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1 Calculation of the optical conductivity

To calculate the optical conductivity of graphene multilayers, we begin with the simplest possible tight-
binding model Hamiltonian, which has proven to describe the optical properties of few-layer Graphene
well*”-#8_ This model consists of two hopping terms, the nearest-neighbor in-plane hopping 1 = 3.16 eV
and the nearest-neighbor out-of-plane hopping 71 = 0.39 eV. All other hopping terms are neglected as they
mainly alter the low energy region, which we are not accessing in the experiment. To consider the effect
of electric fields on the measurement, we performed simulations in two different extreme settings. For the
first case, we assumed that the outermost layers fully screen the applied field. This is incorporated into the
Hamiltonian by a shift of i% of the chemical potential of the two outermost layers. For the second case,
we assumed that each layer screens away the same amount of the field. This results in a decrease by %
(where N is the total number of layers: N = 6 for TDTG) from layer to layer, such that the uppermost lies
at %— and the lowermost at —%—potential.

Once the tight-binding Hamiltonian is established we employ the standard Kubo formalism to calculate
the optical conductivity in the linear response regime*®. In the following we will sketch the steps necessary
to derive this formula. We use atomic units for convenience. The starting point for the derivation is a
general non-interacting tight-binding Hamiltonian
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with 7 ; the tight binding hopping elements each associated with a vector d; ; connecting two lattice sites.
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The operators Cio annihilate (create) an electron on site i with spin ¢ and ¢y, s (k) annihilate (create) an
electron on unit-cell site m with spin o and momentum k. 1i,j denote positions in the full lattice and m,n
denote positions within the unit-cell. The basis vectors spanning the real lattice are denoted as R. If we
illuminate our sample with a weak laser we can incorporate it by performing a Peierls substitution
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where the time dependent vector potential A(¢) has been introduced. The physical charge current generated
by this perturbation can be extracted from a second order Taylor expansion in one of the three spatial
directions & of the exponential and is given by
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Here, the diamagnetic current is defined as
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and the normal current as
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From linear response theory we know that the optical conductivity is given by
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The first term can be evaluated straight forward. For the second term, we assume that we know a diagonal
basis of the Hamiltonian, whose eigenstates we label with g, p. This allows us to write
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Collecting all contributions and performing an analytic continuation to z = ® + in gives
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At low frequencies, the real part of this equation is governed by Lorentzian contributions, which can be
associated to the Drude weight of the system. Relabeling the eigenstates p,g by band and momentum
indices we arrive at
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As we have a layered structure we need to identify the optical sheet conductivity of each layer. For this
purpose, we define the layered current operator according to
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Where we introduced two momentum-orbital-space unities [#2*) (m|. In this basis, m labels the sites within
the unit cell, therefore we can identify to which layer each site belongs and restrict the current operator to
this specific layer. The layered conductivity 7, is now obtained by introducing the definition (12) in each
term once:
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These layer conductivities (defined in eq. 13) sum to the full conductivity. We chose 7' = 0.025 eV
and a phenomenological broadening 7 = 30 meV. In practice we represent the conductivity in units of

oo = 2h2, the optical conductivity of a single layer graphene.
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2 Evidence the source crystal is Bernal trilayer graphene

Prior to device fabrication, the thickness of the source graphene crystal was determined using its optical
contrast against the Si0O; exfoliation substrate in the standard way (Supplementary Fig. 1a, inset). We
checked that the source crystal was Bernal rather than rhombohedral by performing Raman spectroscopy
on several areas. The Raman 2D-mode of few layer graphene exhibits distinctive features depending on the
stacking configuration, with rhombohedral graphene showing a pronounced asymmetric line shape*’->°.
In our Raman measurements we observe no features indicative of rhombohedral graphene, confirming that
our source crystal was stacked in the Bernal configuration (Supplementary Fig. 1a). We further confirmed
the thickness of the source crystal as trilayer by measuring STM topography across the step leading to the
twisted region of the device (Supplementary Fig. 1b). Spectroscopy measured below the step provides
additional evidence that the source crystal was Bernal stacked, as described in the main text (Fig. 2h).

