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Abstract

Psychiatric disorders are highly heterogeneous regarding their symptoms and
disease course. Research evidence has shown that the existing psychiatric
nosology might not accurately reflect the biological processes, as well as different
clinical manifestations and outcomes of the mental disorders.

The aim of this thesis was to apply computational methods to generate new
knowledge on the classification of psychiatric diseases. To this end, we crossed
the existing diagnostic boundaries and analyzed a transdiagnostic sample in-
cluding healthy controls and patients diagnosed with depression, schizoaffective
disorder, schizophrenia, bipolar disorder, and other psychiatric disorders such
as anxiety and social phobia. High-dimensional data clustering was applied
on a discovery sample of N=1250 individuals using a wide range of clinical
variables. Supervised learning was further used to describe clusters based on
genetic variables, polygenic risk scores, and family history. Alongside identify-
ing new subtypes, we explored the performance of a feature selection algorithm
in order to deal with extremely high-dimensional genetic data (single nucleotide
polymorphisms (SNPs)) to better describe the differences between the identified
subtypes or formal diagnostic categories.

Five diagnostically mixed clusters were identified and ranked based on a
continuous severity scale: from 0, indicating a well-being or the lowest severity,
to 4, indicating the highest severity. Cluster 0 contained most of the healthy
controls and showed general well-being. Cluster 4, on the other end of the scale,
contained most of the patients diagnosed with psychotic disorders and showed
the highest severity in many examined measures. The Clusters 1–3 varied
predominantly regarding depression levels, quality of life, parental bonding, and
childhood maltreatment levels. Differences in polygenic risk scores and family
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history were the strongest between the two extreme clusters 0 and 4. Moreover,
we showed that the inclusion of polygenic risk scores into the model with family
history might result in better individual predictions. In the replication analysis
in a sample of N=622 individuals, all except for the smallest Cluster 1 replicated,
which shows the stability of the cluster solution. The identified clusters and their
characteristics show the importance of transdiagnostic approaches, emphasizing
the need for symptom-specific rather than diagnosis-specific treatment.
The results of feature selection analysis showed poor generalizability of the
prediction model and the unstable sets of SNPs chosen across different runs,
both when predicting the identified Cluster 0, as well as the formal diagnostic
label. This led us to conclude that more work is needed to develop methods
that could capture the high degree of polygenic dependencies and a continuum
of small effects present in psychiatric disorders and traits.

This thesis suggests that the data-driven approaches in psychiatry offer great
advantages to the field, by uncovering the patterns and relations hidden in the
data available nowadays. We demonstrated that performing the transdiagnostic
clustering and assessing the level of symptom severity may identify groups of
patients that share clinical symptoms and, hence, could benefit from similar
treatments. Such approaches might contribute to a deeper understanding of
the heterogeneity between and within psychiatric disorders and support the
development of individualized treatment regimes.
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Zusammenfassung

Psychiatrische Erkrankungen sind in Bezug auf Symptome und Krankheitsver-
lauf sehr heterogen. Forschungsergebnisse haben gezeigt, dass die bestehende
psychiatrische Nosologie die biologischen Prozesse sowie die verschiedenen klin-
ischen Manifestationen und Ergebnisse der psychischen Störungen möglicher-
weise nicht genau widerspiegelt.

Das Ziel dieser Arbeit war es, computergestützte Methoden anzuwenden, um
neue Erkenntnisse auf dem Gebiet der Klassifikation psychiatrischer Erkrankun-
gen zu generieren. Zu diesem Zweck haben wir uns darauf konzentriert, die
bestehenden diagnostischen Grenzen zu überschreiten und eine transdiagnos-
tische Stichprobe zu analysieren, die gesunde Kontrollpersonen und Patienten
mit diagnostizierten Depressionen, schizoaffektiven Störungen, Schizophre-
nie, bipolaren Störungen und anderen psychiatrischen Störungen wie Angst
und soziale Phobie umfasst. Hochdimensionales Datenclustering wurde ver-
wendet, um die Cluster unter Verwendung einer breiten Palette klinischer
Variablen zu identifizieren. Überwachtes Lernen wurde verwendet, um Cluster
mit genetischen Variablen, polygenen Risikoscores und Familienanamnese zu
beschreiben. Neben der Identifizierung neuer Subtypen untersuchten wir die
Durchführung eines Feature selection Algorithmus mit dem Ziel, einen Umgang
mit extrem hochdimensionalen genetischen Daten (single nucleotide polymor-
phisms (SNPs)) zu finden, um die Unterschiede zwischen den identifizierten
Subtypen oder formalen diagnostischen Kategorien besser zu beschreiben.

Die Clusteranalyse einer Entdeckungsstichprobe von N=1250 Individuen identi-
fizierte fünf diagnostisch gemischte Cluster, die entlang einer kontinuierlichen
Schweregradskala eingestuft wurden. Cluster 0 enthielt die meisten gesunden
Kontrollen und zeigte das allgemeine Wohlbefinden. Cluster 4 am anderen
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Zusammenfassung

Ende der Skala enthielt die meisten Patienten mit diagnostizierten psychotis-
chen Störungen und wies bei vielen beobachteten Messgrößen den höchsten
Schweregrad auf. Die Cluster 1–3 lagen zwischen diesen beiden Extremen und
unterschieden sich hauptsächlich in Bezug auf das Ausmaß der Depression, die
Lebensqualität, die elterliche Bindung und das Ausmaß der Misshandlung in
der Kindheit. Die Unterschiede in den polygenen Risikoscores und der Fami-
lienanamnese waren zwischen den beiden Extremclustern 0 und 4 am stärksten.
Darüber hinaus zeigten wir, dass die Einbeziehung polygener Risikoscores
in das Modell mit Familienanamnese zu besseren individuellen Vorhersagen
führen könnte. In der Replikationsanalyse in einer Stichprobe von N=622 Indi-
viduen, alle außer dem kleinsten Cluster 1 repliziert. Die identifizierten Cluster
und ihre Charakteristika zeigen die Bedeutung transdiagnostischer Ansätze
und betonen die Notwendigkeit einer symptomspezifischen statt einer diag-
nosespezifischen Behandlung.
Die Ergebnisse der Merkmalsauswahlanalyse zeigten eine schlechte General-
isierbarkeit des Vorhersagemodells und die instabilen Sätze von SNPs, die
über verschiedene Durchläufe hinweg ausgewählt wurden, sowohl bei der
Vorhersage des identifizierten Clusters 0 als auch der formalen diagnostischen
Markierung. Dies legt nahe, dass mehr Arbeit erforderlich ist, um Methoden zu
entwickeln, die den hohen Grad an polygenen Abhängigkeiten und ein Kon-
tinuum kleiner Effekte bei psychiatrischen Störungen und Merkmalen erfassen
können.

Die Arbeit in dieser Dissertation legt nahe, dass die datengetriebenen Ansätze
in der Psychiatrie große Vorteile für das Feld bieten, indem sie Muster und
Zusammenhänge aufdecken, die in den heute verfügbaren Daten verborgen
sind. Wir haben gezeigt, dass die Durchführung des transdiagnostischen Clus-
terings und die Bewertung des Schweregrads der Symptome, Patientengruppen
identifizieren können, die klinische Symptome teilen und daher von ähnlichen
Behandlungen profitieren könnten. Solche Ansätze könnten zu einem tief-
eren Verständnis der Heterogenität zwischen und innerhalb psychiatrischer
Erkrankungen beitragen personalisierter Behandlungen unterstützen.
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Introduction 1
1.1 Background and research motivation

Mental health is defined by the World Health Organization (WHO) as ”a state
of well-being in which every individual realizes his or her own potential, can cope
with the normal stresses of life, can work productively and fruitfully, and is able to
make a contribution to her or his community”. However, mental disorders pose a
tremendous global burden, since 30% or more people experience a psychiatric
illness during their lifetime (Steel et al., 2014). Their etiology is multifactorial,
arising not only from the individual attributes, such as genetic predisposition,
habits, behavior but also from the psychosocial, environmental, and cultural
processes. Yet, it is difficult to determine any factor which is either necessary
or sufficient for the development of any formal psychiatric disorder (Fried and
Robinaugh, 2020). Over the years, the expert panels have put enormous efforts
into defining the essential criteria to develop a scientifically based classification
of psychiatric disorders (Kendler, 2009; Shorter, 2015).

The first attempts began in Europe in the late 19th and early 20th century. In
that time, many experienced diagnosticians made a wide range of assumptions
about which important features would constitute psychiatric disorders (Kendler,
2009). One of the proposing authors at the time, German psychiatrist Emil
Kraepelin, had a significant impact on the development of psychiatry and,
thus, set the foundation for the development of the Diagnostic and Statistical
Manual of Mental Disorders (DSM) published in 1952 (DSM-I). The current, fifth
edition of the manual (DSM-V) was published in 2013 (American Psychiatric
Association, 2013). After extensive revision, it has grown to 947 pages and 541

1



1 Introduction

diagnostic categories, compared to the 132 pages and 128 diagnostic categories
in DSM-I (Blashfield et al., 2014).

The DSM, together with the International Classification of Diseases (ICD)
(Khoury et al., 2017), maintained by the WHO, have evolved into the standard
classification systems that define how mental health problems are diagnosed
worldwide (Dalgleish et al., 2020). Due to the "criteria checklist" approach,
DSM contributed toward one common international language for defining and
conceptualizing psychiatric disorders. Theoretically, with such an approach, it
is necessary to check the clinical features against the list of criteria to make a
diagnosis. As a result of such diagnostic standardization, diagnostic reliability
was increased. Moreover, publicly accessible diagnostic definitions fostered
not only the communication between clinicians but also facilitated the com-
munication with patients (Owen, 2014; Helzer et al., 2006). While DSM and
categorical diagnostic criteria have certainly resulted in many improvements,
there has been a widening recognition among psychopathology researchers that
there is a need to revise the current nosology. As new knowledge and insights
into the etiology and biology of the disorders emerge, it became more evident
that the discrete categories do not cleanly map to the complexity of mental
health (Barch, 2020). As a result, the current classification system has been
continuously questioned. In the following, we will discuss some of the main
challenges which are driving the crisis of confidence the current psychiatric
nosology dived into. They are elaborated in more detail in Dalgleish et al., 2020;
Zachar and Kendler, 2017, and Owen, 2014, which are all references for the next
part of this section, if not stated otherwise.

The first challenge is an assumption that the domain of psychopathology could
be better described with dimensional models. Within the current nosology, symp-
toms are grouped, marked as present or absent and some are put on the severity
scale as mild, moderate or severe. Therefore, it is assumed that there is a qual-
itative difference between normal mood and abnormal mood. However, it is
argued that mental health exists on a continuum of symptom experience, rang-
ing from health on one end to illness on the other, as opposed to these distinct
categorical entities (Seow et al., 2017). Indeed, it is known that mental health

2



1.1 Background and research motivation

is influenced by the various interactions between many different processes
such as biology, environmental and social factors which are all regulated by
an individual’s lifelong experiences. Some individuals might not satisfy the
criteria for a diagnosis of a specific psychiatric disorder, but they would exhibit
some symptoms associated with it throughout their lifetime and potentially be
at risk for developing a specific disorder (Seow et al., 2017; Johns and Os, 2001).

The second challenge is the heterogeneity of the disorders – the same disorder
may be caused by various underlying mechanisms, and result in many different
outcomes. The two individuals with the same diagnosis may have very different
clinical presentations, treatment responses, and their experience may result
in many different outcomes. It is argued that this kind of heterogeneity is
incorporated in the diagnostic criteria, which consist of a group of conceptually
similar symptoms. The criteria are met when one or more of these symptoms
is present, and the final diagnosis is then dependent on a certain number of
criteria that are satisfied. For example, to be diagnosed with major depressive
disorder (MDD), a patient should satisfy at least five of eleven symptoms,
including one of the two essential ones. Therefore, not all symptoms have to be
satisfied and consequently, individuals with MDD diagnosis could have only a
few symptoms in common, which introduces the heterogeneity within the same
category.

The third challenge is high comorbidity, the occurrence of symptoms that meet
the criteria for more than one formal diagnosis at the time. For example, 60%
of the people with an anxiety disorder, investigated by Goldstein-Piekarski
et al., 2016, also had depression or another additional anxiety diagnosis. The
frequent co-occurrence of diagnoses emphasizes how uncommon it is to have
a single, clearly differentiable clinical presentation (Kessler et al., 2005), and
has been regarded as evidence against discrete disease entities (Maj, 2005). In
line with this, there is gathering research support of symptomatic ambiguity,
heterogeneity, and shared neurobiological and genetic underpinnings between
different disorders (Lee et al., 2019a). For example, bipolar disorder (BD) and
schizophrenia (SCZ) partly share clinical symptoms like psychosis and have
overlapping genetic and neurobiological underpinnings (American Psychiatric
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Association, 2013; Lichtenstein et al., 2009; American Psychiatric Association,
2013). This issue of setting the discrete, solid boundaries between the disorders
has been addressed by the DSM itself, saying:

"There is no assumption that each category of mental disorder is a com-
pletely discrete entity with absolute boundaries dividing it from other mental
disorders or from no mental disorder. There is also no assumption that all
individuals described as having the same mental disorder are alike in all
important ways". (American Psychiatric Association, 2013)

All the challenges the current classification system faces have motivated many
researchers to aim for a revision and reformulation of the current psychiatric
nosology. The next section will give an overview of the research done in the
field and how this thesis builds on it.

1.2 Research overview

To better understand the complexity of psychiatric disorders and disease eti-
ology, data-driven approaches have been used for some time now. In specific,
the clustering methods have emerged as the dominant approach to partition
the heterogeneous diagnostic categories and divide them into more homoge-
neous and clinically relevant subgroups. The development of technologies for
assessing many aspects of chemical and biological diversities and the advances
in analytical methods such as machine learning and statistics have been the
reasons for renewed interest in employing clustering approaches in psychiatry
nowadays (Marquand et al., 2016).

Studies that attempted to identify psychiatric disorder subtypes could be
roughly divided into two groups – single disorder subtyping studies, trying to
refine the definitions of one specific diagnostic category, and transdiagnostic
studies focusing on finding cross-disorder subtypes, hence going beyond the ex-
isting diagnostic boundaries. So far, researchers have been dominantly focusing
on the former. However, with mounting evidence of shared etiology between
different disorders, the transdiagnostic studies have started to gain importance
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(Barch, 2020; Dalgleish et al., 2020).

Many single disorder subtyping studies focus their attention on major depres-
sive disorder, as it contributes significantly to the overall global disease burden
and the increasing levels of mortality and morbidity. The review by Beijers
et. al (Beijers et al., 2019) provides an interesting overview of many attempts
to find more homogeneous subgroups of MDD by analyzing neuroimaging,
psychopathology, genetics, or a combination of multiple domains. Nonetheless,
efforts to refine other illnesses are manyfold, including schizophrenia (Geisler et
al., 2015; Dwyer et al., 2018; Dickinson et al., 2017; Helmes and Landmark, 2003;
Jablensky, 2006; Bell et al., 2011), autism spectrum disorder (ASD) (Giambattista
et al., 2019; Ring et al., 2008; Veatch et al., 2013), attention-deficit/hyperactivity
disorder (ADHD) (Mostert et al., 2018; Gates et al., 2014), eating disorders
(Forbush et al., 2017; Grilo et al., 2002). . .

While finding subtypes of a single disorder is important for a better under-
standing of it, these approaches cannot capture the overlap of symptoms and
shared genetic and neurobiological underpinnings between different disorders,
mentioned previously in this chapter. A promising avenue to tackle this issue
has been put forward by the transdiagnostic approaches. Existing cross-disorder
clustering studies support the existence of diagnostically diverse subtypes, ei-
ther across two (Chan et al., 2017) or more disorders (Crouse et al., 2020; Dwyer
et al., 2020; Grisanzio et al., 2018; Lewandowski et al., 2014). However, as
pointed out in the review by Fusar-Poli et. al (Fusar-Poli et al., 2019), transdiag-
nostic studies are still limited in the number of observed disorders and often
characterized by methodological weaknesses, such as small samples, biased
models, and lack of validation.

Despite intensifying efforts to improve the current classification system of psy-
chiatric disorders, there is still a long way to go. As nicely brought up by M. Maj
(Maj, 2018), if we want to find a better categorization of psychiatric disorders,
we need to be aware that diagnosing an individual with the specific disorder
or the disorder subtype should only be the first step on the path to outcome
prediction and personalized treatment regime. The other equally important
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step is a detailed pathophysiological and molecular characterization of these
individuals, including an assessment of clinical severity. Moreover, the detailed
understanding of the single components that may drive the development of
psychiatric disorders is not sufficient for the complete picture. Researches need
to go further and also study the complex interactions among them (Fried and
Robinaugh, 2020). So far, the vast majority of subtyping studies, irrespective of
the approach they took, focused their clustering analysis on single data domains,
such as neuroimaging (Drysdale et al., 2017; Cheng et al., 2014; Gould et al.,
2014; Kaczkurkin et al., 2019; Dias et al., 2015; Sun et al., 2015), psychometric
(Chan et al., 2017; Maglanoc et al., 2018; Fountain et al., 2012; Bell et al., 2011),
biochemical markers (Haroon et al., 2018), and genetics (Yu et al., 2017; Howard
et al., 2020). The field should focus on getting the holistic picture of an individ-
ual and try to find clinically relevant subgroups based on multiple domains
(Maj, 2018). Additionally, it would be beneficial to include healthy controls into
the analyses to assess the severity or detect the individuals at risk of developing
a specific disorder, as they might experience some symptoms associated with
mental illness in their life, but not formally meet the criteria for the diagnosis
(Seow et al., 2017).

Finally, we can conclude that in order to achieve the paradigm shift and move
toward clinical care and individual treatment regimes, further research in the
field is needed.

1.3 Thesis objective and approach

The aim of this thesis was to use data-driven methodologies to create new
insights in the field of classification of psychiatric disorders and new subtypes
discovery. To this end, we followed a transdiagnostic approach, analyzing a
sample with healthy controls and patients diagnosed with major depressive
disorder, schizoaffective disorder (SZA), schizophrenia, bipolar disorder, and
other psychiatric disorders such as anxiety and social phobia. Hence, the analy-
sis went beyond the existing boundaries not only between different disorders
but also between health and disease. This transdiagnostic sample was subject
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to cluster analysis and described with different data modalities, ranging from
psychopathology, socio-demographic, cognition, environmental factors, genetics,
etc. This part of the thesis is primarily based on the results published in Pelin
et al., 2021.

Additionally, we wanted to explore the way we could work with extremely high-
dimensional genetics data to better describe the differences between and within
psychiatric disorders or identified subtypes. To this end, a feature selection
algorithm was applied to the same transdiagnostic sample described above.

1.4 Overview of the thesis structure

Chapter 1 (Introduction) provides a brief introduction into the background of
psychiatric nosology. The historical viewpoint and the challenges of the current
classification system are given, as well as the overview of research efforts to
improve it. Chapter 2 (Background) provides the theoretical background of the
methodologies used in this thesis. By discussing the challenges that they face, it
gives a rationale for the choice of the algorithms and approaches used in this
study. Chapter 3 (Methods) covers the methodological framework, including
samples, workflow, and tools used to perform the computational analyses.
Chapter 4 (Results) reports the findings of the study, from the results of the
clustering and identification of the potential subtypes, across characterization of
the clusters to the feature selection process. In the final Chapter 5 (Discussion
and Outlook) we discuss the findings, contributions, and limitations, and give
perspectives for future work. Supplementary information of some methods and
results is given in the Appendix.
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Background 2
This chapter covers the background of the methodologies used in this thesis.
By discussing the challenges they face, the chapter provides a rationale for the
choice of the algorithms and approaches used to answer the research question.
The first section provides an overview of the machine learning field and its
subfields which enable us to discover intricate structures and inner relations in
the datasets. The second section covers the background of the statistical testing,
while the last section covers the background of genetics.

2.1 Machine learning background

The term machine learning refers to the science of programming machines
in a way that they can automatically detect the meaningful patterns in the
data, i.e. learn from the data (Gron, 2017; Mitchell, 1997). Machine learning
is a subfield of computer science, however, it is closely associated with the
mathematical disciplines of statistics, optimization, and information theory. The
hope for machine learning is that these automated algorithms would be able to
complement human intelligence and find meaningful patterns that might have
been missed by the human observer (Shalev-Shwartz and Ben-David, 2014).

There are several subfields of machine learning, which vary in their approach
to learning, the form of problem they are solving, or the type of data they use.
In this thesis, both of the two most common methods were used - supervised
learning and unsupervised learning. In this chapter, we cover the background of
each type separately, with a focus on the algorithms and approaches used to
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answer the research question.

2.1.1 Terminology

The dataset consists of observations, in our case individuals, for which the
measures were collected. Throughout this and the following chapters, the
dataset with N observations and p measures is represented as a matrix X ∈
RN×p with observations stored as rows and the measures as columns:

X =


x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
...

...
xN,1 xN,2 . . . xN,p

 .

In supervised learning, which will be covered later, the above p column vectors
are called the predictors, while the variable we want to predict is called the
response or outcome variable, noted as a vector Y ∈ RN:

Y = (y1, y2, . . . , yN) .

In this thesis, the response variable was categorical, representing the cluster
labels.

2.1.2 Unsupervised learning

Unsupervised learning is a technique in machine learning used to uncover
the underlying structure or distribution in the input data, without the labeled
responses. In other words, the goal is to find the structure without instructions
as no classification of our observations is given. Some examples of unsuper-
vised learning are clustering, anomaly and novelty detection, dimensionality
reduction, association rule mining, etc.

As previously mentioned in the Introduction chapter, clustering has been the
dominant approach in research efforts to discover more homogeneous psychi-
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atric disorder subtypes and was used with the same purpose in this thesis.

2.1.2.1 Clustering

2.1.2.1.1 Definition and challenges

Clustering is a process of grouping a set of objects such that the one group (cluster)
contains the objects that are more similar to one another than to the objects in
other groups. The higher the similarity of objects within the formed clusters
and the lower the similarity of objects between different clusters, the better the
clustering. Objects subject to clustering are typically represented as points in a
multi-dimensional space, with each dimension representing a distinct attribute
(feature, variable) of the object.

Intuitively, this definition of clustering as a task of grouping sets of observations
into more homogeneous groups is quite clear. However, there are challenges
posed to the clustering process which need to be considered. The ones important
for this thesis and the choice of the algorithm are discussed below.

The challenge of the unknown ground truth and similarity metric
Clustering is an exploratory analysis, without the known ground truth. It is not a
priori known how many clusters there are in the data and how are they supposed
to look. For a given dataset, there may be a variety of possible clustering
solutions. Consequently, there is a large number of clustering algorithms that
can produce very different clustering results on the given input data (Shalev-
Shwartz and Ben-David, 2014). There are, however, performance or evaluation
metrics that can be used to infer a satisfying grouping and will be discussed
later in this section. Furthermore, clustering, as per definition, aims to group the
objects that are more similar to each other. But, what does a similarity between
the two objects mean? For example, is the hair color the measure that determines
the grouping of individuals or their height? Very probably, the clustering output
in these two cases would result in very different clustering solutions, depending
on the definition of similarity. Hence, the choice of similarity metric is very
important for clustering and can result in many different groupings of the
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objects. For a nice illustration of the similarity and the ground truth issues,
please refer to Chapter 22 in Shalev-Shwartz and Ben-David, 2014.

