

upper or lower triangle.

Moreover, not all potentical users may have access to a cluster to parallelize

jobs and one job can still include a large number of variants which might reach

the limit of the computer’s physical memory during calculation, particularly on

GPUs. To address this, episcan and gpuEpiScan can split each genotype input

into chunks then consider each chunk as one computational unit (Figure 3.3). The

chunk size can be specified via an optional argument5. The chunking procedure

facilitates a fast, robust and consistent calculation, especially for gpuEpiScan

since the memory on the GPU is much more limited than the main memory

accessible by the CPU.

Further, the performance of matrix multiplication on CPU can be boosted by

many commonly available Basic Linear Algebra Subroutines (BLAS) libraries.

There is also a fast implementation of matrix multiplication on NVIDIA GPU

called cuBLAS [127].

3.2.3 Contents of episcan and gpuEpiScan

3.2.3.1 Main function

In this section we describe the main function, episcan in episcan and gpuEpiScan

in gpuEpiScan, and provide some notes on their usage. The main functions

contain the steps which show how the analysis works in the packages. Since they

are quite similar, we describe them together and detail their differences when is

necessary. All the arguments are listed below.

4 Interactions include the interacting variants from the same chromosome and from two different
chromosomes

5 A chunk size equal to the total number of variants in the genotype input means no chunking.
6 Since the purpose of the chunking process is to avoid occupying too much memory, no par-

allelization is implemented for the combination of chunks. Matrix-matrix multiplication is
boosted by linking commonly available BLAS libraries or using CUDA on GPU.
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Figure 3.3: Dataset splitting and chunking. The top and left sidebars are matrix rep-
resentations of the entire dataset, which can be split into several subsets.
The top sidebar has the variants as columns and individuals as rows. The
left sidebar is the transpose of the top sidebar, which has the variants as
rows and individuals as columns. If there is no chunking process, the red
and purple rectangles represent two subsets and can be taken as examples
to explain how parallelization works. The combinations of subsets can be
parallelized by HPC cluster or using R parallel processing packages, e.g.,
parallel. The figure on the right side intuitively explains the matrix-matrix
multiplication for parallel computation with CUDA. Each thread within
one block per grid is responsible for the calculation of (one pair of) the ele-
ments, responding to one value in the result matrix indicated by the purple
dot. If chunking is requested indicated by the red and blue lines, the red
and blue rectangles represent chunks6. If the combination containing two
same subsets/chunks, only the upper/lower triangle without the diagonal
of the result matrix would be recorded.
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geno1: first genotype input with columns for variants and rows for samples.

geno2: optional second genotype input with columns for variants and rows for

samples.

pheno: phenotype input, either case-control phenotype (0 for control and 1 for

case) or quantitative phenotype.

phetype: character string to specify the type of phenotype, either “case-control”

or “quantitative”.

outfile: file name for output.

suffix: suffix for output file.

zpthres: the threshold of significance to select variant pairs for output.

chunksize: the number of variants in each chunk. If chunksize is larger than

the number of given variants (n), it will be reset to be equal to n, which

means no chunking procedure.

scale: scale the data or not.

gpuidx: (only for gpuEpiScan in gpuEpiScan) index of GPU (device).

The required parameters to be given are geno1 (as well as geno2 if needed),

pheno, and phetype. The others have default settings. Figure 3.4 shows the

workflow of episcan and gpuEpiScan, where phetype and the number of geno-

type input determine the type of secondary function to use. As described in

Section 3.2.2.2, the matrices need to be normalized before executing multipli-

cation. If any of the necessary inputs are missing or phetype is not specified

(default is a character string with length equal to 2), the function will exit with

an error. The parameter scale indicates whether the input data needs to be

scaled (Z-score normalized). To limit the amount of the results recorded on

the disk, zpthres defines the significance threshold for output, namely only the

interactions with p-values ≤ zpthres are saved in the output file.

3.2.3.2 Examples

Here we demonstrate the use of episcan and gpuEpiScan by applying them to

dummy data (pseudo random numbers). If not already available on your system,

episcan can be installed from CRAN using
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Figure 3.4: Workflow of episcan and gpuEpiScan. Quant means quantitative and
#geno means the number of genotype inputs. epiblaster1geno and
epiblaster1geno are the secondary functions for case-control studies with
one genotype input and two genotype inputs, respectively. epiHSIC1geno

and epiHSIC2geno are the secondary functions for quantitative triat stud-
ies with one genotype input and two genotype inputs, separately.
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install.packages("episcan")

Since gpuEpiScan is currently only available for Linux system with NVIDIA GPU,

the easiest way to install it with the specific CUDA path (YOUR CUDA PATH,

usually the path is /usr/local/cuda but it may differ on different CUDA in-

stallation) is as

devtools::install_git('https://github.com/beibeiJ/gpuEpiScan.git',

build_opts = '--configure-args=YOUR_CUDA_PATH')

or download the source file then install from command line, e.g.,

# x.y.z need to be replaced by the real version, e.g., 0.0.1

R CMD INSTALL gpuEpiScan_x.y.z.tar.gz --configure-args=YOUR_CUDA_PATH

Afterwards, we load the package

library("episcan")

or

library("gpuEpiScan")

To run pair-wise epistasis analysis, first we randomly generate a small genotype
dataset (geno) with 100 subjects and 100 variants (e.g., SNPs) as well as a case-
control phenotype (p).

set.seed(123)

geno <- matrix(sample(x = 0:2,

size = 10000,

replace = TRUE,

prob = c(0.5, 0.3, 0.2)),

ncol = 100)

dimnames(geno) <- list(row = paste0("IND", 1:nrow(geno)),

col = paste0("rs", 1:ncol(geno)))

p <- sample(rep(x = 0:1, times = c(60,40)))

We can take a look at geno and p

geno[1:5, 1:10]

## col

## row rs1 rs2 rs3 rs4 rs5 rs6 rs7 rs8 rs9 rs10

## IND1 0 1 0 1 2 0 0 2 0 2

## IND2 1 0 2 0 0 0 1 0 0 1

## IND3 0 0 1 1 2 0 0 0 0 2

## IND4 2 2 1 1 1 0 0 2 0 1

## IND5 2 0 0 1 0 0 0 0 0 1
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p[1:10]

## [1] 0 0 1 1 0 0 1 1 1 0

Then simply use episcan as

episcan(geno1 = geno,

pheno = p,

phetype = "case-control",

outfile = "episcan_1geno_cc",

suffix = ".txt",

zpthres = 0.5,

chunksize = 20,

scale = TRUE)

## p-value threshold of Z test for output: 0.5

## set chunksize: 20

## [1] "episcan starts:"

## [1] "Thu Jan 31 16:47:55 2019"

## [1] "1 chunk loop: Thu Jan 31 16:47:55 2019"

## [1] "2 chunk loop: Thu Jan 31 16:47:56 2019"

## [1] "3 chunk loop: Thu Jan 31 16:47:56 2019"

## [1] "4 chunk loop: Thu Jan 31 16:47:56 2019"

## [1] "5 chunk loop: Thu Jan 31 16:47:56 2019"

## [1] "epiblaster calculation is over!"

## [1] "Thu Jan 31 16:47:56 2019"

The chunksize can be any number between 1 and the total number of variants
in genotype input. The above command saves the interactions with p-values ≤
0.9. In a real genome-wide case, it can be more strict, e.g., 5 × 10−8. We can
load the output file to check the result:

result <- read.table("episcan_1geno_cc.txt",

header = TRUE,

stringsAsFactors = FALSE)

print(paste("Total rows:", nrow(result)))

## [1] "Total rows: 2508"

head(result)

## SNP1 SNP2 Zscore ZP

## 1 rs1 rs3 0.82 0.412

## 2 rs2 rs3 -0.89 0.373
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## 3 rs1 rs4 0.88 0.379

## 4 rs2 rs4 0.78 0.437

## 5 rs3 rs4 -0.75 0.454

## 6 rs1 rs5 -1.74 0.082

The number of combinations for 100 variants is 4950. We have 2508 interactions

passing the threshold for output. A zpthres value equal to 1 means to record

the test result of all pairs. For gpuEpiScan, we generate a larger dataset, with

5000 subjects and 100000 variants splitting in two genotype inputs, to show the

efficiency when utilizing the GPU. Below is the simulation to get data similar

with a real-world quantitative triat study:

geno1 <- matrix(sample(0:2, size = 60000 * 5000,

replace = TRUE,

prob = c(0.5, 0.3, 0.2)),

ncol = 60000)

geno2 <- matrix(sample(0:2, size = 40000 * 5000,

replace = TRUE,

prob = c(0.4, 0.3, 0.3)),

ncol = 40000)

dimnames(geno1) <- list(row = paste0("IND", 1:nrow(geno1)),

col = paste0("rs", 1:ncol(geno1)))

dimnames(geno2) <- list(row = paste0("IND", 1:nrow(geno2)),

col = paste0("exm", 1:ncol(geno2)))

p <- rnorm(5000)

