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Abstract

We study the qualitative properties of functions belonging to the corresponding De Giorgi

classes
ˆ

Br(1−σ)(x0)

Φ(x, |∇(u − k)±|) dx 6 γ

ˆ

Br(x0)

Φ

(

x,
(u − k)±

σr

)

dx,

where σ, r ∈ (0, 1), k ∈ R and the function Φ satisfies the non-logarithmic condition

(

r−n

ˆ

Br(x0)

[Φ
(

x,
v

r

)

]s dx

)
1
s

(

r−n

ˆ

Br(x0)

[Φ
(

x,
v

r

)

]−t dx

)
1
t

6 c(K)Λ(x0, r), r 6 v 6 K λ(r),

under some assumptions on the functions λ(r) and Λ(x0, r) and the numbers s, t > 1. These

conditions generalize the known logarithmic, non-logarithmic and non uniformly elliptic

conditions.

In particular, our results cover new cases of non uniformly elliptic double-phase, degen-

erate double-phase functionals and functionals with variable exponents.

Keywords: non-autonomous functionals, non-logarithmic conditions, continuity, Har-

nack’s inequality.

MSC (2010): 35B40, 35B45, 35B65.

1 Introduction and main results

To explain the point of view of this research consider the energy integrals
´

Ω

Φi(x, |∇u|)dx,

Φ1(x, v) = vp + a1(x)v
q, a1(x) > 0, osc

Br(x0)
a1(x) 6 Arq−p, A > 0, v > 0.

Φ2(x, v) = vp
(

1 + a2(x) log(1 + v)
)

, a2(x) > 0, osc
Br(x0)

a2(x) 6
A

log 1
r

, A > 0, v > 0.

In particular, these conditions imply

sup
Br(x0)

Φi
(

x,
v

r

)

6 γ(K) inf
Br(x0)

Φi
(

x,
v

r

)

, r 6 v 6 K, i = 1, 2. (1.1)
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Continuity and Harnack inequalities.... 2

It is well known (see [9]) that the minimizers of the corresponding integrals of the calculus

of variations satisfy Harnack’s type inequality, or more generally (see [24]), Harnack’s type

inequality is valid under the conditions

osc
Br(x0)

a1(x) 6 A
[

log
1

r

]L
rq−p, osc

Br(x0)
a2(x) 6 A

[

log log 1
r

]L

log 1
r

,

if L > 0 is sufficiently small. These conditions yield

sup
Br(x0)

Φ1

(

x,
v

r

)

6 γ(K) inf
Br(x0)

Φ1

(

x,
v

r

)

, r 6 v 6 K λ(r), λ(r) =
[

log
1

r

]− L
q−p , (1.2)

and

sup
Br(x0)

Φ2

(

x,
v

r

)

6 γ(K)Λ(r) inf
Br(x0)

Φ2

(

x,
v

r

)

, r 6 v 6 K, Λ(r) =
[

log log
1

r

]L
. (1.3)

To take into account the non-uniformly elliptic case, we set

a(x) =
∣

∣ log
∣

∣ log
1

|x− x0|

∣

∣

∣

∣

L1 , x0 ∈ Ω,

and let Φ1(v) = vp + vq, Φ2(v) = vp
(

1 + log(1 + v)
)

, then

γ−1 a(x)Φi(v) 6 Φi(x, v) 6 γ Φi(v), L1 < 0, i = 1, 2,

γ−1 Φi(v) 6 Φi(x, v) 6 γ a(x)Φi(v), L1 > 0, i = 1, 2

provided that Br(x0) ⊂ BR(x0) ⊂ Ω and R is sufficiently small and the bounded local solutions

of the corresponding elliptic equations satisfy Harnack’s type inequality [25] if

1

a(x)
∈ Lt(Ω) and a(x) ∈ Ls(Ω) (1.4)

with some t, s > 1, i.e. if L1 is sufficiently small. In this paper, our aim is to combine logarith-

mic, non-logarithmic and non uniformly elliptic conditions (1.1)–(1.4). Obviously, conditions

(1.1)–(1.4) imply for i=1,2

(

r−n
ˆ

Br(x0)

[Φi
(

x,
v

r

)

]s dx

)
1
s
(

r−n
ˆ

Br(x0)

[Φi
(

x,
v

r

)

]−t dx

)
1
t

6 γ(K)Λ(x0, r), r 6 v 6 K λ(r),

(1.5)

with some s, t and the precise choice of λ(r) and Λ(x0, r).