The challenge of the high-dimensionality
Today’s applications of clustering are faced with another very important is-
sue, the so-called curse of dimensionality, a phrase coined by Richard Bellman
(Bellman, 1954). This phenomenon is a result of an increasing amount of data
generated nowadays and, simultaneously, an increasing number of attributes
that describe our observations. Bellman himself used it to describe the rapid
growth in the difficulty of problems arising as the number of variables increases.
In high-dimensional datasets it is often the case that all the objects are practically
equidistant from one another, hiding the real patterns in the data (Figure 2.1).
What that means for the clustering procedure is that many irrelevant dimen-
sions caused by high dimensionality can confuse the algorithms by masking the
clusters in the noisy data. Traditional clustering algorithms, designed to work
with spaces of lower dimensions, rely on assessing the similarity between pairs
of groups of objects and fail to find important patterns and clusters in high-
dimensional settings (Assent, 2012). Therefore, with the increasing amount of
data generated, the algorithms have to be capable of handling the large number
of dimensions that describe it. The standard approach for overcoming the curse
of dimensionality is to apply the global dimensionality reduction techniques in
the form of feature transformation or feature selection (Guyon and Elisseeff,
2003). The former creates the new set of variables that conveys a big part of the
global information, while the latter finds the appropriate subset of variables,
thus removing irrelevant and redundant dimensions. Feature selection will be
covered later, in Section 2.1.4.1 of this chapter. Another approach in overcoming
the curse of dimensionality in the clustering process is the application of sub-
space clustering algorithms. Subspace clustering algorithms localize their search
for clusters, assuming they exist in the subspaces of lower dimension than the
original one, unlike the global dimensionality reduction methods which observe
the dataset as a whole. Hence, they could discover the clusters that live in
several, potentially overlapping subspaces. For a detailed review on subspace
clustering methods, please refer to Parsons et al., 2004.
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Figure 2.1: Curse of dimensionality visualized
In only one dimension the data points are relatively close to each other (a).
Adding a new dimension extends the points across it, moving them
further apart (b). The third dimension moves the data points even further
making the high-dimensional data very sparse (c). Figure taken, with
permission, from Parsons et al., 2004.

The challenge of the stability of the solution
The basic idea of cluster stability is that the clustering algorithm should obtain
similar results under resampling of the data or when applied to several other
datasets. Hence, to evaluate the stability of a clustering algorithm, it needs to
be run several times on the perturbed dataset. As explained in Von Luxburg,
2010, this can be done in a few different ways. In this thesis, the stability was
evaluated by randomly subsampling the dataset without replacement, as it will
be described later.
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2.1.2.1.2 Clustering techniques and algorithms in this thesis

High dimensional data clustering
The main clustering algorithm used in this thesis is the High dimensional data
clustering (HDDC), developed by Bouveyron et al., 2007. It is the subspace
clustering algorithm that incorporates the Gaussian mixture model (GMM)
framework for high-dimensional data. GMM is a model-based type of cluster-
ing, where observations are assumed to be a sample from a finite mixture of
Gaussian probability distributions. The main advantage of the model-based
approaches, compared to the widely used heuristic clustering algorithms such
as K-means, is the variety of model choices, i.e., regularizations, that allow
for modeling of clusters with different shapes, orientations, and sizes. As
the authors of HDDC point out, the major drawback of the classical GMM is
the poor performance when the dimensions of the dataset increase, i.e., when
the curse of dimensionality arises. Their proposed HDDC relies on the empty
space phenomenon, assuming that high-dimensional data exist in subspaces of
lower dimension than the original one and it models the clusters accordingly.
Moreover, since HDDC is designed to work with high-dimensional data, a prior
application of global dimensionality reduction methods is not necessary. The
theoretical background of the algorithm will be summarized in brief below,
while all the details can be found in the previously referenced original paper.

As in the classical GMM, the HDDC also assumes that the class conditional
densities are p-variate Gaussian Np (µi, Σi) for i = 1, . . . , K, where µi defines
the mean of the classi and the Σi is the covariance matrix, defining its width.
The class conditional covariance matrix ∆i is defined with:

∆i = QT
i ΣiQi, (2.1)

where Qi is orthogonal matrix with the eigenvectors of Σi. HDDC further
assumes that the ∆i is a two-block matrix:
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∆i =



ai1 0
. . .

0 aidi

0

0

bi 0
. . .

. . .

0 bi


, (2.2)

where aij > bi, j = 1, . . . di and di ∈ {1, . . . , p − 1} is unknown.
The parameters ai1, . . . , aidi and bi model the variance of the classi and the
variance of the noise, respectively. In the context of subspaces, the parameter
di is the intrinsic dimension of the subspace of the classi which is spanned by
the first di column vectors of Qi. When some of the above parameters are fixed
to be common between or within classes, models corresponding to different
regularizations are obtained. In this thesis, we empirically decided which of the
possible regularizations is optimal for the data.

Consensus clustering
Consensus clustering is an approach that relies on multiple runs of a chosen
clustering algorithm on subsamples of the dataset. By inducing variability
with subsampling, it provides a consensus on parameter decisions (such as the
number of clusters), on a cluster assignment for the observations (based on
the assignments in all the runs of the algorithm), and on the assessment of the
stability of the discovered clusters (Monti et al., 2003).

In this thesis, HDDC was wrapped in a consensus clustering framework to
obtain the cluster solutions. The resampling scheme was the Leave-one-out
Jackknife, a method introduced in 1949. by M. H. Quenouille (Quenouille, 1949).
In general, it is applied to reduce bias and evaluate the variance of an estimator.
The Leave-one-out Jackknife estimator of the parameter is found by sequentially
removing a single observation in the dataset, then recomputing the desired
statistic.
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Clustering evaluation metrics
Due to the absence of the ground truth which would guide the unsupervised
learning process, one of the main problems in the clustering process is evalu-
ating the quality of the solution discovered by the clustering algorithm. For
the heuristic clustering algorithms, there are many methods to evaluate the
performance of the algorithm, all nicely summarized in Palacio-Niño and Berzal,
2019. These algorithms tend to create spherical clusters of equal volume and
of the same within-cluster variance, the condition which is often not met in
practice (Greve et al., 2016). Model-based clustering algorithms are overcoming
this limitation by allowing clusters to vary in size, shape, and orientation. Be-
cause of that, the evaluation metrics for the heuristic algorithms are not reliable
enough in the model-based settings. Popular criteria used for selecting the
optimal model in a model-based clustering are the Bayesian information criterion
(BIC) and Integrated Completed Likelihood (ICL). ICL is proposed by Biernacki
et al., 2000 and claimed to be more reliable in estimating the optimal number of
clusters, which was the reason for choosing it as the main criterion in this work.

Once the cluster labels are obtained by the clustering algorithm, the external
validation metrics can be used to compare this result to a potentially different
data partition. The popular measures to compare the two partitions are Rand
Index and Jaccard Index. Rand Index calculates the proportion of correctly
classified elements of all elements, while Jaccard Index ignores the pairs of
elements that are in separate clusters for both partitions. Both indices range
from 0 to 1, and the closer the value is to 1, the more similar the two clustering
solutions are. For more details on comparing the two clustering solutions,
please refer to Wagner and Wagner, 2007.

16



2.1 Machine learning background

2.1.3 Supervised learning

Supervised learning is a technique in machine learning where the input vari-
ables (X) are used to predict the values of the output variable (Y). In other words,
the technique tries to learn the mapping function f from X to Y ( f : X 7→ Y).
Hence, unlike in the unsupervised learning settings, the algorithm learns on a
labeled dataset, enabling the evaluation of the performance of the algorithm.
Depending on the type of output variable, supervised learning algorithms can
be further classified into a) classification, predicting classes, i.e., the qualitative
(categorical) output and b) regression, predicting the quantitative output (James
et al., 2014).

In this thesis, supervised learning in form of classification, i.e., prediction of the
cluster labels, was used for the characterization of subtypes based on different
sets of variables, to test the generalizability of the solution, and for the feature
selection.

2.1.3.1 Classification

2.1.3.1.1 Definition and challenges

Classification is the most common type of supervised machine learning, in-
tending to predict the qualitative class labels of new instances based on past
examples. Depending on the number of different class labels a classification
task has, it can be further categorized into the binary classification, with two class
labels, and the multiclass classification, with three or more different class labels.
The learning procedure usually entails randomly splitting the available set of
observations (the input data X), to the so-called train and test (validation or
hold-out) sets. The algorithm is fitted on the train set, where it tries to learn the
patterns which are distinguishing between different classes. To assess whether
the machine successfully learned from the train data and how accurately it will
be able to predict the labels of future observations, the error metrics need to
be calculated. This is accomplished by using the trained model to predict the
responses for the test set observations and calculating how far the predicted
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responses are from the known true ones.

The high-dimensionality of the datasets in numerous practical and real-life
applications today is posing some challenges to the supervised learning as well.
Although it is easy to think that having more attributes describing our data is
only beneficial for learning, the higher number of them does not necessarily
mean a better prediction, especially if the training data consist of many irrelevant
ones. These data points that represent the random chance and not the true
properties of the data are called the noise. When present, the noise in the data
could mask the real important features and relationships which become hard
to unravel even with the complex supervised models. As a result, a model is
likely to detect the patterns in the noise itself and won’t generalize well to the
new instances (Gron, 2017). This phenomenon of poor generalization, where
a model learns the noise and the detail in the training data, but it performs
poorly on the unseen data is called the model overfitting. There are few ways to
try to avoid this, some of which are used in this thesis - the resampling techniques
(such as cross-validation) and regularization.
Resampling methods are important for achieving better generalizability of the
model and, thus, prevent overfitting. They involve drawing samples from
a dataset multiple times and fitting a model on each sample to get more
information about its average performance and generalizability, which would
not be available if the model was fit only once. However, since these methods
require fitting the same method several times using different subsets of the
training data, they can be very computationally demanding (James et al., 2014).
Regularization avoids overfitting by constraining a model to make it simpler,
allowing for fewer degrees of freedom where the model can adapt to the training
data. In this thesis, a regularized form of regression, called Lasso regression, was
used and will be covered in more detail later.

Another challenge in many applications today is multiclass classification, clas-
sifying observations into K > 2 classes. Generally, binary problems (K = 2)
are much easier to solve and many classification algorithms can be applied.
A multiclass problem, however, is more complicated and requires particular
strategies which can transform this type of problem into binary. The multiclass
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problem strategy used in this thesis will be discussed in the following section.

2.1.3.1.2 Classification techniques and algorithms in this thesis

Multiclass classification strategies
As already mentioned, when the classification task consists of predicting the
response variable with more than 2 classes, it is a good practice to transform
this type of problem into a binary one. In this thesis, the two following types of
techniques were used:

one-vs.-all

One-vs.-all strategy involves splitting the multiclass dataset into multiple binary
classification problems. This means that instead of training the multiclass
classifier to learn to distinguish between K classes, K binary classifiers are
trained. Each of the K binary classifiers is trained to differentiate the single-
class examples from the examples in all other classes (Rifkin and Klautau,
2004). The multiclass response variable Y = (y1, y2, . . . , yN) for N individuals
(ind1, ind2, . . . , indN) grouped into K classes (C1, . . . , CK) is transformed to the
K class-specific binary variables YCi , with elements yj defined as:

yj =

1, indj ∈ Ci

0, indj ̸∈ Ci

, i = 1, . . . , K, j = 1, . . . , N.

Example: Let N = 6 individuals be grouped into the K = 3 different clusters
(C1, C2, or C3). Let individuals 1 and 2 belong to the cluster C1, individuals
3 and 6 to cluster C2 and individuals 4 and 5 to cluster C3. Therefore, the
respective outcome variable is Y = [C1, C1, C2, C3, C3, C2]. Instead of training
the multiclass classifier with the outcome Y, three separate binary classifiers are
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trained with the following outcome variables:

YC1 = [1, 1, 0, 0, 0, 0] ,

YC2 = [0, 0, 1, 0, 0, 1] ,

YC3 = [0, 0, 0, 1, 1, 0]

In this thesis, the one-vs.-all strategy was the main strategy in the processes of
cluster description and prediction.

one-vs.-one

In the one-vs.-one strategy, the (K
2) =

K(K−1)
2 binary classifiers are trained instead

of one multiclass classifier. Each binary classifier is trained on the samples from
a pair of clusters from the full dataset (X) in order to learn how to distinguish
them. Let us follow the above example for the illustration of this approach:

Example: Assume the same settings as in the example above. Instead of training
one multiclass classifier with response variable Y = [C1, C1, C2, C3, C3, C2] and
the input dataset X, consisting of 6 individuals ([ind1, ind2, ind3, ind4, ind5, ind6]),
we will train (3

2) = 3 binary classifiers on the following pairs of individuals and
response variables:

classi f ier1 → XC1,C2 = [ind1, ind2, ind3, ind6] , YC1,C2 = [1, 1, 0, 0] ,

classi f ier2 → XC1,C3 = [ind1, ind2, ind4, ind5] , YC1,C3 = [1, 1, 0, 0] ,

classi f ier3 → XC2,C3 = [ind3, ind4, ind5, ind6, ] ,YC2,C3 = [1, 0, 0, 1] .

Hence, XCi,Cj is a subset of the full dataset X, containing individuals grouped in
the clusters Ci and Cj, and YCi,Cj is the corresponding subset of the response
variable Y.

In this thesis, the one-vs.-one strategy was used as an additional analysis to
refine the cluster differences.
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High Dimensional Discriminant Analysis
High Dimensional Discriminant Analysis (HDDA) was proposed by Bouveyron
et al., 2005, as previously mentioned HDDC. Along the same lines, it assumes
that the high-dimensional data exist in the subspaces with a lower number of
dimensions than the original one.

In general, the goal of a discriminant analysis is to identify a group of prediction
equations based on the independent variables that are used to classify obser-
vations into K classes (K ≥ 2). Classes are known a priori and their densities
are Gaussian N (µi, σi) , ∀i = 1, . . . , K. The classical methods of Discriminant
analysis are Quadratic Discriminant Analysis (QDA) and Linear Discriminant
Analysis (LDA), explained in detail elsewhere (James et al., 2014). However,
they have disappointing behavior when the number of features p increases and
especially when the number of observations N is much smaller than p (p ≫ N).
The HDDA adapts discriminant analysis to high dimensional data by working
in the class-specific subspaces with lower dimensionality. It estimates the in-
trinsic dimension of each class, reducing the number of parameters that need
to be estimated. The advantage of this is that the technique does not require
prior dimensionality reduction and, thus, avoids the potential information loss.
The formulation of Gaussian models for high-dimensional data classification is
the same as already covered in Section 2.1.2 for the corresponding clustering
method and the details can be found in the original paper (Bouveyron et al.,
2005).

Lasso regularized regression
Lasso regularized regression, developed by R. Tibshirani (Tibshirani, 1996), is the
regularized regression method that introduces a constraint on the coefficients,
with an effect of shrinking them or even setting some to zero.
Mathematics behind Lasso involves the usual linear regression settings, where
the aim is to approximate the outcome variable Y using a linear combination of
the features in X:

Y ≈ β0 +
p

∑
j=1

xijβ j. (2.3)

Here, β = (β1, . . . , βp) ∈ Rp is the vector of regression weights that are
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parametrizing the model and the β0 ∈ R is an intercept or "bias" term. The
linear regression model is fitted with the least square method which picks the co-
efficients β such that they minimize the Residual Sum of Squares (RSS), defined
as:

RSS =
n

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j

)2

. (2.4)

However, the prediction accuracy and interpretation of this approach are often
not satisfying and the model often does not generalize well (Hastie et al.,
2015), motivating the introduction of the regularized type of regression. Lasso
incorporates the least-squares loss with the l1-constraint (|| · ||1), i.e., a constrain
on the sum of coefficients’ absolute values:

n

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j

)2

+ λ||β||1 = RSS + λ
p

∑
j=1

|β j|, (2.5)

where λ ≥ 0 is a tuning parameter, controlling the shrinkage amount.

The characteristics of shrinking the coefficients of some features to zero played
a major role in this thesis, as with this property we were able to depict the
important genetic risk factors for groups of patients. For more details on Lasso,
please refer to Hastie et al., 2015.

Cross-validation
Cross-validation is a class of methods for evaluating the machine learning
models. While in the fitting process, it holds out part of the training observations
and estimates the error rate by applying the trained model to those held out
observations.

In k-fold cross-validation, the set of N observations is randomly split into k
folds (groups) of approximately same size (N / k). Then, the first fold is used
as a (hold-out) validation set, while the union of the remaining k-1 folds are
treated as training set on which the method is fitted. The classification error
is subsequently calculated on the observations in the held-out fold and the
final error estimate is calculated as the average of all k error values computed
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throughout the process. (James et al., 2014)

The k-fold cross-validation technique is very common approach for parameter
tuning and model selection. When the optimal parameter for the model is
selected, the algorithm is retrained on the whole training dataset by using the
chosen parameter (Shalev-Shwartz and Ben-David, 2014).

In this thesis, k-fold cross-validation was used to tune the λ parameter in the
Lasso prediction models.

Figure 2.2: A scheme for k-fold cross-validation
Set is randomly split into k non-overlapping groups. In the k-th iteration,
the group k, representing the 1 / k-th of the data, acts as a test set, and the
rest as a training set.
Image by Gufosowa - Own work, CC BY-SA 4.0, taken from
https://commons.wikimedia.org/w/index.php?curid=82298768

Classification evaluation metrics
After the model is trained, its performance needs to be assessed. In binary
classification models, the performance can be summarized in the confusion
matrix, counting the observations correctly and incorrectly predicted by the
model:
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True
class 1 class 0

Predicted
class 1 True positive (TP) False positive (FP)

class 0 False negative (FN) True negative (TN)

From the confusion matrix, many metrics for the performance evaluation can
be calculated. The ones listed below were used in this thesis.

True positive rate or Sensitivity is the proportion of the instances which are
known to be positive (in class 1) and are predicted as such:

Sensitivity =
TP

TP + FN
.

True negative rate or Specificity is the proportion of the instances which are
known to be negative (in class 0) and are predicted as such:

Specificity =
TN

TN + FP
.

Accordingly, the false positive rate is defined as:

False positive rate = 1 − Specificity =
FP

TN + FP
.

Figure 2.3: Sensitivity and Specificity
trade-off

A predicted value for each individual,
returned by the algorithm, is gener-
ally a numerical value (probability).
To determine the predicted class, the
decision threshold (the cut-off value)
has to be applied. For a given cut-
off value, class membership is deter-
mined for each observation - if the
predicted value is less (greater) than
the cut-off, the predicted class is la-
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beled as negative, class 0 (positive, class 1). Most often the two distributions
will overlap, as illustrated in Figure 2.3. Therefore, for every possible cut-off
value selected to discriminate between the two groups, there will be some
observations from both classes correctly and incorrectly classified, forming four
possible outcomes represented in the confusion matrix above and illustrated
in the Figure 2.3. Hence, both specificity and sensitivity of the model pre-
diction depend on the chosen threshold and there exists a trade-off between
the two. With the higher cut-off value, the proportion of false negatives (the
observations in class 1 incorrectly classified to class 0) will increase, therefore
increasing specificity and decreasing sensitivity. When the cut-off value is lower,
the sensitivity increases, while specificity decreases. The optimal cut-off value
can be chosen with the receiver operator characteristics (ROC) curve, where the
sensitivity is plotted against the false positive rate for the different thresholds.
The performance of the model is then assessed by Area under the ROC curve
(AUC). The closer the AUC value is to 1, the better the model performs.

In this work, all of the above-mentioned performance metrics were used for
the assessment of the model performance. The cut-off value used for the
calculation of the sensitivity and specificity was chosen such that both metrics
are maximized, as it will be explained in the Methods chapter.

2.1.4 Dimensionality reduction

The curse of dimensionality is posing a lot of challenges to the machine learning
algorithms, both unsupervised and supervised. With high-dimensional data, as
discussed previously, it becomes more difficult to detect meaningful patterns
in the data and to detect the relationships among features. Dimensionality
reduction methods are the unsupervised type of machine learning with the main
objective to reduce the dimensionality of the dataset, while still keeping the
most important information from the data. Generally, they can be in the form of
feature transformation or feature selection methods. Feature transformation creates
a new, smaller set of variables that capture most of the meaningful properties of
the original data. The most common types of feature transformation methods
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are Principal component analysis (PCA), LDA, Autoencoders, etc. On the other
hand, the feature selection method selects subsets of original features from
the dataset that are useful for further analysis. In the following, we will focus
on the feature selection techniques, as they were the main method for the
dimensionality reduction analysis in this thesis.

2.1.4.1 Feature selection

2.1.4.1.1 Definition and challenges

Feature selection methods, as mentioned above, are the type of dimensionality
reduction methods that select subsets of predictor variables. Hence, they result
in a set of original features and not the new, transformed ones. In this way, the
meanings of the original feature sets are preserved, offering better readability
and interpretability of the model by a domain expert, making it a big advantage
over the feature transformation methods.

Feature selection methods can be categorized into unsupervised and supervised
approaches with the main difference being the availability of the outcome vari-
able, e.g., class label or some continuous response. Supervised feature selection
methods choose features that are predictive or correlated with the outcome.
Unsupervised feature selection is applied for a clustering task and it evaluates
the feature subset importance by some clustering quality measure or intrinsic
property of the data (Dy and Brodley, 2000).
Feature selection methods can be further divided into wrapper, filter, and embed-
ded methods. While the details and challenges of each are explained elsewhere
(Ullah et al., 2017), here we will briefly mention the differences between them,
with focus on the supervised feature selection:

A Filter methods pick up the intrinsic properties of the data (distance,
dependency, correlation...); hence, relying on the statistical criteria.

B Wrapper methods depend on the accuracy of classification algorithm
while selecting the features. By doing so, they incorporate the effect of
features into the learning process and select them based on the outcome
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variable. However, they are very computationally expensive.

C Embedded methods are developed to overcome the gaps between the first
two methods. The feature selection is integrated as part of the intrinsic
model learning and is less computationally demanding compared to
the wrapper type.

Independent of the type of filter selection methods used, there are some common
challenges posed to the process to be considered (Li and Liu, 2017). First,
more often than not, features are correlated and appear in various kinds of
structures, for example in the group structure (e.g., genes acting together,
correlated SNPs in Linkage disequilibrium (LD) blocks). Therefore, taking this
into account should be important during the feature selection. The second
important challenge to consider is the one posed to almost all machine learning
applications, namely, the stability of the algorithms. In the case of feature
selection, this means the selection of the same set of features even after the data
perturbation.

In this thesis, the regularization regression model was used to select the features.
Regularization models are embedded types of feature selection methods because
they use an objective function to reduce overfitting errors and, at the same time,
force the coefficients of the irrelevant features to be zero. Hence, the feature
selection and the learning process interact.

2.1.4.1.2 Feature selection techniques and algorithms in this thesis

Group Lasso regression
Lasso regression, as discussed previously, applies the penalty to the coefficients

of the features and shrinks the coefficients of unimportant variables to zero
(Equation (2.5)). If features exhibit the group structure, i.e., are divided into
m different groups, a solution that finds a sparse set of groups is needed. To
solve this problem, Yuan and Lin, 2006 suggested the Group Lasso, with the
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following formulation:

min
β

1
2

n

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j

)2

+ λ

m

∑
g=1

√
dg||β(g)||2. (2.6)

Here, X is a data matrix of N individuals and p features, Y is an outcome
variable and dg is a size of the feature group g = 1, . . . , m.

With this approach, when the group is included in the model, all the features in
it are automatically included as well, i.e., have a non-zero β coefficient. Hence,
the sparsity between the groups is imposed. However, sometimes it would
be useful to additionally enforce the sparsity within each group, which was a
motivation to develop the Sparse group Lasso algorithm, used in this work. It
solves the following problem:

min
β

1
2N

n

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j

)2

+ λ1||β||1 + λ2

m

∑
g=1

√
dg||β(g)||2, (2.7)

where λ1 is the parameter-wise regularisation penalty and λ2 the group-wise
regularisation penalty (Yuan and Lin, 2006; Simon et al., 2013).
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2.2 Statistical testing background

2.2.1 Definition and challenges

Statistical analysis is a useful tool for exploring the data and discover the
underlying patterns and dependencies between the variables. The main aim of
statistical analysis is to answer the research question and to provide confidence
in the answer. This research question or a research claim is called the hypothesis
and the statistical method used to infer how likely it is to be true is called the
statistical hypothesis testing.

The first step in hypothesis testing is formulating the null hypothesis (H0) and
the alternative hypothesis (H1). For instance, H0 can be a statement about a
population parameter, or no difference between two measured variables, or that
the two samples come from the same population. The alternative hypothesis
H1 is complementary to H0 and it states what is thought to be wrong about
the H0. Then, the data is observed and test statistic specific to the hypothesis
is computed. The test statistic provides the likelihood of obtaining sample
outcomes if the null hypothesis was true. Finally, the decision of whether the
H0 is rejected or accepted is linked to the p-value. The p-value is the probability
of obtaining the measured data or more extreme results, given that the H0

is true. The null hypothesis is rejected if the p-value is below a predefined
significance level α, normally chosen to be at 0.05.