We can then conduct an epistasis search via

gpuEpiScan(geno1 = geno1,

geno2 = geno2,

pheno = p,

phetype = "quantitative",

outfile = "gpuEpiScan_2geno_quant",

suffix = ".txt",

zpthres = 1e-5,

chunksize = 10000,

scale = FALSE)

## p-value threshold of Z test for output: 1e-05

## set chunksize: 10000

## GPU index: 0

## [1] "episcan starts:"
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## [1] "Thu Jan 31 16:53:09 2019"

## [1] "1 chunk loop: Thu Jan 31 16:53:09 2019"

## [1] "2 chunk loop: Thu Jan 31 16:53:56 2019"

## [1] "3 chunk loop: Thu Jan 31 16:54:48 2019"

## [1] "4 chunk loop: Thu Jan 31 16:55:33 2019"

## [1] "5 chunk loop: Thu Jan 31 16:56:20 2019"

## [1] "6 chunk loop: Thu Jan 31 16:57:05 2019"

## [1] "GPUepiHSIC calculation is over!"

## [1] "Thu Jan 31 16:57:50 2019"

The above calculation was conducted on one Tesla P100 GPU and finished one

chunk loop (i-th chunk in geno1 vs all the chunks in geno2) within one minute

(plus the result saving time). With GPU, the genome-wide epistasis search be-

comes less time-consuming.

3.2.4 Discussion

The limited amount of heritability explained by the variants identified in GWASs

is partly a result of the concentration on single locus association. Epistasis, also

be referred to as SNP–SNP interactions in GWIS, have been considered in the

contribution of missing heritability. However, search for epistatic interactions is a

difficult task, practically, in terms of implementing algorithms for detecting epis-

tasis and adjusting the search space appropriately [73]. High-performance and

cloud computing have been widely utilized and facilitated the exhaustive epistasis

search. Based on the development of the modern computer architecture, we de-

rived the methods from Kam-Thong’s work [124, 125], EPIBLASTER and epiHSIC

(see Section 3.2.2), and developed two packages, episcan and gpuEpiScan, to

provide efficient ways for epistasis detection not only in case-control studies but

also in quantitative trait studies.

To show the efficiency particularly with GPU, we compared the performance of

the core function, e.g., Pearson correlation, implemented in gpuEpiScan against

the other implementations (Figure 3.5), from which we have seen the benefit

making advantage of GPU. Although gpuEpiScan can only be installed on Linux

system with NVIDIA GPU so far, the high performance achieved by GPU mo-

tivates us to further explore the potential that enables the package with broad

adaptability.
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Figure 3.5: Runtime comparison of correlation calculation on GPU and multiple CPUs.
Computing Pearson correlation with WGCNA::cor (CPU WGCNA 50,
where 50 indicates the number of used threads), implementation based
on CUDA (gpuCor), implementation based on OpenCL using gpuR [128,
129] object gpuMatrix (gpuR gpuMatrix), and gpuR object vclMatrix

(gpuR vclMatrix). The comparison was operated on Intel(R) Xeon(R)
CPU E5-2690 v4 @ 2.60GHz and Tesla P100 (GPU) with 10000 individ-
uals and different number of variants (1000, 5000, 10000, 50000, 100000,
500000).

61



3 Methods and Tools Development

Though the current releases are stable, we plan enhancements of episcan and

gpuEpiScan in the following areas: First, efforts will make not only on enabling

the packages, mainly gpuEpiScan, available across different platforms (operating

systems) but also on different GPU devices (e.g., NVIDIA GPU, AMD GPU).

Second, the methods we implemented are non-parametric methodologies for epis-

tasis detection which are suggested to be used as the scanning strategy then fur-

ther conduct parametric based analysis (e.g., regression) or biological functional

analysis (e.g., enrichment test) with the filtered interactions. Third, due to the

biologist and clinician may have limited computer skills, it might be fruitful to

have an accessible implementation, such as, web service, a GUI developed with

shiny.
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4.1 Introduction

Developmental Dyslexia (DD) is a hereditary disorder which affects the visual

processing of words and shows a prevalence of 5–12 % among school-aged chil-

dren, implying life-long learning difficulties for most of the affected individuals

[23]. The key symptom of a dyslexic individual is a discrepancy between the

impaired acquisition of visual reading skills while showing normal oral and non-

verbal abilities [130]. The disabilities usually appear not independently and the

proportion of inherited factors involved in these cognitive skills ranges from 40 %

to 80 % as reported in family and twin studies [131, 132, 133, 134].

Previously, linkage analysis and candidate gene association studies have been

applied to investigate the genetic and neurobiological basis of the underlying

cognitive skills, which have identified several robust candidate susceptibility

genes, such as DYX1C1 (15q21 ), DCDC2 and KIAA0319 (6p22.3 ), GCFC2

and MRPL19 (2p12 ), and ROBO1 (3p12.3 ) (reviewed in [23, 24, 25]). More-

over, several GWAS have been performed to understand genetic basis of DD but

few SNPs have shown genome-wide significant association (p-value ≤ 5 × 10−8)

[135, 136, 137, 138, 139, 140, 22] and the associations were not replicated in recent

association analysis of dyslexia candidate genes on an independent dataset [141].

Despite all of the promising findings above, the candidate susceptibility genes

identified and replicated so far, only explain a small portion of the genetic vari-

ance of underlying dyslexia and the related cognitive traits. It appears that the

genetic architecture of dyslexia is very complicated. Also, the syndrome might

be explainable by considering the interplay of genetic factors on the different

cognitive traits.

Abundant evidence demonstrates that epistasis influences the genetic evolution

of populations and the heritability of complex traits (reviewed in [37, 45, 142,

143, 122, 3]). Detecting genomic interactions still represents a great challenge
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that could be met with a better understanding of epistasis from a mechanistic

point of view [40]. Hence, it is reasonable to take an epistatic look at the genetic

basis of dyslexia.

To diagnose dyslexia, researchers usually need to collect several resulting mea-

sures which are statistically or functionally correlated [22]. Such phenotypes, also

called endophenotypes or sub-phenotypes, motivate the development of multi-

phenotype studies [13, 20, 144, 16, 18, 19]. Since univariate analysis (single phe-

notype) misses the underlying covariance across two or more correlated traits, it

may result in the low sensitivity for detecting shared genetic factors (pleiotropy)

[140]. However, analyzing multiple phenotypes together can increase the power

to detect novel associations [13], measure the heritable covariance between traits

[14], and identify the potential to make causal inference between traits [78]. Addi-

tionally, Webber has reviewed the epistasis studies in neuropsychiatric disorders

and discussed the problem present in detecting epistatic effects on disease status

[21]. He showed the trend that, instead of studying epistasis on a dichotomous

trait (present or absent), understanding the epistatic contribution on the be-

havioral traits or endophenotypes and their underlying neurological circuits and

systems becomes significant and fruitful. Thus, jointly analyzing the reading

abilities is necessary for epistasis study on dyslexia.

However, conducting a genome-wide epistasis search on thousands of dyslexic

samples is extremely time-consuming, especially in several independent studies

with multiple phenotypes. To reduce the computational burden of GWIS, as

well as the heterogeneity caused by multiple studies, we have derived a simple

analysis strategy to capture the significant interacting SNP pairs contributing to

the complex disease. Shortly, the analysis follows that first, a multi-phenotype

epiHSIC was performed on the merged data per phenotype to filter out the

relatively unrelated SNP pairs after the strict quality control processing for each

cohort, as well as for the merged dataset. Second, a multivariate regression was

conducted on each cohort data fitting linear model per selected SNP pairs to

assemble the statistics of different studies. Last, a multivariate meta-analysis

was applied to the cohort statistics of joint phenotypes to measure the summary

statistics. Following this analysis strategy, we searched for pairwise epistasis

exhaustively in a dataset containing thousands of dyslexic children and aimed to

find genetic interactions significantly associated with reading ability in multiple

phenotype studies.
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4.2 Subjects and Preprocessing

4.2.1 Datasets

The original datasets have been described in the context of a large quantitative

GWAS on reading-related cognitive abilities [22]. Briefly, the datasets include

seven cohorts containing unrelated DD cases and controls from seven different

European countries and two family-based datasets. The seven European co-

horts are from Austria (n=374), Germany (n=1061), Switzerland (n=67), Fin-

land (n=336), France (n=165), Hungary (n=243), and the Netherlands (n=311).