Another interesting example is the energy integral
´

Ω

Φ3(x, |∇u|) dx,

Φ3(x, v) = vp(x), osc
Br(x0)

p(x) 6
µ̄(r)

log 1
r

, lim
r→0

µ̄(r) = ∞, lim
r→0

µ̄(r)

log 1
r

= 0, v > 0.

It is known that the solutions of the corresponding equations and the minimizers of the corre-

sponding integrals satisfy the Harnack type inequality ( [1]) if µ(r) ≡ const, or more generally

(see [5–7,49]) if µ(r) = L log log log 1
r , i.e. under conditions (1.3). The bounded local solutions

of the corresponding elliptic equations, as well as the minimizers of the corresponding integrals
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belong to the corresponding De Giorgi’s classes, i.e. for k ∈ R, σ, r ∈ (0, 1) the following

inequalities hold

ˆ

Br(1−σ)(x0)

|∇(u− k)±|
p(x) dx 6 γ

ˆ

Br(x0)

(

u− k

σr

)p(x)

±

dx.

Set a±(x, k, r) =

(

M±(k, r)

r

)p(x)−p−

, M±(k, r) = sup
Br(x0)

(u − k)± and p− = min
Br(x0)

p(x), then

by the Young inequality

ˆ

Br(1−σ)(x0)

a±(x, k, r)|∇(u − k)±|
p− dx 6 γ σ−γ

(

M±(k, r)

r

)p− ˆ

Br(x0)∩{(u−k)±>0}

a±(x, k, r) dx.

There are two possibilities how to use this inequality. The first one is almost standard, by our

assumptions on the function p(x) we obtain

ˆ

Br(1−σ)(x0)

|∇(u− k)±|
p− dx 6 γ σ−γ exp(γ µ̄(r))

(

M±(k, r)

r

)p−
∣

∣Br(x0) ∩ {(u− k)± > 0}
∣

∣,

provided that M±(k, r) > r. This estimate leads us to the condition (see e.g. [5–7,49])
ˆ

0

exp
(

− γ1 exp(γ2 µ̄(r)
)dr

r
= ∞, (1.6)

with some γ1, γ2 > 0. The function µ̄(r) = L log log log 1
r satisfies (1.6) if L > 0 is sufficiently

small.

This condition can be improved, namely, it turns out that the function a±(x, k, r) with

p(x) = p+ L
log log 1

|x−x0|

log 1
|x−x0|

satisfies the condition (see [48])

(

r−n
ˆ

Br(x0)

[a±(x, k, r)]
−t dx

)
1
t
(

r−n
ˆ

Br(x0)

[a±(x, k, r)]
s dx

)
1
s

6 γ(t, s), t, s > 0, (1.7)

provided that

1

log log 1
16r

+ γ̄ L
log log 1

16r

log 1
16r

6 1, and r 6M±(k, r) 6 2M = 2 sup
Ω

|u|,

with sufficiently large γ̄ > 0. This condition leads us to the standard Harnack type inequality

for solutions of the corresponding p(x)-Laplace equation. Obviously, inequalities (1.7) can be

generalized by conditions (1.5).

In this paper we also consider the integrals of this type. And, of course, it would be

interesting to unify our approach. More precisely, we will prove continuity and Harnack’s

inequality for functions belonging to the corresponding non uniformly elliptic De Giorgi classes

DGΦ(BR(x0)).

