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S1 Density functional theory calculations

To characterize the spin-lattice interaction in YTiO3, we performed first-principles calculations
in the framework of density functional theory (DFT). Our main aim here is to examine how the
structural distortion due to the phonon excitation alters the magnetic exchange interactions.
We computed first the DFT equilibrium structure, as well as the phonon spectrum and Ti
magnetic exchange energies within this structure. Subsequently, we performed frozen phonon
calculations, investigating how the magnetic interactions are modified by the displacement of
specific eigenmodes. Lastly, to examine the effect of lattice distortions on the orbital polar-
ization, we also calculated the localized t2g-like Wannier functions for the phonon distorted
structures. Wannierization of the t2g Ti band was performed using projectors, including the
maximal localization procedure [54].

The technical and numerical details of our calculation are outlined in Sec. S1.5.

S1.1 Equilibrium Properties

Investigating structural deformations upon displaced phonons requires a force-free reference
structure. Hence, we first structurally relaxed the YTiO3 unit cell to the lowest-energy state.
We took the orthorhombic unit cell (Pbnm) with ferromagnetic spin order on the Ti atoms as
a starting point. After relaxation, the computed lattice constants were a = 5.34 Å, b = 5.68
Å and c = 7.61 Å. In the final structure, the Y atoms occupy the 4c-Wyckoff positions with
x = 0.02362 and y = 0.07503. O atoms reside in two distinct positions: O(1) at 4c with
x = 0.63 and y = −0.05, and O(2) at 8d with x = 0.81, y = 0.19 and z = 0.56. All values
are in satisfactory agreement with the experimentally observed structure. For example, we
compute 21.4◦ and 12.8◦ for the oxygen octahedral tilt and rotation angles in agreement with
the experimental values of 20.1◦ and 12.5◦. The phonon spectrum of the optimized structure
was computed using the Phonopy software package [55]. The relevant modes for this experiment
are zone center phonons with polarization along the b-axis. The computed phonon frequencies
are listed in Tab. S1.

Once the optimized YTiO3 structure was obtained, we computed the magnetic exchange
interactions. Following Ref. [56] we utilized a Heisenberg model with two magnetic exchange
constants, Jin and Jout, describing the in-plane and out-of-plane Ti exchange interactions, re-
spectively. Jin and Jout were computed by taking the difference between the total energy for
distinct spin arrangements of the YTiO3 unit cell. Specifically, we considered all four possible
magnetic states of the YTiO3 unit cell: ferromagnetic (FM), and A-type, C-type, and G-type
antiferromagnetic (A-AFM, C-AFM, G-AFM). From these calculations, we find Jin = −1.8
meV and Jout = −0.95 meV, confirming the FM ground state.

Mode number Frequency (THz) Z∗(e/
√

uÅ)

1 4.1 0.26
2 7.0 0.89
3 8.0 0.32

4 9.0 0.33
5 10.7 0.83
6 11.6 1.44

7 14.0 0.61
8 15.9 1.36
9 16.7 0.74

Table S1: Computed phonon frequencies for B2u symmetry (b-axis polarized) infrared-active phonon
modes of YTiO3, together with their mode effective charges. The phonons pumped in the experiment
are highlighted in the same color as they are presented in main text.
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We additionally examined if the (atomic) spin-orbit interaction is essential to the mag-
netism in YTiO3 by including it explicitly in the DFT calculations. We first computed the
magnetocrystalline anisotropy energy (MCA) by taking energy differences for the three distinct
FM spin alignments, oriented along the principal crystal axis. For our numerical settings, the
preferred spin direction is parallel to the c-axis; however, we find that the MCA is very small,
on the order of 1 µeV, which is the resolution limit of our calculation. In addition, we find
the size of the orbital magnetic moment on Ti to be 0.006 µB, which is also negligibly small.
Consequently, we do not expect the spin-orbit effects to influence the equilibrium magnetic
properties significantly.

