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Abstract

Individual differences in the ability to process language have long been discussed.

Much of the neural basis of these, however, is yet unknown. Here we investigated the

relationship between long-range white matter connectivity of the brain, as revealed by

diffusion tractography, and the ability to process syntactically complex sentences in

the participants' native language as well as the improvement thereof by multiday train-

ing. We identified specific network motifs by singular value decomposition that indeed

related white matter structural connectivity to individual language processing perfor-

mance. First, for two such motifs, one in the left and one in the right hemisphere, their

individual prevalence significantly predicted the individual language performance, sug-

gesting an anatomical predisposition for the individual ability to process syntactically

complex sentences. Both motifs comprise a number of cortical regions, but seem to be

dominated by areas known for the involvement in working memory rather than the

classical language network itself. Second, we identified another left hemispheric net-

work motif, whose change of prevalence over the training period significantly corre-

lated with the individual change in performance, thus reflecting training induced white

matter plasticity. This motif comprises diverse cortical areas including regions known

for their involvement in language processing, working memory and motor functions.

The present findings suggest that individual differences in language processing and

learning can be explained, in part, by individual differences in the brain's white matter

structure. Brain structure may be a crucial factor to be considered when discussing var-

iations in human cognitive performance, more generally.
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1 | INTRODUCTION

Language is a cognitive domain that is considered specifically human, in

particular when it comes to processing syntactically complex structures

(Berwick & Chomsky, 2016; Fitch & Hauser, 2004; Hauser et al., 2002).

Humans, however, differ in how well they deal with processing com-

plex sentences, even in their native language, depending on their work-

ing memory capacity (Caplan & Waters, 1999; MacDonald et al., 1992).
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When this capacity is low, processing of ambiguous sentences becomes

difficult (Fiebach et al., 2004; Friederici et al., 1998; Just &

Carpenter, 1992). Independently, it has been shown that one's capabil-

ity to process complex sentences in the native language can be

improved in relatively short time by intense training, even in adults

(Wang et al., 2021). This raises two questions: What is the neurobiolog-

ical basis of behavioral differences in processing complex sentences,

and what is the neural basis responsible for training-induced perfor-

mance improvements in processing such sentences?

The neuroanatomical and physiological underpinnings of language

processing and language learning are certainly diverse. Language pro-

cessing in the adult brain is mainly based on a left hemispheric net-

work involving particular frontal, temporal, and parietal regions (for a

review, see Friederici, 2011). By contrast, language learning—at least

second language learning in adults—appears to involve additional

brain regions (for a review, see Li et al., 2014). The multiple spatially

separated regions involved in language processing are connected by

dorsally and ventrally located long-range fiber bundles running

through the white matter of the brain (for an overview, see

Friederici, 2017). Among these, the dorsal fiber tract targeting Broca's

area is particularly crucial for the processing of syntactically complex

sentences (Skeide et al., 2016; Wilson et al., 2011). The structural

properties of these and other white matter fiber tracts are prime can-

didates for the explanation of interindividual differences in language

performance and the effects of training during learning.

These properties include, but are not limited to, the trajectories

and density of nerve fibers, determining which neurons may exchange

information, as well as diameters and myelination of axons, impacting

transmission speed as well as synchronization and ephaptic coupling

between axons (Schmidt et al., 2021; Schmidt & Knösche, 2019). In

living human brains, they are only indirectly accessible by imaging

techniques, mainly based on magnetic resonance imaging (MRI). Diffu-

sion weighted MRI (DWI) protocols most reliably deliver information

on the spatial trajectories of nerve fibers (see Jones et al., 2013, for a

critical review), although they may also be sensitive to other proper-

ties of the fibers, such as axonal diameter (Assaf et al., 2008; but see

also Paquette et al., 2020) and myelin sheath thickness (g-ratio; see

Mohammadi & Callaghan, 2021).

Prior work has demonstrated white matter plasticity in multiple

studies on second language learning. Many of them are cross-

sectional and compare populations with and without certain second

language skills (Cummine & Boliek, 2013; Hämäläinen et al., 2017;

Mamiya et al., 2016; Pliatsikas & Chondrogianni, 2015; Vandermosten

et al., 2015). These studies therefore target white matter plasticity

occurring over a long (and not precisely defined) period of time. The

same applies to studies comparing populations with different first lan-

guages. In contrast, Schlegel et al. (2012) used diffusion MRI to show

reorganization of major white matter fiber tracts over a period of

9 months, during which the participants intensively learned a second

language (Chinese). Likewise, Flöel et al. (2009) used a region-of-

interest approach focused on Broca's area and its right hemispheric

homologue to identify changes in white matter as a function of artifi-

cial grammar learning at the group level.