We write W 1,Φ(BR(x0)) for the class of functions u ∈W 1,1(BR(x0)) with
´

BR(x0)

Φ(x, |∇u|)dx <∞ and we say that a measurable function u : BR(x0) → R belongs to the
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elliptic class DG±
Φ (BR(x0)) if u ∈W 1,Φ(BR(x0)) ∩L

∞(BR(x0)) and there exist numbers c > 0,

q > 1 such that for any ball Br(x0) ⊂ BR(x0), any k ∈ R and any σ ∈ (0, 1) the following

inequalities hold:

ˆ

A±

k,r

Φ
(

x, |∇u|
)

ζq(x)dx 6 c

ˆ

A±

k,r

Φ

(

x,
(u− k)±

σr

)

dx, (1.8)

here (u− k)± := max{±(u− k), 0}, A±
k,r := Br(x0) ∩ {(u− k)± > 0}, ζ(x) ∈ C∞

0 (Br(x0)),

0 6 ζ(x) 6 1, ζ(x) = 1 in B(1−σ)r(x0) and |∇ζ(x)| 6
1

σr
. We also say that u ∈ DG±

Φ (Ω)

if u ∈ DG±
Φ (BR(x0)) for any B8R(x0) ⊂ Ω. We set also DGΦ(BR(x0)) = DG−

Φ (BR(x0)) ∪

DG+
Φ (BR(x0)) and DGΦ(Ω) = DG−

Φ (Ω) ∪DG
+
Φ (Ω).

Further we suppose that Φ(x, v) : BR(x0)× R+ → R+ is a non-negative function satisfying

the following properties: for any x ∈ BR(x0) the function v → Φ(x, v) is increasing and

lim
v→0

Φ(x, v) = 0, lim
v→+∞

Φ(x, v) = +∞. We also assume that

(Φ0) There exists c0 > 1 such that for any x ∈ BR(x0) there holds

c−1
0 6 Φ(x, 1) 6 c0.

(Φ) There exist 1 < p < q such that for x ∈ BR(x0) and for w > v > 0 there holds

(w

v

)p
6
Φ(x,w)

Φ(x, v)
6

(w

v

)q
.

(

ΦλΛ,x0
)

There exist continuous, non-decreasing function 0 < λ(r) 6 1 and continuous, non-

increasing function Λλ(x0, r) > 1 on the interval (0, R) such that for any Br(x0) ⊂ BR(x0),

for any K > 0 there holds

sup
r6v6K λ(r)

ΛΦ
(

x0, r,
v

r

)

6 c1(K)Λλ(x0, r),

1

tp
+

1

sp
<

1

n
, t ∈

(

max(1,
1

p− 1
),∞

]

, s ∈ (1,∞],

here c1(K) is some fixed positive number depending on K, s and t and

ΛΦ
(

x0, r,
v

r

)

:= Λ−,Φ

(

x0, r,
v

r

)

Λ+,Φ

(

x0, r,
v

r

)

,

Λ−,Φ

(

x0, r,
v

r

)

:=

(

r−n
ˆ

Br(x0)

[

Φ(x,
v

r
)
]−t

dx

)
1
t

,Λ+,Φ

(

x0, r,
v

r

)

:=

(

r−n
ˆ

Br(x0)

[

Φ(x,
v

r
)
]s
dx

)
1
s

.

We will also write (ΦλΛ) if condition (ΦλΛ,x0) holds for any BR(x0) ⊂ B8R(x0) ⊂ Ω and set

Λλ(r) := sup
x0∈Ω,B8R(x0)⊂Ω

Λλ(x0, r).

Remark 1.1. Note that in the logarithmic case, i.e. if λ(r) ≡ Λλ(r) ≡ 1 functions from

DGΦ(Ω) belong to the standard De Giorgi class DGp t
t+1

(Ω), p t
t+1 > 1 (see Lemma 2.2 below),

so continuity and Harnack’s inequality follow directly from results of [32] and [20].
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Remark 1.2. We note that condition (ΦλΛ) generalizes known conditions on the function Φ, for

example, that is condition (A1−n) from [27–29] in the logarithmic case, i.e. if λ(r) ≡ Λ1(r) ≡

≡ const. This condition generalizes conditions Φλ and Φµ (see [24]) in the non-logarithmic

case. Moreover, this condition generalizes the non-uniformly elliptic condition(see [25]). And

finally, condition ΦλΛ,x0 includes conditions of the type (1.7).