S1.2 Driven phonon amplitudes

Based on the calculated phonon spectrum, we can simulate the phonon dynamics to estimate
the mode amplitudes and atomic displacements induced by a resonant THz pump excitation,
as described elsewhere. We model the material as a medium whose dielectric function is given
by a sum of Lorentz oscillators (Tab. S1) with phenomenological damping constants, and we
solve the equations of motion in response to an electric field pulse, E(t). The field E(t) is taken
to be a Gaussian pulse whose center frequency is in resonance with the phonon and whose
full width at half maximum (FWHM) matches that of the experiment (roughly 250 fs). For
driving field strengths of several MV/cm, as are achieved in our experiment, we estimate that
the phonon amplitudes lead to excursions of the oxygen ions within the YTiO3 unit cell of up
to tens of pm (see Tab. S2). By comparison, at a temperature of 10 K, mean squared thermal
vibration amplitudes are typically on the order of 1 pm or less. Note that the phonon amplitude
is linearly proportional to the strength of E(t), so more intense pulses will lead to even larger
atomic motions.

Frequency (THz) Qmax,driven (
√

uÅ) Max. driven disp. (pm) RMS therm. disp. (pm)

4.1 3.0 8.3 0.97
9.0 1.2 12.7 2.5
15.9 0.6 4.5 1.4
16.7 0.3 2.1 0.86

Table S2: Comparison between optically driven and thermally activated vibrational motion. Qmax,driven

corresponds to the maximum phonon amplitude following a resonant excitation with 5 MV/cm field
strength. The third column provides the corresponding maximum displacement of oxygen ions, and the
final column shows the equivalent root mean squared thermal displacements.

S1.3 Spin-Phonon Coupling

Utilizing the results for the phonon eigenmodes and magnetic structure, we mapped the spin-
phonon interactions. Due to symmetry considerations, polar phonon modes in the centrosym-
metric YTiO3 structure can only alter the magnetic exchange quadratically. Consequently, to
lowest order, the following Heisenberg Hamiltonian applies for the B2u modes considered in our
experiment,

Emag =
∑
k

∑
ij,(ab)

(
Jin + ωkλin,kQ

2
k

)
Si · Sj +

∑
k

∑
ij,(c)

(
Jout + ωkλout,kQ

2
k

)
Si · Sj , (1)

where the k sum runs over all B2u phonon modes with frequencies ωk and amplitudes Qk, the
ij sums run over the nearest neighbor spins either in the ab plane or along the c-axis, and
λin,k and λout,k are the coefficients describing the modification of in- and out-of-plane exchanges
by the phonon, respectively. To compute these coefficients, we displaced the atoms along the
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phonon eigenmode coordinates and reevaluated the exchange interactions, similar to Ref. [57].
In Fig. S1(a), we show the resulting modulation for the B2u phonon mode at 9 THz. For this
specific mode, we find that the phonon distortion strongly modifies both the in- and out-of-plane
exchange interactions. To summarize the results for all B2u phonons, we show in Fig. S1(b,c,d)
the in-plane, the out-of-plane, and the averaged (λavg) spin-phonon coefficients for all modes.
The averaged spin-phonon coefficient weights the individual coefficients by the number of nearest
neighbors and is defined as,

λavg,k =
2λin,k + λin,k

3ωk
(2)

The sign of λ determines whether the exchange interaction will be enhanced or diminished by
phonon excitation. For the case of ferromagnetic YTiO3, the equilibrium values of Jin and
Jout are both negative, therefore, if λ < 0 phonon excitation would enhance the underlying
ferromagnetic exchange, while it would be reduced if λ > 0. (We note that λavg provides a
single number to conveniently quantify the strength of the spin-phonon interaction, but λin
and λout are needed to fully understand the predicted phonon-induced changes to the magnetic
structure.)