Although the neural bases of first and second language acquisition

are discussed to be partly overlapping (Perani & Abutalebi, 2005), there

may be substantial differences, in that second language acquisition

relies on more variable and widespread neural networks (Cargnelutti

et al., 2019; Dehaene et al., 1997) compared to the relatively well

defined first language network (Friederici, 2011, 2017). For native lan-

guage acquisition, we found developmental changes in the gray and

white matter of the language network (Cafiero et al., 2019; Ekerdt

et al., 2020; Huber et al., 2018). In adults, the language capabilities are

largely established, which is paralleled by a fully matured language net-

work (Skeide et al., 2016). However, adults may be trained to further

improve in certain aspects of their mother tongue, and the question is

whether this leads to noninvasively detectable reorganization of the

white matter. Changes related to learning rate in language relevant gray

and white matter regions were observed in adults as a function of word

learning in their native language over a short period of time (<1 h)

(Hofstetter et al., 2017). Also for other domains of learning, relatively

short-term (from hours to weeks) reorganizations of white matter have

been observed at the group level, such as computer gaming (Hofstetter

et al., 2013), juggling (Scholz et al., 2009) and balancing (Taubert

et al., 2010), tactile training based on Braille reading (Debowska

et al., 2016), and mental complex multiplications (Klein et al., 2019).

Nevertheless, it is still open whether individual differences in native lan-

guage processing and learning relate to individual white matter brain

structure. Moreover, it remains undetermined whether training in struc-

tural aspects of language beyond mere word acquisition (thematic role

assignment, syntax processing) will lead to structural changes in the

white matter that can be detected noninvasively.

In order to find answers to these questions, we need to utilize

language material that is syntactically demanding enough to provide

room for training-induced improvement even in adult native speakers.

In a previous study (Wang et al., 2021), we have shown that center

embedded German sentences do indeed fulfill this need, as German

native speakers improved their performance in understanding the-

matic role assignments during a 4-day training period. While, both,

single and double embedded sentences were tested, the effect was

most pronounced for the double embeddings, while for the single

embeddings the performance was already very high at the beginning

of the training (ceiling effect).

Therefore, we investigate whether the behavioral differences in

adults processing double center embedded sentences in their native

language are rooted in structural differences in white matter fiber con-

nections, whether the success of intense training over a relatively short

period of time is predicted by such structural traits, and whether such

training would in fact induce further structural changes. For this, we

used behavioral (performance) data from our previous experiment

(Wang et al., 2021). We explored and compared structural connectivity

matrices obtained by tractography from diffusion MRI data acquired

before and after training and related these to behavioral performance

at both time points. In the analyses, we focused on the aspect of white

matter fiber connectivity in the language network, rather than metrics

that might be more sensitive to local microstructural properties, such as

fractional anisotropy (FA) or mean diffusivity (MD).

2 SÁNCHEZ ET AL.
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2 | METHODOLOGY

2.1 | Paradigm

The experiment was designed to investigate how brain function and

white matter connectivity change during multiday language training.

Training was performed during four out of the five working days of

1 week. On the first training day, prior to the experiment, reading

span (Daneman & Carpenter, 1980) and digit span (WAIS-IV,

Wechsler, 2008) were acquired as measures for language specific and

general working memory abilities, respectively. On each training day,

the participants listened to 66 German center-embedded sentences:

half with single and the other half with double center embedding.

Example for single center embedding:

Ihr Freund sagte, dass Gustav, der Marlene überschätzte, Klavier

spielt, um sich zu bilden.

[Her friend said that Gustav, who overestimated Marlene, plays

piano, in order to educate himself.]

Example for double center embedding:

Yvonne dachte nicht, dass Bernd, der Leo, der intelligent ist, liebte,

Maria verfolgen will.

[Yvonne did not think that Bernd, who loved Leo, who is intelligent,

wants to pursue Maria.]