While performing the hypothesis testing, two types of errors can occur: type
I error, when the H0 is rejected, that is actually true; and type II error, when
the H0 is accepted, that is actually false. The type I error produces the false-
positive result where it is concluded that an effect exists when it actually does
not. The probability for this occurring is the level of significance α set for the
testing. When performing several hypothesis testing on the same dataset, the
probability of producing false-positive results increases. This phenomenon is
called multiple testing problem and it should be addressed. The probability of
making one or more false-positive results when performing multiple testing is
called family-wise error rate (FWER) and there are various controlling procedures
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for it. They can be classified in three distinct groups - step-down, step-up and
single-step procedures and the details of each can be found in Ge et al., 2003.
The widely used correction for multiple testing is Bonferroni method, providing
a very strong FWER correction by rejecting any hypothesis Hi with p-value ≤
α
M (i = 1, . . . , M, where M is the number of hypotheses tested).

In this thesis, the main method for statistical testing was the less conservative,
step-down, procedure developed by Westfall and Young (Westfall and Young,
1993). The method controls for the FWER while taking the possible dependence
structure of the variables into account.

2.3 Genetics background

2.3.1 Genome-wide association studies and polygenic risk
scores

A genome-wide association study (GWAS) is a favored approach used in genetics
for determining the genetic variants, named single nucleotide polymorphisms
(SNPs), that are associated with particular diseases, or a certain treatment
outcome. SNPs are variations at a certain position in the DNA that occurred
during the evolution and were passed down to new generations, explaining
the significant portion of the genetic diversity within the human population.
Identification of SNPs associated with the specific disorder may advance our
understanding of complex diseases or perform early diagnosis.
The GWA study involves scanning the genomes from many different people
and comparing the allele frequencies of common genetic variants between cases
(people affected by the disease) and controls. So far, GWAS have identified many
SNPs that are associated with psychiatric disorders, such as major depressive
disorder (Howard et al., 2019; Wray et al., 2018), schizophrenia (Psychiatric
Genomics Consortium et al., 2014; Pardiñas et al., 2018), and bipolar disorder
(Stahl et al., 2019; Sklar et al., 2011). However, it has become evident that
those complex disorders have a genetic underpinning that is highly polygenic,
meaning that hundreds or thousands of genetic variants influence disease risk
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and that the single SNPs, in most cases, will not be helpful for diagnosis. Hence,
to identify those at high risk of polygenic disorder, a method for calculating
Polygenic risk score (PGS) was developed. As Fullerton and Nurnberger, 2019
explain, PGS captures the cumulative effects of many genetic variants into a
single quantitative metric by adding up the effects of individually associated
SNPs from independent GWA studies, counting how many risk alleles does
that individual carry at each locus, and weighting each risk allele by its effect
size. SNPs that enter the PGS calculation are typically selected based on their
GWAS association strength (p-values). References for this whole section with
respect to the more detailed explanation of PGS calculation and limitations are
Fullerton and Nurnberger, 2019; Andlauer and Nöthen, 2020; Wray et al., 2020,
if not stated otherwise.

PGS approach is a good and effective tool for medical research. However, it
suffers from several issues which have limited their application in psychiatric
disease prediction and clinical translation. Some of these limitations will be
listed below, whereas a more detailed discussion can be found in the above-
mentioned main references.

Figure 2.4: Distribution of PGS on a
population level
Source:
Andlauer and Nöthen, 2020

First, PGS can be used for assessing
the differences between cases and con-
trols on the population level (So and
Sham, 2017) but is not informative
on the individual level. As Figure
2.4 shows, the distribution of PGS be-
tween cases and controls highly over-
laps, thus PGS might have predictive
value only for individuals in the lower
and higher risk groups.
Second, PGS can explain only part of
the genetic component of a given con-
dition and, as a result, only a propor-

tion of phenotypic variance (Stahl et al., 2019; Pardiñas et al., 2018; Howard
et al., 2019). This is due to the fact that their construction depends on GWAS,
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which are capturing only the contribution of common variants (mostly with the
minor allele frequency in the population of at least 1%) to the disease risk.
Furthermore, PGS calculation is dependent on the selection of p-value threshold
which is chosen empirically - the p-value at which the distinction between cases
and controls is the best is selected as optimal. Several algorithms have been
suggested to improve the selection and weighting of SNPs for the PGS calcu-
lation, among which is the PGS-CS method used in the analysis of this thesis.
The method applies the continuous shrinkage (CS) priors on the effect sizes of
the SNPs, where the amount of shrinkage applied to each SNP is modified by
the strength of its GWAS association. For details, see Ge et al., 2019.
Finally, PGS is dependent on the GWAS discovery sample. With the larger
sample sizes, the statistical power to detect association signals is higher, and
therefore, the estimates of the effect sizes for SNPs are more accurate. Over time,
the sample sizes are expected to increase, and consequently, also the variance
explained by the PGS.

In summary, the prediction power of stand-alone PGSs in psychiatric analyses
is still limited. To improve it, and at the same time, increase the chances of
significant clinical implications, it has been suggested to combine the PGSs
with other risk factors of an individual (Murray et al., 2020). This has already
been shown to improve the accuracy outside of the field of psychiatry, in
coronary artery disease prediction (Inouye et al., 2018). In psychiatry, for
example, family history information can be used. It includes both genetic and
non-genetic risk factors that the family members have in common, and it has
been very good information guiding the clinical diagnosis and management so
far (Wray et al., 2020). Observed together, PGSs and family history can provide
additional information about the disease (Bigdeli et al., 2016; Hujoel et al.,
2021). Additionally, PGSs may also be analyzed together with other non-genetic
risk factors (trauma, stress, life events, brain imaging...) in order to answer
many important questions including adverse outcomes and treatment response.
However, to date, larger sample sizes and more research are needed to validate
those factors.

Despite all the challenges and limitations of PGS now, they do show promising
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clinical applications for the future. For example, the approach could be used
to identify more severe disease subtypes (Power et al., 2017; Ruderfer et al.,
2018; Dwyer et al., 2020) or to identify phenotypic correlations (Calafato et al.,
2018; Consortium, 2009). Moreover, as suggested by Murray et al. in their
review paper (Murray et al., 2020), the clinical decisions could already be
slightly guided with PGS, just as they already are with the information on
family history. This could be especially true in the initial stage of disease when
patients experience general and non-specific symptoms that still do not satisfy
the criteria for a formal diagnosis.

In conclusion, PGSs per se are still not ready to have significant usage in clinical
practice. However, their combination with other risk information, the larger
sample sizes, the methodological changes in their calculation, with the emphasis
on machine learning, may offer great advances.

2.3.2 Feature selection and genetics

Genome-wide association studies require a lot of resources to be able to deal
with the space and time complexity of the genetic data. A typical GWA study
inspects millions of SNPs for association with the phenotype of interest, making
it a very computationally expensive task. The standard approach in GWAS is
univariate, where statistical association to the phenotype is inspected for each
SNP separately. However, such an approach may miss the combinatorial factors
between two or more SNPs, and therefore fail to take the polygenic effects
into consideration. Polygenic risk scores, covered in the last section, represent
the one way of addressing this issue, as they aggregate the information, i.e.,
the effect sizes, of many SNPs estimated in the univariate GWAS. However,
due to the statistical testing-based approach in GWAS and many single tests
performed, the chance of producing false positive results is high, and therefore
possibly embedded into the PGS itself. As mentioned in the previous section,
the quality of PGS should improve with larger sample sizes, but also with a
more appropriate selection of SNPs, and adequate estimation of their effect
sizes (Janssens, 2019).
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Another way to capture the possible polygenic effects is to use the multivariate
approach, where more or all of the SNPs are observed together in the model
(Zhang et al., 2009; Porter and O’Reilly, 2017). However, in a typical genomic
dataset, a number of features p is much higher than the number of samples
N (p ≫ N). This makes the estimated parameters of the multivariate models
unreliable and may cause overfitting (Dubitzky et al., 2007). As a result, the
feature selection methods became important to identify a subset of SNPs that
is informative enough, while remaining sufficiently small to minimize the
complexity of the association study.

Feature selection approaches have been applied in big genomic data analyses,
covering all three types of feature selection methods, explained in Section
2.1.4.1: wrapper approach (Shah and Kusiak, 2004; Li et al., 2001; He et al.,
2015; Long et al., 2009), filter approach (Lee and Shatkay, 2006; Phuong et al.,
2005; Halldorsson et al., 2004), and the embedded approach (Zhang et al., 2018b;
Sasikala et al., 2015; He and Zelikovsky, 2006). As already mentioned in Section
2.1.4.1, the embedded type of feature selection is explored in this thesis due
to its advantages over the wrapper and filter approaches. The focus was put
on the penalized regression models which, according to some studies, may
be adequate to identify the additive effect of several SNPs and allow for the
reliable estimation of the parameters in the high-dimensional settings with p ≫
N (De Maturana et al., 2014; Abraham et al., 2013; Waldmann et al., 2013).

Another important concept in the process of identification of important SNPs is
the dependence between them induced by Linkage disequilibrium (LD). Briefly,
LD is the non-random association of alleles at different loci in the genome and
is the base for the association mapping methods (Weir, 1979; Balding et al.,
2008). It is important in GWAS because it allows for the identification of genetic
markers that tag the real causal variants in complex human disorders (Joiret
et al., 2019). Consequently, when analyzing genome-wide genetic variants, it
has to be considered that some regions of the genome might be over-represented
due to higher levels of LD, masking the patterns in the genome-wide data. This
concept has not been addressed well enough in the feature selection algorithms
for genomic prediction (Bermingham et al., 2015). As a result, we decided to

34



2.3 Genetics background

explore the feature selection algorithm that takes the LD structure into account,
by inferring the LD-blocks of SNPs and applying the Group Lasso regression
for the feature selection and prediction (Dehman et al., 2015). The theoretical
details of the algorithm were covered in Section 2.1.4.1 of this chapter, whereas
the workflow will be presented in the Methods chapter.
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Methods 3
This chapter covers the methodological framework, including samples, work-
flow, and tools used to perform the computational analyses. The first section
of this chapter introduces the cohort used for the analyses in this thesis. The
second section covers the workflow for the identification and characterization
of transdiagnostic clusters of psychiatric disorders. It is primarily based on the
results published in Pelin et al., 2021. The third section covers the workflow for
the process of feature selection with genetic data applied to find the subsets of
SNPs that could be important for the identified subtypes or formal diagnostic
categories.

3.1 Samples for the analyses

The data for this thesis was collected from participants that are part of FOR2107
cohort, an ongoing multi-center study recruiting from the areas of Marburg
and Münster in Germany (Kircher et al., 2018). To date, the study provides
a sample of up to 2500 participants which is including healthy controls and
patients suffering from affective disorders – major depressive disorder and
bipolar disorder, extended by subsamples of schizophrenia and schizoaffective
disorder patients.
The study was approved by the ethics committees of the Universities of Marburg
and Münster, following the Declaration of Helsinki (Kircher et al., 2018; Pelin
et al., 2021). All participants of the study went through the structured clinical
interview based on DSM-IV-TR (SCID-I) (Wittchen et al., 1997), administered by
trained clinical raters. The SCID is a semi-structured interview used to deter-

37



3 Methods

mine the major DSM-IV Axis I diagnoses, including substance use disorders.
The output of the SCID interview is the presence or absence of each of the
disorders covered in the diagnostic manual (Spitzer et al., 1992).

3.2 Transdiagnostic subtypes discovery with
unsupervised learning

3.2.1 Participants

For the clustering analysis, sample was divided into discovery and replication,
based on the data availability at the time this analysis started (Pelin et al., 2021).
The details on both samples are provided below and in the Methods A1 in the
Appendix.

Discovery sample

The discovery sample included all individuals recruited during the study’s
first phase and whose data was available when the analysis began (N=1 619).
Participants who had withdrawn from the study and individuals with missing
diagnostic information were excluded from all analyses. Next, of each pair
of relatives, one individual with the lower missing call rate was kept in the
analyses. Finally, individuals with missing data in any of the variables of interest
were omitted. The final discovery sample consisted of N=1 250 individuals,
with n=590 healthy controls, n=477 MDD, n=75 BD, n=25 SZA, and n=53 SCZ
cases, as well as n=30 patients with a different diagnosis, such as social phobia
or anxiety disorder.

Replication sample

All N=852 individuals recruited subsequently were included in the replication
sample. After the filtering steps described above, N=622 individuals remained
for the analyses, of which n=240 were healthy controls, n=283 MDD, n=44 BD,
n=13 SZA, and n=17 SCZ cases, and n=25 patients presented with a different
diagnosis (Table 4.1).
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3.2.2 Measures for cluster identification and description

3.2.2.1 Clinical data

Clinical variables were used to form the clusters of psychiatric patients and
healthy controls. The data collected throughout the SCID interview underwent
thorough quality control as explained in detail in Kircher et al., 2018. The main
aim was to include the characterization of the individuals with respect to many
relevant psychopathological dimensions. As suggested by Maj, 2018, we com-
bined the evaluation of disease progression with variables not only capturing
the current stage and symptoms profile, but also some antecedent events, such
as early environmental factors and parental factors, as well as concomitant
variables such as resilience, personality traits, and cognitive functioning. Only
the main measures of psychometric questionnaires and clinical rating scales
were used to prevent over-representation of any diagnostic aspects. A total
of 57 variables were used to form the clusters (Table A5.1 in the Appendix).
Variables that had high differentiation between specific diagnoses and with
healthy controls were excluded from the clustering and used in a post-hoc
analysis (e.g., medication, lifestyle, sociodemographic...) (Table A5.2 in the
Appendix).

After the clusters were formed, they were ranked by the Global assessment of
functioning scale (GAF), presented in the DSM (American Psychiatric Associa-
tion, 2013). The scale measures how much an individual’s symptoms affect their
daily life, and how serious a mental illness may be in general. The maximum
score on the scale is 100 (extremely high functioning) and the minimum is 0
(severely impaired). GAF measure was used in this analysis as a severity proxy,
a continuum along which the clusters were ranked. The higher cluster number
indicated the higher disease severity.

3.2.2.2 Genetic data

Genetic analyses in the cluster characterization step used a set of PGSs combined
with the family history. Covariates in all genetic analyses were age, gender, and
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eight ancestry components (AC), used to determine genetic outliers (Pelin et al.,
2021).

PGSs were provided for the participants of the FOR2107 study and calculated
with the PGS-CS method using training summary statistics from the published
GWAS. PGSs for 10 different disorders were used in this analysis and are listed
below together with the reference to the corresponding GWA study:

1. Cross psychiatric disorder (Lee et al., 2019b)

2. ADHD (Demontis et al., 2019)

3. ASD (Grove et al., 2019)

4. BD (Stahl et al., 2019)

5. MDD (Howard et al., 2019)

6. SCZ (Pardiñas et al., 2018)

7. Educational attainment (EA) (Okbay et al., 2016)

8. Extraversion (Berg et al., 2016)

9. Hedonic well-being (Baselmans and Bartels, 2018)

10. Neuroticism (Luciano et al., 2018)

Moreover, four family history variables were used. They were self-reported
and capturing whether the individual had cases of any psychiatric disorder or
specifically of MDD, BD, and SCZ/SZA in the family (up to the second-degree
relatives).

1. Family history of any psychiatric disorder

2. Family history of MDD

3. Family history of BD

4. Family history of SCZ/SZA

Finally, the dataset subject to analyses consisted of another 10 covariates - age,
gender, and 8 ACs, as mentioned before. In total, 24 variables were used. Since
some of the individuals present in the clustering analysis were missing some
of the genetic measures needed, the discovery sample size for genetic analyses
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was n=1137, while replication n=542 (Pelin et al., 2021).

3.2.3 Clustering analysis

The clustering analysis was conducted in R v3.6.0 using the discovery sample.
Clinical variables were scaled and submitted to the HDDC algorithm imple-
mented in the R package HDclassif (Bergé et al., 2012). The clustering pipeline
consisted of four steps (Pelin et al., 2021):

Step 1 - determining the right regularization. As mentioned before, some
parameters of the HDDC can be fixed or allowed to vary within or between
the classes. To find the best regularization for our data, the observations were
randomly sampled 100 times, and each time 80% of the data was submitted to
the HDDC. All possible regularizations were fit for number of clusters ranging
from K = 2 to K = 15. In all runs, the ICL value was computed. At the end of
the first step, the model with the best median ICL value was chosen.

Step 2 - determining the optimal number of clusters. The HDDC with the
regularization chosen in Step 1 was fit according to the Leave-one out Jackknife
method. Hence, the chosen model (regularization) type was fit N times (N
being the number of individuals in the dataset), each time working with N-1
individuals. Throughout the runs, for each K in the range from K = 2 to K = 15,
ICL was calculated and the cluster number with the best median ICL value was
chosen as the optimal one.

Step 3 - determining the final cluster solution. The Jackknife runs from
Step 2 resulted in the optimal number of clusters and generated N clusters
assignments for each individual. The final consensus on the cluster assignment
was reached via majority voting, the method that combines the clustering results
generated using different data subsamples. The individual is assigned to
the cluster where it was grouped most often across subsampling. Majority
voting is implemented in the package diceR (Chiu and Talhouk, 2018) and ran
with argument is.relabelled = False, i.e., the data was relabeled using the first
clustering iteration as the reference.
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Step 4 - determining the stability of the cluster solution. The chosen reg-
ularization was fit on the 95% resampled dataset and the ICL values were
recorded throughout 100 runs. The stability solution was compared with the
final solution from Step 3 by using the Rand and Jaccard indices. Note that the
5% holdout for the stability analysis was chosen to generate an additional view
of the solution, using the different holdout proportion of 1/20, in-between the
1/5 and 1/1250 employed for the model and K choice, respectively.

Three different resampling strategies were used in the different steps to reduce
the risk of overfitting, which is higher when employing only one approach.

External validation of the clustering solution
To check if the clustering solution stays stable on the new, previously unseen,
dataset, the algorithm was applied to the replication sample. The model type
and cluster number determined in Step 1 and Step 2 of the pipeline were fit
with the Leave-one-out Jackknife method to the replication sample and the
replication solution was determined by majority voting.

The illustration of the complete four-step clustering workflow with the external
validation is shown in Figure 3.1.
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Figure 3.1: Clustering pipeline illustration

Source: Pelin et al., 2021

3.2.4 Cluster characterization methods

Clusters were characterized by using supervised learning in the form of classi-
fication and statistical testing. Both one-vs.-all and one-vs.-one strategies were
used to characterize each cluster separately.
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3.2.4.1 HDDA for identification of important features per cluster

HDDA was used in a post-hoc analysis of clusters obtained by the corresponding
HDDC to detect the important features that describe each cluster (Pelin et al.,
2021). The model regularization chosen in Step 1 of the clustering pipeline was
fit to the same dataset, in the one-vs.-all fashion. The prediction model was run
in 100 iterations, each time randomly splitting the discovery set to 70% vs. 30%
train and test set, respectively. In each run, the AUC was calculated and the
average across 100 runs was used as the final measure of classification success.
In order to detect the important variables distinguishing each cluster from the
others, the variable importance was assessed. It was measured by calculating the
decrease in the model’s AUC metric after the random permutation of the values
of the respective variable. The greater the AUC decrease after the permutation,
the more important the variable. The variables were ranked using the average
AUC drop after 100 runs. For the calculation of AUC the R package pROC was
used (Robin et al., 2011).

3.2.4.2 Lasso for cluster prediction using genetic variables

Lasso analyses were conducted using the R package glmnet (Friedman et al.,
2010). The dataset used consisted of 24 predictor variables (four family history
variables, ten PGS variables, 8 ACs, age, and gender).

The cross-validation was used for tuning the λ parameter (Equation 2.5). The
sample was split 1000 times, using stratification based on cluster labels, into
70% training and 30% test sets. On each of the 1000 training sets, λ was tuned
via 3-fold cross-validation and λ minimizing the cross-validation error, i.e., max-
imizing the AUC (λmin), was used in each run to obtain the classification metric
and Lasso coefficients on the test set. In each run, metrics AUC, sensitivity, and
specificity were calculated and the average of all runs was reported. The cut-off
value for the sensitivity and specificity was determined using the MaxSpSe
method from the OptimalCutpoints package (López-Ratón et al., 2014).

Finally, Lasso was fit to the full dataset with λ equal to the median value of all
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λmin chosen during the tuning procedure. In this way, we obtained the final
model, that is, the sets of variables and their corresponding coefficients for the
respective cluster prediction (Pelin et al., 2021).

3.2.4.3 Significance testing with genetic variables

Statistical testing was used to infer the significant differences between the
clusters with respect to genetic data (Pelin et al., 2021). Moreover, different
models were compared for the significant information gain achieved by PGS.
The later was done by observing the all cluster labels at the same time, hence
with the multiclass outcome variable.

Westfall and Young significance testing

Westfall and Young (W-Y) method was used to detect significant differences
among clusters with respect to genetic data. In order to take the possible
population structure into account, age, gender, and 8 ancestry components
were included in the analysis. The analysis was conducted using the mt.minP
function from the Bioconductor’s multtest package (Pollard et al., 2004). The
adjusted p-values were directly estimated via 20 000 permutations with Welch’s
t statistic. These p-values were additionally corrected for multiple testing, i.e.,
the number of comparisons made, using Bonferroni’s correction. The number of
comparisons corresponded to the number of clusters K in the one-vs.-all analyses
and to K(K−1)

2 for one-vs.-one analyses. To report the association, a significance
threshold α = 0.05 was used for the final p-values.

Assessment of PGS information gain

Multinomial logistic regression was used to asses if PGS provide the informa-
tion gain when describing the clusters. Multinomial logistic regression is a
generalization of logistic regression to multiclass classification problem. The
outcome variable Y was representing cluster labels, hence having K different
discrete outcomes. The four models with the following sets of variables were
compared:

A: PGSs and ancestry components (ACs)
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B: family history only
C: family history and ACs
D: the full model with PGS, family history, and ACs

The null-model for the comparison was the one containing only age and gender
as predictors. Information gain (the "bonus effect") was measured in terms
of Nagelkerke R2 (Nagelkerke et al., 1991) and Akaike information criterion
(AIC) (Akaike, 1998), along with the likelihood ratio test. The likelihood ratio
test is a hypothesis test that compares the two nested models. Nested models
are the models where a more complicated model with more variables can be
transformed into the simpler one with less variables. In our example, models
A, B, and C are all nested with the full model D, because we can transform
the model D into any other by removing the additional predictors. The null
hypothesis H0 of the likelihood ratio test is that the smaller model is "better".
Hence, if the H0 is rejected, then the larger model is a significant improvement
over the smaller one. The null model for R2 calculation was the model including
only the two baseline covariates - age and gender. This part of the analysis was
done using the R package VGAM (Yee, 2010).

3.2.5 Replication analysis

To delineate the pattern of replication, a correspondence between the discovery-
stage and the replication clusters, i.e., pairing of each, is required. To identify
this, each of the binary one-vs.-all HDDA classification models, trained on
the discovery dataset, were used for all possible one-vs.-all predictions in the
replication dataset, thereby conducting K2 comparisons (Pelin et al., 2021).
The discovery-stage model producing the best prediction metric above 70%
was chosen to assign the cluster identity in the replication sample. After the
discovery and replication clusters were matched, further statistical analysis
(Westfall and Young significance testing), was used as a secondary analysis to
validate the matching and homogeneity of paired discovery-replication clusters.
As for the analysis with genetic data in the discovery sample, p-values adjusted
by the Westfall and Young procedure were further corrected using Bonferroni’s
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method for the five comparisons made.

We analyzed the performance of the discovery-stage Lasso regression models of
genetic variables in the replication sample. Here, the models that were trained
on the full discovery set with the optimized λ were used. (Pelin et al., 2021)

3.3 Feature selection with genetic data

3.3.1 Participants

The purpose of the feature selection analysis was to explore if the algorithm was
able to successfully reduce the set of SNPs in a supervised way (Section 2.3.2).
Due to the exploratory nature of the analysis and the computational complexity,
we decided to first test the framework on the two outcome variables.

First, we chose the cluster label from the previous analysis providing the biggest
balance between classes, which is important for the classification task. Hence,
we used the discovery sample from the clustering analysis and the binary cluster
label Cluster 0 vs. all as a phenotype of interest. Due to missing data in some
SNPs, a total of N=1120 individuals were subject to the analysis.
Additionally, we applied the algorithm on the healthy controls and patients
diagnosed with MDD (N=1776) from the full FOR2107 sample, which was
available at the time this analysis started. The rationale for this step was to
have a fair comparison to the already established MDD GWA studies. Apart
from that, healthy controls and MDD patients were the two biggest diagnostic
categories.