From comparing the results in Fig. S1 with the experimental (equilibrium) spin-phonon
frequency shifts presented in Extended Data Fig. 10, we can see that the calculations agree
reasonably well for the modes studied experimentally in both the sign and relative magnitude.
This agreement highlights the accuracy of our calculations in equilibrium and in the linear
response, which helped inform our choice of which phonons to excite in our pump-probe exper-
iment. However, crucially, the sign of λ is opposite to what we observe experimentally in our
non-equilibrium measurements in the main text: for example, the positive λ for the 9 THz mode
implies that it would weaken ferromagnetism, whereas we find the strongest pump-induced en-
hancement when driving that mode. We attribute this disparity to the nonlinear and dynamical
nature of the pump-induced response, which is not captured in the DFT calculations and can
lead to a significant deviation from the linear spin-phonon response found in equilibrium.

S1.4 Wannier Functions

Lastly, we computed the localized Wannier functions and corresponding tight-binding param-
eters as a function of the B2u phonon mode amplitude. The results of these calculations are
used to determine the crystal field splitting/orbital gap shown in Fig. 4(b) in the main text
and used as input for the dynamical model presented in Sec. S2. As a projection basis for the
Wannier functions, we consider only the t2g states on Ti. To get an unbiased parameterization,
we turned off the Coulomb parameter U and the spin polarization for these calculations.

S1.5 Numerical Settings

We performed our computations with the Vienna ab-initio simulation package, VASP.6.2 [58].
For the phonon calculation, we used the Phonopy software package [55] and for Wannierization,
we used the Wannier90 package [59]. Our computations relied on pseudopotentials generated
within the Projected Augmented Wave (PAW) [58] method. Specifically, we took the following
default potential configurations: Ti 3p64s13d3, Y 4s24p65s24d1, and O 2s22p4. We applied
the Local Spin Density Approximation (LSDA) approximation for the exchange-correlation
potential, including he Hubbard U − J parameter to account for the localized nature of the
Ti d-states with U − J = 4 eV. A 9 × 9 × 7 Monkhorst [60] generated k-point-mesh sampling
of the Brillouin zone was used with a plane-wave energy cutoff of 600 eV. The self-consistent
calculations were iterated until the change in total energy was converged at the level of 10−8

eV.
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Figure S1: (a) Computed dependence for the exchange interaction as a function of the phonon mode
amplitude for the 9 THz B2u polar mode. (b,c) Individual out- and in-plane spin-phonon coupling
coefficients for all polar B2u modes obtained from fitting the first-principle computations. (d) Averaged
spin-phonon coupling constants computed from (b,c) and Eqn. 2. The modes in (b,c,d) are numbered
according to Tab. S1

S1.6 U -dependence

To characterize the robustness of the DFT results, we analyze the dependence of all computed
properties as a function of the on-site Hubbard U parameter used in the calculations. In Fig.
S2 we show the results of such an analysis on the ground state crystal and electronic structure.
Notably, a U of at least 2 eV is needed to make the system insulating, but otherwise we find
a smooth, monotonic U -dependence. More importantly, as shown in Fig. S3, for any finite U ,
the magnetic ground state is a c-axis ferromagnet. The exchange constants maintain the same
sign and relative strength over the entire U range with only their overall magnitude varying.
This statement is also true for the phonon frequencies and, most important of all, the spin-
phonon coupling constants. That is, independent of the chosen U , we find the same discrepancy
between the calculated signs of λ and the experimentally observed pump-induced magnetic
response. This result provides further evidence that electronic and magnetic dynamics beyond
simple adiabatic lattice deformations are important.
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Figure S2: (a) Unit-cell volume, (b) octahedral tilt, and (c) octahedral rotation as a function of U . (d,e)
Exemplary total density of states for two distinct values of U . (f) Electron count at the Fermi-level as a
function of U .