Each sentence was followed by a content question probing the

participant's understanding of the thematic role assignment. The

answer was recorded by delayed key press within a predefined time

window and acknowledged by a visual feedback (smiley/frowny). In

case of a wrong or missing answer, the same sentence was repeated

and additionally displayed on screen. A different content question

was then asked and again acknowledged by feedback. Irrespective of

the correctness of the second answer, the experiment was continued

with the next trial. Trials with single and double embedding were ran-

domly intermixed. The experiment was divided into 3 blocks, each of

which contained 22 sentences and lasted about 7 min. Between the

blocks, participants enjoyed a short break. During the measurements,

MEG was recorded with a Neuromag Vectorview device (results

reported in Wang et al., 2021).

The performance of the participants was measured as the per-

centage of correct answers to the first content questions (#correct/

(#correct + #incorrect + #missed)).

Finally, T1, diffusion, and resting-state functional (not reported

here) MRI data were acquired three times: before the experiment

(scan a), immediately after it (scan b), and 3 weeks later (scan c). See

Section 2.3 for technical details.

2.2 | Participants

The sample included 28 right-handed participants and inclusion cri-

teria were as follows: subjects were 18–35 years old at the time of

recruitment, they were German native speakers with normal or cor-

rected to normal hearing and vision, and no history of substance

abuse (alcohol or drugs). Subjects with neurological or psychiatric

disorders, past neurosurgery, neuroactive medication, claustrophobia,

pregnancy, or other contraindications for MRI were excluded. Written

informed consent was obtained from all participants prior to the

experiment. The study was approved by the ethics committee of the

University of Leipzig.

2.3 | MRI data acquisition

MR images were acquired with a 3 T Siemens Magnetom Prisma MRI

scanner. A high-resolution (1 mm3) structural T1-weighted scan was

obtained (MP-Rage, TR = 1.3 s, TE = 3.93 ms; α = 10�;

1 � 1 � 1 mm3). DWI was acquired with the standard GE-EPI proto-

col. The employed parameters for diffusion data were: TR = 12 s,

TE = 100 ms, A/P phase encoding direction, 72 slices,

FOV = 220 � 220 mm2, acquisition matrix 128 � 128, 1.7 mm3 iso-

tropic voxels, 60 diffusion-weighted images (b = 1000 s/mm2), and

7 no diffusion weighting (b0) images. Multiband and fat saturation

techniques were implemented to improve data quality.

2.4 | Atlas selection and DWI preprocessing

In this study, we used the HCP-MMP1 atlas (Glasser et al., 2016),

which includes 180 cortical regions per hemisphere. This freely avail-

able atlas has been created by a sophisticated machine learning

approach. It combines information about cortical architecture, func-

tion, connectivity, and topography in a precisely aligned group aver-

age of 210 brains, and has been carefully cross-validated. It is

therefore arguably one of the most comprehensive and reliable human

brain atlases available today. After executing an intrasubject cross-

modal registration, based on a rigid body transformation, we per-

formed a projection of this atlas onto each participant's MNI-T1

image. Therefore, the outcome for each subject was the HCP-MMP1

atlas co-registered with diffusion data. In addition, in order to avoid

spurious interhemispheric connections, we added to the analysis a

five-region-parcellation of the corpus callosum from a white matter

parcellation. This step was executed using the Freesurfer software.

After visual inspection for large artifacts, diffusion data were cor-

rected from susceptibility-induced distortion, subject motion, and arti-

facts due to eddy currents with standard procedures from the FMRIB

Software Library [FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

(Jenkinson et al., 2012)] as was applied in previous works (Cummine &

Boliek, 2013; Neef et al., 2018; Salminen et al., 2016). Following the

same preprocessing implemented in Neef et al. (2018), to estimate dif-

fusion parameters at each voxel we applied Bayesian inference

through the tool bedpostx, which also resolves voxels with crossing

fibers. Subsequently, probabilistic tractography was applied to recon-

struct sample streamlines using the probtrackx2 command with default

parameters (5000 samples per seed voxel, maximum of 2000 steps

per streamline, curvature threshold of 0.2, step length of 0.5 mm). As

was explained by Assaf et al. (2017), the reconstruction of commis-

sural pathways by a tractography algorithm presents several

SÁNCHEZ ET AL. 3
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limitations due to their complex white matter architecture, involving

crossing, fanning and kissing fibers. Therefore, in order to avoid this

limitation when tracking fibers through the highly convergent corpus

callosum area (but not missing these fibers), we performed the tracto-

graphy procedure separately for each hemisphere adding the five par-

cels of the corpus callosum in the list of target regions. This way, we

generated a seed-to-seed connectivity matrix per subject and hemi-

sphere. The matrix entry Cij corresponds to the number of streamlines

generated from region i (source) and entering region j (target). Both

tools, bedpostx and probtrackx2, are part of the FSL software.