The two family-based datasets are from Colorado, United States (US) with chil-

dren showing a school history of reading difficulties and their siblings (n=563)

and the United Kingdom (UK) consisting of subjects with a formal diagnosis of

dyslexia and their siblings (n=983) [145, 146, 139].

4.2.2 Phenotypic measures

The original cohorts consist of ten different phenotypic measures, which are word

reading (WR), non-word reading (NWR), word spelling (WS), phoneme deletion

(PD), digit span (DS), letters rapid automatized naming (LRAN), digits rapid

automatized naming (DRAN), pictures rapid automatized naming (PRAN), al-

phanumeric rapid automatized naming (ARAN), and word and non-word reading

(WNWR). The details on statistical elaboration were reported in previous studies

[22, 139, 147, 148]. In summary, raw values from psychometric tests were grade-

normed (age-adjusted in Colorado) then Z-score normalized to reduce skewness,

except for the DS score which was only Z-score normalized within cohort since

it was already standardized and normally distributed [147]. Additionally, no

phenotypic outliers were detected in any of the analyzed datasets [22].

4.2.3 Data preprocessing

4.2.3.1 Genotype data

Initially, individuals were genotyped using different chips and autosomal geno-

type data have been subjected to different quality control (QC) procedures uti-

lizing PLINK v1.90 to the degree that previous studies did [136, 22]. Briefly,
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within each dataset, SNPs were filtered out if they showed a variant call rate

< 98%, a MAF < 5%, or a HWE test p-value < 10−6. Furthermore, individuals

were removed if they showed a genotyping rate < 98%. Besides, genetic ancestry

outliers based on the MDS analysis on the IBS matrix and homogeneous sam-

ples with a proportion identity-by-distance (IBD) ≥ 0.0625 (corresponding to

the inbreeding coefficient (IC)) were excluded, which means there are no related

samples not only in the unrelated cohorts but also in the family-based cohorts

(Colorado and UK).

4.2.3.2 Imputation

According to Gialluisi [22], autosomal variants were aligned to the 1000 Genomes

phase I v3 reference panel (ALL populations, June 2014 release) [29] and pre-

phased using SHAPEIT v2 (r837) [70]. Imputation was performed using IMPUTE2

v2.3.226 in 5 mega base pairs (Mb) chunks with 500 Kb buffers, filtering out

variants that were monomorphic in the 1000 Genomes EUR (European) samples.

Chunks with < 51 genotyped variants or concordance rates < 92% were fused

with neighboring chunks and re-imputed.

Beyond the above, imputed variants (genotype probabilities) within each cohort

were filtered with the criteria of IMPUTE2 INFO metric < 0.8, MAF < 5%, the

proportion of missing genotype data (null genotype call probabilities) across all

samples for the SNP < 2% and HWE test p-values < 10−6 using QCTOOL v1.5.

4.2.3.3 Cohort and phenotype selection

The German cohort includes sub-datasets from different places, collected in Mar-

burg and Würzburg twice and in Munich once (namely MarWu1, MarWu2, and

Munich), which have different experimental designs, measuring strategies and

scaling methods to collect and deal with the data. Figure 4.1 shows the dif-

ference of word reading values among the datasets (a similar plot for non-word

reading can be found in Appendix B.1). To exclude the potential effect of the

diversity among various sub-cohorts, especially the difference in disease status

(MarWu1 and MarWu2 contain no controls), only the Munich cohort was con-

sidered in further analysis.
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Table 4.1: Sample size of phenotypes in nine datasets

Study nPhe nWR(without NA) nNWR(without NA)

Austria 328 328 328
Colorado 533 533 529
Finland 324 324 300
France 143 143 120
Hungary 236 236 236

Munich 352 352 351
Netherlands 232 232 230
Switzerland 56 56 56
UK 875 873 868
Total 3079 3077 3018

Note:
1 nPhe: number of phenotype pairs;
2 nWR(without NA): number of word reading without missing value(s);
3 nNWR(without NA): number of non-word reading without missing value(s).

To select the phenotypes suitable to perform multiple (correlated) phenotypes

studies, we did (pair-based) correlation tests of the ten phenotypic measures

using all selected cohorts (Austria, Colorado, Finland, France, Hungary, Munich,

Netherlands, Switzerland, and UK). The skills showed moderate to high cross-

trait correlations (see Figure 4.2). Among them, WNWR shows an extremely

high correlation with both WR and NWR (Pearson correlation coefficients: r =

0.97 and r = 0.96, respectively). However, we were not interested in this highly

correlated phenomenon because WNWR is a derived measure based on WR and

NWR. Besides, since one of the biggest dataset, the UK cohort, only contains

phenotypic information for WR, WS, NWR, and PD, we mainly concentrated on

the selection of these four skills. The third highest correlation within our area of

interest, appears between WR and NWR (r = 0.86). Therefore, we focused on

two core phenotypes of dyslexia: word reading and non-word reading.

Further, considering the limitation of the maximum missing rate for both pheno-

types, only the individuals that have at least one phenotypic information, either

WR or NWR, were selected. The number of individuals with WR and NWR

for each cohort was shown in Table 4.1 (Appendix B.1 shows the information of

the all datasets). The Q-Q plots of WR (Figure 4.3) and NWR (Figure 4.4) per

cohort shows the distribution of normality.
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Figure 4.2: Correlations of ten dyslexia phenotypes. 1DS: digit span; 2WR: word read-
ing; 3WS: word spelling; 4NWR: non-word reading; 5PD: phoneme dele-
tion; 6LRAN: letters rapid automatized naming; 7DRAN: digits rapid au-
tomatized naming; 8PRAN: pictures rapid automatized naming; 9ARAN:
alphanumeric rapid automatized naming; 10WNWR: word and non-word
reading. The sample size for the different pairs of phenotypes differs since
the coefficient was computed using all complete pairs of observations on
the oriented two phenotypes. Particularly, for the Colorado dataset, there
is no information of ARAN and WNWR while for the UK dataset, there is
no information of DS, LRAN, DRAN, PRAN, ARAN, and WNWR.
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4 A Real Dataset Application: Dyslexia
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Figure 4.3: Q-Q plots of word reading per cohort. For each plot, the x-axis represents
the theoretical normally distributed values and the y-axis represents the
observed values.
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4.2 Subjects and Preprocessing
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Figure 4.4: Q-Q plots of non-word reading per cohort. For each plot, the x-axis repre-
sents the theoretical normally distributed values and the y-axis represents
the observed values.
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4.2.4 Split samples

We split the nine datasets (Austria, Colorado, Finland, France, Hungary, Mu-

nich, Netherlands, Switzerland, and UK) into discovery and replication datasets

based on the sample size and distribution of word reading in each cohort (see

Figure 4.1 and Figure 4.3). Austria, Colorado, Hungary, Munich, and UK have

a larger number of phenotype pairs than France and Switzerland. Also, the dif-

ference of numbers (without NA) between WR an NWR in these five cohorts are

relatively smaller than for Finland and France. Moreover, unlike the distribution

of Finland and Netherlands datasets, there is no jumping point (discrete-like val-

ues) in the other datasets. Thus, Austria, Colorado, Hungary, Munich, and UK

were analyzed as the discovery datasets and Finland, France, Netherland, and

Switzerland datasets were considered as the replication datasets.