S2 Magnetization Dynamics

Here, we consider the dynamics of the pump-induced magnetization and provide a calculation
to qualitatively demonstrate how the strong drive can lead to an accelerated timescale for
longitudinal magnetic relaxation. We explain the presence of two timescales in the MOKE
signal by arguing that during the coherent phonon oscillations, a new channel for spin relaxation
opens, allowing for rapid growth, or decay, of the Kerr rotation signal, depending on the phonon
mode pumped. Then, after the phonon mode has rung-down and no longer exhibits coherent
oscillations, the magnetization slowly returns to equilibrium via the conventional pathways for
longitudinal magnetization relaxation. In YTiO3, which is a ferromagnetic insulator with weak
anisotropy, this timescale can be quite long, explaining the apparent metastability of the pump-
induced state, which essentially becomes “trapped” after the phonon oscillations diminish. This
process is schematically illustrated in Fig. S4.

S2.1 Equilibrium magnetization lifetime

The longitudinal component of the magnetization is often subject to a bottleneck in its dynamics
(the well-known Einstein-de Haas effect) since it is approximately conserved in a ferromagnetic
system, with the dominant channel for relaxation often being provided by spin-orbit coupling,
which ultimately transfers angular momentum from the spin into the orbital and then lattice
degrees of freedom. We, therefore, begin by considering the effect of spin-orbit coupling through
the atomic L · S coupling on the Ti sites. For the sake of simplicity, we provide only a rough
calculation of the orbital dynamics here, and a more detailed treatment will be explored in a
forthcoming publication.
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Figure S3: (a) Exchange constants, (b) phonon frequencies of the B2u modes, and (c-f) spin phonon
coupling constants for selected B2u modes as a function of U .

The relevant Hamiltonian is taken to be

HLS =
∑
j

λL̂j · Ŝj (3)

where j runs over all the Ti sites and L̂j is the t2g orbital angular momentum operator. In
terms of the three t2g levels, the angular momentum operator on site j is given by

Ll
j = −iεlmn (|n〉〈m| − |m〉〈n|) . (4)

This is odd under time-reversal and is diagonalized in the spherical eigenbasis of the three
levels, which are in reality split by the crystal field. Characteristic values of the atomic spin-
orbit coupling for a 3d transition metal are λ ∼ 10− 20 meV [61].

For simplicity, we project the orbital angular momentum onto the lowest crystal field levels,
in which case we can write

L̂j = nj τ̂
2
j , (5)

where nj is a unit vector which characterizes the matrix elements of the transition between the
crystal-field ground-state and first-excited state, and τ̂ 2

j = −i|1〉j |〈0|j+h.c. is a second-quantized
operator which corresponds to the orbital angular momentum of the lowest two orbitals on the
Ti site.

We consider a magnetization oriented along the c axis and determine the transverse spin-
wave self-energy due to the coupling to the orbitals in second-order perturbation theory, as-
suming the orbitals are acting simply as a bath. We focus on the isotropic contribution to the
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Figure S4: Schematic illustration of the spin flip pathways for modifying the longitudinal magnetization
in equilibrium and in the coherently driven state. The spin flip decay proceeds by combined spin-
orbital flip via spin-orbit coupling, followed by an orbital decay process which is spin-independent. In
equilibrium, this process is intrinsically slow due to the large separation of scales between the crystal
field ground state and first excited state (shown schematically as blue and red orbital states). In the
driven scenario, the decay time is accelerated due to the strong drive, which distorts the crystal field
environment. The drive induces sidebands of the excited orbital state at twice the phonon frequency,
which reduces the effective crystal field splitting associated with the orbital flip process. The spin flip
decay time is accelerated since the intermediate state is brought closer to resonance. Importantly, the
spin flip pathway is enhanced only while there are strong coherent oscillations of the crystal field state,
returning to the slower pathway once the oscillations have rung down.
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retarded spin-wave propagator (neglecting additional in-plane anisotropies) via local self-energy,
averaged over the four Ti sublattice sites,