Sometimes we will also need the following technical assumption

(λ) There exist positive constants c2 and c3 such that

λ(ρ) 6

(

ρ

r

)c2

λ(r), Λλ(x0, r) 6

(

ρ

r

)c3

Λλ(x0, ρ), 0 < r 6 ρ.

We refer to the parameters n, p, q, t, s, c, c0,M(R) := sup
BR(x0)

|u|, c1(M(R)), c2 and c3 as our

structural data, and we write γ if it can be quantitatively determined a priory in terms of the

above quantities. The generic constant γ may change from line to line. In general, we assume

that M := sup
Ω

|u| and c1(M) are also the data. Our first result is the interior continuity of the

functions belonging to the corresponding De Giorgi classes.

Theorem 1.1. Let u ∈ DGΦ(BR(x0)) and let conditions (Φ0), (Φ), (ΦλΛ,x0) be fulfilled. There

exist numbers C1, β1 > 0 depending only on the data such that if

ˆ

0

exp
(

C1

[

Λλ(x0, r)
]β1) dr

λ(r)
< +∞,

ˆ

0

λ(r) exp
(

− C1

[

Λλ(x0, r)
]β1)dr

r
= +∞, (1.9)

then u(x) is continuous at point x0.

If additionally, u ∈ DGΦ(Ω), condition (ΦλΛ) holds and

ˆ

0

exp
(

C1

[

Λλ(r)
]β1) dr

λ(r)
< +∞,

ˆ

0

λ(r) exp
(

− C1

[

Λλ(r)
]β1)dr

r
= +∞, (1.10)

then u(x) ∈ C(Ω).

Here some typical examples of the function Φ which satisfies the conditions of the above

theorem .

• The function Φ1(x, v) = vp + a(x)vq satisfies condition (Φλ1,x0) with λ(r) = [log 1
r ]

−L and

Λλ(x0, r) ≡ 1 if osc
Br(x0)

a(x) 6 Arq−p [log 1
r ]
L(q−p) and a(x0) = 0. Condition (1.9) holds if L 6 1.

If a(x0) > 0, then a(x) ≍ a(x0), provided that R is small enough, condition (Φ1
1,x0) holds with

λ(r) ≡ Λ1(x0, r) ≡ 1. Condition (1.9) is always satisfied.

The function Φ1(x, v) satisfies condition (Φ1
Λ,x0

) with λ(r) ≡ 1 and Λ1(x0, r) = [log log 1
r ]
L,

L > 0 provided that [log log 1
|x−x0|

]−L 6 a(x) 6 1. Condition (1.9) holds if Lβ1 < 1.

• The function Φ2(x, v) = vp
(

1 + a(x) log(1 + v)
)

satisfies condition (Φ1
Λ,x0

) with λ(r) ≡ 1

and Λ1(x0, r) = [log log 1
r ]
L if osc

Br(x0)
a(x) 6 A

[log log 1
r ]
L

log 1
r

and a(x0) = 0, provided that R is

sufficiently small. Condition (1.9) holds if Lβ1 < 1. If a(x0) > 0, then a(x) ≍ a(x0), provided

that R is small enough, condition (Φ1
1,x0) holds with λ(r) ≡ Λ1(x0, r) ≡ 1. Condition (1.9) is
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always satisfied.

The function Φ2(x, v) satisfies condition (Φ1
Λ,x0

) with λ(r) ≡ 1 and Λ1(x0, r) = [log log 1
r ]
L,

L > 0 provided that [log log 1
|x−x0|

]−L 6 a(x) 6 1. Condition (1.9) holds if Lβ1 < 1.

• The function Φ3(x, v) = vp(x) satisfies condition (Φ1
1,x0) with λ(r) ≡ 1 and

Λ1(x0, r) = [log log 1
r ]
L if osc

Br(x0)
p(x) 6 L

log log log 1
r

log 1
r

. Condition (1.9) holds if Lβ1 < 1.