4.2.5 Data preprocessing within discovery and replication

4.2.5.1 Discovery datasets

Discovery datasets were extracted from the whole datasets (genotype data, im-

puted data, and phenotype data) to process the following steps:

a) conducted QC for genotype data per cohort as described in Section 4.2.3.1

b) combined five cohorts (after QC) then operated QC and applied MDS anal-

ysis to get the first ten components as covariates for further merged dataset

analysis

c) extracted the samples from the merged dataset (after QC) per cohort then

calculated the MDS components per cohort (also checked whether MDS plots

change or not) and saved them as covariates for further analysis per cohort

d) compared the samples containing WR and NWR information with the samples

in genotype data then kept the common samples (more individual information

in genotype data than in phenotyping data)

e) merged the imputed data with PLINK and conducted QC

f) pruned out the variants based on LD score (r2 > 0.7
1
2 )

g) extracted the remaining variants (275561) and samples from merged imputed

dataset and performed QC (same like the QC in Section 4.2.3.2)
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4.3 Analysis strategy

Table 4.2: Sample size of phenotypes in discovery set

Study nPhe nWR(without NA) nNWR(without NA)

Austria 325 325 325
Colorado 181 181 179
Hungary 234 234 234
Munich 352 352 351
UK 510 509 508

Total 1602 1601 1597

Note:
1 nPhe: number of phenotype pairs;
2 nWR(without NA): number of word reading without missing value(s);
3 nNWR(without NA): number of non-word reading without missing value(s).

h) extracted the remaining variants (275559) and samples (see Figure 4.5) per

cohort, performed QC (same like the QC in Section 4.2.3.2)

i) selected the common variants through the five cohorts

j) extracted the common variants (271437) for merged dataset and each cohort

In the end, 271437 SNPs were used for analysis. The information of sample size

per cohort in discovery datasets is shown in Table 4.2.

4.2.5.2 Replication datasets

An analogous workflow, as described in Section 4.2.5.1 without the steps related

to getting the final variants list, was applied on replication datasets. The refer-

ence variants list was the same as the final SNP list (271437) in the discovery

dataset1. The information of sample size per cohort in replication datasets is

shown in Table 4.3.

4.3 Analysis strategy

To reduce runtime and memory costs, we first applied gpuEpiScan to quickly scan

for epistasis on the whole genome level with merged discovery data (five cohorts)

then saved the results of the variant pairs with an arbitrarily determined p-value

threshold: 10−4. Later, we tested all the saved variant pairs with linear regression

1 The number of variants remaining in some replication cohorts may be less than 271437.
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4.3 Analysis strategy

Table 4.3: Sample size of phenotypes in replication set

Study nPhe nWR(without NA) nNWR(without NA)

Finland 323 323 299
France 143 143 120
Netherland 232 232 230
Switzerland 56 56 56
Total 754 754 705

Note:
1 nPhe: number of phenotype pairs;
2 nWR(without NA): number of word reading without missing value(s);
3 nNWR(without NA): number of non-word reading without missing value(s).

per cohort then performed the multivariate meta-analysis. Also, linear regression

on the merged data was operated to compare how gpuEpiScan results vary with

traditional analysis method (linear regression).

4.3.1 Merged data

Scanning for epistasis was conducted using our R package gpuEpiScan on the

merged data. The input variables (the dosage coding variants) were corrected

by the covariates (the first ten MDS components). To get the outcomes, the

merged phenotypes (WR and NWR) were scaled per phenotype and corrected

by the covariates (the first ten MDS components). Afterwards, a PCA was

applied to reduce the dimension and get the main component of the two corrected

phenotypes. Later, the corrected variants and the PCA component were used as

input for gpuEpiScan2.

4.3.2 Cohort data

Multivariate regression within each cohort used the dosage coding variants as

variables, the MDS components as covariates, and the scaled phenotypes as out-

comes. The genetic association with WR or NWR is written in matrix notation

as

2 Within gpuEpiScan, the first step is to scale the inputs which mean both the input variables
and the outcome will be scaled.
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
y11 y21
y12 y22
...

...

y1n y2n

 =


1 xA1 xB1 xA1B1 c11 c21 · · · c101
1 xA2 xB2 xA2B2 c12 c22 · · · c102
...

...
...

...
...

...
. . .

...

1 xAn xBn xAnBn c1n c2n · · · c10n

·


β10 β20
β11 β21
β12 β22
...

...

β113 β213


+


ε11 ε21
ε12 ε22
...

...

ε2n ε2n



where 1, 2, ..., n indicates the individuals and xA and xB are the variant A and

variant B (dosage coding). y1, y2, ε1, ε2, β1, and β2 represent standardized

scores, random errors, and regression coefficients of regression items (from 0 to

13) for WR and NWR, respectively. The ten MDS components as covariates are

denoted by c1, c2, · · · , c10.

4.3.3 Meta-analysis

To avoid any influences on the statistical scores resulting from the different

populations (studies) and to capture possible heterogeneity, multivariate meta-

analysis was performed to summarize the association between the variants of

interest and the two correlated phenotypes across multiple studies using the R

package mvmeta [93]. Also, the inverse variance based meta-analysis with fixed

effect3 for each phenotype was subsequently applied via the R package rmeta

[149].

4.4 Results

4.4.1 Evidence for the effectiveness of the analysis strategy

Before applying the analysis strategy (described in section 4.3) to the entire

datasets, we investigated whether the main principle component from a PCA or

the product of original phenotypes (Z-score normalized) can be an effective repre-

sentative in epiHSIC for the multiple phenotypes in epistasis scanning step. The

experiment was conducted on artificial phenotypes, simulated by SimPhe, which

were contributed by the pre-defined quantitative trait loci (QTLs) with marginal

3 Heterogeneity tests were performed and there was no significant heterogeneity.
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Figure 4.6: Q-Q plots of permutation tests. The left Q-Q plot is for the permutation
test of taking the main principle component from PCA into epiHSIC and
the right Q-Q plot is for the permutation test of taking the product of
normalized phenotypes into epiHSIC. The x-axis represents the theoretical
p-values and the y-axis represents the observed p-values. All p-values were
shown as − log10(p-values).

effects and epistatic effects. The real interacting QTLs have been detected with

high significance in either the main principle component from the PCA or the

product of normalized phenotypes as phenotypic representative. Then a per-

mutation test (one million times) was conducted to get the distribution of the

epiHSIC statistics for these two phenotypic representatives. Figure 4.6 gives the

evidence that it is better to use the main principle component from PCA rather

than the product of normalized phenotypes to represent outcome in epiHSIC

since the later causes high inflation4.

Besides, we randomly chose one thousand variants from each discovery cohorts

as exploration datasets to test how well our analysis strategy performed when

potential heterogeneity of experimental designs exists. We tested all the combi-

nations of one thousand variants and saved the results, not just the results of

the Z-test in epiHSIC on the merged exploration data but also the results of the

linear regression per cohort, as well as the meta-analysis results. Figure 4.7 and

Figure 4.8 show the relationship among the p-values of the Z-test in epiHSIC for

WR and NWR on the merged (exploration) data, of the inverse variance based

meta-analysis with fixed effects, and of the multivariate meta-analysis with fixed

4 Since reading abilities show high linear correlation, we consider to use PCA to reduce the
phenotypic dimensions. If potentially non-linear correlations exist, we suppose principal com-
ponents from kernel PCA can be fitted in epiHSIC.
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effects (Appendix B.2 with random effects). To help delineate any logarithmic

trend, the p-values are shown as the negative logarithmic values. In the low

significance part of the plots (lower left), we observe the correlation between the

two analytic scores. Both of the figures demonstrate the validity in the approxi-

mation of p-values of Z-test in epiHSIC for multiple phenotypes to the resulting

meta-analysis p-values on the interaction term in a linear regression. Therefore,

multi-phenotype epiHSIC was considered as the scanning method in the analy-

sis strategy, which was further applied to entire dyslexia dataset to detect the

epistasis associated with word reading and non-word reading.
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Figure 4.7: Comparison of p-values between epiHSIC for multiple phenotypes and in-
verse variance based meta-analysis. phsic represents the p-values of Z-
test in epiHSIC for multiple phenotypes on merged (exploration) data and
pivmeta means the p-values of inverse variance based meta-analysis with
fixed effects. The superimposed 50 points indicate the outer border of the
distribution. All p-values are shown as − log10(p-values).

4.4.2 Epistasis on dyslexia

The epistasis scanning process was applied to 271437 variants with
(
271437

2

)
(≈

36 billion) combinations in merged discovery datasets. The genetic interactions

(variant pairs) with Z-test p-values < 10−4 were chosen and passed to conduct

linear regression on merged discovery datasets and multivariate regression on

cohort data.
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Figure 4.8: Comparison of p-values between epiHSIC for multiple phenotypes and mul-
tivariate meta-analysis. phsic represents the p-values of Z-test in epiHSIC

for multiple phenotypes on merged (exploration) data and pmvmeta means
the p-values of multivariate meta-analysis with fixed effects. The superim-
posed 50 points indicate the outer border of the distribution. All p-values
are shown as − log10(p-values).