ΣR(t, t′) =
1

2
λ2〈〈nj ·Π⊥ · nj

2
〉〉
(
DR(t, t′) +DA(t′, t)

2

)
, (6)

with the retarded orbital correlation function

DR(t, t′) = −iθ(t− t′)〈[τ̂2j (t), τ̂2j (t′)]〉, (7)

and the advanced correlation function follows as DA(t, t′) = DR(t′, t)†. The first term describes
the in-plane isotropic projection of the angular momentum anisotropy tensor, averaged over
the four Ti sublattices (indicated by the double brackets). This averaging is expected to be
acceptable for a long-wavelength, low-energy magnon which will vary little on the atomic scale,
and therefore see an effectively averaged potential. For the orbital bath, we take as an ap-
proximation for the orbiton spectral function a Lorentzian response with retarded correlation
function

DR
orb(ω) =

2∆

(ω + iΓ)2 −∆2
, (8)

with bare crystal-field splitting taken from ab initio calculations in Sec. S1 of ∆ ∼ 140 meV
and orbital linewidth Γ ∼ 10 meV.

The longitudinal magnetization relaxation manifests as the transverse spin-wave lifetime. We
find, for the equilibrium case, that the imaginary part of the self-energy goes as −=ΣR(ω) ∼
αeqω, where αeq is the effective equilibrium decay rate. Because the magnon band is so far
detuned below the orbiton resonance, this decay rate is highly suppressed. Based on parameters
above we find an estimate of αeq ∼ 〈〈|n⊥|2〉〉2Γλ2/∆3. For a magnon of frequency ω ∼ 1 meV, we
find a corresponding lifetime of order 4 ns, which is consistent with the lifetime of the induced
magnetization found in experiment (Extended Data Fig. 9).

S2.2 Driven magnetization lifetime

Next, we consider the lifetime in the driven case, where the coherent phonon oscillations induced
by the pump modulate the crystal field state in time. The time-dependence of the crystal field
state manifests through the eigenvectors nj . We focus here on the B2u phonon at 9 THz (mode
label 4 in Tab. S1). We evaluate the lifetime using the orbital transition matrix eigenvectors
nj(t) obtained from the ab initio calculations in Sec. S1, which acquire time-dependence in the
presence of the driven phonon via nj(t) = nj + δnjQ

2
IR(t), where QIR is the phonon amplitude.

Fig. S5 shows that the changes in the orientation of the orbital angular momentum vector due to
the phonon oscillations are quite substantial for this mode (results are similar for other modes).
Importantly, because the orbital transition is of Raman character, the coupling is proportional
to Q2

IR, which involves oscillations at ±2Ωd.
Most relevantly, the oscillating phonon amplitude impacts the components of the orbital

angular momentum perpendicular to the magnetization. leading to a time-dependent transverse
field and resultant spin-flip processes. This effect is characterized by time-dependent angular

momentum anisotropy tensor 〈〈nj(t)·Π⊥·nj(t
′)

2 〉〉, which enters in the magnon self energy. We use
a simplified model here, parameterizing the drive effects as

〈〈nj(t) ·Π⊥ · nj(t
′)

2
〉〉 = 〈〈nj ·Π⊥ · nj

2
〉〉
[
1 + I2 cos(2Ωd(t− t′))

]
/(1 + I2) (9)

in terms of the equilibrium projection 〈〈nj ·Π⊥·nj

2 〉〉 ∼ .483 and unitless strength parameter I ∝
Q2

max, roughly proportional to the pump fluence. This parameterization discards terms which
explicitly break time-translational symmetry, such as cos 2Ωd(t+ t′)/2. In principle, these terms
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Figure S5: (a) Change in c-axis component of L on particular Ti sites with respect to the IR phonon
displacement. The maximal displacement during the pulse is of order of QIR ∼ 1.2 in these units.
(b) Fidelity, measured by angular momentum overlap with equilibrium, as a function of the IR mode
displacement, illustrating a dramatic reorientation of the orbital angular momentum during the phonon
oscillation. Shown are calculations for mode 4, with a frequency of 9 THz.

lead to a backfolding of the self-energy in frequency space by the drive frequency; capturing
these effects requires a full solution to a quantum kinetic equation. This model also preserves
the “overall” size of the matrix element squared, such that the spectral weight is merely shifted
from the main peak to the (Floquet) sidebands.

