Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Hydride-based thermal energy storage

MPG-Autoren
/persons/resource/persons58541

Felderhoff,  Michael
Research Group Felderhoff, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58877

Peinecke,  Kateryna
Research Group Felderhoff, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons281565

Sheppard,  Drew A.
Research Group Felderhoff, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons281567

Wang,  Fei
Research Group Felderhoff, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Adams, M., Buckley, C. E., Busch, M., Bunzel, R., Felderhoff, M., Heo, T. W., et al. (2022). Hydride-based thermal energy storage. Progress in Energy, 4(3): 032008. doi:10.1088/2516-1083/ac72ea.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-43D1-D
Zusammenfassung
The potential and research surrounding metal hydride (MH) based thermal energy storage is discussed, focusing on next generation thermo-chemical energy storage (TCES) for concentrated solar power. The site availability model to represent the reaction mechanisms of both the forward and backward MH reaction is presented, where this model is extrapolated to a small pilot scale reactor, detailing how a TCES could function/operate in a real-world setting using a conventional shell & tube reactor approach. Further, the important parameter of effective thermal conductivity is explored using an innovative multi-scale model, to providing extensive and relevant experimental data useful for reactor and system design. Promising high temperature MH material configurations may be tuned by either destabilisation, such as using additions to Ca and Sr based hydrides, or by stabilisation, such as fluorine addition to NaH, MgH2, or NaMgH3. This versatile thermodynamic tuning is discussed, including the challenges in accurately measuring the material characteristics at elevated temperatures (500 –700 °C). Attention to scale up is explored, including generic design and prototype considerations, and an example of a novel pilot-scale pillow-plate reactor currently in development; where materials used are discussed, overall tank design scope and system integration.