3 Alternative mechanisms for the moiré contrast and feasibility of atomic-
scale near-field tomography

The observation of strong contrasts in the optical conductivity and the local density of states, and the
difference in structural stability between the moiré domains in TDTG implies either that the stacking
configurations in our device follow the rigid scenario (Fig. la) and that an additional C5 symmetry
breaking mechanism is present, or that the layer slide scenario (Fig. 1b) is realized through a non-local
relaxation effect. We have considered several possible C5 symmetry breaking mechanisms in an attempt to
explain the observed moiré contrast. One source of C5 symmetry breaking could have been an out-of-plane
displacement field caused by trapped charge in the substrate. We can rule this out because such substrate
inhomogeneities would likewise dope the graphene away from charge neutrality, which would in turn be
clearly visible in STS measurements as an energy shift of the charge neutrality point. In our measured
spectrum on exposed trilayer (Fig. 2h), however, the minimum in the density of states is pinned to zero
energy, indicating negligible intrinsic doping and hence negligible displacement field. Another potential
source of C5 symmetry breaking is the asymmetric dielectric environment imposed by the substrate
itself, since the presence of hBN on one side of the device and vacuum on the opposite side does in
principle break C5 symmetry. To investigate whether this asymmetry can lead to significant differences
in the electronic properties or stacking energies of the two domains we have performed first principles
Density Functional Theory (DFT) calculations (see Methods for details) and found that the hBN substrate
introduces an energy imbalance of at most 70 peV/nm?, which would produce a DW radius of curvature
of over 40 um. The true radius of curvature as measured in SNOM and STM is ~ 850 nm (see overlaid
arcs in Fig. 2d), an order of magnitude less than that predicted due to the substrate effect, ruling out the
latter as an explanation of our data.

The only remaining plausible C5 symmetry breaking mechanism in our experiments is in the geometry
of the scanned probes themselves. In both SNOM and STM, the signal is collected from a metallic probe
that is suspended above the sample. As a result, measurements of multilayer samples tend to be most
sensitive to the properties of those layers that are physically closest to the probe. In STM, this can lead to
exponential sensitivity to the density of states of the topmost layer due to the rapid decay of the surface
wave function across the vacuum tunneling barrier' !>3. The SNOM signal, on the other hand, is generated
by a classical electric field that follows a power law decay, which makes it possible to perform tomographic
imaging of bulk materials by controlling the height of the probe®!=>3. This asymmetric probe sensitivity
has been exploited to attain imaging resolution along the vertical (z) direction, using a technique called
near-field tomography (NFT). NFT utilizes the fact that the z-profile of the complex optical conductivity is
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imprinted in the near-field probe approach curve®!>*. NFT was recently used, for example, to decouple

surface and bulk contributions to the near-field signal in a topological insulator>,