3.3.2 Feature selection analysis

As opposed to GWA studies, which are based on univariate analysis to detect
important SNPs, our approach was multivariate, i.e., dealing with more than
one SNP in the model (Section 2.3.2). The workflow of the analysis follows the
one developed by Dehman et al., 2015 and implemented in the corresponding
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BALD (Blockwise Approach using Linkage Disequilibrium) package. First,
groups of SNPs were identified by using a clustering algorithm based on the LD
metric. Second, Group Lasso was used to select SNPs carrying the information
about the phenotype, given their group structure from the clustering step. Even
though this step follows the idea from the previously mentioned paper and
package, we used the modified version of Group Lasso called Sparse group
Lasso, developed by Simon et al., 2013 and covered in Section 2.1.4.1.2 of the
Background chapter. The reason for choosing this modified version was that it
works with the binary phenotype and enables a selection of SNPs within the
groups as well. The Sparse group Lasso package with its documentation can be
found on https://group-lasso.readthedocs.io/en/latest/maths.html.

3.3.2.1 Clustering of SNPs based on LD

To apply the Sparse group Lasso for feature selection, groups of features en-
tering the analysis have to be inferred. To achieve this, the first step of BALD
algorithm uses hierarchical clustering based on Ward’s method (Ward Jr, 1963)
with LD similarity metric.
To determine the optimal number of clusters, the second step of BALD al-
gorithm uses the modified gap statistic method (Tibshirani et al., 2001). The
metric compares the total dispersion within the clusters for the possible cluster
numbers K with their expected values under the null reference distribution of
the dataset, i.e., the distribution with no obvious grouping among the features.
For more details on the algorithm, please refer to the original paper (Dehman
et al., 2015).

Workflow
For the SNP clustering analysis, the full FOR2107 sample was used and sub-
ject to the data preprocessing (removal of related individuals and SNPs with
the minor allele frequency < 0.05). Clustering of SNPs was performed on
the full FOR2107 sample of N=2166 individuals. Since LD is an association
between SNPs observed on the same chromosome, clustering was performed
chromosome-wise. To further reduce the computational complexity, we used
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a sliding window approach, which is typically used in LD analysis. A fixed
window size (WS) was 500 SNPs, and the windows were non-overlapping. If the
last window of the chromosome had less than 1

2WS = 250 SNPs, the window was
merged with the previous one. For each window, Ward algorithm based on LD
metric was run, together with the gap statistic. The later was used to determine
the best cluster number (best.Kwindow) among all possible numbers of clusters
(K = 1, . . . , pwindow − 1, where pwindow is the number of SNPs in the given win-
dow). Hence, each run resulted with cluster labels ∈ {1, . . . , best.Kwindow} for
the SNPs in the given window. After the cluster analysis of all windows in
the chromosome was done, those labels were merged into the final labels for
the given chromosome, resulting in all together ∑windows best.Kwindow unique
cluster labels. As written before, R package BALD was used for this part of the
analysis. For the example and illustration of the workflow, see Figure 3.2.
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Figure 3.2: Clustering of SNPs based on LD example
Example of the SNP clustering workflow. Let us assume there are 3
windows on the arbitrary Chromosome and that each window has 6 SNPs.
The algorithm is run on each window, resulting in the optimal cluster
number per window (best.Kwindow), obtained by gap statistic and the
cluster labels for each SNP. After all windows are ran through, final cluster
labels for the Chromosome are formed, resulting in the
∑windows best.Kwindow = 3 + 2 + 3 = 8 unique cluster labels.

3.3.2.2 Sparse group Lasso for SNP selection

Due to computational complexity, Sparse group Lasso was run chromosome-
wise with the 10-fold cross-validation. A pilot study was done testing the
different λ parameters for the regularization penalty. Apart from the default
ones from the Sparse group Lasso package (λ1, λ2 = 0.05), 10 other parameters
on the scale from 0 to 0.05 were tested. All parameters except 0.001 resulted
either in the unfeasible computational time required to run or as the empty
models (0 variables chosen). Hence, with the aim to test the performance of
the algorithm, a λ1 = λ2 = 0.001 were chosen for controlling the regularization
penalty.
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In each of the 10 folds (iterations), the model resulted in the chosen set of SNPs,
i.e, SNPs with the non-zero coefficient. The final set of SNPs, entering the next
step, was obtained by merging the SNPs that were chosen every time for all the
chromosomes 1 to 22.
Lastly, the dataset with the final set of SNPs chosen on all chromosomes, was
subject to Sparse group Lasso analysis with the 10-fold cross-validation. The
average AUC of 10 runs served as a metric of classification and feature selection
success. The analysis framework is shown on Figure 3.3.
For this part of the analysis python and the aforementioned Sparse group Lasso
package (https://group-lasso.readthedocs.io/en/latest/maths.html) was
used. ‘

Figure 3.3: Sparse group Lasso analysis steps
Overview of the sparse group Lasso analysis, described above.
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Analysis of the sets
For the feature selection methods, it is important to determine if the feature
set is stable, meaning that the same set of features is selected even after the
data perturbation. We inferred this stability by checking the SNP intersections
between runs of 10-fold cross-validation.

To infer the stability across iterations, the percentage of SNPs in common
between all pairs of iterations was determined. First, for each pair of iterations
i and j, the size of the intersection set, i.e the number of SNPs in common, was
determined. In the following, it is marked as |Si ∩ Sj|, for i, j = 1, . . . , 10, where
Si and Sj are the sets of SNPs chosen in the iterations i and j, respectively.
The percentage of SNPs in common between two iterations i and j is calculated
with respect to the maximum possible number of SNPs in the given intersection,
which is the minimum between number of SNPs chosen in the iteration i and
the number of SNPs chosen in the iteration j. Hence, the formula:

overlapi,j =
|Si ∩ Sj|

min {nr. of SNPs chosen in i, nr. of SNPs chosen in j} , i, j = 1 . . . 10.

For example, if there are 10 SNPs chosen in the iteration 1, 8 SNPs chosen in
the iteration 2, and there are 6 SNPs in common (i.e., in the intersection of the
two sets), then the percentage of overlap is 6

min{8,10} = 6
8 or 75%.
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4.1 Transdiagnostic subtypes discovery with

unsupervised learning

The results from Section 4.1 are based on the peer-reviewed publication by the
thesis author Pelin et al., 2021.

4.1.1 Sample characterization

The discovery sample for the clustering analysis consisted of N = 1250 indi-
viduals, had an average age of 35 years, and 61% of females. The biggest
diagnostic group for the discovery sample was healthy controls, followed by
MDD patients.
The replication sample for the clustering consisted of N=622 individuals, had
an average age of 36 years, and 65% of females. The biggest diagnostic category
for the replication sample was MDD patients, followed by healthy controls.
Age, gender and diagnosis between discovery and replication sample were com-
pared for the significant differences: diagnosis and age differed significantly
(p=0.002 and p = 0.01, respectively). Proportions of single diagnostic categories
were significantly different for healthy controls (p=0.005) and MDD (p=0.003).
Other categories did not show significant differences (BD, p=0.4; SCZ, p=0.1;
SZA, p=1; Other diagnosis, p=0.07). Gender was not significantly different
(p=0.16). A general description of both samples is shown in Table 4.1, while the
mean (SD) of all variables used in the clustering process are shown in Table
A5.1 in the Appendix.
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Table 4.1: Discovery and replication dataset general description

Variable Discovery Replication

N 1250 622
Demographics
Age, mean (SD) 35.1 (13.0) 36.3 (12.6)
Gender - male, N (%) 483 (39%) 219 (35%)
Years of education, mean (SD) 13.5 (2.6) 13.8 (2.8)
Living with partner, N (%) 277 (28%) 199 (33%)
BMI, mean (SD) 25.3 (5.5) 25.6 (5.4)
Family history (any psychiatric disorder), N(%) 533 (43%) 306 (50%)
Diagnosis
Age at onset*, mean (SD) 25.2 (11.9) 24.1 (11.7)
Healthy controls, N (%) 590 (47%) 240 (39%)
BD, N (%) 75 (6%) 44 (7%)
MDD, N (%) 477 (38%) 283 (45%)
SCZ, N (%) 53 (4%) 17 (3%)
SZA, N (%) 25 (2%) 13 (2%)
Other, N (%) 30 (2%) 25 (4%)
*Age at onset (AAO) not available for healthy controls

Source: Pelin et al., 2021

4.1.2 Clustering analysis

4.1.2.1 Clustering pipeline results

Our clustering pipeline consisted of four steps: first, to identify the best fitting
model regularization; second, to select the optimal number of clusters; third, to
get the final labels for each observation, and fourth, to infer the stability of the
solution (Section 3.2.3).

Among the 14 possible model regularizations, there were two groups created
(Figure 4.1). Models that allow for modeling of the class-specific noise are in the
better fitting group (higher ICL value). Among those, the model regularization
AkBkQkDk achieved the highest median ICL value, and therefore was chosen as
the optimal one and submitted to the next step. The selected model AkBkQkDk

has the following characteristics, explained in https://cran.r-project.org/web/
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packages/HDclassif/HDclassif.pdf:

Ak: The classes have different parameters but there is only one parameter per class

Bk: Each class has its proper noise

Qk: All classes have their proper orientation matrix

Dk: The dimensions are free and proper to each class.

In the context of the data, the optimal model that was chosen assumes that there is

a cluster-specific variance (Ak), cluster-specific noise (Bk), and that clusters can have

different orientations (Qk). Since the HDDC algorithm is the subspace clustering

algorithm based on the assumption that the clusters live in the subspaces of a lower

dimension than the initial one, Dk is in this context considered to be the dimension of

the cluster-specific subspace. For more theoretical details, see Bouveyron et al., 2007.
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Figure 4.1: Choosing the optimal model regularization
Two groups of models were created (separated by a substantial difference
in median ICL). The group achieving higher ICL values consisted of
models allowing for modeling of class-specific noise. Among these models,
the model AkBkQkDk achieved the highest median ICL value and was
submitted to the second step
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The second step of the clustering pipeline consisted of Leave-one-out Jackknife runs,

resulting in 1250 solutions for each K = 2, . . . , 15. The highest median ICL was achieved

for K = 5 (Figure 4.2).

Figure 4.2: Choosing the optimal cluster number
Error bars show median absolute deviations
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In the third step, the majority voting scheme assigned the labels to all individuals based

on 1250 runs and K = 5, thus forming the 5 final clusters. The stability test, i.e., the

additional 100 runs of fitting the model AkBkQkDk, also resulted with K = 5 as the

optimal cluster number (Figure 4.3a). The calculation of similarity between the stability

solution and the final one resulted in a Rand Index of 92% and Jaccard Index of 74%

(Figure 4.3b).

Importantly, K = 5 was selected as the optimal choice in all three steps, which all use

different resampling strategies to reduce the risk of overfitting.
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Figure 4.3: Stability test
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4.1.2.2 Cluster ranking and distribution

Step 3 of the pipeline resulted in the assignment of the cluster labels for all individuals,

forming the K = 5 final clusters of different sizes (Table 4.2): Cluster 0 (n = 535 );

Cluster 1 (n = 38); Cluster 2 (n = 266); Cluster 3 (n = 215); Cluster 4 (n = 196). The

clusters were ordered based on GAF score (Figure 4.4), in order to create the notion of

a severity continuum.

Figure 4.5 and Table 4.2 show the distribution of diagnosis across clusters. The biggest

Cluster 0 consisted of the majority of healthy controls, while others were diagnostically

mixed. Patients diagnosed with SCZ and SZA mostly clustered together into the highest

severity Cluster 4, while BD and MDD patients were present in all clusters. The latter

induced a question of the existence of different subtypes of these disorders, which was

additionally inspected and will be shown later in this chapter.
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Table 4.2: Cluster sizes and diagnosis

Cluster HC BD MDD SZA SZC Other Total

Cluster 0 448 9 56 2 4 16 535
Cluster 1 19 1 17 0 1 0 38
Cluster 2 78 15 152 5 8 8 266
Cluster 3 34 26 147 2 3 3 215
Cluster 4 11 24 105 16 37 3 196

Total 590 75 477 25 53 30 1250

Figure 4.4: Ordering of the clusters based on GAF score
The mean is represented by a horizontal line and the standard deviation
by error bars. The dot size is relative to the number of individuals having
the given value.
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Figure 4.5: Diagnosis distribution within clusters
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4.1.3 Cluster characterization

4.1.3.1 Phenotypic characterization of clusters

In order to detect the important features distinguishing each cluster from the rest,

HDDA was fit in a one-vs.-all fashion using the same 57 variables from the clustering

process. The top 10 most important variables are shown in Table 4.3, while the

distributions of the top 2 most important variables for each cluster are shown in Figure

4.6.

Variables capturing antecedent events - different types of childhood maltreatment

(CTQs) and parental bonding, together with the current quality of life (SF 36) were

important for many clusters. As Figure 4.6 shows, Cluster 2 and Cluster 4 showed on

average much higher values of emotional neglect and lower parental bonding. Cluster

4 also showed a much higher average score for sexual maltreatment in childhood. In
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terms of limitations in daily life, Cluster 3 had lower average values, meaning that their

life might be negatively impacted by the disease. Apart from the antecedent events,

positive and mania symptoms (SAPS, YMRS) appeared among the top contributing

variables, especially for Cluster 4 - these individuals showed higher average values for

the respective scores than the rest (Figure 4.6, Table A5.3 in the Appendix).

Table 4.3: Most important features from the HDDA analysis
The top 10 most important variables identified by HDDA, as explained in
Section 3.2.4.1.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

CTQ Sexual abuse SF36 Bodily pain Maternal bonding SF36 Role physical SAPS (Positive
symptoms)

LEQ Negative
Event Score

SF36 Role physical CTQ Emotional
neglect

CTQ Emotional
neglect

YMRS

SAPS (Positive
Symptoms)

NEO-FFI
Agreeableness

Paternal bonding Maternal bonding CTQ Physical
abuse

CTQ Physical
abuse

RSQ Lack of trust SF36 Physical
functioning

CTQ Emotional
abuse

CTQ Sexual abuse

SF36 Physical
functioning

Maternal bonding SF36 Role physical CTQ Physical
neglect

LEQ Negative
event score

YMRS STAIS ACE Sum ACE Sum SANS (Negative
symptoms)

SANS (Negative
symptoms)

SHAPS RSQ Avoidance of
closeness

SF36 Physical
functioning

CTQ Physical
neglect

SF36 Role physical SF36 Physical
functioning

CTQ Emotional
abuse

CTQ Physical
abuse

LEQ Positive event
score

SCL90R Phobic
anxiety

NEO-FFI
Neuroticism

CTQ Physical
abuse

SF36 Energy VLMT Sum

CTQ Physical
neglect

SAPS (Positive
symptoms)

SAPS (Positive
Symptoms)

Paternal bonding CTQ Emotional
abuse

Source: Pelin et al., 2021
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Figure 4.6: Distributions of the two most important variables per cluster
The figure shows the two most important variables for each cluster, based
on the HDDA analysis shown in Table 4.3. The mean is represented by a
horizontal line and the standard deviation by error bars. The dot size is
relative to the number of individuals having the given value. The dark
square on top indicates the cluster for which the variable was among the
top two most important variables.
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In Tables 4.4 and A5.3 in the Appendix, we can further inspect the distributions of the

important variables per cluster in order to characterize them in detail. Table A5.3 in the

Appendix shows the mean (SD) of all variables used in the clustering process, for the

full discovery dataset and each cluster.

Individuals in Cluster 0 were the youngest cluster on average, with the mean (SD) of

31.7 (11.9), and had the highest number of education years (14.4 years on average). In

general, this cluster was characterized by the lowest severity in the majority of measures,

including the lowest maltreatment scores, positive symptoms, and depression scores.

Moreover, it showed the best quality of life metrics and the lowest proportion of

individuals with cases of psychiatric disorder in the family (26%). Cluster 4, on the

other hand, showed severe impairment in many measures, particularly regarding

childhood maltreatment and prevalence of positive, negative, and mania symptoms. In

the clustering procedure, only the sum scores of both positive and negative symptoms

were used in order not to over-represent the psychotic patients. Their subscales

were inspected post-hoc and are shown in Table 4.5. Among the positive symptoms

experienced by individuals in Cluster 4, delusions and positive formal thought disorder

were the most prominent ones. Moreover, the individuals in Cluster 4 showed the

highest severity in other additional variables examined post-hoc (Table A5.2 in the

Appendix).
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Table 4.4: Characterization of the discovery sample and clusters

Variable Discovery Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

N 1250 535 38 266 215 196
Demographics
Age, mean (SD) 35.1

(13.0)
31.7
(11.9)

38.6
(13.9)

35.3
(12.7)

37.9
(13.7)

40.3
(12.8)

Gender - male, N (%) 483
(39%)

205
(38%)

9 (24%) 106
(40%)

74 (34%) 89 (45%)

Years of education,
mean (SD)

13.5 (2.6) 14.4 (2.4) 13.3 (2.6) 13.8 (2.6) 13.1 (2.8) 12.1 (2.7)

Living with partner, N
(%)

277
(28%)

108
(20%)

7 (18%) 51 (19%) 62 (29%) 49 (25%)

BMI, mean (SD) 25.3 (5.5) 23.7 (4.3) 24.9 (5.1) 24.8 (4.9) 27.0 (6.6) 28.1 (6.4)
Age at onset*, mean
(SD)

25.2
(11.9)

24.5 (9.9) 29.6
(13.3)

23.3
(11.5)

27.8
(12.8)

24.4
(11.4)

Family history (any
psych. disorder), N (%)

533
(43%)

141
(26%)

16 (42%) 148
(56%)

105
(49%)

123
(63%)

Quality of life (SF36), mean (SD)
General health 66.0

(23.4)
81.2
(14.0)

57.9
(26.6)

64.7
(19.8)

49.4
(20.7)

45.8
(21.3)

Mental health 64.3
(22.6)

81.4 (9.8) 55.6
(23.0)

59.4
(18.9)

46.4
(19.3)

45.6
(21.3)

Depression and anxiety, mean (SD)
HAMA sum 7.3 (7.9) 2.2 (2.5) 9.7 (8.6) 7.6 (6.4) 13.1 (8.6) 14 (8.8)
HAMD sum 5.4 (6.6) 1.1 (1.6) 6.3 (6.7) 5.9 (5.7) 9.9 (7.0) 11 (7.5)
BDI sum 10.7

(10.8)
3.2 (3.3) 15.1

(12.8)
12.7 (9.6) 17.6

(10.1)
20.3
(11.7)

Positive, negative and manic symptoms, mean (SD)
SANS 5.7 (9.9) 0.6 (1.7) 5.2 (8.6) 6.9 (9.6) 8.0 (9.1) 15.6

(14.4)
SAPS 1.4 (5.2) 0.1 (0.6) 0.1 (0.4) 0.6 (1.6) 0.7 (1.8) 6.7 (11.5)
YMRS 1.2 (2.5) 0.5 (1.1) 0.8 (1.4) 1.1 (1.8) 1.3 (2) 2.9 (4.9)
Maltreatment in Childhood and Youth (CTQ), mean (SD)
Emotional abuse 9.1 (4.7) 6.3 (1.7) 9.9 (4.9) 11.4 (4.2) 8.0 (3.0) 14.6 (5.9)
Emotional neglect 10.7 (5.2) 7.5 (2.6) 11.8 (5.4) 14.1 (4.1) 9.2 (3.5) 16.5 (5.4)
Physical abuse 6.2 (2.6) 5.3 (0.7) 6.4 (2.2) 6.4 (2) 5.5 (1.1) 9.5 (4.6)
Physical neglect 7.2 (2.7) 5.8 (1.4) 7.2 (2.2) 8.0 (2.2) 6.4 (1.6) 10.4 (3.7)
Sexual abuse 5.8 (2.5) 5.1 (0.4) 5.8 (2) 5.8 (1.9) 5.6 (1.7) 8.0 (4.9)
*Age at onset (AAO) not available for healthy controls

Source: Pelin et al., 2021
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4.1 Transdiagnostic subtypes discovery with unsupervised learning

Table 4.5: Positive and negative symptoms per cluster

Variable Discovery Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Positive symptoms (SAPS), mean (SD)
Hallucinations 0.3 (1.8) 0.03 (0.21) 0 (0) 0.03 (0.23) 0.07 (0.55) 1.49 (4.24)
Bizarre Behavior 0.09 (0.7) 0.01 (0.13) 0 (0) 0.06 (0.31) 0.08 (0.53) 0.41 (1.53)
Positive Formal
Thought Disorder

0.5 (1.9) 0.08 (0.43) 0.05 (0.32) 0.29 (1.1) 0.5 (1.4) 2.33 (4.13)

Delusions 0.5 (2.5) 0.02 (0.15) 0.05 (0.23) 0.19 (0.87) 0.09 (0.49) 2.48 (5.75)
Negative symptoms (SANS), mean (SD)
Anhedonia 1.9 (3.5) 0.1 (0.7) 2.1 (3.5) 2.3 (3.4) 3.1 (4.1) 4.5 (4.9)
Affective
blunting

1.5 (3.6) 0.3 (0.9) 1.4 (2.9) 1.83 (3.9) 1.72 (3.26) 4.2 (5.9)

Avolition /
Apathy

1.3 (2.5) 0.09 (0.47) 0.8 (1.8) 1.4 (2.4) 1.8 (2.4) 3.8 (3.7)

Alogia 0.5 (1.6) 0.07 (0.4) 0.2 (0.9) 0.7 (1.8) 0.6 (1.5) 1.5 (2.8)

Source: Pelin et al., 2021

Other clusters ranked between these two extremes. The smallest Cluster 1 showed lower

scores of mental health, increased depression and anxiety score, and above average

perceived life stress (Table A5.3 in the Appendix). Cluster 2 had average general health

ratings but decreased mental health and higher levels of emotional maltreatment in

childhood. Cluster 3 contained the highest proportion of affective disorders with

elevated anxiety and depression levels, and these individuals showed notably lower

mental and general health.

The severity spectrum was also observed when looking at the hospitalization and

medication, both not used in the clustering procedure (Table A5.2 in the Appendix).

Individuals in Cluster 4 had the highest medication load index (Redlich et al., 2014)

and were hospitalized the most. Cluster 0 also showed the lowest severity concerning

measures not used in the clustering process (Figure 4.7a, 4.7b). Cluster 3 had the highest

antidepressant intake, with 57% of individuals taking it, while Cluster 4 showed the

highest antipsychotic intake of 43% (Figure 4.7c).
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Figure 4.7: Medication and hospitalization
The mean is represented by a horizontal line and the standard deviation
by error bars. The dot size is relative to the number of individuals having
the given value.
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4.1 Transdiagnostic subtypes discovery with unsupervised learning

4.1.3.2 Genetic characterization of clusters

Lasso analysis
Lasso regression was used to predict the cluster labels in a one-vs.-all and one-vs.-one
fashion using genetic variables (10 PGS and 4 self-reported family history assessments),

together with age, gender, and 8 ancestry components as covariates (Section 3.2.4.2,

Pelin et al., 2021). Comparisons with prediction AUC >60% are shown in Table

4.6. Lasso models were also applied to the complete discovery sample to assign the

final coefficients to the variables (Methods Section 3.2.4.2). The coefficients for each

cluster are shown in Figures 4.8-4.10 on the following pages. They are interpreted

in the following way: a positive (negative) sign of the coefficient implies that the

given predictor is more likely to be higher (lower) in the corresponding cluster, while

a coefficient of zero indicates that the respective variable was not important in the

respective model.

Two one-vs.-all and five one-vs.-one comparisons yielded an AUC > 60%. The two

extreme clusters, Cluster 0 and Cluster 4, could be best distinguished both when

compared to the rest and together. The summary statistics from 1000 runs of Lasso

regularized regression models are shown in Table A5.4 in the Appendix.

Table 4.6: Metrics of genetic Lasso regularized regression prediction models
An AUC between 50% and 60% is considered random model performance.
The table lists models with an AUC >60%, i.e., showing the above-random
performance.

Model AUC Sensitivity Specificity
Cluster 0 vs. all 71% 66% 66%
Cluster 4 vs. all 73% 67% 67%

Cluster 0 vs. Cluster 4 81% 75% 75%
Cluster 0 vs. Cluster 2 67% 67% 63%
Cluster 2 vs. Cluster 4 67% 64% 62%
Cluster 0 vs. Cluster 3 66% 63% 63%
Cluster 3 vs. Cluster 4 64% 61% 60%

Source: Pelin et al., 2021
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Cluster 0 could be distinguished from the rest with AUC = 71%. The final Lasso model

resulted in 7 variables with a non-zero coefficient (Figure 4.8). A genetic variable with

the highest absolute coefficient (the strongest effect) was the family history of any

disorder and its negative sign indicates that the individuals in Cluster 0 are more likely

to have fewer cases of psychiatric disorder in the family, compared to other clusters.