2.5 | Analysis of connectivity

Based on the connectivity matrices described above, and the two

main questions raised in the Introduction, we investigated the follow-

ing relations:

The first main question concerns the relation between the brain

structural precondition and performance prior to training.

(Q1) Does the a priori connectivity (scan a, before training) corre-

late with the initial performance (day 1)?

(Q2) Does this a priori connectivity (scan a) correlate with the per-

formance change over the 4-day-experiment (day 4 minus day 1, train-

ing effect)?

The second main question concerns the relation between brain

structural changes and training induced performance change with two

sub-questions:

(Q3) Does the change in connectivity over the experiment (the

difference in connectivity values, scan b—scan a) correlate with the

performance change over the 4-day-experiment (training effect, day

4–day 1)?

(Q4) Although we focus on the correlation between performance

and connectivity across individuals, we will nonetheless ask whether

there are group-level changes in connectivity between the time points

before and after the 4 days of training (scans b vs. a), as well as

3 weeks after the training (scans c vs. a).

Because the behavioral training effect was most prominent for

the double center embedded sentences (see Section 3), we used those

trials to quantify performance (initial and change over training period)

as described in Section 2.1.

As test quantities for the connectivity, we chose the prevalence

of certain network motifs in each subject, hemisphere, and scan, as

derived from singular value decomposition (SVD). It has been applied

to functional connectivity derived from fMRI (Worsley et al., 2005) or

EEG (Rubega et al., 2019), and more generally to large data sets, such

as DNA microarray data (Liu et al., 2003; Wall et al., 2003) or image

processing (Chowdhary & Acharjya, 2018). This technique identifies a

number of ordered connectivity motifs with the following properties:

(1) they are mutually orthogonal (i.e., linearly independent); (2) by

weighted summation, they reproduce each individual connectivity

matrix (per scan and subject); and (3) they are chosen such that the

first motif explains the maximally possible proportion of the variance

across all connectivity matrices, the next motif explains the maximum

of the remaining variance, and so forth. Note that each of these motifs

necessarily contains positive and negative entries (due to the orthogo-

nality condition). This means that a higher prevalence of a motif in a

particular connectivity matrix (as quantified by its weight) means that

some connections are increased and others decreased.

Separately for the two hemispheres, the connectivity matrices

(as described in Section 2.4) of all subjects and scans were arranged as

column vectors, forming a matrix M which was decomposed into left

singular vectors U, singular values Σ, and right singular vectors V:

M = UΣVT. The left singular vectors U represent the orthogonal and

normalized network motifs, the singular values Σ indicate their preva-

lence across all structural matrices (explained variance), and the right

singular vectors V indicate the relative prevalence (weight) of each

network motif in each subject and scan. The number of motifs equals

the rank of M, which is the product of the numbers of subjects and

scans, thus 28 for Q1-2 (only scan a used) and 56 for Q3 (scans a and

b used). Each column of the V matrix can now be used to perform the

statistical tests and correlation analyses described above for the cor-

responding network motif (corresponding column of U). If, for exam-

ple, these weights show a significant correlation with the initial

performance of the participants, this shows that the respective motif

as a whole predicts the performance, while separate statements about

each single connection cannot be made. In this respect, the method is

akin to the region-of-interest approach, but with two important differ-

ences. First, the SVD approach identifies motifs as collections of con-

nections (“regions of interest”), which are not restricted to spatially

compact regions and are identified from the data according to their

joint impact onto the variability across subjects and scans. Second,

within each motif, different connections have different weights

(including negative ones), which quantify how much each connection

contributes to that motif. A statistical effect for one motif can there-

fore be interpreted as mainly stemming from its largest contributors.

This network-based analysis avoids the massive need for correc-

tion that would occur when testing each of the about 16,000 connec-

tions separately. Also the analysis of classical voxel-wise diffusion

metrics, like FA or MD, would cause similar multiple testing problems,

besides being less specific with respect to network connectivity,

which is the main target of our investigation. Our choice is further

motivated by the notion that in the brain network nodes and connec-

tions do not act in isolation, but as part of larger (sub-)networks. Con-

sequently, any kind of specialization, either occurring during a lifetime

development (relevant for Q1, Q2) or induced by an intense training

process (relevant for Q3, Q4) should also involve coherent changes of

entire network patterns, or motifs.