The non-equilibrium self-energy at low frequencies can then be written in terms of the
equilibrium self-energy (Eq. 7) as

ΣR
neq(ω) =

1

1 + I2
ΣR(ω) +

I2

1 + I2

(
ΣR(ω + 2Ωd) + ΣR(ω − 2Ωd)

2

)
. (10)

For finite I, this experession leads to an enhancement of the damping rate for magnons (and
hence, a shortening of the risetime of the pump-induced change in the magnetization).

We compare the driven and equilibrium relaxation rates as a function of frequency for
a few different estimates of the fluence parameter I in Fig. S6. Even within this relatively
crude model, one can see that the magnetic relaxation rate due to spin-orbit coupling can be
dramatically enhanced in the pumped state. The enhancement is due to the pump introducing
sidebands, which increase the spectral overlap of the magnon states with the bath, allowing
for a more efficient decay of the spin (i.e. faster angular momentum transfer). The change
in the magnetization lifetime in the driven case, relative to that in equilibrium, is shown in
Fig. S7 as a function of the model parameter I. We find a dramatic reduction in the lifetime
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Figure S6: (a) Dependence of magnon relaxation rate γ(ω) on frequency for different pump strengths,
modeled by parameter I. Equilibrium (gray, dotted) has very small spectral weight at the magnon
frequencies, while the modest pump (red, solid) and strong pump (blue, dashed) scenarios have increasing
spectral weight at low frequencies. (b) Same functions, plotted over the range of [0, 2∆CF], illustrating
how the pump produces sidebands which enhance the overlap at low frequencies.
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for a sufficiently strong pump, which corresponds to a faster risetime of the non-equilibrium
magnetization in the experiment.

These calculations provide a plausible explanation for the experimental observation that
the time scales of the magnetization growth into the non-equilibrium state and its decay back
to equilibrium are divergent. To summarize the argument, the resonant THz frequency pump
excites a particular phonon mode, which rings down after the THz pulse is gone with a damping
rate given by the inverse lifetime of the phonon. During this phonon lifetime there is an
enhancement in the transfer of orbital angular momentum via the mechanism described in
this section, which allows the magnetization to change rapidly to reach the non-equilibrium
state. Once the phonon drive has subsided, this enhanced decay pathway is no longer present,
leaving the system in a metastable non-equilibrium magnetic state. Eventually, it returns to
its equilibrium magnetization through the relatively slow, undriven, magnetization relaxation
process. This theoretical model is supported by the observation that the MOKE signal risetime
appears to be bounded by the phonon lifetime (see Extended Data Fig. 8 in the main text),
indicating that the transfer of angular momentum happens rapidly only during the coherent
oscillations.

Although the treatment presented here can qualitatively explain our experimental obser-
vations, We believe a more detailed investigation of these effects is warranted, especially due
to the interesting and novel nature of this dynamical route. In particular, we think it will be
important to include (i) the in-plane anisotropy, which also experiences dramatic changes dur-
ing the pump (and leads to anomalous magnon correlation function), and (ii) the finite pump
effects and terms which break time-translation symmetry (which leads to a full back folding of
the Floquet spectrum). These aspects will be pursued in a follow up theoretical investigation.
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Figure S7: Calculated ratio of the lifetime (τ = 1/γ(ω)) in the driven case to the lifetime in the
equilibrium case for a magnon of frequency ω = 1 meV as a function of the pump strength, illustrating
an acceleration of much greater than 5-fold is possible for sufficient pump strength.
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