Five PGSs had non-zero coefficients and all but the Educational attainment PGS had a

negative sign. Hence, individuals in this cluster are more likely to have higher PGS

for Educational attainment, while lower for neuroticism, psychiatric cross-disorder,

and MDD, compared to others. Based on the coefficients, they are also less likely to

have cases of BD in the family. Covariate age also showed a high effect in the negative

direction, which suggests that individuals in Cluster 0 are more likely to be younger.

Figure 4.8: Lasso coefficients for Cluster 0 vs. all model
The dot size and color gradient (green for coefficients > 0, magenta for
coefficients < 0) are proportional to the absolute value of the coefficient
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Cluster 4 could be distinguished from the rest with AUC = 73%. The final Lasso model

resulted in 16 variables with a non-zero coefficient (Figure 4.9). A genetic variable

with the highest absolute coefficient (the strongest effect) was the family history of

any disorder, and its positive sign indicates that the individuals in Cluster 4 are more

likely to have cases of psychiatric disorder in the family, compared to other clusters.

Seven PGS variables had non-zero coefficients - these individuals are likely to have

higher PGS for psychiatric cross-disorder, MDD, SCZ, and extraversion. Educational

attainment PGS showed the strongest PGS effect, in the negative direction. These

individuals are also more likely to have cases of BD and SCZ in the family (positive

coefficients for the two variables). Covariates age and gender have higher coefficients,

indicating the increased likelihood of being older and male for the individuals in this

cluster, compared to the rest.

Figure 4.9: Lasso coefficients for Cluster 4 vs. all model
The dot size and the color gradient (green for coefficients > 0, magenta for
coefficients < 0) are proportional to the absolute value of the coefficient
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Other one-vs.-all Lasso models resulted in low AUC. Nevertheless, the final coefficients

were inspected and are shown on the Figure 4.10.

Figure 4.10: Lasso coefficients for other one-vs.-all models
The dot size and the color gradient (green for coefficients > 0, magenta
for coefficients < 0) are proportional to the absolute value of the
coefficient
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(b) Cluster 2 vs. all
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Significance testing - PGS and Family History
Univariate significance testing was done with the Westfall and Young (W-Y) procedure,

as explained in the Section 2.2 of the Methods chapter. Three one-vs.-all and five one-
vs.-one comparisons yielded significant variables (Tables 4.7 and 4.8, for one-vs.-all and

one-vs.-one, respectively).

Figure 4.11 shows four polygenic risk scores that were significant after Bonferroni

correction in at least one comparison. PGS for SCZ was significantly different in many

comparisons - individuals in Cluster 4 had significantly higher PGS SCZ, and Cluster 0

significantly lower PGS SCZ compared to other clusters (Figure 4.11a). Two other PGS

were significantly higher for the individuals in Cluster 4 - PGS for psychiatric cross-

disorder and PGS for MDD (Figure 4.11b, 4.11c). PGS for Educational attainment was

significantly higher in Cluster 0 and significantly lower in Cluster 4 compared to the

other clusters (Figure 4.11d).
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4.1 Transdiagnostic subtypes discovery with unsupervised learning

Figure 4.11: Significant Polygenic risk scores
PGS were standardized by Z score transformation, the y-axis unit are
standard deviations. The mean is represented by a horizontal line and
the standard deviation by error bars. The corresponding p-values are
shown in Tables 4.7 and 4.8.

(a) PGS Schizophrenia

−4

−3

−2

−1

0

1

2

3

4

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

HC MDD BD SZA SCZ Other

SCZ

(b) PGS psychiatric cross-disorder

−4

−3

−2

−1

0

1

2

3

4

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

HC MDD BD SZA SCZ Other

CD

73



4 Results

(c) PGS Major depressive disorder
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Table 4.7: Significance testing of genetic variables with the W-Y procedure –
one-vs.-all comparisons
Only the comparisons with significant variables after the Westfall and
Young adjustment are shown. n.s. stands for not significant (adjusted
p-value>0.05).

one-vs-all
Comparison

Variable t-statistic
p-value

adjusted using
W-Y

p-value further
adjusted for

the number of
comparisons

(N = 5)

Cluster 0 vs. all

Age -7.9 8 × 10−4 4 × 10−3

Family History Any -10.2 8 × 10−4 4 × 10−3

Family History BD -4.2 8 × 10−4 4 × 10−3

Family History MDD -7.0 8 × 10−4 4 × 10−3

PGS Cross psychiatric disorder -4.8 8 × 10−4 4 × 10−3

PGS MDD -4.8 1 × 10−3 8 × 10−3

PGS Schizophrenia -3.6 9 × 10−3 4 × 10−2

PGS Educational attainment 3.3 2 × 10−2 9 × 10−2(n.s.)
PGS Neuroticism -3.1 3 × 10−2 1 × 10−1(n.s.)

Cluster 2 vs. all
Family History Any 4.6 1 × 10−3 5 × 10−3

Family History MDD 3.9 6 × 10−3 3 × 10−2

Cluster 4 vs. all

Age 6.1 9 × 10−4 4 × 10−3

Family History Any 6.4 9 × 10−4 4 × 10−3

PGS Cross psychiatric disorder 4.0 3 × 10−3 1 × 10−2

PGS MDD 3.5 7 × 10−3 4 × 10−2

PGS Schizophrenia 3.8 3 × 10−3 1 × 10−2

PGS Educational attainment -4.3 9 × 10−4 4 × 10−3

Source: Pelin et al., 2021
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Table 4.8: Significance testing of genetic analyses with the W-Y procedure –
one-vs.-one comparisons
Only the comparisons with significant variables after the Westfall and
Young adjustment are shown. n.s. stands for not significant (adjusted
p-value>0.05).

One-vs-One
Comparison

Variable t-statistic
p-value

adjusted using
W-Y

p-value further
adjusted for

the number of
comparisons
(N = 10)

Cluster 0
vs.

Cluster 2

Age -3.9 1 × 10−3 1 × 10−2

Family History Any -7.7 1 × 10−3 1 × 10−2

Family History MDD -5.8 1 × 10−3 1 × 10−2

PGS Cross psychiatric disorder -3.6 8 × 10−3 8 × 10−2(n.s.)
PGS MDD -3.5 1 × 10−2 1 × 10−1(n.s.)

PGS Neuroticism -3.4 1 × 10−2 1 × 10−1(n.s.)

Cluster 0
vs.

Cluster 3

Age -5.2 1 × 10−3 1 × 10−2

Family History Any -5.3 1 × 10−3 1 × 10−2

Family History MDD -4.3 1 × 10−3 1 × 10−2

Cluster 0
vs.

Cluster 4

Age -7.9 8 × 10−4 8 × 10−3

AC4 3.1 3 × 10−2 3 × 10−1(n.s.)
Family History Any -9.1 8 × 10−4 8 × 10−3

Family History BD -4.2 1 × 10−2 1 × 10−1(n.s.)
Family History MDD -4.4 1 × 10−3 1 × 10−2

PGS Cross psychiatric disorder -5.0 8 × 10−4 8 × 10−3

PGS Schizophrenia -4.4 8 × 10−4 8 × 10−3

PGS Educational attainment 4.7 8 × 10−4 8 × 10−3

Cluster 2
vs.

Cluster 4

Age -3.9 4 × 10−3 4 × 10−2

Family History BD -3.3 2 × 10−2 2 × 10−1(n.s.)
Cluster 3

vs.
Cluster 4

Family History BD -3.1 4 × 10−2 4 × 10−1(n.s.)
PGS Educational attainment 3.2 3 × 10−2 3 × 10−1(n.s.)

Source: Pelin et al., 2021

Assessing the PGS information gain

The addition of PGSs and ACs (model A) in the multinomial regression prediction

model resulted in an R2=11.7%. increase over a null model containing only age and

gender (as explained in Methods Section 3.2.4.3). A model with only family history

(model B) yielded an increase of R2=10.8% over the null model, whereas a model with

family history and ACs (model C) resulted in a gain of R2=13.9%. The full model

(model D) containing the PGSs, family history, and ACs increased R2 by 20.3%. The

inclusion of PGSs significantly improved the model with family history and ACs (model
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A vs. model B, likelihood ratio test p=5× 10−5). The table below summarizes the results:

Table 4.9: Assessment of the PGS information gain

Model A Model B Model C Model D

Metric
Y = Age + Gender
+ PGSs + ACs

Y = Age + Gender
+ Family History

Y = Age + Gender
+ Family History +
ACs

Y = Age + Gender +
PGSs + Family His-
tory + ACs

AIC 3076.2 2975.5 2999.1 2991.4
Nagelkerke R2 11.7% 10.8% 13.9% 20.3%

Likelihood ratio tests

Model D
vs.

Model A

2 × 1017

Model D
vs.

Model B

5 × 10−5

Model D
vs.

Model C

2 × 10−5

Model C
vs.

Model B

1 × 10−1

(n.s.)

Source: Pelin et al., 2021
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4.1.4 Potential disorder subtypes analysis

Patients diagnosed with MDD and BD distributed across all identified clusters, sug-

gesting that different stages or subtypes of the disorders were identified. Since MDD

was the largest diagnostic group in the sample, the secondary analysis was conducted

to assess the heterogeneity of MDD patients across clusters (Table 4.10). The HDDA

classification analysis was done in a one-vs.-all fashion to assess the most important

features for MDD patients only (Table 4.11).

MDD patients in Cluster 0 had similar clinical presentations as healthy controls. They

showed the lowest severity in many areas and 80% of them were classified as in

remission of either a single episode or recurrent depression at the moment of assessment.

MDD patients in Cluster 1 had high levels of somatization, lower energy, and higher life

stress scores, as well as higher age of MDD onset. MDD patients in Cluster 2 showed

the lowest average age of onset. They also showed higher levels of maltreatment and

emotional neglect in childhood which might be anticipated as the external stressors

and the triggers for the disease. However, these individuals also showed a high

predisposition for MDD, with 48% having a case of MDD in their families. Similar to

Cluster 0, MDD patients in Cluster 3 had low negative environmental factors scores

and higher parental bonding. Nonetheless, their disease seems to have had a negative

effect on their quality of life - they showed low levels of energy and reported having

difficulties in their daily activities due to emotional and physical health issues. In

accordance with the high proportion of SCZ patients in Cluster 4, MDD (and BD)

patients in this cluster experienced depression with psychotic characteristics, with

higher antipsychotic intake and higher positive symptoms (Table 4.12). When looking

at the genetics, only MDD patients in this cluster showed a significant difference - they

had significantly higher PGS for ADHD and lower PGS for Educational attainment

than MDD patients in other clusters (Figure 4.12). Interestingly, ADHD PGS was not

significant in the statistical testing analysis including all individuals from the sample

(Table 4.7).
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Table 4.10: MDD subtypes analysis

This table shows phenotypic characteristics of MDD patients, constituting a secondary,
descriptive analysis to assess the heterogeneity within MDD patients. The significance
of genetic variables was tested using the Westfall and Young procedure. Here, only the
significant variables are shown. The distributions of the two significant PGS per cluster
are shown in Figure 4.12.

Variable Discovery
MDD

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

N (MDD diagnosis) 477 56 17 152 147 105
Age at onset, mean
(SD)

25.8 (12.5) 25.3 (11.1) 29.1 (13.2) 23.7 (12.0) 28.1 (13) 25.3 (12.7)

SCL - Global Severity
Index, mean (SD)

0.98 (0.6) 0.21 (0.12) 1.22 (0.6) 0.79 (0.42) 1.16 (0.53) 1.38 (0.58)

Family history any
psychiatric disorder, N
(%)

284 (60%) 26 (46%) 7 (44%) 96 (64%) 82 (57%) 73 (71%)

Family History of
MDD, N (%)

207 (43%) 18 (32%) 4 (24%) 73 (48%) 64 (44%) 48 (46%)

CTQ sum score, mean
(SD)

46.11 (15.7) 32.4 (5.7) 50.9 (8.3) 47.8 (9.8) 35.8 (7.2) 64.6 (16.9)

Quality of life - mental
health, mean (SD)

48.1 (21.2) 78.0 (9.1) 37.4 (19.6) 53.3 (18.5) 40.4 (16.8) 36.9 (17.3)

Quality of life -
general health, mean
(SD)

52.9 (22.5) 75.8 (15.3) 42.9 (26.4) 60.5 (19.9) 45.2 (19.5) 41.9 (19.7)

Quality of life –
Energy, mean (SD)

34.4 (20.8) 61.1 (15.6) 20.3 (16.4) 40.1 (17.3) 26.2 (16.8) 25.9 (18.5)

SCL – Somatization,
mean (SD)

10.8 (8.2) 3.1 (2.5) 15.0 (7.6) 7.0 (4.8) 14.1 (7.98) 15.1 (9.1)

Life stress, mean (SD) 29.9 (10.3) 16.1 (5.9) 34 (8.7) 28 (8.8) 34 (8.7) 33.8 (9.2)
NEO-FFI Neuroticism,
mean (SD)

29.3 (9.0) 18.1 (6.5) 33.4 (7.7) 29.5 (8.1) 30.8 (8.1) 32.4 (8.1)

Maternal bonding,
mean (SD)

20.8 (8.6) 27.4 (5.5) 13.9 (5.1) 18.7 (7.3) 26.3 (6.2) 13.7 (7.3)

Paternal bonding,
mean (SD)

18.7 (8.3) 24.2 (5.9) 16.9 (8.8) 16.6 (7.2) 21.9 (7.5) 14.6 (8.6)

Positive Symptoms,
mean (SD)

0.79 (2.4) 0.11 (0.41) 0.18 (0.52) 0.41 (1.19) 0.63 (1.57) 2.0 (4.4)

Antidepressants, yes,
N (%)

292 (61%) 18 (32%) 12 (71%) 84 (55%) 106 (72%) 72 (69%)

Antipsychotic, yes, N
(%)

84 (18%) 4 (7%) 2 (12%) 26 (17%) 28 (19%) 24 (23%)

Mood stabilizer, yes,
N (%)

18 (4%) 2 (4%) 1 (6%) 1 (0.7%) 5 (4%) 9 (9%)
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Variable Discovery
MDD

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Significantly different PGSs (one-vs-all)

EA
p-value W-
Y adjusted

1 × 10−3

Bonferroni-
corrected
(N=5)

5 × 10−3

ADHD
p-value W-
Y adjusted

1.9 × 10−3

Bonferroni-
corrected
(N=5)

9.5 × 10−3

Source: Pelin et al., 2021

Table 4.11: One-vs.-all HDDA classification analysis using only MDD-diagnosed
patients
This table shows the most important clinical variables for each cluster
when analyzing only MDD patients. The variables were identified by the
one-vs.-all HDDA classification analysis using n=477 MDD patients and
their respective cluster labels. The importance was calculated based on the
average AUC drop, as explained in the Methods section 3.2.4.1.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
CTQ Sexual abuse Maternal bonding SF36 Physical

functioning
Maternal bonding CTQ Physical

abuse
SAPS (Positive
symptoms)

SF36 Bodily pain SF36 Role physical CTQ Emotional
neglect

CTQ Sexual abuse

CTQ Physical
neglect

SF36 Role physical CTQ Physical
abuse

CTQ Emotional
abuse

SAPS (Positive
Symptoms)

LEQ Negative
event score

YMRS CTQ Emotional
neglect

SF36 Role Physical CTQ Emotional
abuse

CTQ Physical
abuse

SF36 Energy RSQ Avoidance of
closeness

CTQ Physical
abuse

ACE Sum

ACE Sum SHAPS CTQ Emotional
abuse

CTQ Physical
neglect

LEQ Positive event
score

SCL Positive
symptoms

Social support ACE Sum ACE Sum SANS (Negative
symptoms)

SF36 Social
functioning

Verbal IQ Maternal bonding SF36 Bodily pain SCL90R Phobic
fear

SANS (Negative
symptoms)

SAPS (Positive
symptoms)

CTQ Sexual abuse SF36 General
health

VLMT Sum

SF36 Mental health CTQ Emotional
neglect

SCL90R
Somatization

SF36 Role
emotional

CTQ Physical
neglect

Source: Pelin et al., 2021
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Table 4.12: Assessing psychotic symptoms of MDD and BD patients in Cluster 4
Comparison of positive symptoms scores of MDD and BD patients in
Cluster 4 to MDD/BD patients in the other clusters. The table shows mean
(SD) values for the respective variables. Statistical significance was
assessed using one-sided t-tests with the hypothesis that Cluster 4 patients
show more positive symptoms. n.s. stands for not significant (p < 0.05).

MDD BD

Variable Cluster 4 Clusters
0-3

t-test
(one-sided) Cluster 4 Clusters

0-3
t-test

(one-sided)
N 105 372 24 51

Positive Symptoms 2.0 (4.4) 0.4 (1.3) t = 3.6, p=0.0003 5.4 (7.2) 1.4 (2.4) t = 2.6, p=0.007
Delusions 0.5 (1.9) 0.09 (0.5) t = 2.4, p = 0.01 0.7 (1.6) 0.1 (0.5) t = 1.7, p=0.05

Hallucinations 0.3 (1.4) 0.03 (0.2) t = 1.8, p = 0.04 0.1 (0.3) 0.02 (0.1) t = 1.0, p=0.1
(n.s.)

Bizarre Behavior 0.2 (0.9) 0.06 (0.4) t = 1.5, p = 0.06
(n.s.) 0.5 (1.2) 0.04 (0.3) t = 1.9, p=0.03

Positive Formal
Thought Disorder 1.0 (2.7) 0.3 (1.0) t = 2.7, p=0.004 4.1 (5.6) 1.3 (2.2) t = 2.4, p=0.01

Source: Pelin et al., 2021
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Figure 4.12: Significant Polygenic risk scores for MDD patients only
PGS were standardized by Z score transformation, the y-axis unit are
standard deviations. The mean is represented by a horizontal line and
the standard deviation by error bars.
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4.1.5 Characterization of healthy controls

The percentage of healthy controls in the clusters decreased with cluster severity - they

made 84% of the Cluster 0, 50% of Cluster 1, 29% of Cluster 2, 16% of Cluster 3, and

6% of Cluster 4 (Figure 4.5). Healthy controls in Clusters 1-4 showed some symptoms

resembling the ones of the psychiatric patients in these clusters, which can be seen in

Table 4.13. Genetic analyses were performed by observing only healthy controls across

clusters and revealed a nominal significance of ADHD PGS, similar to the analysis

of MDD subtypes. These healthy individuals could be either at risk for developing a

disorder or their symptoms were not sufficiently severe to satisfy the criteria for the

diagnosis. These aspects should be further inspected in the follow-up assessments.
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Table 4.13: Clinical assessment of healthy controls
The table shows the phenotypic characteristics of healthy controls,
constituting a secondary, descriptive analysis to assess the heterogeneity
within healthy controls. The significance of genetic variables was tested
using the Westfall and Young procedure. Here, only the significant
variables are shown. Importantly, the number of healthy controls differed
strongly between clusters, leading to a large class imbalance and resulting
in a lack of power for the analysis of healthy controls on their own.

Variable Discovery
HC

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

N (Healthy controls) 590 448 19 78 34 11
STAI-S 34.4 (7.9) 32.8 (6.2) 42.9 (8.6) 37.7 (9.5) 42.5 (11.4) 35.4 (9.8)
STAI-T 33.6 (8.0) 31.9 (6.7) 40.7 (8.7) 37.1 (8.9) 41.6 (9.5) 36.3 (11.4)
SCL - Global Severity
Index, mean (SD)

0.2 (0.2) 0.2 (0.1) 0.4 (0.3) 0.3 (0.2) 0.5 (0.3) 0.3 (0.2)

Family history any
psychiatric disorder, N
(CTQ sum score, mean
(SD)

32.1 (8.2) 29.5 (4.2) 34.0 (9.3) 43.2 (9.3) 31.2 (5.9) 56.6 (17.9)

Quality of life - mental
health, mean (SD)

79.3 (12.0) 81.9 (9.8) 70.1 (13.5) 72.8 (13.4) 65.4 (16.1) 78.9 (11.0)

Quality of life - general
health, mean (SD)

79.5 (15.6) 82.1 (13.8) 70.1 (20.3) 74.0 (17.8) 67.1 (17.5) 67.3 (15.0)

Quality of life – Energy,
mean (SD)

64.5 (15.1) 67.3 (12.6) 53.9 (17.5) 58.8 (18.5) 46.0 (16.0) 65.9 (18.0)

SCL – Somatization,
mean (SD)

3.5 (3.4) 2.8 (2.3) 6.6 (4.9) 4.9 (4.1) 7.8 (5.9) 5.9 (6.5)

Life stress, mean (SD) 16.3 (6.9) 14.8 (6.1) 21.3 (8.7) 20.3 (7.1) 22.5 (8.1) 20.3 (6.3)
NEO-FFI Neuroticism,
mean (SD)

15.4 (7.2) 14.2 (6.6) 21.5 (7.7) 18.4 (7.6) 20.5 (8.0) 17.3 (5.4)

Maternal bonding,
mean (SD)

28.4 (6.5) 30.2 (4.6) 27.3 (8.4) 20.2 (7.2) 29.1 (6.2) 14.5 (6.4)

Paternal bonding,
mean (SD)

25.6 (7.7) 27.4 (6.3) 26.5 (6.8) 16.7 (7.4) 25.7 (7.4) 11.1 (8.1)

Positive Symptoms,
mean (SD)

0.2 (0.8) 0.1 (0.5) 0.1 (0.2) 0.2 (0.7) 0.2 (0.8) 1.7 (4.0)

Negative Symptoms,
mean (SD)

0.6 (1.7) 0.5 (1.4) 0.6 (1.1) 1.1 (3.0) 0.4 (1.0) 2.3 (3.4)

Significantly different PGSs (one-vs.-all)

ADHD
p-value W-
Y adjusted

2 × 10−2 5 × 10−2

Bonferroni-
corrected
(N=5)

1 × 10−1

(n.s)
5 × 10−1

(n.s)

Source: Pelin et al., 2021
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4.1.6 Replication analysis

Replication analysis was performed according to Section 3.2.5 in Methods chapter.

HDDA models trained on the discovery and fitted on the replication sample matched

all but the smallest Cluster 1 (Figure 4.13).

Figure 4.13: Discovery-stage HDDA models projected to the replication sample
Matched discovery-stage and replication clusters achieving the
prediction>70% are represented with colored bars.
The balanced accuracy was used as the evaluation metric for the
prediction. This metric evaluates a binary classifier by accounting for the
imbalance in classes. It is calculated as the average of the proportion of
correctly classified individuals from each class: (true positive rate + true
negative rate)/2.
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The matched replication clusters had the same severity ranking based on GAF score

(4.14b) as their paired discovery clusters, and a lot of other variables had comparable

severity patterns (Figures 4.14c-d, Table A5.5 and A5.6 in the Appendix). Moreover, the

percentage of healthy controls was decreasing with the severity, and most of the SCZ
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4.1 Transdiagnostic subtypes discovery with unsupervised learning

and SZA patients clustered in the highest severity Cluster 4 (Figure 4.14a), a pattern

observed in the discovery-stage analysis.

Figure 4.14: Replication clusters characterization
In the figures b) - d) The mean is represented by a horizontal line and the
standard deviation by error bars. The dot size is relative to the number of
individuals having the given value.
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The genetic Lasso models trained on the discovery sample and applied to the replication

sample as explained in Methods Section 3.2.5, resulted in AUC of 68% for Cluster 4 vs.
all, and AUC of 63% for Cluster 0 vs. all, similar to the metrics in the discovery sample.

All projection models that resulted in AUCs >60% and are shown in Table 4.14.

Table 4.14: Metrics of genetic Lasso regularized regression prediction models in
the replication clusters
After the discovery and replication clusters had been matched, the Lasso
model parameters trained on the discovery sample were used for Lasso
regularized regression analyses of the genetic variables in the replication
sample. An AUC between 50% and 60% is considered random model
performance. The table lists models with an AUC >60%, i.e., showing
above-random performance.