For each of the above questions (Q1–Q4), we performed statisti-

cal tests. Since the performance and connectivity values cannot be

guaranteed to be normally distributed, we exclusively used non-

parametric statistical tests. Specifically, we applied Spearman's corre-

lation with a significance level of 0.05, corrected for multiple compari-

sons by Bonferroni correction (correcting for the number of motifs;

28 for Q1 and Q2, and 56 for Q3). For the pairwise comparison in Q4,

4 SÁNCHEZ ET AL.
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we performed Mann–Whitney U tests, also followed by Bonferroni

correction (correcting for the number of connections, �16,000).

Connectivity matrices, and relevant MATLAB code used for SVD

analysis and plotting are available on a GitHub repository at https://

github.com/hschmidt82/Yerevan_public.

3 | RESULTS

3.1 | Behavioral

Figure 1 displays the mean performances over subjects for each train-

ing day, separately for single and double embedding sentences. These

results, which were already reported and discussed elsewhere (Wang

et al., 2021), show a significant performance improvement for both

types of sentences, but for the simpler sentences this improvement

had to be small since the initial performance was already quite high.

Due to this ceiling effect, we decided to use for the connectivity ana-

lyses the double embedded sentences only.

In order to probe how the initial performance was related to the

participants' memory abilities, we correlated it with reading span and

digit span (levels reached, forward and backward averaged). Reading

span showed a significant correlation with the performance on single

(r = .31, p < .05), but not on double embedded sentences (where per-

formance was initially quite low). Digit span did not yield any signifi-

cant correlation.

3.2 | Left hemisphere

The network-based analysis yielded two relevant network motifs

related to behavioral performance. The first motif appears to exhibit a

predisposition effect, as its prevalence in the subjects before the

experiment (scan a) correlates with their performance on the first day

(see Figure 2c). This gives a direct answer to question Q1. Figure 2a,b

displays the main areas and connections of this network component.

It is composed of white matter fiber tracts, which most strongly con-

nect areas in the medial prefrontal cortex (10v, 9m, d32), the posterior

cingulate cortex (23c, dorsal visual transition area [DVT], parietal

occipital sulcus [POS2]), the frontal operculum (FOP2), and the

temporo-parieto-occipital junction (TPOJ1; perisylvian language area

[PSL], superior temporal visual area [STV]). While some of these areas

are known for their specific involvement in language processing (par-

ticularly PSL), others have been reported to be activated in theory of

mind (watching socially interacting objects; areas 10v, 9m, PSL, STV),

motor functions (9m, 23c, FOP2, POS2, PSL, STV, DVT), and working

memory tasks (9m [faces], d32 [all images], 23c [body], DVT [places],

POS2 [body, faces]) (Glasser et al., 2016). Some of these areas are

mainly involved in connections that correlate negatively with the first-

day performance (23c, PSL, 10v).

The second motif indicates structural changes related to the train-

ing process. Its difference in prevalence between scan b (after train-

ing) and scan a (before training) significantly correlates with the

change in performance between the last (day 4) and the first (day 1)

days of training (Figure 3). This finding directly relates to question Q3.

Figure 3 shows the main areas and connections of this network com-

ponent. They partially overlap with the first network motif (areas 9m,

23c, POS2, STV, and PSL). In addition, this network motif includes

white matter fiber tracts connecting parts of auditory association cor-

tex (TA2 on planum polare, STSvp in superior temporal sulcus), dorso-

lateral prefrontal cortex (9p), hippocampus (H), and ventral stream

visual cortex (posterior inferior temporal [PIT]). Again, these areas

have been reported in a wide variety of experimental conditions,

including language processing (PSL, TA2, STSvp, H); theory of mind

(watching socially interacting objects; areas 9m, 9p, PSL, STV, STSvp);

motor functions (9m, 23c, POS2, PSL, STV, STSvp); and working mem-

ory tasks (9m [faces], 23c [body], POS2 [body, faces], H [all], PIT

[faces]) (Glasser et al., 2016). Again, some of the areas are mainly

involved in connections that correlate negatively with the perfor-

mance change (PSL, H).