There are around 3.8 million SNP pairs passed the filtering process with p < 10−4

in multi-phenotype epiHSIC study. We then fitted these pairs (one by one) in

linear regression for word reading and non-word reading on the merged discovery

datasets, separately. Also, the multivariate regression of these pairs was applied

within each cohort to get the statistics of multiple studies. Later, different meta-

analysis methods, multivariate meta-analysis and inverse variance based meta-

analysis, were performed on the cohort statistical scores. However, none of the

SNP pairs stood out with strong association (Bonferroni correction threshold:

1.36× 10−12) for WR or NWR in discovery dataset (see Appendix B.2).

To check whether increasing the sample size can change the result, we per-

formed multivariate regression of the (≈ 3.8 million) SNP pairs on the repli-

cation datasets per cohort for WR and NWR, independently and applied the

same meta-analysis methods as for discovery datasets to statistical scores across

all nine cohorts (5 cohorts in discovery plus 4 cohorts in replication).
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4.4.2.1 Significant interactions

Multivariate meta-analysis results on nine cohorts were presented in Figure 4.9

and 4.10 (only the selected interactions p-values ≤ 5×10−8 were plotted5). There

are 1697 epistatic SNP pairs associated with word reading and 1617 epistatic

SNP pairs associated with non-word reading. The circos plots clearly show that

most of the interactions appear with 10−10 < p ≤ 5 × 10−8 and one pair of

variants passing the Bonferroni corrected threshold of genome-wide significance

(p ≤ 1.36 × 10−12) for word reading (Figure 4.9) but none of the interaction

reached the threshold for non-word reading (Figure 4.10).

The most significant interaction associated with word reading was observed with

the p = 1.26× 10−12 between rs8013684 on chromosome 14 (position: 92365790,

minor allele: A) and rs1442415 on chromosome 15 (position: 96216254, minor

allele: T). Both of the SNPs have been imputed with high INFO score (Table 4.4).

The diversity on marker level across the nine cohorts only shows on minor allele

frequency in Finland data which is higher than in other cohorts for both of the

SNPs. Nevertherless, no heterogeneity among the cohorts (p ≈ 0.76 for WR and

p ≈ 0.68 for NWR) were given and most of the cohorts, except Switzerland due

to the small sample size, demonstrated negative effect directions for word reading

(Figure 4.11).

For below, the significant (SNP or variant) pair (interaction or epistasis) points

to the epistasis between rs8013684 and rs1442415 for word reading.

4.4.2.2 Interaction between rs8013684 and rs1442415

To confirm the epistasis occurring between rs8013684 and rs1442415, we plot-

ted the average score of word reading cross different combinations of genotypes

(Figure 4.13). From the colored lines and their trends, we concluded that purely

epistatic effects exist in the absence of main effects at either locus.

To study the performance of the other SNPs within the LD region of rs8013684

and rs1442415 (some of the SNPs have been removed during pre-processing with

the r2 > 0.7
1
2 ), 223 SNPs around rs8013684 and rs1442415 (± 500kb) have been

selected to perform the meta-analysis. Among them, 115 are on chromosome

5 The p-value threshold was chosen by no intention. It was just used as filtering to have fewer
genetic interactions to easily display.
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Figure 4.9: Circos diagram showing inter-chromosomal interactions for word reading.
The connected lines indicate the genetic interactions and the colors indicate
the significance of the interactions, grey meaning 10−10 < p ≤ 5 × 10−8,
purple meaning 1.36 × 10−12 < p ≤ 10−10, and red meaning p ≤ 1.36 ×
10−12.
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Figure 4.10: Circos diagram showing inter-chromosomal interactions for non-word
reading. The connected lines indicate the genetic interactions and the
colors indicate the significance of the interactions, grey meaning 10−10 <
p ≤ 5× 10−8 and purple meaning 1.36× 10−12 < p ≤ 10−10.
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Table 4.4: SNP information for the top signal

SNP Study MAF HWE SNPmiss INDmiss Info

rs8013684 Austria 0.36 0.55 0 0.02 0.99
Munich 0.34 0.20 0 0.01 1.00
Hungary 0.34 2.27 0 0.02 0.99
UK 0.37 0.00 0 0.02 0.99
Colorado 0.34 0.13 0 0.02 0.99
Finland 0.46 0.00 0 0.02 0.99
France 0.33 0.46 0 0.01 1.00
Netherlands 0.33 0.33 0 0.02 0.99
Switzerland 0.33 0.27 0 0.02 0.99

rs1442415 Austria 0.07 0.19 0 0.02 0.95
Munich 0.08 0.34 0 0.03 0.94
Hungary 0.06 0.00 0 0.03 0.95
UK 0.07 0.00 0 0.02 0.97
Colorado 0.05 0.00 0 0.01 0.97
Finland 0.14 0.19 0 0.01 0.99
France 0.08 0.22 0 0.02 0.96
Netherlands 0.08 0.00 0 0.01 0.98
Switzerland 0.07 0.00 0 0.02 0.95

Note:
1 SNP: SNP name;
2 MAF: minor allele frequency;
3 HWE: − log10(p-value) for Hardy-Weinberg equilibrium;
4 SNPmiss: the proportion of missing genotype data (null genotype call

probabilities) across all samples for the SNP;
5 INDmiss: the proportion of individuals for which the maximum geno-

type probability is less than a threshold of 0.9;
6 Info: IMPUTE’s info score measuring how much uncertainty there is

in the genotype calls. Equal to zero when the genotype call probabili-
ties are obtained from the allele frequency, to 1 when the calls are all
certain.
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Figure 4.11: Top hit of meta-analysis for word reading. For every single cohort (Aus-
tria, Munich, Hungary, UK, Colorado, Finland, Netherlands, France, and
Switzerland) the square and horizontal line show the estimated regression
coefficient β and 95 % confidence interval, representing the effect of each
copy of the reference-allele on reading performance. The size of the square
is inversely proportional to the standard error of the estimated effect. Be-
low the individual cohorts, a summary diamond shows the multivariate
meta-analysis with fixed effects when analyzing all nine cohorts together.
Notably, except in Switzerland cohort, clear negative effect presents in
the most single cohort and in the combined sample.
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Figure 4.12: Boxplot of word reading through all genotype combinations per cohort.
The y-axis defines the range of the measured reading scores normalized
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weaker reading performance. The x-axis is the according genotypic com-
bination of the SNPs rs8013684 (chromosome 14, minor allele: A) and
rs1442415 (chromosome 15, minor allele: T). The box defines the in-
terquartile range, the thick line shows the median, and single dot means
possible outlier. Box colors separate classes of genotype combinations.
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Figure 4.13: Genotypic effects at two locus per cohort. Two-locus model of the top hit
illustrates purely epistatic effects in the absence of main effects at either
locus. The x-axis represents the three genotypes of rs8013684 (GG (ho-
mozygote of major allele), GA (heterozygote), AA (homozygote of minor
allele)) while the three lines indicate the different genotypes of rs1442415
with the differently colored lines, a blue solid line for homozygote of ma-
jor allele (CC), a green dotted line for heterozygote (CT), and a purple
dashed line where present for homozygote of minor allele (TT)6. The y-
axis displays the respective mean of the measured word reading scores.
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14 and 110 are on chromosome 15. Figure 4.14 shows the interactions only be-

tween rs8013684/rs1442415 and other SNPs. Except for the detected epistasis

(rs8013684 vs rs1442415) in the main analysis, LD region analysis also found

other SNPs interacted with rs8013684 or rs1442415 are associated with word

reading. For example, rs8013684 and rs60109817 have been identified with a

strong interaction (p-value ≈ 5.06×10−8 below the Bonferroni correction thresh-

old for
(
225
2

)
times tests). However, since rs60109817 is within the LD region of

rs1442415, it might be detected due to strong linkage.

Figure 4.14: Interactions of the SNPs within the LD regions of rs8013684 and rs1442415
for word reading. The lines indicate the genetic interactions and the width
of the line represents the significance of the interaction. All the visible
lines have p ≤ 0.05. The color of the nodes represents the chromosome,
blue for chromosome 14 and purple for chromosome 15.