Model AUC Sensitivity Specificity
Cluster 0 vs. all 63% 60% 60%
Cluster 4 vs. all 68% 67% 66%

Cluster 0 vs. Cluster 4 75% 72% 72%
Cluster 2 vs. Cluster 4 69% 72% 67%
Cluster 3 vs. Cluster 4 61% 60% 60%
Cluster 0 vs. Cluster 2 60% 59% 59%
Cluster 0 vs. Cluster 3 60% 70% 53%

Source: Pelin et al., 2021

Significance testing with genetic data on the replication sample was performed with

W-Y process, just as in the discovery analysis.

The replication-stage Cluster 0 showed the significantly lower PGS for SCZ and psy-

chiatric cross-disorder (adjusted p = 0.005 and p = 0.03, respectively), as observed in

the discovery sample (Figures 4.15a,b, Table 4.15). The findings for the discovery-stage

Cluster 4 were confirmed in the replication Cluster 4 for the significantly higher MDD

PGS and significantly lower EA PGS (p=0.01, p=0.005, respectively). Also, PGS for

psychiatric cross-disorder and SCZ replicated as higher in Cluster 4, but these scores

did not pass the final Bonferroni correction (Table 4.15). In the pairwise analyses,

the replicated associations included the PGS for psychiatric cross-disorder, SCZ, and

Educational attainment for the Cluster 0 vs. 4 comparison (Table 4.16). Replication

analysis for MDD individuals resulted in a significantly lower Educational attainment

PGS for the MDD patients in Cluster 4, confirming the finding from the discovery
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4.1 Transdiagnostic subtypes discovery with unsupervised learning

analysis (Figure 4.16b). The association for ADHD PGS in MDD patients in Cluster 4

was not replicated (Figure 4.16a).

Table 4.15: Replication - Significance testing of genetic variables with the W-Y
procedure – one-vs.-all comparisons
Only the comparisons with significant variables after the Westfall and
Young adjustment are shown. n.s. stands for not significant (adjusted
p-value>0.05).

one-vs-all
Comparison

Variable t-statistic
p-value

adjusted using
W-Y

p-value further
adjusted for

the number of
comparisons

(N = 5)

Cluster 0 vs. all
Age -3.9 3 × 10−2 1 × 10−1(n.s.)

PGS Cross psychiatric disorder -3.7 7 × 10−3 3 × 10−2

PGS Schizophrenia -3.2 1 × 10−3 5 × 10−3

Cluster 2 vs. all Age -3.8 1 × 10−2 5 × 10−2

Cluster 4 vs. all

PGS Cross psychiatric disorder 3.4 1.6 × 10−2 8 × 10−2(n.s.)
PGS MDD 3.7 3 × 10−3 1 × 10−2

PGS Schizophrenia 3.1 2 × 10−2 1 × 10−1(n.s.)
PGS Educational attainment -4.8 1 × 10−3 5 × 10−3

PGS Neuroticism 3.5 6 × 10−3 3 × 10−2

Source: Pelin et al., 2021

87



4 Results

Table 4.16: Replication - Significance testing of genetic variables with the W-Y
procedure – one-vs.-one comparisons
Only the comparisons with significant variables after the Westfall and
Young adjustment are shown. n.s. stands for not significant (adjusted
p-value>0.05).

one-vs-one Comparison Variable t-statistic
p-value

adjusted using
W-Y

p-value further
adjusted for

the number of
comparisons
(N = 10)

Cluster 0 vs. Cluster 1 Age -3.7 5 × 10−3 5 × 10−2

Cluster 0 vs. Cluster 4

PGS Cross psychiatric disorder -4.5 1 × 10−3 1 × 10−2

PGS MDD -3.8 9 × 10−3 9 × 10−2(n.s.)
PGS Schizophrenia -4.4 1 × 10−3 1 × 10−2

PGS Educational attainment 4.2 2 × 10−3 2 × 10−2

Cluster 1 vs. Cluster 2 Age 4.3 2 × 10−3 2 × 10−2

Cluster 1 vs. Cluster 4
PGS MDD -3.4 1 × 10−2 1 × 10−1(n.s.)

PGS Educational attainment 4.3 2 × 10−3 2 × 10−2

PGS Neuroticism -3.9 4 × 10−3 4 × 10−2

Cluster 2 vs. Cluster 3 Age -3.3 2 × 10−2 2 × 10−1(n.s.)

Cluster 2 vs. Cluster 4
Age -3.6 1 × 10−2 1 × 10−1(n.s.)

PGS Educational attainment 3.6 1 × 10−2 1 × 10−1(n.s.)
Cluster 3 vs. Cluster 4 PGS Educational attainment 3.2 4 × 10−2 4 × 10−1(n.s.)

Source: Pelin et al., 2021

88



4.1 Transdiagnostic subtypes discovery with unsupervised learning

Figure 4.15: Replication - Significant Polygenic risk scores
PGS were standardized by Z score transformation, the y-axis unit are
standard deviations. The mean is represented by a horizontal line and
the standard deviation by error bars.
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Figure 4.16: Replication - Polygenic risk scores for MDD patients only
PGS were standardized by Z score transformation, the y-axis unit are
standard deviations. The mean is represented by a horizontal line and
the standard deviation by error bars.
PGS EA was significantly lower for MDD in Cluster 4, as in the
discovery-stage analysis (Figure 4.12). Association of PGS ADHD for
MDD in the replication sample did not replicate.
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4.1.7 Severity continuum and the Principal component
analysis

The aim of this follow-up analysis was to assess whether a simple severity component

can explain the identified clusters. To this end, we conducted a Principal component

analysis (PCA) using the same 57 variables and individuals entering the clustering

analysis. Please note, the PCA was not done prior to the clustering analysis, as the

HDDC algorithm was developed to deal with high dimensions and with correlated

features (Bouveyron et al., 2007).
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Figure 4.17: Variance explained by
the first 16 PCs

The total of 80% of the vari-

ance was explained by the first

16 PCs (Figure 4.17), with the

first component (PC1) explaining

45.5% of the variance. As shown

in the Table 4.17, the SCL90R

global severity index was the

top-contributing variable for this

component. Moreover, the PC1

correlated with the cluster la-

bels with Spearman1 ρ = 0.75.

However, when removing the

"healthy-like" Cluster 0, the cor-

relation of the PC1 to Clusters

1-4 drops to ρ = 0.38. Hence, the PCA predominantly captured the distinction between

health and disease, instead of the overall severity gradient.

1Spearman Rank Correlation Coefficient, “Spearman Rank Correlation Coefficient” 2008
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Table 4.17: PCA with variables used for clustering
The table below shows the results of the Principal component analysis
performed on variables used for clustering with the purpose of exploring
to which degree severity was captured by PC1.

PC Variance
explained

Top five contributing variables

1 45.5% SCL90R global
severity index

SCL90R
depression

SCL90R Positive
Symptom Total

STAIT BDI Sum

2 5.8% CTQ
Emotional
neglect

Maternal
bonding

CTQ Physical
neglect

CTQ
Emotional
abuse

CTQ Physical
abuse

3 4.0% VLMT Sum Letter number
span test

Corsi
block-tapping
test

Positive
symptoms

NEOFFI
Openness to
experience

4 3.6% NEOFFI
Extraversion

Social support NEOFFI
Agreeableness

VLMT Sum NEOFFI
Openness to
experience

5 2.9% LEQ Positive
Event Score

RSQ Fear of
rejection or
abandonment

SF36 Physical
Functioning

IQ YMRS

Source: Pelin et al., 2021

Additionally, SigClust (Huang et al., 2015) was used to further investigate the hypothesis

that a severity continuum could best explain our results and data. However, this method

did not find a statistical support for the hypothesis that the data is coming from a

single continuous Gaussian distribution (p<0.05). Hence, the five categorical clusters

did not entirely coincide with a severity continuum but ranked along with it.
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4.2 Feature selection with genetic data

4.2.1 SNPs clustering

Ward’s hierarchical clustering method with LD as a similarity metric was used to cluster

SNPs on each chromosome, as explained in the Methods Section 3.3.2. The process

resulted in a total of 56 589 clusters of SNPs. Figure 4.18 shows the number of groups

found on each chromosome, and the average number of SNPs in each group. The

obtained SNP cluster labels were used in the all subsequent analyses with the Sparse

group Lasso algorithm.

Figure 4.18: Number of SNP clusters per Chromosome
The plot shows the number of different clusters of SNPs for each
chromosome, detected by Ward’s hierarchical clustering
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4.2.2 Phenotype prediction with Sparse group Lasso

4.2.2.1 Cluster 0 vs. all

Sparse group Lasso was run chromosome-wise, resulting in 13 533 SNPs that had the

non-zero coefficient every time during the 10-fold cross-validation. Figure 4.19 shows
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the number of SNPs chosen every time per chromosome, with an average of 615 SNPs

chosen.

Figure 4.19: Number of SNPs chosen every time per Chromosome
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Then, the Sparse group Lasso model was fit on the dataset with the chosen SNPs, i.e.,

on the dataset containing 1120 individuals and 13 533 SNPs. Figure 4.20 shows the

AUC achieved on the dataset through 10 runs of cross-validation and the average AUC

across folds, which is at a high 82%.

Due to the high AUC value and a pre-selection of SNPs on the same dataset, the chance

of model overfitting occurring is very likely and has to be considered. Usually, to

control for that, the prediction algorithm has to be tested on the validation dataset. Due

to higher number of individuals in the full FOR2107 cohort, we decided to apply this

strategy on the next task, where MDD patients and healthy controls were observed.
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Figure 4.20: Cluster 0 vs. all - AUC across 10-fold cross validation
The total of 13 533 SNPs chosen in the chromosome wise Lasso runs were
included in the final dataset. The model resulted with high AUC of 82%
when fitted on the dataset. However, due to high AUC and a
pre-selection of SNPs, we have to consider the model overfitting.
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4.2.2.2 Healthy controls vs. MDD

Since the phenotype variable using the subtype obtained from the subtype discovery

analysis in Section 4.1 of this chapter possibly resulted in overfitting, we wanted to

check if this would be the case with the formal labels. We contrasted here the healthy

controls and MDD cases, as in the regular GWAS settings, to be able to compare the

differences and check if the SNPs, that are already known to be associated with MDD

from the GWA studies, will appear in our model.

In general, the unbiased measure of feature selection success and test for the overfitting

is obtained when the model is fit on the previously unseen, validation dataset. Since

the sample size in this analysis was higher (containing healthy controls and MDD

patients from the full FOR2107 sample), we could apply a slightly different strategy, by

splitting the dataset into the discovery and validation datasets. The split was stratified

based on the binary phenotype variable with 1 representing a case (MDD), and 0
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control (HC). Both datasets contained n=888 individuals. Apart from the discovery

and validation split at the beginning, the workflow was the same as in the Cluster 0
vs. all analysis (shown in Figure 3.3). The difference to it was the additional model

performance assessment on the validation sample in the last step (shown in Figure A1

in the Appendix).

First, Sparse group Lasso was run chromosome-wise. SNPs having the non-zero

coefficient every time in the 10-fold cross-validation process were selected for the next

step. The total number of SNPs selected for the next step was 8059. Figure 4.21 shows

the number of SNPs chosen every time per chromosome.

Figure 4.21: Number of SNPs chosen every time per Chromosome
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Then, the Sparse group Lasso model was fit on the discovery dataset with the chosen

SNPs, i.e., on the dataset of 888 individuals and 8059 SNPs. Figure 4.22a shows the AUC

achieved on the discovery dataset through 10 runs of cross-validation and the average

AUC across folds, which is at high 85%. This, however, could be a sign of overfitting

since the features were chosen on the same dataset, as we observed in the Cluster 0
vs. all settings. Finally, the Sparse group Lasso was fitted on the previously unseen,

validation dataset, consisting of the same 8059 SNPs chosen in the discovery-stage

analysis as predictors. As Figure 4.22b shows, the drop of AUC to the 50% is notable,
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hence the model was indeed overfitting.

Figure 4.22: Healthy vs. MDD - AUC across 10-fold cross validation
The total of 8 059 SNPs chosen in the discovery-stage chromosome wise
analysis were included in both final datasets. The model resulted with
high AUC of 85% when fitted on the discovery dataset and low AUC of
52% when fitted on the validation dataset. Thus, model was overfitting
and showed poor generalizability.
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Stability of selected feature sets
Even though the model was overfitting, we could still infer how stable it was in

terms of SNPs chosen across the runs. We tested the stability of sets for Healthy vs.
MDD analysis, as it enables the discovery/validation comparison. The stability was

inferred by checking the SNP intersections between a) runs of 10-fold cross-validation,

for discovery and validation fit separately, and b) final sets of SNPs chosen on both

datasets.

Figure 4.23 shows the number of SNPs chosen in each run. We see that for both

discovery and validation, the number of SNPs chosen is fairly uniformly distributed,

with all iterations choosing between 25% and 31% of SNPs.
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Figure 4.23: Healthy vs. MDD - number of SNPs chosen across iterations
Number of SNPs chosen, i.e. having the non-zero coefficient, across
iterations of 10-fold cross validation. Percentage is calculated based on
the total number of SNPs in the dataset (8059). The dashed line
represents the number of SNPs chosen in each iteration (498 in the
discovery and 432 in the validation).
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There were 498 SNPs in the intersection of 10 sets of SNPs chosen in each iteration in

the discovery sample, while in the validation there were 432 SNPs.

In order to infer the stability across iterations, the percentage of SNPs in common

between all pairs of iterations was determined, as explained in Section 3.3.2.2. In Figure

4.24, we see that the percentage of SNPs in common for all pairwise combinations was

between 50% and 70%. When comparing the SNPs in common between the final set

of SNPs chosen in the discovery and the replication, 3 SNPs in common were found.

Therefore, we can not conclude that the algorithm was stable in terms of selection of

features.

100



4.2 Feature selection with genetic data

Figure 4.24: Healthy vs. MDD - stability of feature sets
The number in the parentheses represents the size of the intersection set
between to iterations i and j (|Si ∩ Sj|)
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(b) Validation dataset

Cross-referencing with known associated SNPs from GWAS
We wanted to check if any of the 8059 SNPs chosen chromosome-wise was among

SNPs that were previously reported to have the association to MDD. To do that, we

cross-referenced our list of SNPs with the database in GWAS Catalog2. Six SNPs were

found to have been previously reported in association with MDD or other psychiatric

disorders:

2GWAS Catalog was founded by the National Human Genome Research Institute in 2008. It
provides the database of SNP-trait associations from the eligible published GWA studies.
Studies are identified by literature search, extracting the reported trait and SNP-trait associa-
tion, which are mapped onto the human genome by chromosomal location and displayed
on the human karyotype. Source: https://www.ebi.ac.uk/gwas/docs/about

102

https://www.ebi.ac.uk/gwas/docs/about


4.2 Feature selection with genetic data

SNP Trait (GWAS catalog)

rs1002656 Depression,Neuroticism, BD, MDD, General factor of

neuroticism,anorexia nervosa, ADHD, ASD, OCD, SZC, or Tourette

syndrome (pleiotropy)

rs4491452 MDD

rs11070670 MDD

rs9297357 ASD, ADHD, BD, MDD, ADHD, BD, MDD, SCZ (combined)

rs1579282 Depressive symptoms x independent stressful life events interaction

(2df test)

rs12457996 MDD

Apart from the SNPs associated with MDD, there were some reported to be associated

with ADHD (rs7164335, rs438259, rs7448069), a disorder which is associated with the

development of MDD or SCZ, according to several studies (Hamshere et al., 2013;

Dalsgaard et al., 2014; Rubino et al., 2009). However, none of those SNPs appeared

among the 498 ones that were chosen every time, i.e., that were in the final discovery

set.
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5.1 Discussion

Psychiatric disorders are highly heterogeneous with respect to their clinical representa-

tion and disease trajectory. The current psychiatric taxonomies, DSM and ICD, have

emerged as the standard systems that describe how we diagnose psychiatric disorders

worldwide. However, accumulating research evidence shows that the existing diagnos-

tic groups do not suffice to capture the heterogeneity in etiology and symptomatology

of mental health. As a result, an increasing focus has been set on a revision and

reformulation of the current system.

In this thesis, we applied computational methods to generate new knowledge in the field

of classification of psychiatric diseases and new subtypes discovery. A transdiagnostic

sample was analyzed, going beyond the existing boundaries not only between different

disorders but also between health and disease. The clustering results presented in this

thesis were based on the results published in Pelin et al., 2021.

Additionally, we explored a multivariate way of selecting single SNPs in the high-

dimensional genetic data to depict the smaller and sufficiently informative subset of

SNPs relevant for the phenotype of interest.

The High-dimensional data clustering algorithm (HDDC) was used to identify the

clusters of psychiatric disorders in the transdiagnostic sample. The sample consisted

of healthy controls and patients diagnosed with major depressive disorder, bipolar

disorder, schizoaffective disorder, schizophrenia, and other disorders such as social

phobia. Significance testing and classification were used to characterize the clusters

with genetic variables (PGS and family history). The combination of clustering and

classification was used for the detection of important subsets of SNPs for the two

outcome variables.
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Transdiagnostic clusters identification

In this thesis, as well as in the publication Pelin et al., 2021, five diagnostically mixed

clusters were identified. For the purpose of creating the notion of a severity continuum,

we ordered the clusters based on the GAF measure, our severity proxy. The numeration

0-4 was used, with 0 representing the lowest disease severity level and 4 the highest

severity level.

Cluster 0, mostly contained healthy controls and had in general good health and

mental well-being. It showed the lowest depression levels, positive symptoms as well

as maltreatment in childhood, whereas their quality of life was the highest. Cluster 4,

on the other end of the scale, was characterized as the cluster that was highly impaired

in many areas, with an emphasis on maltreatment in childhood and youth, and a

prevalence of positive symptoms. This cluster had the highest proportion of SCZ and

SZA diagnosed patients. Clusters 1-3 ranked between the two extremes and could be

differentiated mostly by different depression scores, levels of childhood maltreatment,

parental bonding, and daily functioning.

We tested if the five categorical clusters exactly followed the severity continuum, i.e., if

a simple severity component could explain the clustering, but could not find statistical

support for this hypothesis (PCA and SigClust analysis in Section 4.1.7). Hence, the

five categorical clusters did not entirely coincide with a severity continuum but ranked

along with it.

Replication analysis in a smaller independent sample resulted in cluster replications

of four out of five clusters, where only the smallest Cluster 1 did not replicate. This,

together with the characteristics of the replication-stage clusters in terms of the severity

scale and replication associations in some genetic features, indicates that the cluster

solution was stable and that the algorithm did not overfit in the discovery-stage analysis.

However, even though the replication sample consisted of independent individuals

whose data was acquired subsequently, these individuals were recruited as part of

the same study as those from the discovery sample. Moreover, the proportions of

MDD patients and healthy controls were different for the two samples, limiting their

comparability. Furthermore, the replication sample consisted of fewer individuals

than the discovery sample, which had a weakening effect on the statistical power.

Hence, future studies with higher sample sizes and more independent discovery and

replication samples could provide more information and explain the discrepancies.
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To the best of our knowledge, this is the first study to cluster and examine the multido-

main clinical profiles in a sample including both patients diagnosed with psychiatric

disorders and healthy controls. Nonetheless, the cluster characteristics and the sever-

ity spectrum are partly consistent with the findings from some previous studies. A

transdiagnostic study (Grisanzio et al., 2018) also identified a cluster with a high share

of healthy individuals and with the lowest scores in the measured symptoms, similar

to the Cluster 0 identified in this work. The severe psychosis subtype identified in

another study (Dwyer et al., 2020) may correspond to our highest severity Cluster 4

when observing its high share of SCZ patients, significantly lower PGS for Educational

attainment, and low general functioning. Furthermore, a single-disorder subtyping

study (Maglanoc et al., 2018) identified five MDD clusters, with one subgroup exhibit-

ing a lack of many symptoms, comparable to our Cluster 0. Moreover, our findings

highlight the association of adverse experiences, childhood trauma, and lack of support

with hospitalizations, positive symptoms, disease severity, and the need for a more

intense treatment, all supported by several prior studies (Carbone et al., 2019; Varese

et al., 2012; Misiak et al., 2017; Li et al., 2015; Janssen et al., 2004).

Potential subtypes discovery and identification of individuals at risk

Compared to the formal DSM diagnostic categories, the cluster solution resulting from

this thesis (and Pelin et al., 2021) exceeded the diagnostic boundaries predominantly for

BD and MDD diagnosis, while the SCZ and SZA diagnosed patients mostly grouped

together, in the highest severity Cluster 4. These findings confirm the etiological

similarities between the two affective disorders, BD and MDD, differentiating them

from the generally psychotic disorders (Levey et al., 2020; Coleman et al., 2020). The

higher number of SCZ patients might have resulted in better discrimination of psychotic

subtypes, as the previous studies showed (Dwyer et al., 2020; Bansal et al., 2018).

All five clusters contained MDD patients, potentially representing different MDD

subtypes or disease stages. Around 80% of MDD in Cluster 0 were coded as in

remission of either single episode or recurrent depression at the moment of assessment.

Therefore, their clinical picture resembles the characteristics of healthy individuals.

MDD in Cluster 4, on the other hand, exhibited some psychotic features and had

high negative symptoms. Interestingly, these MDD patients showed a different signal

in genetic analysis, by having significantly higher PGS for ADHD compared to the

MDD patients in Clusters 0-3. Previous studies have reported associations between

childhood ADHD and the development of or susceptibility to other severe psychiatric
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disorders later in life (Hamshere et al., 2013; Dalsgaard et al., 2014; Rubino et al.,

2009). A retrospective evaluation of ADHD symptoms in childhood, which is currently

unavailable, might provide further insight on this correlation. Moreover, MDD (and BD)

patients in Cluster 4 had significantly more psychotic characteristics than MDD (BD)

patients in Clusters 0-3. MDD patients in Cluster 1 had a high level of somatization, a

neurotic personality, low energy levels, high perceived life stress, and a higher age of

onset. They could represent a reactive depression subtype, with burnout characteristics.

MDD cases in Cluster 2 showed prominent external factors regarding maltreatment and

emotional neglect in childhood and had the lowest age at onset (23 years on average).

Therefore, they may suffer from an exogenous depression caused by external stressors.

MDD patients in Cluster 3 did not show a strong influence of negative environmental

factors, but the contrary - they reported high support, high parental bonding, and low

maltreatment levels, similar to Cluster 0. Nevertheless, they showed the limitations in

daily activities due to health problems, hence their life has been impacted negatively

by depression. (Pelin et al., 2021)

Healthy controls in Clusters 1-4 showed some symptoms resembling the ones of the

psychiatric patients in these clusters. However, it appears that these symptoms were

insufficient or not severe enough for a formal diagnosis of a mental illness. These

healthy individuals might have only exhibited the short-term symptoms, such as those

caused by a recent adverse life event. They may, alternatively, still develop a psychiatric

disorder later during their lifetime. Similar to the MDD subtypes analysis, ADHD

PGS appeared as (nominally) significant between healthy controls grouped to different

clusters. Follow-up assessments within the same cohort may reveal which share of

these individuals stays healthy over time.

Combining PGS with family history

Analyses with PGS and family history showed limited or non-existent significant

differences between Clusters 1-3. For the extreme Clusters 0 and 4, ranked on the two

opposite sides of the severity scale, both the univariate differences and the prediction

scores of classification models were the strongest. These findings go in line with

the PGS distribution shown in Figure 2.4 - PGS still might have a good predictive

value only for individuals in the lowest and highest risk groups. As mentioned in

the Background chapter, this imperfect accuracy and limited power of stand-alone

PGS are in general expected since genetic components are not the only risk factors

for diseases, and the PGS can currently explain only part of the genetic component
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of a given condition (Wray et al., 2020). Therefore, combining PGS with other risk

information of an individual is of great importance (Hujoel et al., 2021; Murray et al.,

2020; Bigdeli et al., 2016) and was confirmed also in this thesis - the model with both

family history and PGSs significantly improved the variance explained.

Even though the significance of PGS is not so strong and mostly expressed in the

extreme clusters, some findings correspond to the effects identified in the previous

studies (Lee et al., 2019b; Howard et al., 2019; Coleman et al., 2020; Pardiñas et al.,

2018; Wray et al., 2018): schizophrenia, MDD, and psychiatric cross-disorder PGS were

significantly higher in the comparison of Cluster 4 and Cluster 0, while the PGS for

educational attainment was lower.