None of the two left hemispheric motifs yielded significant results

concerning question Q2 (prediction of training effect by pre-

experimental connectivity) and Q4 (group level change of connectivity

through training). Moreover, none of the motifs significantly corre-

lated with the individual reading span or digit span.

3.3 | Right hemisphere

The network-based analysis did not yield any structural changes

related to the training process (Q2–Q4). However, a motif was identi-

fied whose prevalence correlates with the subjects' performance on

the first day, thus relating to question Q1. Figure 4 displays the main

areas and connections of this network component. This network motif

appears very different from the left-hemisphere motifs 1 and 2, and

mainly comprises white matter connections of the inferior parietal

F IGURE 1 Behavioral data. For both, single and double
embedding, there is a significant difference between days 4 and
1 (p < .005, corrected). For the double embeddings, there are also
significant differences between days 1 and 2 as well as between days
1 and 3 (p < .05, corrected). Adapted from Wang et al. (2021)
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cortex (PGs, PGi, PFm), the TPOJ1, primary auditory cortex (retro-

insular [RI]), premotor cortex (6r), and visual cortex (V1, V3, V3A, PH).

While for some of the inferior parietal areas, a specific involvement in

language processing has been reported (PGi, TPOJ1), others are

known to be specifically deactivated for language (PGs, PFm) (Glasser

et al., 2016). Interestingly, the most strongly represented part of the

primary auditory cortex, area RI, is reported as deactivated during lan-

guage processing, while the other core and belt areas are strongly

activated in the same task (Glasser et al., 2016, figure 12). Some of

these areas are mainly involved in connections that correlate nega-

tively with the first-day performance (TPOJ1, RI). Note that because

the entire motif shows a negative correlation (Figure 4c), these are

connections with a positive weighting, marked in red in Figure 4b.

Moreover, the motif showed no significant correlation with the

individual reading span or digit span.

4 | DISCUSSION

In this study, our goal was to elucidate the relationship between indi-

vidual white matter brain anatomy, as revealed by diffusion tractogra-

phy, and the comprehension of syntactically complex sentences in

adult native speakers. We were asking if and how the given structure

of the white matter of an individual influences their ability to extract

thematic roles from center embedded sentences (Q1), and how it

affects the improvement of that ability through intense training (Q2).

Moreover, we also sought to answer the question whether intense

training can induce measurable white matter changes, that is white

matter structural plasticity. Specifically, we tested if such changes are

related to the individual performance improvement (Q3), and if there

was a general (group-level) difference in white matter connectivity

between the time points before and after training (Q4). Each of these

F IGURE 2 Network motif 1 in the left hemisphere, whose prevalence before the training correlates with the baseline performance on day 1.
(a) Sagittal and axial view (created using BrainNet viewer; Xia et al., 2013) of nine brain areas where the network component has highest
(absolute) connectivity (labels according to Glasser et al., 2016, in panel b). (b) Chord plot of strongest connections in the network motif, with line
thickness indicating the absolute weight of the connection within the motif and the color indicating the sign (red: positive, blue: negative). Note
that connections that have negative weightings in the network motif actually correlate negatively with the motif prevalence. Then, 67 of the
185 brain areas are plotted, the main constituents of the network motif (panel a) are highlighted in color. (c) Regression plot of network
prevalence before the training (right singular vector V) against the performance of subjects during the first day of training on the double center
embedding task (r = .567, p = .046)
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questions was approached based on the prevalence of network motifs

(or subnetworks).

We were able to identify three network motifs, two of which

(one in each hemisphere) predicted the initial performance of the par-

ticipants, while the third motif (in the left hemisphere) changed during

training in correlation with the individual performance change.