4.5 Discussion

A GWIS of around 2500 samples containing nine independent cohorts has been

conducted and reading-related traits (word reading and non-word reading) were

investigated jointly to better understand the genetic architecture. To our knowl-

edge, it is the richest epistasis study in terms of the reading ability, as well as

the involved countries and languages. Besides, multivariate meta-analysis was

performed on the correlated phenotypes and appeared to improve the precision
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of the analysis than the standard meta-analysis for single phenotype (Table B.4

and B.5) (discussed in [87]).

In the beginning, there was no SNP pair reaching the Bonferroni corrected sig-

nificance (1.36× 10−12) for the specific phenotypes when only discovery datasets

were considered. When including replication datasets into the analysis, we found

significant epistasis which illustrates that sample size affects the detection of

epistatic effects. Figure 4.15 presents the Pearson correlation coefficients be-

tween the predictions of the top epistatic signal (rs8013684 and rs1442415) and

phenotypic measures change against the increasing sample size. The correla-

tion coefficient rises almost 45 % for word reading and 70 % for non-word reading

when the replication datasets were analyzed together with the discovery datasets.

As discussed in experimental design in neuroscience [150] and epistasis [45], our

study confirms the well-established fact that statistical detection power increases

when more samples have been involved. The large sample size is required both

to detect significant interactions and to sample the landscape of possible genetic

interactions [39].

Our study did not detect many SNP pairs with the Bonferroni corrected signifi-

cance for GWIS even though the sample size increased, consistent with the phe-

nomenon of previous GWASs on dyslexia, where few SNPs reached the genome-

wide significance: 5 × 10−8 in GWASs [135, 136, 137, 138, 139, 140, 22]. The

interaction between rs8013684 and rs1442415 is the only one which shows high

significance (p = 1.26 × 10−12). Though none of the two SNPs is in any gene

regions, rs1442415 was discovered with p ≈ 9.64 × 10−4 in previous GWASs

including over 400000 individuals on educational attainment [151]. According

to Undheim’s clinical work [152], dyslexic individuals showed lower educational

attainment compared to non-dyslexic people. Thus, it might be the genetic in-

teractions that rs1442415 participated in that affects the performance of word

reading and then the affected group shows a different level of education.

Except the most significant SNP pair associated with word reading, there were

more than one thousand interactions with p-value ≤ 5 × 10−8 which have been

recognized to affect word reading and non-word reading, as shown in Figure 4.9

and Figure 4.10. To further understand the result, we annotated the SNPs

involved in the interactions with p-value ≤ 10−10 and performed the enrichment

test to explore whether any of the genes mapped by the selected SNPs are linked

to the GWAS catalog [33] to provide insight into previously reported associations
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Figure 4.15: Correlations between the predictions of the top epistatic signal and phe-
notypic measures versus the change of sample sizes. The x-axis shows
the number of individuals when different cohort(s) have been included for
the analysis, from 0 to the number of total samples in discovery datasets
and further to the number of total samples in all nine cohorts (discov-
ery plus replication datasets). The y-axis indicates the Pearson correla-
tion coefficients between the values predicted by the epistatic SNP pair
(rs8013684 and rs1442415) and the observed phenotypic scores for the
different amount of samples. The colored lines display the trend of the
correlation coefficient change for the two phenotypes, a blue solid line for
word reading and a purple dotted line for non-word reading.
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H

Figure 4.16: Gene enrichment compared with reported GWASs gene for word read-
ing. Red boxes are for the overlapping proportions of each complex trait
and blue boxes are for Benjamini-Hochberg (false discovery rate (FDR))
adjusted p-values (shown as − log10(p-values)) of hypergeometric distri-
bution tests. Note: only the complex traits of which the genes were tested
against our mapped gene set with adjusted p-values < 0.05 are plotted.
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of the SNPs in the risk loci with a variety of phenotypes. The gene mapping,

expression quantitative trait locus (eQTL) mapping, and chromatin interaction

mapping were done by FUMA [153] building on several related sources or tools7

[154, 155, 156, 157, 158]. Surprisingly, the selected SNPs (eight pairs referring to

16 independent SNPs) identified in GWIS on word reading are mapped within or

near the gene regions which have been investigated in many GWASs on human

diseases (see Figure 4.16). Some of them are neurobiological traits, such as

bipolar disorder, daytime sleep phenotypes, and cognitive performance. To get

an idea how the enrichment depends on SNP pairs, we performed leave-one-out

(leave-one-pair-out) stepwise enrichment test and found the SNP pair, rs75222724

(chromosome 3, EHHADH–AS1, ncRNA intronic) and rs1700189 (chromosome

11, DPP3, intronic), carrying more information than the others (Figure 4.17).

By reducing the number of input genes (two SNPs were mapped to 27 genes), the

enrichment test shows the genes of interest mapped by rs75222724 and rs1700189

also overrepresented in the gene set associated with major depressive disorder.

Our study might be a support for the idea that genetic factors contributing to

risk of one disease could, on average, also be informative of the risk of correlated

diseases [15, 159].

Despite cognitive abnormalities have been considered as the fundamental de-

fects in schizophrenia, supported by [160], our enrichment test did not show the

correlation between the genes mapped by the interacted SNPs associated with

word reading and the reported genes associated with schizophrenia in previous

GWASs. However, a significant overlap appears between our gene set and the

gene set reported to be associated with bipolar disorder. It suggests that read-

ing abilities might share the genetic factors with bipolar disorder leading the

genetic evidence for the finding in recent co-occurrences study which discovered

that individuals with reading problems had increased risks of several psychiatric

disorders including bipolar disorder but without schizophrenia [161].

In summary, we performed multivariate meta-analysis on GWIS for reading-

related phenotypes and identified one genome-wide significant epistasis associ-

ated with word reading, as well as suggestive genetic interactions which might

affect reading abilities. Except the SNP (rs1442415) significantly interacting

with rs8013684 has been reported to influence educational attainment, the SNPs

7 The details of how the processes are conducted by FUMA can be found in the tutorial page
(http://fuma.ctglab.nl/tutorial). The version we used is FUMA v1.3.4 released in Febru-
ary 17, 2019, with which the reference gene set of GWAS catalog is e93 2019-01-11.
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4.5 Discussion

involved in the suggestive interactions have shown the associations with psychi-

atric disorders in previous GWASs, especially with bipolar disorder. Our results

will likely contribute to efforts to investigate not just on the genetic interactions

but also on the multiple correlated phenotypes (skills/disorders).
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5 Conclusion & Outlook

The thesis is intended to develop efficient tools, with high accessibility to do-

main experts, for exhaustive epistasis search based on hypothesis-free methods.

Meanwhile, we also aimed to extend our understanding of statistical epistasis and

to expose complex synergetic factors underlying susceptibility to developmental

dyslexia.

5.1 Tools development

5.1.1 Statement of contributions on pair-wise interactions

From the computational and statistical perspective, the three R packages we have

developed can help identify the genetic interplay or gain insights into the diver-

sity of tools for epistatic analysis. The R package SimPhe to simulate (multiple

correlated) phenotype(s) with epistatic effects, can provide God’s perspective

for researchers to evaluate the performance of various epistasis methods. The

two packages episcan and gpuEpiScan for detecting epistasis with high perfor-

mance not only in case-control studies but also in quantitative trait studies, can

help address the presence of noise measured in all variables and the existence

of nonlinearities in the system describing the effects between the genotypic and

the phenotypic output. The detection methods utilized by the two packages are

correlation-based methods, not novel but computationally simple, to solve the

statistical epistasis search problem [124, 125]. Coupled with matrix manipula-

tion, the implementations, especially on GPU, are more powerful than previous

approaches.
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5.1.2 Attempt on high-order interactions and other interests

The R packages were developed with only a focus on pair-wise interactions. Fu-

ture concentration can be on high-order, e.g., three-way interactions. Besides,

from the application point of view, the correlation-based methods, especially

HSIC, can be adapted to not only epistasis studies but also multi-omics stud-

ies where researchers could seek for the network (connection) among genomics,

transcriptomics, metabolomics, and proteomics. The idea of three-way interac-

tions or network has been attempted on one PTSD dataset (discovered in [162])

containing genotyping, expression, and methylation information. To reduce the

computational burden, the toy application only considered the SNPs mapped

to FKBP5. When each omic variant was considered as one variable, HSIC for

three-way interaction was formulated as

HSICthree−way((X,Y ),F ,G) ∝
m∑
i=1

x̃Gi x̃Ei x̃Mi ỹi (5.1)

where x̃Gi , x̃Ei , and x̃Mi represent the genotype, expression, and methylation

data, which are all Z-score normalized. The total number of individuals is rep-

resented by m. The phenotype indicator, ỹi, has

ỹi =

 1
n1−1 when yi = 1

− 1
n0−1 when yi = 0

(5.2)

where n1 is the total number of cases and n0 is the total number of controls.