Moreover, the genetic analyses with PGS and family history show the importance

of focusing both on univariate and multivariate statistical approaches, as the latter

can uncover the relationships between variables and their interactions. For example,

the univariate analysis in form of significance testing found 6 significant variables for

Cluster 4 vs. all comparison, while the Lasso model for Cluster 4 vs. all assigned non-zero

coefficients to 16 variables. PGS that did not show the association in the univariate

testing (e.g. Neuroticism, Hedonic well-being) might not be informative enough on

their own, but are contributing when observed in combination with other PGSs and

family history. Hence, it is beneficial to focus on both types of analyses to determine

the possible links between the variables.

Importance of transdiagnostic approaches and severity assessment

The clustering results in this thesis (and Pelin et al., 2021) demonstrate the importance

of transdiagnostic clustering approaches, stratifying the sample consisting of different

psychiatric disorders. Individuals diagnosed with the same psychiatric disorder can ex-

perience very heterogeneous symptoms and have different levels of impairment. Hence,

they might require different treatment regimes or clinical interventions. Moreover,

their symptoms may partially overlap with symptoms occurring in patients formally

diagnosed with different diagnoses, emphasizing the need for symptom-specific rather

than diagnosis-specific treatment (Pelin et al., 2021). Results also show that inclusion

of healthy controls in such studies is beneficial, as it may either detect individuals in

remission (psychiatric patients in Cluster 0) or individuals that are at risk for devel-

oping a psychiatric disorder if they continue to exhibit the symptoms of the specific

group they are in (healthy controls in Clusters 1-4). These findings go in line with the
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assumption that the symptom space is dimensional and that mental health could be

conceptualized along continuous dimensions, with mental well-being on the one end

and severe disease on the other. Clinically, such an approach, if supported by future

studies, might help to decide whether or not to clinically intervene, and if the clinical

intervention is needed - which level of the treatment is required given the symptom’s

severity (Dalgleish et al., 2020).

Computational approaches in psychiatric research

A very common approach in dealing with high-dimensional data and correlated features

is to apply the PCA to reduce the complexity before submitting the data further into

the clustering algorithm. In this work, however, we took the advantage of a more

complex subspace clustering algorithm that is optimized for handling a higher number

of correlated features and therefore, does not require any kind of prior application of

global dimensionality reduction methods. Indeed, we showed that using more complex

algorithms like HDDC could be beneficial when working with the data coming from a

sample of patients diagnosed with complex psychiatric disorders since it can capture

more than the distinction between health and disease (Section 4.1.7). However, the

algorithm used in this work is a type of clustering algorithm that relies on a previously

given number of clusters and a discrete categorization. With an assumption of the

existence of a symptom continuum spanning from health to severe mental illness,

future studies might examine the methods which incorporate the concept of continuum

into their objective function (Shah and Koltun, 2018; Pelin et al., 2021).

The results of feature selection analysis showed poor generalizability of the prediction

model and unstable sets of SNPs chosen across different runs, both when predicting

the identified Cluster 0, as well as the formal labels. This can lead us to conclude that

for the analysis including a high number of SNPs, the univariate approaches, such as

GWAS, appear to be more promising to date (Saeys et al., 2007). Still, the multivariate

approaches have received attention and could produce significant advancements with

the development of new methods, standards, validation, and transparency (Bracher-

Smith et al., 2020; Qian et al., 2020). Moreover, with the ultimate goal of facilitating

disease association studies, it is necessary to apply these kinds of methods to larger

datasets. This is especially important for psychiatric disorders, which show substantially

smaller single SNP effect sizes in the studies, compared to the common chronic diseases

(Zhang et al., 2018a). Therefore, to test our approach for feature selection, it would be

beneficial to apply it to the larger sample, potentially from publicly available datasets.
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5.2 Outlook

Data-driven approaches in psychiatry offer great advantages to the field, by uncovering

the patterns and relations hidden in the data available nowadays. Such methods

may contribute to gain a deeper understanding of the underlying mechanisms of

the disorders and improve diagnostics and treatment. We have demonstrated that

transdiagnostic clustering approaches might help to better understand the heterogeneity

between and within psychiatric disorders. Moreover, if applied to other cohorts, they

might identify the groups of patients that share the clinical symptoms and, hence, could

benefit from similar treatments. However, the path to the paradigm shift in psychiatric

nosology is still long and strewn with challenges.

To date, there are many clustering studies with different approaches with respect

to the scope of psychiatric disorders observed, data modalities, or machine learning

algorithms used. These various methodologies between studies result in many different

taxonomic solutions and further research is needed to investigate similarities as well as

discrepancies between them to ultimately reach a consensus.

There is no doubt that psychiatric disorders are extremely complex and heterogeneous

in their nature, and therefore, data-driven methods chosen to deal with such data have

to be carefully considered. Challenges posed to the clustering algorithms, such as the

choice of similarity metric and high-dimensionality, all discussed in the Background

chapter, are playing a big role in the resulting differences in taxonomic solutions. Two

possible solutions could be considered to decrease the discrepancies coming from this

methodological part.

First, researchers might develop richer clustering models that incorporate domain

knowledge into the process and guide the algorithm toward clinically relevant variation

(Marquand et al., 2016). Domain knowledge of medical doctors may include the data

features they specifically focus on while assessing the clinical picture and deciding

on the treatment regime. These features should not only be based on the current

symptoms, but also on the historical data such as past disorder developments and

treatment responses, and the expected trajectory of the disease progression. This

type of data could be collected, summarized, and validated by a large number of

practitioners over years, based on a large number of cases. Clearly, the collection of

such information is not an easy endeavor as it requires a big collaborative effort of

like-minded researchers and medical practitioners.

111



5 Discussion and Outlook

Second, longitudinal clustering approaches may help refine psychiatric nosology, by

identifying the individual disease trajectories and forming the groups of heterogeneous

disease development pathways (Fountain et al., 2012; Rhebergen et al., 2012). This way,

the further course of disease development may be better understood and predicted, and

clinical management choices might be better informed. For example, the individuals in

the same disease trajectory cluster might profit from similar treatment, irrespective of

the formal diagnostic label. However, longitudinal studies are not easy to establish and

can be very expensive as they take a lot of time during which the sample size often

decreases as the participants withdraw from the study.

This work is part of the FOR2107 study which is intended to be a longitudinal study,

however, at the time of writing, only the baseline time point was available and therefore,

the cross-sectional clustering was performed. The future work within this cohort

may reveal many interesting relationships and new insights. For example, it may be

beneficial to determine the cluster changes over time, assess whether healthy controls

in the higher severity clusters are indeed at risk to develop a psychiatric disorder, or

apply longitudinal clustering methods. Moreover, it would be interesting to conduct

a follow-up project which would include genetic variables in the clustering process

to determine the differences to the clusters identified with the clinical variables and

possible relationships between symptoms and genetic underpinnings.

To conclude, today’s technologies together with the amounts of data generated present

enormous opportunities for researchers aiming for an improvement of the current

psychiatric nosology. These opportunities and big collaborative efforts may indeed lead

us to the personalized treatments and, thus, improved lives of the ones suffering from

mental illnesses.
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Appendix

Methods A1
Individual-level quality control

Discovery sample

Of 1623 individuals eligible for the discovery sample, 3 were excluded because they

withdrew their consent and one for missing diagnostic information from all subsequent

analysis. Next, 47 pairs of genetic relatives were identified in PLINK1 using the

command –genome. Of each pair showing a PI-HAT ≥ 12.5, the individual with the

higher genotyping rate was kept in the analyses. Finally, 322 individuals with missing

data in any of the 57 variables used for clustering were omitted. The final discovery

sample consisted of 1250 individuals, including 590 healthy controls, 477 MDD, 75

BD, 25 SZA, and 53 SCZ patients, and 30 individuals with other diagnoses disorders

including anxiety disorders, adjustment disorders, and substance use disorders.

Replication sample

Of 855 individuals eligible for the replication dataset, one was excluded because of

a withdrawn consent and two for missing diagnostic information. Next, 27 relatives

were removed using the same procedure as applied for the discovery sample. Finally,

201 individuals were excluded due to missing data in any of the variables used for

clustering. The final replication sample for the analysis consisted of 622 individuals,

including 240 healthy controls, 283 MDD, 44 BD, 13 SZA, and 17 SCZ patients, and

25 individuals with other diagnoses including anxiety, adjustment, and substance use

disorders.

Source: Pelin et al., 2021

1PLINK is a free, open-source whole genome association analysis toolset, designed to perform
a range of basic, large-scale analyses in a computationally efficient manner.
Source: https://zzz.bwh.harvard.edu/plink/
Purcell, Shaun, et al. "PLINK: a tool set for whole-genome association and population-based
linkage analyses." The American journal of human genetics 81.3 (2007): 559-575.
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Table A1
Variables used in the clustering procedure

Category Variable, mean (SD) Discovery Replication

A
tt

ac
hm

en
t

st
yl

e

RSQ Anxiety of
separation

2.7 (0.7) 2.7 (0.7)

RSQ Avoidance of
closeness

2.5 (0.9) 2.5 (0.9)

RSQ Desire for
independence

3.9 (0.8) 3.97 (0.7)

RSQ Lack of trust 2.3 (0.9) 2.4 (0.9)

D
ep

re
ss

io
n

an
d

an
xi

et
y

le
ve

l BDI-II Sum 10.7 (10.8) 11.3 (10.3)
HAMA Sum 7.3 (7.9) 8.4 (8.2)
HAMD Sum21 5.4 (6.6) 6.1 (6.8)
STAIS 42.2 (13.2) 43 (12.8)
STAIT 43.2 (14.2) 44.2 (13.8)

Anhedonia SHAPS 1.99 (2.9) 1.97 (2.7)

Li
fe

ev
en

ts
an

d
st

re
ss

LEQ Negative Events
score

10 (13.8) 10.4 (12.3)

LEQ Positive Events
score

9.8 (9.3) 9.4 (9.3)

PSS Sum 22.8 (10.8) 23.8 (10.5)

M
al

tr
ea

tm
en

t
in

ch
ild

ho
od

an
d

yo
ut

h

ACE Sum 1.6 (1.9) 1.6 (1.8)
CTQ Emotional abuse 9.1 (4.7) 9.1 (4.5)
CTQ Emotional neglect 10.7 (5.2) 11.1 (5.2)
CTQ Physical abuse 6.2 (2.6) 6.1 (2.4)
CTQ Physical neglect 7.2 (2.7) 6.8 (2.5)
CTQ Sexual abuse 5.8 (2.5) 5.7 (2.5)

Mania Symp. YMRS 1.2 (2.5) 1.4 (2.7)
Neg. Symp. SANS sum score 5.7 (9.9) 4.3 (7.3)
Pos. Symp. SAPS sum score 1.4 (5.2) 0.7 (2.7)

Pe
rs

on
al

it
y

NEO-FFI
Agreeableness

33.1 (6.0) 33.2 (6.1)

NEO-FFI
Conscientiousness

32 (7.5) 32.2 (7.4)

NEO-FFI Extraversion 26.4 (8.2) 25.8 (8.2)
NEO-FFI Neuroticism 22.1 (10.5) 23.1 (10.2)
NEO-FFI Openness to
experience

30.3 (7.0) 30.4 (6.8)

SPQB (Schizotypy) 5.95 (4.7) 5.97 (4.7)
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Pr
ot

ec
ti

ve
fa

ct
or

s

Maternal bonding 24.7 (8.6) 24.4 (8.5)
Paternal bonding 22.3 (8.7) 21.2 (8.9)
RS25 Sum Score
(Resilience)

125.4 (27.2) 125.1 (26.9)

Social support 4.1 (0.8) 4.1 (0.7)

SF
H

ea
lt

h
Su

rv
ey

(Q
ua

lit
y

of
lif

e)

SF36 Bodily pain 76.3 (26.2) 74.7 (26.1)
SF36 Energy/fatigue 50.2 (23.0) 47.5 (22.1)
SF36 General health 66 (23.4) 68.1 (23)
SF36 Mental health 64.3 (22.6) 62.8 (22.1)
SF36 Physical
functioning

89.5 (17.1) 89.8 (15.5)

SF36 Role emotional 65.5 (42.4) 60.6 (43.2)
SF36 Role physical 76.6 (36.7) 71.2 (36.1)
SF36 Social functioning 73.3 (30) 70.4 (30.1)

Sy
m

pt
om

ch
ec

kl
is

t

SCL90R Additional
Items

4.1 (4.0) 4.4 (3.8)

SCL90R Anxiety 5.4 (6.7) 5.4 (6.2)
SCL90R Depression 11.4 (11.9) 12.2 (11.6)
SCL90R Global severity
index

0.6 (0.6) 0.6 (0.5)

SCL90R Hostility 2.9 (3.7) 3.2 (3.9)
SCL90R Interpersonal
sensitivity

6.8 (7.3) 6.96 (7.0)

SCL90R
Obsessive–compulsive
behavior

8.4 (8.1) 8.7 (7.7)

SCL90R Paranoid
ideation

3.5 (4.4) 3.3 (4.0)

SCL90R Phobic anxiety 2.3 (4.1) 2.3 (3.9)
SCL90R Positive
symptom distress Index

1.5 (0.5) 1.5 (0.5)

SCL90R Positive
symptom total

29.8 (21.0) 31.2 (19.5)

SCL90R Psychoticism 3.9 (5.2) 3.7 (4.9)
SCL90R Somatization 6.96 (7.1) 7.1 (6.5)

N
eu

ro
-

ps
yc

ho
lo

gy

Verbal IQ 113.99 (13.7) 113.8 (13.4)
VLMT Sum 56.8 (10.2) 56.1 (9.6)
Corsi block-tapping test 7.3 (3.4) 17.2 (3.1)
Letter Number Span
test

16.1 (3.2) 16.1 (3.4)

Source: Pelin et al., 2021
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Table A2
Characterization of the discovery sample and its clusters regarding variables
not used in the clustering process

Variable Full Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

N 1250 535 38 266 215 196
Age, mean (SD) 35.1

(13.0)
31.7
(11.9)

38.6
(13.9)

35.3
(12.7)

37.9
(13.7)

40.3
(12.8)

Gender - male, N (%) 483
(39%)

205
(38%)

9 (24%) 106
(40%)

74 (34%) 89 (45%)

AAO*, mean (SD) 25.2
(11.9)

24.5 (9.9) 29.6
(13.3)

23.3
(11.5)

27.8
(12.8)

24.4
(11.4)

Years of education,
mean (SD)

13.5 (2.6) 14.4 (2.4) 13.3 (2.6) 13.8 (2.6) 13.1 (2.8) 12.1 (2.7)

BMI, mean (SD) 25.3 (5.5) 23.7 (4.3) 24.9 (5.1) 24.8 (4.9) 27.0 (6.6) 28.1 (6.4)
GAF score, mean (SD) 76.5

(19.2)
91.5 (7.7) 73.1

(17.2)
72.5
(15.8)

65.2
(15.8)

53.8
(14.6)

Positive Symptoms (SAPS)

Hallucinations, mean
(SD)

0.3 (1.8) 0.03
(0.21)

0 (0) 0.03
(0.23)

0.07
(0.55)

1.49
(4.24)

Bizarre Behavior, mean
(SD)

0.09 (0.7) 0.01
(0.13)

0 (0) 0.06
(0.31)

0.08
(0.53)

0.41
(1.53)

Positive Formal
Thought Disorder,
mean (SD)

0.5 (1.9) 0.08
(0.43)

0.05
(0.32)

0.29 (1.1) 0.5 (1.4) 2.33
(4.13)

Delusions, mean (SD) 0.5 (2.5) 0.02
(0.15)

0.05
(0.23)

0.19
(0.87)

0.09
(0.49)

2.48
(5.75)

Negative Symptoms (SANS)

Anhedonia, mean (SD) 1.9 (3.5) 0.1 (0.7) 2.1 (3.5) 2.3 (3.4) 3.1 (4.1) 4.5 (4.9)
Affective blunting,
mean (SD)

1.5 (3.6) 0.3 (0.9) 1.4 (2.9) 1.83 (3.9) 1.72
(3.26)

4.2 (5.9)

Avolition / Apathy,
mean (SD)

1.3 (2.5) 0.09
(0.47)

0.8 (1.8) 1.4 (2.4) 1.8 (2.4) 3.8 (3.7)

Alogia, mean (SD) 0.5 (1.6) 0.07 (0.4) 0.2 (0.9) 0.7 (1.8) 0.6 (1.5) 1.5 (2.8)
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Medication and hospitalization

Hospitalization - nr. of
times, mean (SD)

1.1 (2.2) 0.2 (1.0) 1.2 (2.9) 1.2 (2.1) 1.7 (2.2) 3.1 (3.0)

Medication index load,
mean (SD)

0.8 (1.4) 0.1 (0.6) 0.6 (1.1) 0.7 (1.7) 1.5 (1.7) 1.9 (1.8)

Antidepressant, yes, N
(%)

350
(28%)

23 (4%) 12 (32%) 94 (35%) 122
(57%)

99 (51%)

Antipsychotic, yes, N
(%)

187
(15%)

12 (2%) 4 (11%) 41 (15%) 46 (21%) 84 (43%)

Mood stabilizer, yes, N
(%)

65 (5%) 9 (2%) 1 (3%) 7 (3%) 22 (10%) 26 (13%)

Antidepressant +
Antipsychotic, yes, N
(%)

111 (9%) 3 (1%) 2 (5%) 29 (11%) 35 (16%) 42 (21%)

Antidepressant + Mood
stabilizer, yes, N (%)

40 (3%) 4 (1%) 1 (3%) 3 (1%) 16 (7%) 16 (8%)

Antipsychotic + Mood
stabilizer, yes, N (%)

31 (2%) 3 (1%) 1 (3%) 4 (2%) 9 (4%) 14 (7%)

Smoking

No or minimal
addiction, N (%)

1071
(86%)

498
(93%)

34 (89%) 228
(86%)

175
(81%)

136
(69%)

Average addiction, N
(%)

68 (5%) 21 (4%) 1 (3%) 19 (7%) 8 (4%) 19 (10%)

Strong addiction, N (%) 70 (6%) 10 (2%) 1 (3%) 16 (6%) 22 (10%) 21 (11%)
Very strong addiction,
N (%)

41 (3%) 6 (1%) 2 (5%) 3 (1%) 10 (5%) 20 (10%)

Sociodemographic - Type of living

Alone, N (%) 342
(27%)

105
(20%)

16 (42%) 90 (34%) 64 (30%) 67 (34%)

Marriage/life partner,
N (%)

277
(22%)

108
(20%)

7 (18%) 51 (19%) 62 (29%) 49 (25%)

Parents/relatives, N
(%)

128
(10%)

45 (8%) 3 (8%) 29 (11%) 27 (13%) 24 (12%)

Non-martial partner, N
(%)

167
(13%)

89 (17%) 4 (11%) 29 (11%) 21 (10%) 24 (12%)

Therapeutic facilities, N
(%)

12 (1%) 0 (0%) 0 (0%) 0 (0%) 1 (0%) 11 (6%)

Shared flat, N (%) 303
(24%)

185
(35%)

7 (18%) 61 (23%) 31 (14%) 19 (10%)

Other, N (%) 15 (1%) 2 (0%) 1 (3%) 4 (2%) 6 (3%) 2 (1%)
Sociodemographic - Income

Own work, N (%) 541
(43%)

259
(48%)

16 (42%) 117
(44%)

87 (40%) 62 (32%)

Parent/Partner/other,
N (%)

334
(27%)

201
(38%)

10 (26%) 53 (20%) 48 (22%) 22 (11%)
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Wage replacement /
Sickness pay /
Unemployment pay, N
(%)

276
(22%)

35 (7%) 11 (29%) 70 (26%) 60 (28%) 100
(51%)

Other, N (%) 86 (7%) 35 (7%) 1 (3%) 24 (9%) 17 (8%) 9 (5%)
Sociodemographic -
Social contacts
Sociodemographic - Social contacts

1 time per week, N (%) 274
(22%)

97 (18%) 10 (26%) 64 (24%) 60 (28%) 43 (22%)

Several times per week,
N (%)

722
(58%)

402
(75%)

14 (37%) 139
(52%)

90 (42%) 77 (39%)

1 time every 14 days, N
(%)

112 (9%) 20 (4%) 4 (11%) 31 (12%) 31 (14%) 26 (13%)

1 time in month,
including distant
acquaintances, N (%)

95 (8%) 10 (2%) 7 (18%) 27 (10%) 22 (10%) 29 (15%)

No social contact apart
from meeting at work,
N (%)

35 (3%) 4 (1%) 3 (8%) 4 (2%) 11 (5%) 13 (7%)

Meeting friends under
no circumstances, N
(%)

7 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (4%)

Source: Pelin et al., 2021
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Table A3
Characterization of the discovery sample and its clusters regarding variables
used in the clustering process

Category Variable, mean (SD) Full Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

N 1250 535 38 266 215 196

A
tt

ac
hm

en
t

st
yl

e

RSQ Anxiety of
separation

2.7 (0.7) 2.5 (0.5) 2.8 (0.8) 2.9 (0.8) 2.9 (0.8) 2.8 (0.8)

RSQ Avoidance of
closeness

2.5 (0.9) 1.98 (0.6) 2.7 (0.9) 2.9 (0.8) 2.5 (0.8) 3.1 (0.9)

RSQ Desire for
independence

3.9 (0.8) 3.8 (0.8) 4.0 (0.7) 4.1 (0.7) 3.8 (0.9) 4.0 (0.8)

RSQ Lack of trust 2.3 (0.9) 1.8 (0.6) 2.8 (0.9) 2.7 (0.8) 2.5 (0.9) 3.0 (0.9)

D
ep

re
ss

io
n

an
d

an
xi

et
y

le
ve

l

BDI-II Sum 10.7
(10.8)

3.2 (3.3) 15.1
(12.8)

12.7 (9.6) 17.6
(10.1)

20.3
(11.7)

HAMA Sum 7.3 (7.9) 2.2 (2.5) 9.7 (8.6) 7.6 (6.4) 13.1 (8.6) 14.0 (8.8)
HAMD Sum21 5.4 (6.6) 1.1 (1.6) 6.3 (6.7) 5.9 (5.7) 9.9 (7.0) 10.95

(7.5)
STAIS 42.2

(13.2)
33 (6.4) 48.9

(12.2)
44.9
(11.7)

51.7
(13.1)

51.5
(13.1)

STAIT 43.2
(14.2)

32.6 (6.9) 49.3
(14.1)

47.6
(12.8)

53.1
(12.5)

54.2
(12.5)

Anhedonia SHAPS 1.99 (2.9) 0.6 (1.2) 2.6 (4.0) 2.3 (2.7) 3.5 (3.5) 3.6 (3.7)

Li
fe

ev
en

ts
an

d
st

re
ss

LEQ Negative Events
score

10 (13.8) 3.3 (4.3) 12.4
(11.8)

9.99 (8.9) 14.2
(11.1)

23.4
(24.1)

LEQ Positive Events
score

9.8 (9.3) 9.4 (7.1) 8.1 (7.7) 9.5 (8.4) 8.7 (9.5) 12.5 (14)

PSS Sum 22.8
(10.8)

15 (6.1) 26.7
(10.8)

25.6 (8.9) 31.1 (9.7) 30.6 (9.6)

M
al

tr
ea

tm
en

t
in

ch
ild

ho
od

an
d

yo
ut

h

ACE Sum 1.6 (1.9) 0.5 (0.8) 1.7 (1.6) 2.4 (1.7) 1.3 (1.3) 3.96 (2.4)
CTQ Emotional abuse 9.1 (4.7) 6.3 (1.7) 9.9 (4.9) 11.4 (4.2) 7.99 (3.0) 14.6 (5.9)
CTQ Emotional neglect 10.7 (5.2) 7.5 (2.6) 11.8 (5.4) 14.1 (4.1) 9.2 (3.5) 16.5 (5.4)
CTQ Physical abuse 6.2 (2.6) 5.3 (0.7) 6.4 (2.2) 6.4 (2) 5.5 (1.1) 9.5 (4.6)
CTQ Physical neglect 7.2 (2.7) 5.8 (1.4) 7.2 (2.2) 8 (2.2) 6.4 (1.6) 10.4 (3.7)
CTQ Sexual abuse 5.8 (2.5) 5.1 (0.4) 5.8 (2.0) 5.8 (1.9) 5.6 (1.7) 7.98 (4.9)