We will now discuss these data in more detail. The first main

question concerns the relevance of the individual preexisting white

matter connectivity for language performance and training success in

the native language. Here, we can conclude that there are indeed

global structural properties of the white matter connectome, which

predict the individual performance in comprehending complex sen-

tences, and these properties influence diffusion tractography (Q1). In

the left hemisphere, the identified network motif (Figure 2) is widely

spread over the cortex and involves connections between areas that

are known to be engaged in a variety of different brain functions. It

contains connections that correlate positively or negatively with the

performance, respectively. Positive correlations were mainly found for

fiber tracts connecting areas known for their involvement in working

memory tasks (9m, d32, DVT, POS2), while some areas related to lan-

guage and theory of mind tend to have many connections that corre-

late negatively with the individual performance (PSL, 10v). This

suggests that the different initial performances of the participants

(67…100% for single embedded sentences and 58…91% for double

embedded sentences) are rooted to some extent in differences in

their working memory system. This presumption is further supported

by the finding that the initial performance on single embedded sen-

tences, which was already quite high prior to training in most subjects,

F IGURE 3 Network motif 2 in the left hemisphere, whose changes over the training period correlate with the performance change between days
1 and 4. (a) Sagittal and axial view (created using BrainNet viewer; Xia et al., 2013) of 10 brain areas where the network component has highest
(absolute) connectivity (labels according to Glasser et al., 2016, in panel b). (b) Chord plot of strongest connections in the network motif, with line
thickness indicating the absolute weight of the connection within the motif and the color indicating the sign (red: positive, blue: negative). Note
that connections that have negative weightings in the network motif actually correlate negatively with the motif prevalence. Then, 59 of the
185 brain areas are plotted, the main constituents of the network motif (panel a) are highlighted in color. (c) Regression plot of change in network
prevalence between scans before and after training (right singular vector V) against change in the performance of subjects between days 1 and
4 of training on the double center embedding task (r = .606, p = .035).
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correlated with the individual reading span score. The fact that read-

ing span, but not digit span, showed such correlation might hint that

language specific rather than general working memory is relevant

here. These interpretations are interesting given that psycholinguistic

theory has proposed that the ability to deal with syntactically complex

sentences is influenced by the individual working memory capacity

(Just & Carpenter, 1992; MacDonald et al., 1992).

In addition, there was also a right hemispheric network motif, the

prevalence of which predicted the individual performance before the

training (Figure 4). In contrast to the motif in the left hemisphere, the

right hemispheric motif had a strong focus on connections among

modality-specific cortices (visual, auditory, motor), and additionally

involved many working memory specific areas (PGs, PFm, 6r). Again,

connections of areas that are known to be involved in language tasks

(TPOJ1) tend to correlate negatively with performance, suggesting

that increased performance in our task does not rely on language spe-

cific brain circuits.

These very same network motifs (or any other network motif),

however, did not predict the ability of the participants to improve

their performance through training (Q2). Naturally, it must remain

open whether this is because the individual training abilities are gov-

erned by other factors than those reflected by white matter tractogra-

phy, or because the statistical power for the correlation with training

induced performance improvement was not sufficient.

F IGURE 4 Network motif 3 in the right hemisphere, whose prevalence before the training correlates with the baseline performance on day 1.
(a) Sagittal and axial view (created using BrainNet viewer; Xia et al., 2013) of nine brain areas where the network component has highest
(absolute) connectivity (labels according to Glasser et al., 2016, in panel b). (b) Chord plot of strongest connections in the network motif, with line
thickness indicating the absolute weight of the connection within the motif and the color indicating the sign (red: positive, blue: negative). Note
that connections that have negative weightings in the network motif actually correlate negatively with the motif prevalence (and therefore
positively with the performance, see panel c). Then, 55 of the 185 brain areas are plotted, the main constituents of the network motif (panel a)
are highlighted in color. (c) Regression plot of network prevalence before the training (right singular vector V) against the performance of subjects
during the first day of training on the double center embedding task (r = �.575, p = .038)
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Remarkably, the network motifs found in this study did not

exhibit any prominent involvement of the syntax-related Broca's area

(areas 44 and 45 in the Glasser atlas), which has been strongly associ-

ated with syntax processing in the language network (Friederici, 2017;

Wu et al., 2019). This is somewhat in contrast to previous work on

structural connectivity: White matter connections between area

44 and the posterior temporal cortex were shown to correlate with

performance on processing complex sentences during development

(Skeide et al., 2016). In adults, the white matter connection with that

area has been found to correlate with individual performance in an

artificial grammar-learning task using a region-of-interest approach

(Flöel et al., 2009). Here, we find that individual performance differ-

ences of adults processing center embedding sentences of their native

language mainly rest on differences in white matter connections

among working memory-related regions rather than syntax-related

regions. This suggests that, in contrast to children learning their first

language and to adults engaged in a dedicated grammar learning task,

performance improvement in our task relies more on improvements in

working memory than in core syntactic processing. Note, however,

that in our previous work on functional connectivity (Wang

et al., 2021), we found (in the same participants) that BA 44 did

exhibit training related changes in its neural activity for the double

center embedding sentences. We also demonstrated strong functional

interaction between BA 44 and both the inferior frontal sulcus and

PGi (part of inferior parietal cortex), suggesting that BA 44 may inter-

act with different types of working memory systems. Taken together,

it appears that for the type of center embedding sentences we used

in our study, training leads to changes in structural connectivity

among areas relevant for working memory performance, which func-

tionally interact with the more syntax-specific network centered at

BA 44.