The function Φ3(x, v) satisfies condition (Φ1
1,x0) with λ(r) ≡ Λ1(x0, r) ≡ 1, if

p(x) = p±L
log log 1

|x−x0|

log 1
|x−x0|

, L > 0, provided that R is small enough. Condition (1.9) is always

holds.

• The function Φ4(x, v) = vp
(

1 + log(1 + a(x)v)
)

satisfies condition (Φλ1,x0) with

λ(r) = [log 1
r ]

−L and Λ1(x0, r) ≡ 1 if osc
Br(x0)

a(x) 6 Ar[log 1
r ]
L and a(x0) = 0. Condition (1.9)

holds if L 6 1. If a(x0) > 0, then a(x) ≍ a(x0), provided that R is small enough, condition

(Φ1
1,x0) holds with λ(r) ≡ Λ1(x0, r) ≡ 1. Condition (1.9) is always satisfied.

Next result is the Harnack inequality. We will distinguish several cases, first we will assume

that Λλ(r) 6 const, 0 < r 6 R. Note that the case lim
r→0

Λ1(r) = ∞ is possible.

Theorem 1.2. Let u ∈ DG−
Φ (Ω), u > 0, let conditions (Φ0), (Φ), (Φλ1 ), (λ) be fulfilled. Then

there exist numbers C2 > 0, θ ∈ (0, 1) depending only on the data such that

(

ρ−n
ˆ

Bρ(x0)

uθ dx

)
1
θ

6
C2

λ(ρ)

{

min
B ρ

2
(x0)

u+ ρ
}

, 0 < ρ 6 R, (1.11)

provided that B8R(x0) ⊂ Ω.

In addition, if u ∈ DGΦ(Ω) and condition (Φ1
Λ) holds , then there exist numbers C3, β2 > 0

depending only on the data such that

max
B ρ

2
(x0)

u 6 C3
[Λ1(ρ)]

β2

λ(ρ)

{

min
B ρ

2
(x0)

u+ ρ
}

, 0 < ρ 6 R, (1.12)

provided that B8R(x0) ⊂ Ω.

We formulate our next theorem under the assumption λ(r) ≡ 1, moreover, its formulation

requires more complicated conditions on the function Λ1(r), so we will prove it only in the

model case, namely, we will assume that Λ1(r) = [log log 1
r ]
L, L > 0.

Theorem 1.3. Let u ∈ DGΦ(Ω) ∩ C(Ω), u > 0 and let conditions (Φ0), (Φ), (Φ1
Λ) be fulfilled.

Let Λ1(ρ) = [log log 1
ρ

]L
, ρ ∈ (0, 1), L > 0. Then there exists number C4 > 0, depending only

on the data and L such that

u(x0) 6 C4 log
1

ρ

{

min
B ρ

2
(x0)

u+ ρ
}

, 0 < ρ 6 R, (1.13)

provided that B8R(x0) ⊂ Ω and L is small enough.

We prove our most general result only for solutions of the corresponding equations. More

precisely, we are concerned with elliptic equations

div

(

Φ(x, |∇u|)
∇u

|∇u|2

)

= 0, x ∈ Ω. (1.14)
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We say that a function u is a weak sub(super)-solution to Eq. (1.14) if u ∈ W 1,Φ(Ω) and the

integral identity
ˆ

Ω

Φ(x, |∇u|)
∇u

|∇u|2
∇η dx 6 (>) = 0, (1.15)

holds for all non-negative test functions η ∈W 1,Φ
0 (Ω).

The next result is Harnack’s inequality under the point condition (ΦλΛ,x0).

Theorem 1.4. Let u be a non-negative bounded weak super-solution to Eq. (1.14) and let

conditions (Φ0), (Φ), (Φ
λ
Λ,x0

) and (λ) be fulfilled. Assume also that

(

Φ(x, |ξ|)
ξ

|ξ|2
− Φ(x, |ζ|)

ζ

|ζ|2
)

(ξ − ζ) > 0, ξ, ζ ∈ R
n, ξ 6= ζ, x ∈ Ω. (1.16)

Then there exist numbers C5, C6 > 0, θ ∈ (0, 1) depending only on the data such that

(

ρ−n
ˆ

Bρ(x0)

uθ dx

)
1
θ

6
1

λ(ρ)
exp

(

C5

[

Λλ(x0, ρ)
]C6
){

min
B ρ

2
(x0)

u+ ρ
}

, (1.17)

provided that B8ρ(x0) ⊂ Ω.