Mania Symp. YMRS 1.2 (2.5) 0.5 (1.1) 0.8 (1.4) 1.1 (1.8) 1.3 (2) 2.9 (4.9)
Neg. Symp. SANS sum score 5.7 (9.9) 0.6 (1.7) 5.2 (8.6) 6.9 (9.6) 7.96 (9.1) 15.6

(14.4)
Pos. Symp. SAPS sum score 1.4 (5.2) 0.1 (0.6) 0.1 (0.4) 0.6 (1.6) 0.7 (1.8) 6.7 (11.5)
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NEO-FFI
Agreeableness

33.1 (6.0) 35.6 (5.1) 30.5 (4.8) 31.1 (5.5) 32.9 (6.3) 29.5 (5.9)

NEO-FFI
Conscientiousness

32 (7.5) 34.9 (6.1) 30.1 (6.9) 29.4 (7.7) 30.7 (7.5) 29.4 (7.8)

NEO-FFI Extraversion 26.4 (8.2) 30.8 (6.1) 23.7 (9.2) 23.5 (8) 24.2 (7.3) 21.1 (7.9)
NEO-FFI Neuroticism 22.1

(10.5)
14.7 (6.6) 26.9 (9.5) 26 (9.4) 28.2 (9.1) 29.4 (9.1)

NEO-FFI Openness to
experience

30.3 (7.0) 31.2 (6.6) 29.1 (5.2) 31.1 (6.9) 28.8 (7.4) 28.6 (7.4)

SPQB (Schizotypy) 5.95 (4.7) 2.9 (2.6) 7.0 (4.7) 7.95 (4.2) 6.6 (4.3) 10.6 (4.8)

Pr
ot

ec
ti

ve
fa

ct
or

s

Maternal bonding 24.7 (8.6) 29.8 (4.8) 21.6 (9.9) 19.4 (7.4) 27 (6.2) 15.7 (8.7)
Paternal bonding 22.3 (8.7) 26.95

(6.3)
22.5 (9.2) 16.9 (7.4) 23.2 (7.6) 15.7 (8.7)

RS25 Sum Score
(Resilience)

125.4
(27.2)

140.9
(16.8)

119.9
(25.1)

117.9 (26) 112.6
(27.3)

108.6
(30.1)

Social support 4.1 (0.8) 4.6 (0.4) 3.8 (1.0) 3.8 (0.8) 4.0 (0.8) 3.5 (0.96)

SF
H

ea
lt

h
Su

rv
ey

(Q
ua

lit
y

of
lif

e)

SF36 Bodily pain 76.3
(26.2)

88.9
(15.6)

53.9
(23.9)

78.9
(22.8)

61.1
(29.4)

59.7 (30)

SF36 Energy/fatigue 50.2
(23.0)

66.5
(13.0)

40 (25.4) 45.9
(19.3)

31.2
(18.5)

34.1
(22.2)

SF36 General health 66 (23.4) 81.2
(14.0)

57.9
(26.6)

64.7
(19.8)

49.4
(20.7)

45.8
(21.3)

SF36 Mental health 64.3
(22.6)

81.4 (9.8) 55.6 (23) 59.4
(18.9)

46.4
(19.3)

45.6
(21.3)

SF36 Physical
functioning

89.5
(17.1)

97.6 (4.9) 81.97
(19.95)

93.3 (9.1) 78.2
(23.2)

76.3
(22.5)

SF36 Role emotional 65.5
(42.4)

94.6
(16.4)

56.1
(43.2)

58.4
(41.3)

31.5
(39.4)

34.9
(42.3)

SF36 Role physical 76.6
(36.7)

96.8
(11.5)

52 (39.2) 85.1
(27.9)

44.8
(40.9)

49.5
(43.5)

SF36 Social functioning 73.3 (30) 95.2 (10) 66.4 (31) 67.6
(26.0)

49.4
(28.2)

48.5
(29.5)
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SCL90R Additional
Items

4.1 (4.0) 1.6 (1.7) 5.1 (3.8) 4.2 (3.2) 6.9 (4.4) 7.7 (4.3)

SCL90R Anxiety 5.4 (6.7) 1.3 (1.7) 7.6 (6.9) 5.5 (4.96) 9.6 (7.3) 11.3 (8.6)
SCL90R Depression 11.4

(11.9)
2.7 (2.7) 15.7

(13.8)
13.4
(10.0)

20.4
(11.7)

21.7
(12.4)

SCL90R Global severity
index

0.6 (0.6) 0.2 (0.1) 0.8 (0.6) 0.6 (0.4) 0.98 (0.6) 1.2 (0.6)

SCL90R Hostility 2.9 (3.7) 0.8 (1.1) 4.1 (4.2) 3.0 (2.7) 4.9 (4.2) 5.8 (5.1)
SCL90R Interpersonal
sensitivity

6.8 (7.3) 1.9 (2.1) 8.6 (8.1) 8.8 (6.4) 10.3 (7.1) 13.8 (8.4)

SCL90R
Obsessive–compulsive
behavior

8.4 (8.1) 2.7 (2.4) 10.1 (8.0) 9.5 (6.6) 14.6 (8.3) 15.3 (8.4)

SCL90R Paranoid
ideation

3.5 (4.4) 0.8 (1.4) 4.2 (4.7) 4.1 (3.5) 4.9 (4.6) 8.1 (5.3)

SCL90R Phobic anxiety 2.3 (4.1) 0.3 (0.8) 2.4 (3.3) 2.1 (2.7) 3.9 (4.6) 6.4 (6.3)
SCL90R Positive
symptom distress Index

1.5 (0.5) 1.1 (0.2) 1.7 (0.5) 1.5 (0.4) 1.9 (0.5) 1.98 (0.6)

SCL90R Positive
symptom total

29.8
(21.0)

12.8 (8.7) 37.0
(20.7)

35.9
(16.7)

44.4
(17.4)

50.4
(17.7)

SCL90R Psychoticism 3.9 (5.2) 0.7 (1.1) 4.9 (5.2) 4.3 (3.9) 6.2 (5.1) 9.4 (7.0)
SCL90R Somatization 6.96 (7.1) 2.8 (2.4) 10.3 (7.4) 6.3 (4.6) 12.1 (7.9) 12.8 (9.3)

N
eu

ro
ps

yc
ho

lo
gy

Verbal IQ 114 (13.7) 114.8
(13.6)

116.1
(12.2)

115.7
(13.9)

112.4
(12.8)

110.8
(14.5)

VLMT Sum 56.8
(10.2)

60.0 (8.6) 57.3 (9.5) 56.95
(8.7)

55.99
(9.9)

48.7
(11.7)

Corsi block-tapping test 17.3 (3.4) 18.4 (3.2) 17.2 (3.4) 17.1 (3.0) 16.7 (3.2) 15.3 (3.6)
Letter Number Span
test

16.1 (3.2) 16.8 (3.1) 16.4 (2.9) 16.5 (2.8) 15.9 (3) 14 (3.4)

Source: Pelin et al., 2021
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Table A4
Genetic lasso regularized regression prediction models – summary statistics
from 1000 runs
The table shows summary statistics from 1000 runs of lasso regularized regression models applied to characterize
clusters using genetic variables. The numbers in the table represent the number of times the variable had a non-zero
coefficient in 1000 runs and, in parentheses, the mean coefficient calculated from 1000 runs. The standard error of the
mean is shown in square brackets.

Variable Cluster 0
vs. all

Cluster 1
vs. all

Cluster 2
vs. all

Cluster 3
vs. all

Cluster 4
vs. all

Age
1000 566 215 928 1000
-0.3 [0.004] 0.09 [0.004] 0.01 [0.001] 0.15 [0.003] 0.38 [0.002]

Gender
81 672 199 664 953
0 [0.000] -0.19 [0.006] 0.01 [0.001] -0.08 [0.002] 0.14 [0.002]

AC1
68 471 431 633 242
0 [0.000] -0.03 [0.003] -0.03 [0.001] 0.07 [0.002] 0.01 [0.001]

AC2
312 513 175 512 235
-0.01 [0.001] 0.07 [0.004] 0 [0.001] 0.03 [0.001] 0 [0.001]

AC3
272 535 285 482 773
0.01 [0.001] 0.13 [0.005] -0.01 [0.001] 0.02 [0.001] -0.07 [0.002]

AC4
334 601 154 424 960
0.02 [0.001] 0.13 [0.004] 0 [0.001] -0.01 [0.001] -0.15 [0.002]

AC5
70 574 338 558 836
0 [0.000] 0.1 [0.004] -0.02 [0.001] -0.04 [0.002] 0.09 [0.002]

AC6
64 474 211 438 516
0 [0.000] -0.01 [0.003] 0.01 [0.001] 0.02 [0.001] -0.03 [0.001]

AC7
69 493 458 645 310
0 [0.000] -0.05 [0.003] 0.04 [0.002] -0.07 [0.002] 0.01 [0.001]

AC8
65 457 186 473 248
0 [0.000] -0.02 [0.002] 0.01 [0.001] -0.02 [0.001] 0 [0.001]

Family History Any
1000 466 964 474 1000
-0.4 [0.003] 0.03 [0.006] 0.15 [0.003] 0.02 [0.002] 0.34 [0.003]

Family History BD
517 529 308 430 1000
-0.04 [0.002] -0.32 [0.012] -0.02 [0.001] -0.03 [0.002] 0.24 [0.002]

Family History MDD
229 457 630 698 191
-0.01 [0.001] -0.06 [0.006] 0.04 [0.002] 0.07 [0.002] -0.01 [0.001]
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Family History SCZ
81 527 465 580 735
0 [0.000] -0.09 [0.009] -0.05 [0.002] 0.03 [0.002] 0.06 [0.002]

PGS Cross psychiatric
disorder

766 544 363 491 822
-0.07 [0.002] 0.34 [0.012] 0.02 [0.001] -0.07 [0.003] 0.08 [0.002]

PGS ADHD
82 495 156 475 249
0 [0.001] -0.15 [0.006] 0 [0.001] -0.02 [0.001] 0 [0.001]

PGS ASD
115 456 418 420 270
0 [0.000] -0.06 [0.004] 0.03 [0.001] 0 [0.001] 0.01 [0.001]

PGS BD
200 667 159 666 203
-0.01 [0.001] -0.26 [0.008] 0.01 [0.001] 0.1 [0.003] -0.01 [0.001]

PGS MDD
737 550 167 352 926
-0.06 [0.002] 0.09 [0.004] 0 [0.001] -0.01 [0.001] 0.13 [0.003]

PGS Schizophrenia
405 465 111 351 971
-0.02 [0.001] -0.14 [0.006] -0.01 [0.001] 0.01 [0.001] 0.18 [0.003]

PGS Educational
attainment

634 584 138 474 996
0.05 [0.002] -0.11 [0.004] 0 [0.000] 0.02 [0.001] -0.27 [0.003]

PGS Extraversion
314 490 352 530 918
-0.02 [0.001] 0.06 [0.003] -0.02 [0.001] 0.04 [0.002] 0.11 [0.002]

PGS Hedonic wellbeing
160 485 368 473 883
0.01 [0.001] 0.07 [0.004] 0.02 [0.001] -0.04 [0.002] -0.13 [0.003]

PGS Neuroticism
494 493 620 672 544
-0.03 [0.001] -0.1 [0.004] 0.05 [0.002] 0.1 [0.003] -0.05 [0.002]

Source: Pelin et al., 2021
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Table A5
Characterization of the replication sample and its clusters regarding variables
used in the clustering process

Category Variable, mean (SD) Full Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

N 1250 535 38 266 215 196

A
tt

ac
hm

en
t

st
yl

e

RSQ Anxiety of
separation

2.7 (0.7) 2.4 (0.5) 2.5 (0.6) 3.2 (0.8) 2.7 (0.8) 2.95 (0.9)

RSQ Avoidance of
closeness

2.5 (0.9) 1.9 (0.6) 2.4 (0.7) 3.3 (0.8) 2.4 (0.8) 2.96 (0.9)

RSQ Desire for
independence

3.97 (0.7) 3.9 (0.6) 3.95 (0.7) 3.96 (0.7) 3.9 (0.8) 4.1 (0.7)

RSQ Lack of trust 2.4 (0.9) 1.7 (0.5) 2.3 (0.6) 3.1 (0.8) 2.3 (0.8) 3 (0.9)

D
ep

re
ss

io
n

an
d

an
xi

et
y

le
ve

l BDI-II Sum 11.3
(10.3)

2.9 (2.8) 6.6 (5.7) 14.6 (8.4) 15.8 (9.1) 20.4
(12.1)

HAMA Sum 8.4 (8.2) 2.5 (3.0) 4.8 (4.5) 9.7 (6.8) 11.6 (7.5) 15.7
(10.2)

HAMD Sum21 6.1 (6.8) 1.3 (2.1) 2.9 (3.2) 7.4 (6.4) 8.8 (6.5) 12.2 (7.9)
STAIS 43 (12.8) 32.5 (6.0) 37.3 (8.8) 48.0 (9.4) 50.7

(11.8)
51.6
(13.1)

STAIT 44.2
(13.8)

31.3 (6.5) 38.3 (9.9) 52.8 (9.8) 51.8
(11.3)

53.9
(13.4)

Anhedonia SHAPS 1.97 (2.7) 0.4 (0.8) 0.9 (1.4) 3.0 (2.4) 3.3 (3.2) 3.2 (3.4)

Li
fe

ev
en

ts
an

d
st

re
ss

LEQ Negative Events
score

10.4
(12.3)

3.1 (3.4) 6.1 (5.8) 11.2 (8.9) 11.8 (8.6) 22.6
(19.1)

LEQ Positive Events
score

9.4 (9.3) 8.2 (7.1) 9.6 (7.9) 10.2 (8.3) 7.2 (7.5) 12.7
(13.8)

PSS Sum 23.8
(10.5)

14.4 (6.2) 19.3 (7.4) 27.9 (7.1) 29.5 (8.7) 31.9
(10.5)

M
al

tr
ea

tm
en

t
in

ch
ild

ho
od

an
d

yo
ut

h

ACE Sum 1.6 (1.8) 0.4 (0.6) 1.3 (1.3) 2.9 (1.6) 1.1 (1.3) 3.1 (2.3)
CTQ Emotional abuse 9.1 (4.5) 6.1 (1.5) 8.2 (2.8) 13.4 (4.8) 7.8 (3.0) 13.2 (5.5)
CTQ Emotional neglect 11.1 (5.2) 6.9 (2.1) 10.8 (3.7) 16.6 (4.7) 9.4 (3.4) 14.98

(6.1)
CTQ Physical abuse 6.1 (2.4) 5.2 (0.6) 5.7 (1.3) 6.0 (1.7) 5.5 (1.0) 8.4 (4.1)
CTQ Physical neglect 6.8 (2.5) 5.4 (1.0) 6.5 (1.4) 8.5 (2.3) 6.1 (1.7) 8.8 (3.6)
CTQ Sexual abuse 5.7 (2.5) 5 (0.3) 5.3 (1.0) 5.3 (1.0) 5.3 (1.2) 7.8 (4.8)

Mania Symp. YMRS 1.4 (2.7) 0.3 (0.7) 1.2 (1.7) 1.3 (2.2) 1.3 (1.7) 3.2 (4.6)
Neg. Symp. SANS sum score 4.3 (7.3) 0.3 (0.9) 1.7 (3.1) 3.96 (5.6) 6.4 (7.3) 10.4

(10.7)
Pos. Symp. SAPS sum score 0.7 (2.7) 0.04 (0.2) 0.2 (0.6) 0.5 (1.4) 0.4 (1.2) 2.8 (5.3)
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NEO-FFI
Agreeableness

33.2 (6.1) 37.4 (4.1) 32.6 (5.3) 30.0 (5.7) 34.5 (5.6) 29.96
(6.6)

NEO-FFI
Conscientiousness

32.2 (7.4) 36.3 (6) 32.7 (6.4) 29.5 (6.9) 30.9 (7.4) 29.9 (8.2)

NEO-FFI Extraversion 25.8 (8.2) 32 (5.8) 26.7 (6.8) 19.6 (6.3) 24.1 (8.2) 22.7 (8.5)
NEO-FFI Neuroticism 23.1

(10.2)
13.9 (6.6) 19.5 (8.2) 30.4 (7.3) 26.7 (8.7) 30.7 (8.6)

NEO-FFI Openness to
experience

30.4 (6.8) 32.7 (5.4) 30.7 (6.2) 29.5 (7.6) 29.2 (6.8) 29.3 (8)

SPQB (Schizotypy) 5.97 (4.7) 2.4 (2.4) 5.1 (3.6) 9.6 (4.9) 5.8 (4.2) 9.4 (4.8)

Pr
ot

ec
ti

ve
fa

ct
or

s

Maternal bonding 24.4 (8.5) 30.9 (4.1) 24.1 (6.6) 17.4 (8.6) 26.8 (6.9) 18.4 (9.6)
Paternal bonding 21.2 (8.9) 28.8 (5) 19.7 (7.2) 14.1 (7.9) 23.9 (7.7) 16.1 (9.2)
RS25 Sum Score
(Resilience)

125.1
(26.9)

145.1
(14.3)

134.0
(22.0)

105.3
(22.6)

116.9
(24.7)

109.8
(28.8)

Social support 4.1 (0.7) 4.7 (0.3) 4.3 (0.5) 3.5 (0.8) 4.1 (0.7) 3.7 (0.9)

SF
H

ea
lt

h
Su

rv
ey

(Q
ua

lit
y

of
lif

e)

SF36 Bodily pain 74.7
(26.1)

90.5
(13.3)

83.1
(18.6)

77.3
(21.7)

66.3
(28.9)

53.9
(27.9)

SF36 Energy/fatigue 47.5
(22.1)

66.4
(13.1)

58.1
(16.6)

38.98
(15.3)

30.8
(15.1)

34.6
(22.5)

SF36 General health 68.1 (23) 88.6
(12.8)

75.9
(16.3)

64.5
(16.6)

56.3
(20.8)

49.8
(22.4)

SF36 Mental health 62.8
(22.1)

83.7 (9.4) 73.4
(13.8)

55.1
(16.8)

48.2
(17.2)

45.5 (22)

SF36 Physical
functioning

89.8
(15.5)

97.7 (4.6) 94.8 (8.6) 92.5 (8.9) 85.6
(16.5)

77.4
(21.9)

SF36 Role emotional 60.6
(43.2)

95.8
(13.2)

81.1
(31.1)

47.5
(40.7)

27.9
(36.3)

36.4
(44.1)

SF36 Role physical 71.2
(36.1)

97.1
(10.2)

89.2
(17.8)

70.8
(28.7)

47.1 (37) 44.6
(40.9)

SF36 Social functioning 70.4
(30.1)

95.7 (9.1) 85.6
(17.6)

63.8
(28.3)

50.9
(26.5)

46.3
(30.1)
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SCL90R Additional
Items

4.4 (3.8) 1.6 (1.6) 2.8 (2.1) 5.6 (3.8) 5.6 (3.4) 7.5 (4.6)

SCL90R Anxiety 5.4 (6.2) 1.1 (1.4) 2.6 (2.5) 6 (5.6) 7.4 (5.6) 11.4 (8.1)
SCL90R Depression 12.2

(11.6)
2.7 (3.3) 6.5 (5.8) 16.1

(10.1)
18.0 (9.8) 22.4

(13.4)
SCL90R Global severity
index

0.6 (0.5) 0.2 (0.1) 0.3 (0.2) 0.8 (0.4) 0.8 (0.4) 1.2 (0.7)

SCL90R Hostility 3.2 (3.9) 0.9 (1.2) 1.7 (1.8) 4.3 (3.4) 3.9 (3.5) 6.6 (5.5)
SCL90R Interpersonal
sensitivity

6.96 (7.0) 1.7 (2.1) 4.1 (3.6) 11.2 (6.8) 8.0 (5.6) 13.6 (8.8)

SCL90R
Obsessive–compulsive
behavior

8.7 (7.7) 2.5 (2.6) 4.7 (3.99) 11.3 (5.9) 12.7 (6.5) 15.1 (9.0)

SCL90R Paranoid
ideation

3.3 (4.0) 0.7 (1.1) 1.9 (2.0) 4.7 (3.5) 3.3 (3.0) 7.3 (5.7)

SCL90R Phobic anxiety 2.3 (3.9) 0.2 (0.7) 0.6 (1.1) 2.5 (2.7) 2.8 (3.1) 6.3 (6.2)
SCL90R Positive
symptom distress Index

1.5 (0.5) 1.1 (0.2) 1.2 (0.2) 1.6 (0.4) 1.7 (0.4) 2.0 (0.6)

SCL90R Positive
symptom total

31.2
(19.5)

12.5 (9.1) 22.7
(11.9)

41.7
(15.9)

40.0
(14.5)

48.4
(19.9)

SCL90R Psychoticism 3.7 (4.9) 0.5 (1.0) 1.6 (1.8) 5.7 (4.1) 4.4 (3.9) 8.6 (7.1)
SCL90R Somatization 7.1 (6.5) 2.8 (2.1) 4.2 (3.2) 8.0 (5.9) 9.3 (5.7) 13.0 (8.7)

N
eu

ro
ps

yc
ho

lo
gy

Verbal IQ 113.8
(13.4)

117.4
(13.4)

116.4
(13.8)

110.1
(12.4)

112.5
(12.2)

109.3
(12.9)

VLMT Sum 56.1 (9.6) 60.6 (6.8) 56.2 (9.5) 54.7 (8.9) 55.6 (9.6) 52.4
(10.9)

Corsi block-tapping test 17.2 (3.1) 18.6 (2.6) 17.5 (2.7) 17.0 (3.1) 16.9 (3.4) 15.6 (3.1)
Letter Number Span
test

16.1 (3.4) 17.9 (2.6) 16.5 (3.2) 15.7 (3.1) 15.9 (3.3) 14.2 (3.6)

Source: Pelin et al., 2021
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Table A6
Significance testing with the Westfall and Young procedure – comparison of
discovery-replication pairs

After the discovery and replication clusters were matched, further statistical analysis, i.e., significance testing with the
Westfall and Young procedure (described in the Supplementary Methods S6), was carried out to confirm the matching
and homogeneity of linked discovery and replication clusters. All 57 variables which entered the clustering process
were tested. The table shows only the variables that were significantly different between the linked clusters. A matching
cluster assignment was confirmed for four clusters. n.s.: adjusted p>0.05

Discovery-Replication
cluster pair

Significant variable t- statistic

p-value
adjusted using
Westfall and

Young

p-value further
adjusted for the

number of
comparisons

(N = 5)

Cluster 0 – Cluster 0

SF36 General health 5.7 2 × 10−3 1 × 10−1

NEO-FFI Agreeableness 4.2 4 × 10−3 2 × 10−2

Letter Number Span test 4.1 4 × 10−3 2 × 10−2

Paternal Bonding 3.5 3 × 10−2 1 × 10−1(n.s.)
CTQ Physical Neglect -3.8 4 × 10−2 2 × 10−1(n.s.)

Cluster 2 – Cluster 2

NEO-FFI Extraversion -4.1 4 × 10−3 2 × 10−2

NEO-FFI Neuroticism 3.9 1 × 10−2 5.7 × 10−1(n.s.)
CTQ Emotional Neglect 3.8 2 × 10−2 8 × 10−2(n.s.)

RS25 Sum Score -3.8 2 × 10−2 8 × 10−2(n.s.)
RSQ Avoidance of closeness 3.4 4 × 10−2 2 × 10−1(n.s.)

RSQ Lack of trust 3.4 4 × 10−2 2 × 10−1(n.s.)

Cluster 3 – Cluster 3

SCL90R Paranoid ideation -4.1 4 × 10−3 2 × 10−2

SCL90R Somatization -3.9 6 × 10−3 3 × 10−2

SCL90R Psychoticism -3.8 6 × 10−3 3 × 10−2

SCL90R Global severity index -3.9 1 × 10−2 8 × 10−2(n.s.)
SF36 Physical functioning 3.5 2 × 10−2 1 × 10−1(n.s.)

SCL90R Interpersonal
sensitivity

-3.3 4 × 10−2 2 × 10−1(n.s.)

Cluster 4 – Cluster 4
CTQ Physical Neglect -3.8 7 × 10−3 3 × 10−2

SAPS -4.5 9 × 10−3 4 × 10−2

SANS -3.7 1.5 × 10−2 7 × 10−2(n.s.)

Source: Pelin et al., 2021
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Appendix

Figure A1
Sparse group Lasso analysis steps with Healthy vs. MDD phenotype
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