The second main question investigated here focused on training

and thereby learning-related white matter plasticity. We could show

that the individual performance change over the training period signif-

icantly correlated with the individual prevalence change of a particular

network motif in the left hemisphere (Figure 3). This finding suggests

that individual learning success for processing complex sentences

depends on some reorganization of the white matter within the left

hemisphere (Q3). At the group level, our analyses did not reveal signif-

icant structural changes in the white matter (Q4), although the partici-

pants significantly improved their performance at the group level

(Figure 1). In other words, averaging across the individuals' white mat-

ter structure could not explain the observed group performance dif-

ference; rather it was the individual brain structure, which provided

an explanation.

Interestingly, the motif related to individual performance change

bears substantial similarity to the one that predicts the initial perfor-

mance (see above), but also features some differences. The most strik-

ing difference is the additional involvement of temporal areas (TA2,

STSvp; compare Figures 2a and 3a). Most of the strong connections

show positive correlations with the training success, connecting areas

reported for language (TA2, STSvp); theory of mind (9m, 9p, STV,

STSvp); working memory (9m, 23c, POS2, PIT); and motor functions

(9m, 23c, POS2, STV, STSvp). Prominent areas with connections

showing negative correlations were PSL (involved in various functions,

including language) and H (hippocampus). This picture seems to sug-

gest that the training process is associated with some reorganization

of widespread networks involved in multiple functional aspects of the

brain.

Structural plasticity of the white matter due to short-term lan-

guage training has been demonstrated before by Hofstetter et al.

(2017). Although they have not performed a connectivity analysis as

we did in this study, they found differences between diffusion MRI

metrics before and after the training in the white matter of inferior

frontal gyrus, middle temporal gyrus, and inferior parietal lobule in the

left hemisphere, which is in rough agreement with our results. Note,

however, that their experiments just involved the acquisition of novel

words (flower names) rather than processing complex sentence struc-

tures, as in our case.

From our results, it appears that there are certain structural prop-

erties of white matter fiber connections which are relevant for the

processing of syntactically complex sentences and even exhibit some

plasticity in response to training. These properties are captured by dif-

fusion MRI and further influence tractography streamline counts.

However, it is not possible to uniquely map those observations back

onto particular microstructural properties. Tractography results, and

diffusion MRI in general, are influenced by a multitude of properties,

including myelination, fiber diameter, fiber density, variability of fiber

orientation, glia cell density, and others. For a detailed treatment of

this problem, see Jones et al. (2013). Given that we observe training-

induced plasticity, remodeling of myelination might be a strong candi-

date, as activity dependent myelination has been established in a

number of in vivo and in vitro studies (for an overview, see,

e.g., Chorghay et al., 2018).

5 | CONCLUSION

In summary, we can state that the individual modulation of the ability

to extract thematic roles from center-embedded sentences depends

on widespread networks of white matter fibers connecting areas in

different parts of the cortex. The initial individual level of language

performance, which has been acquired throughout life, seems to

depend mainly on a network connecting (temporo-)parietal, medial

prefrontal, frontal opercular, and cingulate areas, many of which are

known for their involvement in working memory abilities. The rapid

performance improvement of processing syntactically complex sen-

tences induced by the relatively short, but intense, training during the

experiment appears to induce changes in a diverse network, addition-

ally involving medial and superior temporal regions, spanning lan-

guage, working memory, theory of mind, and motor functions. Taken

together, this might suggest that under the pressure of the training,

subjects used a multitude of strategies to improve their performance,

but in the long run, working memory is the key ability to master com-

plex center-embedded sentences. In order to substantiate this conclu-

sion, further dedicated studies will be necessary, involving appropriate
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control conditions to specify the importance of working memory for

syntax processing.

The present data suggest that individual language performance

can be explained by individual white matter structural patterns—a

relation, which may hold for individual differences observed in cogni-

tive functions more generally. Thus, the individual differences in the

brain's white matter structure may be a crucial factor to be considered

when discussing variations in cognitive performance.
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