Until now it has been assumed that the vertical resolution of NFT is limited by the curvature of the AFM
tip, which is typically several tens of nanometers. This limitation arises from the radius of curvature setting
the decay length of the electromagnetic (EM) field away from the tip. If, however, a device architecture can
be engineered so as to reduce or eliminate far field contrast, then the resolution of NFT can be significantly
enhanced. In fact, we find that a heterostructure consisting of ABABCB and BCBABA domains consitutes
just such a system, in which the vertical resolution of NFT can be boosted to sub-nanometer length scales.
We define a conductivity 7; for layer i = 1, ...,6 (Supplementary Fig. 2a), consistent with the Hamiltonian
of the system (Supplementary Information section 1). From this definition the ABABCB and BCBABA
phases are modelled by stacking 7; with the appropriate layer order, separated by the layer spacing of
graphite (Inset of Supplementary Fig. 2a). The observed near-field contrast is uniquely generated by an
EM z-gradient and will not have any contribution from a uniform EM field, strictly due to the C5 symmetry
relation between ABABCB and BCBABA stackings. Plugging the optical conductivities of Supplementary
Fig. 2a into the lightning rod model solver’® (LRM) we get small differences between the ABABCB and
BCBABA approach curves (Supplementary Fig. 2b). After demodulation, these approach curves result in
a near-field contrast for different probe harmonics (Supplementary Fig. 2c) well within our measurement
capabilities (Fig. 2e). We emphasize that the ability to resolve the atomic scale tomographic differences
between ABABCB and BCBABA stacking configurations is a direct consequence of the C5 symmetry
relation between these domains, which eliminates all far field optical contrast. While we can rule out NFT
as a description of our experimental results, as described in the main text, the foregoing demonstrates that
NFT at the atomic scale is in principle achievable in device geometries with mirror symmetric designs.

4 Possible TDTG configurations where the moiré superlattice domains are
C2 symmetry pairs

Here, we consider the eight stacking configurations for TDTG that were omitted in the main text. These
eight configurations, displayed in Supplementary Fig. 3, constitute four moiré pairs that are related by
C5 symmetry. Unsurprisingly, these moiré pairs exhibit no contrast in stacking energy or in electronic
structure, and therefore cannot be accurate descriptions of the stacking configurations realized in our
experimental device.

5 The optical contrast of the moiré superlattice in TDBG

Several prior experimental works have reported near-field optical contrast between domains of Bernal
(ABAB) and rhombohedral (ABCA) few layer graphene®> 23, similar to the contrast between ABABAB
and BCBACA domains observed in the present work (Fig. 1). This observed contrast is typically at-
tributed to differences in the optical conductivity between Bernal and rhombohedral graphenes. Such an
attribution is plausible, given the significant difference in electronic structure between the two stacking
configurations, however it has not yet been justified from a theoretical perspective. Here, we demonstrate
that the observed near-field contrast in domains of marginally twisted double bilayer graphene is quantita-
tively consistent with the calculated optical conductivities of the ABAB and ABCA stacking configurations.

Supplementary Fig. 4a,b illustrates the contrast in amplitude and phase observed in SNOM measure-
ments of TDBG. In these images, the darker (brighter) triangles correspond to ABCA (ABAB) stacking,
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as evidenced by the concavity (convexity) of their edges. In order to explain this contrast, we use the tight
binding derived band structures of the ABAB and ABCA stacking configurations (see Supplementary
Information section 1) to compute the frequency dependent complex optical conductivity of each domain,
shown in Supplementary Fig. 4c. We then simulate the near-field signal with the lightning rod model
(LRM)>, using a tip radius of 30 nm and tapping amplitude of 40 nm for each stacking configuration.
The LRM calculation assumes that each stacking configuration is placed on a 40 nm thick hBN substrate
on top of 285 nm thick SiO; on Si. This results in a frequency dependent amplitude and phase for each
domain. To facilitate comparison with experiment, we examine the amplitude and phase contrast between
ABCA and ABAB domains within the LRM calculation, shown in Supplementary Fig 4d for the lowest
five tapping harmonics. The frequency at which the experimental images in Supplementary Fig. 4a,b were
acquired is marked with a vertical dashed line. The calculated contrast in both the amplitude and phase
channels shows good quantitative agreement with the measured contrast, demonstrating that the contrast
observed in the experimental images can be generated by the different band structures and thus optical
conductivities of the two stacking configurations.
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Table 1. Stacking energy for the two lowest energy configurations for different moiré systems (in units of

ABABCB | 5.059 | BCBABA | 5.059
ABABCA | 9.755

BCBABC

9.883
BCBACB

14.746 | ABABAC

4.768
BCBACA

10.042

ABABAB
BCABCA

19.420

CABABC | 9.553




Table 2. GSFE parameters (co .5 - following nomenclature of Ref. 46 and units of %) for different

moiré configurations considered in this work.