In addition, if u is a non-negative bounded weak solution to Eq. (1.14), then

max
B ρ

2
(x0)

u 6
1

λ(ρ)
exp

(

C7

[

Λλ(x0, ρ)
]C8
){

min
B ρ

2
(x0)

u+ ρ
}

, (1.18)

provided that B8ρ(x0) ⊂ Ω. Here C7, C8 > 0 depend only on the data.

Before describing the method of proof, a few words about the history of the problem. Qual-

itative properties of functions belonging to the corresponding De Giorgi classes in the standard

case, i.e. if p = q are well known(we refer the reader to the well-known monograph of Ladyzhen-

skaya and Ural’tseva [32] and to the seminal paper of DiBenedetto and Trudinger [20]).Harnack’s

inequality for non uniformly elliptic equations has been known since the well-known paper of

Trudinger [51].

The study of regularity of minima of functionals with non-standard growth has been ini-

tiated by Zhikov [52–55, 57], Marcellini [37, 38], and Lieberman [36], and in the last thirty

years, the qualitative theory of second order elliptic equations with so-called log-condition ( if

λ(r) ≡ Λ1(x0, r) ≡ 1) has been actively developed.Moreover,many authors have established lo-

cal boundedness, Harnack’s inequality and continuity of solutions to such equations without or

with singular lower order terms, as well as of local minimizers, Q-minimizers, and ω-minimizers

of the corresponding minimization problems(see, e.g. [1–4, 8–17, 21–23, 26–30, 40, 45, 50] and

references therein).

The case when conditions (ΦλΛ,x0) hold differs substantially from the logarithmic case. To

our knowledge there are few results in this direction. Zhikov [56] obtained a generalization of

the logarithmic condition which guarantees the density of smooth functions in Sobolev space

W 1,p(x)(Ω). This result holds if 1 < p 6 p(x) and

|p(x)− p(y)| 6
| log | log µ(|x− y|)||

| log |x− y||
, x, y ∈ Ω, x 6= y,

ˆ

0

(µ(r))−
n
p
dr

r
= +∞,
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Particularly, the function µ(r) = (log 1
r )
L satisfies the above condition if L 6

p
n .

Interior continuity, continuity up to the boundary and Harnack’s inequality to the p(x)-

Laplace equation were proved in [4, 7, 49] under the condition (1.1). These results were gen-

eralized in [41, 47] for a wide class of elliptic equations with non-logarithmic Orlicz growth.

Particularly, Harnack’s inequality was proved in [47] under condition (1.6). In the proof, the

authors used Trudinger’s ideas [51]. Qualitative properties for solutions of non uniformly ellip-

tic equations with non-standard growth under the non-logarithmic conditions were considered

in [25].

As it was mentioned, in this paper we cover the non-uniformly elliptic case and the case of

variable exponent of the type (1.7).

The main difficulty arising in the proof of the main results is related to the so-called theorem

on the expansion of positivity. Roughly speaking, having information on the measure of the

”positivity set” of u over the ball Br(x̄):

|{x ∈ Br(x̄) : u(x) > N}| > α(r)|Br(x̄)|,

with some r,N > 0 and α(r) ∈ (0, 1), we cannot use the classical approach of of Krylov and

Safonov [31], DiBenedetto and Trudinger [20] as it was done in the logarithmic case, i.e. if α is

independent of r(see e.g. [9]). Difficulties arise not only due to the presence of a constant α(r)

depending on r, but also because in the process of iteration from Br(x̄) to Bρ(x0) an additional

factor arises, which can be estimated only under conditions of Theorems 1.2 and 1.3. So, first

we prove the following expansion of positivity theorem.