The p-values of three-way HSIC, according to the definition and initial application

on epistasis [126, 125], supposed to be the approximation of p-values from the

three-way interaction term in a linear model like

y ∼ β0 + β1x̃G + β2x̃E + β3x̃M + β4x̃Gx̃E + β5x̃E x̃M + β6x̃Gx̃M + β7x̃Gx̃E x̃M + ε

(5.3)

where β0, β2, · · · , β7 represent the regression coefficients.
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5.2 Biological perspective

Figure 5.1 shows the result of network analysis on PTSD three-omics data. Since

the analysis is a toy-like attempt, we did not go further with the deep under-

standing of the network. However, the links among the genes mapped by three

types of markers from different omics data provide the information that the bi-

ological architecture of PTSD is complicated. Seeking only a single locus with

significant effect, e.g., in GWAS, might not be an efficient way to study the func-

tional mechanism influencing PTSD. It reveals the potential interest of looking

at across omics interactions on PTSD, as well as on other complex traits.

Apart from developing methods/tools for high-order interactions, we are inter-

ested in continuously contributing to multi-phenotype studies. Not only because

the correlations have been observed among endophenotypes but also because the

multivariate analysis on dyslexia found potentially shared genetic variants in an

interacting way or in a single-locus way associated with psychiatric disorders.

Although we have shown evidence that taking the main principal component of

a PCA as a representative of multiple phenotypes to epiHSIC can be an effective

approach for epistasis detection in multi-phenotype studies, it is hard to have

deep insight on how precise the latent variable from linear-based dimensional-

ity reduction (PCA) could indicate the true correlations of multiple phenotypes.

Further study will be on investigating methods, linear or nonlinear, to have better

coverage of the diverse correlations among multiple phenotypes (two or more).

Moreover, building a GUI with R package shiny is also under consideration (men-

tioned in Section 3.1.6 and Section 3.2.4) to make complex models more easily

available to broader range researchers.

5.2 Biological perspective

Although substantial genetic interactions associated with reading abilities have

been uncovered by our multi-phenotype studies on the dyslexia dataset, we could

not draw well-founded conclusions yet whether the identified interacting loci have

biologically reasonable functions, especially the functional mechanisms, due to

the lack of attention and well-established experimental verification for genetic

interactions. As discussed in Chapter 2 and Section 4.5, many studies including

ours are trying to understand the role of statistical epistasis in human health

and disease by
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5.2 Biological perspective

• looking at the pathway/network the variants involved in

• comparing epistatic effects to the single locus effects on complex traits

• seeking for generalizability of the interaction presence across populations

We believe that it requires time to offer state of the art capabilities in the wide

area of interaction computation for any kind of omics data (Section 5.1.2). These

could help to improve personalized clinical approaches, answer questions regard-

ing functionality, and shed light upon the often discussed necessity of single-locus

penetrance in an interacting complex (marginal effects).
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A Appendix of SimPhe

A.1 Genetic Variance
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A.1 Genetic Variance

The four terms, fA, fa, fB, and fb, denote the frequencies of alleles A, a, B, and

b in locus A and B (remember fA and fB mean the major allele frequencies in

locus A and B, fa and fb are the minor allele frequencies) while τA = fa − fA,

τB = fb − fB, πA = fafA, πB = fbfB [163]. D is the LD score indicating the

association of alleles at locus A and B. If we assume linkage equilibrium (LE),

the quantity D is equal to 0.
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B.1 Datasets

Originally, the datasets includes German dataset, containing three sub-datasets

(MarWu1, MarWu2, and Munich), accompanied with Austria, Colorado, Fin-

land, France, Hungary, Netherlands, Switzerland, and UK datasets. There are

eleven datasets in total (see Table B.1 and Figure B.1).

B.2 Results

B.2.1 Exploration

We also compared the p-values between multi-phenotype epiHSIC and multivari-

ate meta-analysis (random effect, see Figure B.2).

129



B Appendix of Dyslexia



−
6

−
4

−
2 0 2

0
1000

2000
3000

Index

NWR

factor(study)
●●●●●●●●●●●

A
ustria

C
olorado

F
inland

F
rance

H
ungary

M
arW

u1

M
arW

u2

M
unich

N
etherlands

S
w

itzerland

U
K

F
ig

u
re

B
.1

:
N

on
-w

ord
read

in
g

in
all

d
a
tasets.

T
h
e

co
lo

rs
in

d
ica

te
th

e
d

iff
eren

t
d

a
ta

sets
(stu

d
ies)

an
d

th
e

sy
m

b
ols

(0
an

d
1)

rep
resen

t
w

h
eth

er
th

e
sa

m
p

le
is

con
trol

o
r

ca
se,

resp
ectiv

ely.

130



B.2 Results

0 1 2 3 4 5 6

0
1

2
3

4
5

6

− log10(phsic)

−
lo

g
1
0
(p

m
v
m

e
ta
)

Word reading

0 1 2 3 4 5 6

0
2

4
6

− log10(phsic)

−
lo

g
1
0
(p

m
v
m

e
ta
)

Non−word reading

Figure B.2: Comparison of p-values between epiHSIC for multiple phenotypes and mul-
tivariate meta-analysis (random effect). phsic represents the p-values of
Z-test in epiHSIC for multiple phenotypes for merged (exploration) data
and pmvmeta means the p-values of multivariate meta-analysis with random
effects. The top 50 points were superimposed on the density image. All
p-values were shown as − log10(p-values).
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Table B.1: Sample size of two phenotypes in all datasets

Study nPhe nWR(without NA) nNWR(without NA)

Austria 328 328 328
Colorado 533 533 529
Finland 324 324 300
France 143 143 120
Hungary 236 236 236

MarWu1 193 193 193
MarWu2 197 197 197
Munich 352 352 351
Netherlands 232 232 230
Switzerland 56 56 56

UK 875 873 868
Total 3469 3467 3408

Note:
1 nPhe: number of phenotype pairs;
2 nWR(without NA): number of word reading without missing value(s);
3 nNWR(without NA): number of non-word reading without missing value(s).

B.2.2 Discovery

There are no significant pairs which pass the Bonferroni correction threshold

(1.36 × 10−12). The top 20 significant epistasis for word reading and non-word

reading are shown in Table B.2 and B.3, respectively.

132



B.2 Results

Table B.2: Top 20 SNP pairs for word reading in the meta-analysis on the discovery
datasets

SNP1 SNP2 Chr1 Chr2 Position1 Position2 mvmetaFix ivmetaFix

rs56235036 rs10978628 2 9 35702379 109529338 5.19e-11 7.54e-11

rs7556628 rs8106506 1 19 26685190 57686211 5.59e-11 5.33e-10

rs659459 rs4030873 1 18 6873932 76673358 7.53e-11 3.91e-11

rs7566682 rs1316439 2 9 228154137 120250392 8.81e-11 1.32e-10

rs10802208 rs75837095 1 9 245462775 129161865 1.06e-10 1.06e-10

rs6446498 rs4236980 4 8 6400680 71035615 1.11e-10 1.88e-10

rs4146566 rs10847264 5 12 56101894 127518105 1.58e-10 1.25e-09

rs2075799 rs3108847 6 8 31778529 110724480 1.65e-10 1.68e-10

rs113094458 rs4758291 6 11 143935188 8125294 2.07e-10 3.37e-10

rs4569449 rs10770155 2 11 10229697 11018431 2.16e-10 8.13e-10

rs10222516 rs184467 3 13 1880191 29622636 2.20e-10 5.39e-10

rs61194909 rs11613110 2 12 99906576 75539335 2.39e-10 4.75e-10

rs2208173 rs72671845 6 8 95257918 91028394 2.49e-10 2.77e-10

rs1807395 rs740442 4 17 7487093 55779494 2.72e-10 6.05e-10

rs6586770 rs178376 8 14 18694360 80176931 2.82e-10 5.14e-10

rs2966625 rs9524522 7 13 12001136 95150154 3.00e-10 4.02e-10

rs17113884 rs61912375 5 11 152393125 133155383 3.17e-10 7.47e-10

rs7537024 rs28711477 1 14 29859210 78783124 3.43e-10 1.46e-09

rs12676286 rs11641691 8 16 81874602 12609267 3.53e-10 4.59e-10

rs12533769 rs569151 7 18 70193190 58215383 3.69e-10 3.96e-09

Note:
1 SNP1/2: first/second SNP in interacting pair;
2 Chr1/2: chromosome SNP1/2 lies on;
3 Position1/2: position of SNP1/2 on its respective chromosome;
4 mvmetaFix: p-value of multivariate meta-analysis with fixed effect;
5 ivmetaFix: p-value of inverse variance based meta-analysis with fixed effect.
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Table B.3: Top 20 SNP pairs for non-word reading in the meta-analysis on the discovery
datasets