Co c1 ) c3 C4 €5
ABABCB/BCBABA | 141.38 8194 -7.55 -2.79 0 0
ABABCA/BCBABC | 142.14 80.61 -5.62 -3.65 -0.0152 -0.0095
BCBACB/ABABAC | 142.13 80.62 -5.64 -3.64 1.179 0.742
BCBACA/ABABAB | 141.76 81.26 -6.57 -3.23 1.186 0.747
BCABCA/CABABC | 14250 7998 -471 -4.05 1.166 0.734
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Supplementary Fig. 1. Evidence the source crystal is Bernal trilayer graphene. (a) Raman spectra
of the 2D-mode acquired on two different spots of the source crystal with 514 nm laser wavelength. Inset:
optical micrographs of the source crystal before (top) and after (bottom) AFM cutting. Blue and green
spots indicate where Raman spectra were obtained. (b) STM topograph of the fabricated TDTG stack

showing a trilayer step at the edge of the twisted region.
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Supplementary Fig. 2. Atomic scale near-field tomography in ABABCB/BCBABA TDTG. (a)
Real (solid) and imaginary (dashed) parts of the layer resolved complex optical conductivity (7;) for each
of the six layers of ABABCB stacked graphene. Layer conductivity assumes Er = 60 meV and a 5 meV
broadening (see Supplementary Information section 1 for additional details). Inset: schematic of
near-field tomography showing that the enhanced localized field under the tapping probe (not to scale)
breaks C5 symmetry and generates a contrast in the near-field response. (b) Comparing amplitude (left,
solid) and phase (right, dashed) of approach curves. The ABABCB (red) and the BCBABA (blue)
approach curves are presented with respect to a reference stack with similar total conductivity but
distributed uniformly across the layers (see Supplementary Information section 1 for calculation details).
Inset: schematics of the three discussed configurations; colors match those in (a). (¢) The
ABABCB/BCBABA contrast as a function of tapping frequency harmonics as derived from the approach
curves of (b) for a similar tapping amplitude as in Fig. 2.
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Supplementary Fig. 3. Exploration of additional TDTG moir¢ superlattice structures. (a-b) Each
panel addresses a group of TDTG configurations which were not discussed in the main text. Each
moiré-pair is connected by a horizontal black line. Configurations that are C, symmetry pairs are
connected by blue (C3), green (C5) and magenta (C5C5) lines. Each configuration is marked by a circle
whose color indicates Fermi level spectral weight, and whose size indicates the configuration’s stacking
energy density (see legend). Inset - bottom: Schematics of the configurations. The red arrow indicates the
required global layer sliding in order to realize the particular moiré superlattice from the nominal
ABABCB/BCBABA configuration.
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Supplementary Fig. 4. Modelling SNOM contrast in TDBG. (a and b) Near-field amplitude and
phase scans of a marginally twisted TDBG sample, acquired at 940 cm™! in the third tapping harmonic.
Triangular domains correspond to ABAB (light) and ABCA (dark) stacking configurations, as illustrated
on the left. (c) Real (top) and imaginary (bottom) parts of the frequency dependent optical conductivities
of ABAB (red) and ABCA (blue) graphene derived from tight binding calculations of the band structures,
plotted in units of oy = g—e; (d) LRM calculations of the frequency dependent near-field contrast between
ABAB and ABCA domains for the lowest five tapping harmonics, n. Amplitude and phase contrasts are
shown in top and bottom plots, respectively. Vertical dashed line indicates the frequency at which (a) and
(b) were acquired. LRM calculations assume a tip with 30 nm radius of curvature and 40 nm tapping
amplitude above the surface of ABAB or ABCA graphene on hBN (40 nm thick) on SiO, (285 nm) on a
Si substrate.
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