Theorem 1.5. Let u ∈ DGΦ(Ω), u > 0 , let x0 ∈ Ω be such that B8R(x0) ⊂ Ω,and let conditions

(Φ0), (Φ), (Φ
λ
Λ), (λ) be fulfilled , assume also that

|{Br(y) : u > N}| > α|Br(y)|, (1.19)

with some α ∈ (0, 1), some 0 < N < M and Br(y) ⊂ Bρ(x0) ⊂ BR(x0), then there exist

numbers ε0, γ, c, β, τ1, τ2 > 0 depending only on the data such that

Nλ(ρ)ατ1 6 γ

(

ρ

r

)τ2

exp
(

c

ρ
ˆ

r̄

[Λλ(s)]
β ds

s

){

min
B ρ

2
(x0)

u+ ρ
}

, r̄ = ε0α
2 r

Λλ(r)
. (1.20)

The main step in the proof of Theorem 1.5 is the following local clustering lemma due to

DiBenedetto,Gianazza and Vespri [18] (see also [19,35,50]).

Lemma 1.1. Let Kr(y) be a cube in R
n of edge r centered at y and let u ∈W 1,1(Kr(y)) satisfies

||(u− k)−||W 1,1(Kr(y)) 6 K k rn−1, and |{Kr(y) : u > k}| > α|Kr(y)|, (1.21)

with some α ∈ (0, 1), k ∈ R
1 and K > 0.Then for any ξ ∈ (0, 1) and any ν ∈ (0, 1) there exists

x̄ ∈ Kr(y) and ε = ε(n) ∈ (0, 1) such that

|{Kr̄(x̄) : u > ξ k}| > (1− ν)|Kr̄(y)|, r̄ := εα2 (1− ξ)ν

K
r. (1.22)
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As it was already mentioned during the iteration from Br(x̄) to Bρ(x0) an additional factor

arises, that even in the case Λ(x0, ρ) 6 const cannot be estimated. To overcome it and to

prove Theorem 1.4 we use a workaround that goes back to Mazya [39] and Landis [33,34]. For

the proof of the following expansion of positivity theorem we use the potential-type auxiliary

solutions. We also note that by the presence of the function λ(r) in condition (ΦλΛ,x0) we cannot

use Moser’s method, adapting the ideas of Trudinger [51] (see, e.g. [4, 7, 41,49]).

Theorem 1.6. Let u be a non-negative weak super-solution to Eq. (1.14) in Ω, let conditions

(Φ0), (Φ) and (ΦλΛ,x0) be fulfilled, assume also that condition (1.16) holds. Then there exist

positive constants γ, β3 and β4 depending only on the data, such that for any 0 < N < M and

any B8ρ(x0) ⊂ Ω there holds

N λ(ρ)

(

|E(ρ,N)|

ρn

)β3

6 γ exp
(

γ
[

Λλ(x0,
ρ

4
)
]β4){ min

B ρ
2
(x0)

u+ ρ
}

, (1.23)

where E(ρ,N) := Bρ(x0) ∩ {u(x) > N}.

To prove Theorem 1.6 we consider the solution w of the following problem

div

(

Φ(x, |∇w|)
∇w

|∇w|2

)

= 0, x ∈ D := B8ρ(x0) \E, w −mψ ∈W 1,Φ
0 (D), (1.24)

where E ⊂ Bρ(x0), m ∈ (ρ, λ(ρ)M) is some fixed positive number and ψ ∈ W 1,Φ
0 (B8ρ(x0)),

ψ = 1 on E.

In Section 4 we prove upper and lower bounds for solutions of problem (1.24), from which

Theorem 1.6 is obtained as a simple corollary. Thanks to the use of auxiliary solutions of problem

(1.24), it is possible to avoid the appearance of an additional factor during the iteration from

Br(x0) to Bρ(x0).

The rest of the paper contains the proof of the above theorems. In Section 2 we collect

some auxiliary propositions and required integral estimates of functions belonging to the corre-

sponding De Giorgi classes. Section 3 contains the proof of continuity, Theorem 1.1, expansion

of positivity, Theorem 1.5 and the proof of Harnack type inequalities, Theorems 1.2 and 1.3.