SNP1 SNP2 Chr1 Chr2 Position1 Position2 mvmetaFix ivmetaFix

rs9877231 rs1104305 3 8 132562606 3212189 4.82e-11 2.85e-10

rs72903413 rs2051344 6 18 86073575 74715653 8.30e-11 8.55e-10

rs12464039 rs4409410 2 8 150732821 125941652 1.26e-10 8.78e-10

rs72918500 rs10421891 18 19 51457056 46315809 1.46e-10 1.59e-09

rs244436 rs1157636 5 11 166373903 24404247 1.55e-10 3.71e-10

rs7323715 rs11159295 13 14 91076725 78306035 1.60e-10 2.74e-10

rs61194909 rs11613110 2 12 99906576 75539335 1.68e-10 3.55e-10

rs13028210 rs9298395 2 8 115088054 83784479 1.74e-10 5.40e-11

rs72920305 rs10421891 18 19 51458536 46315809 2.21e-10 2.52e-09

rs11686138 rs12581660 2 12 11579054 83788369 2.26e-10 1.21e-09

rs62287078 rs10813980 3 9 175218378 33437140 2.27e-10 1.31e-09

rs9454693 rs12549115 6 8 69808955 18382444 2.32e-10 2.67e-10

rs2269652 rs37389 1 5 175097357 35085180 2.33e-10 1.99e-10

rs72920305 rs4802279 18 19 51458536 46322830 2.34e-10 7.05e-09

rs6716601 rs6915661 2 6 85596553 155411606 2.43e-10 8.31e-11

rs72918500 rs4802279 18 19 51457056 46322830 2.57e-10 5.03e-09

rs8179786 rs448247 2 10 202143032 30896831 2.59e-10 1.44e-09

rs486661 rs72458511 2 4 141368094 76988600 2.74e-10 1.75e-10

rs17813338 rs12605711 8 18 442755 69252263 2.87e-10 3.27e-10

rs12071420 rs10150544 1 14 167760165 30615135 2.90e-10 1.82e-10

Note:
1 SNP1/2: first/second SNP in interacting pair;
2 Chr1/2: chromosome SNP1/2 lies on;
3 Position1/2: position of SNP1/2 on its respective chromosome;
4 mvmetaFix: p-value of multivariate meta-analysis with fixed effect;
5 ivmetaFix: p-value of inverse variance based meta-analysis with fixed effect.

B.2.3 Discovery and replication together

There is only one significant pair which passes the Bonferroni correction threshold

(1.36×10−12). The top 20 epistasis pairs for word reading and non-word reading

are shown in Table B.4 and B.5, respectively.
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B.2 Results

Table B.4: Top 20 SNP pairs for word reading in the meta-analysis on the discovery
and replication datasets

SNP1 SNP2 Chr1 Chr2 Position1 Position2 mvmetaFix ivmetaFix

rs8013684 rs1442415 14 15 92365790 96216254 1.26e-12 3.83e-12

rs13182682 rs2580960 5 12 99263712 74063951 1.11e-11 6.83e-12

rs56235036 rs10978628 2 9 35702379 109529338 2.18e-11 4.82e-11

rs2771090 rs1596534 9 12 93080054 41172010 2.73e-11 2.56e-11

rs1418555 rs10205244 1 2 218523650 230208486 4.00e-11 5.38e-11

rs4633327 rs1894909 1 7 146959913 36810390 4.31e-11 6.76e-11

rs7807195 rs11044444 7 12 154443525 19328609 6.51e-11 3.08e-10

rs75222724 rs75546553 3 11 184882243 66258916 9.04e-11 1.51e-10

rs12133344 rs4936711 1 11 179758019 122457726 1.12e-10 1.95e-10

rs7861646 rs11373754 9 12 23732000 86315625 1.21e-10 1.87e-10

rs1480802 rs7278012 8 21 136224211 20231604 1.22e-10 7.21e-11

rs578446 rs604514 11 13 96030606 71331644 1.23e-10 3.04e-10

rs3765953 rs150589259 1 6 119917253 30436380 1.27e-10 8.25e-10

rs9995726 rs4810329 4 20 37904553 40266126 1.80e-10 1.75e-09

rs1489221 rs11655584 8 17 73548109 38139024 1.90e-10 2.31e-10

rs12224885 rs219613 11 21 6846268 27774233 2.37e-10 1.09e-09

rs7826828 rs2077345 8 10 134229883 27899128 2.42e-10 3.27e-10

rs2430047 rs7216082 7 17 122294225 29889952 2.85e-10 2.88e-09

rs7545768 rs2711019 1 7 237524328 25028903 2.89e-10 5.94e-10

rs9917220 rs11614973 2 12 212058193 133723621 3.52e-10 3.68e-10

Note:
1 SNP1/2: first/second SNP in interacting pair;
2 Chr1/2: chromosome SNP1/2 lies on;
3 Position1/2: position of SNP1/2 on its respective chromosome;
4 mvmetaFix: p-value of multivariate meta-analysis with fixed effect;
5 ivmetaFix: p-value of inverse variance based meta-analysis with fixed effect.
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Table B.5: Top 20 SNP pairs for non-word reading in the meta-analysis the discovery
and replication datasets

SNP1 SNP2 Chr1 Chr2 Position1 Position2 mvmetaFix ivmetaFix

rs41295077 rs2277271 10 11 6118262 132399272 2.71e-11 1.54e-10

rs1558852 rs17417046 2 18 51252137 50984997 3.43e-11 2.32e-10

rs9664198 rs1189827 10 14 81843222 57533464 6.19e-11 1.59e-10

rs11686138 rs12581660 2 12 11579054 83788369 1.05e-10 4.78e-10

rs61194909 rs11613110 2 12 99906576 75539335 1.07e-10 1.07e-10

rs767665 rs6094931 5 20 144327414 46617331 1.18e-10 1.22e-10

rs12995732 rs2241485 2 4 45545872 10100812 1.20e-10 1.99e-10

rs12071420 rs10150544 1 14 167760165 30615135 1.71e-10 1.09e-10

rs62366885 rs7312553 5 12 50622637 103982568 1.95e-10 2.52e-10

rs147692383 rs6475840 2 9 138908598 25230166 2.22e-10 2.70e-10

rs10434537 rs10778374 5 12 62010640 105660904 2.23e-10 1.72e-10

rs193464 rs12605672 7 18 145046518 42343914 2.80e-10 5.67e-10

rs9811939 rs993376 3 12 70368592 17795398 2.83e-10 3.07e-10

rs17170328 rs59738387 7 8 146834604 13200212 2.89e-10 1.33e-09

rs67156578 rs6475840 2 9 138909308 25230166 2.94e-10 8.03e-10

rs7768381 rs137891724 6 6 130037945 151835512 3.45e-10 2.04e-10

rs4846875 rs2271218 1 5 231038020 98110531 3.59e-10 1.20e-09

rs11232302 rs266319 11 15 80434157 67266756 3.72e-10 7.55e-10

rs2614143 rs177038 10 16 14123459 72500483 3.83e-10 4.58e-09

rs11740851 rs2828245 5 21 148306141 24911815 3.95e-10 8.09e-10

Note:
1 SNP1/2: first/second SNP in interacting pair;
2 Chr1/2: chromosome SNP1/2 lies on;
3 Position1/2: position of SNP1/2 on its respective chromosome;
4 mvmetaFix: p-value of multivariate meta-analysis with fixed effect;
5 ivmetaFix: p-value of inverse variance based meta-analysis with fixed effect.
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