Upper and lower bounds of auxiliary solutions are proved in Section 4. A variant of the expan-

sion of the positivity theorem, Theorem 1.6 is also proved in Section 4. Finally, in Section 4 we

sketch a proof of Harnack’s inequality, Theorem 1.4, leaving the details to the reader.

2 Auxiliary material and integral estimates

2.1 Auxiliary Lemma

The following lemma will be used in the sequel, it is the well-known De Giorgi-Poincare lemma

(see [32], Chapter 2).

Lemma 2.1. Let u ∈ W 1,1(Br(y)) for some r > 0, and y ∈ R
n . Let k, l be real numbers such

that k < l. Then there exists a constant γ depending only on n such that

(l − k)|A−
k,r||Br(y) \A

−
l,r| 6 γrn+1

ˆ

A−

l,r
\A−

k,r

|∇u|dx,



Continuity and Harnack inequalities.... 10

where A−
k,r = Br(y) ∩ {u < k}.

2.2 Local energy estimates

For θ ∈ (0, p] and v > 0 set ϕθ(x, v) :=
Φ(x, v)

vθ
. The following lemma is a consequence of

the definition of the De Giorgi class DGΦ(BR(x0)) and of the following analogue of the Young

inequality

ϕθ(x, a) b
θ
6 ε−θ Φ(x, a) + bθ ϕθ(x, εb), ε, a, b > 0, θ ∈ (0, p], (2.1)

indeed, if b 6 ε−1a, then ϕθ(x, a) b
θ 6 ε−θ aθ ϕθ(x, a) = ε−θΦ(x, a), and if b > ε−1a, then since

by condition (Φ) ϕθ(x, ·) is non-decreasing ϕθ(x, a) b
θ 6 bθ ϕθ(x, εb).

Lemma 2.2. Let u ∈ DGΦ(BR(x0)), then for any r < R , any k ∈ R , any σ ∈ (0, 1) and any

θ ∈ [1, p t
t+1 ] next inequalities hold

ˆ

A±

k,r

|∇u|θ ζq(x) dx 6
γ

σθ
q
p

(

M±(k, r)

r

)θ

rn
[

ΛΦ
(

x0, r,
M±(k, r)

r

)]
θ
p

(

|A±
k,r|

|Br(x0)|

)1− θ
tp
− θ

sp

. (2.2)

Here M±(k, r) := ess sup
Br(x0)

(u− k)±, ζ(x) is the same as in (1.8) and ΛΦ
(

x0, r,
M±(k,r)

r

)

was

defined in (ΦλΛ,x0).

Proof. We use the Hölder inequality and inequality (2.1) for the function ϕp(x, ·) with

a =
M±(k, r)

r
, b = |∇u|p and ε = 1

ˆ

A±

k,r

|∇u|p
t

t+1 ζq(x) dx 6

6

(
ˆ

A±

k,r

|∇u|p ϕp

(

x,
M±(k, r)

r

)

ζq(x) dx

)
t

t+1
(
ˆ

A±

k,r

[

ϕp

(

x,
M±(k, r)

r

)]−t

dx

)
1

t+1

6

6 γ

(

M±(k, r)

r

)p t
t+1
(
ˆ

A±

k,r

Φ(x, |∇u|) ζq(x) dx+

ˆ

A±

k,r

Φ
(

x,
M±(k, r)

r

)

ζq(x) dx

)
t

t+1

×

×

(
ˆ

Br(x0)

[

Φ
(

x,
M±(k, r)

r

)]−t
dx

)
1

t+1

6
γ

σq
t

t+1

(

M±(k, r)

r

)p t
t+1

×

×

(
ˆ

Br(x0)

[

Φ
(

x,
M±(k, r)

r

)]−t
dx

)
1

t+1
(
ˆ

Br(x0)

[

Φ
(

x,
M±(k, r)

r

)]s
dx

)
t

s(t+1)

|A±
k,r|

s−1
s

t
t+1 ,

from which by the Hölder inequality the required (2.2) follows. This proves Lemma 2.2.

In what follows, we will use only inequalities (2.2), which can be taken as the definition of

the corresponding De Giorgi DGΦ(Ω) classes.
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2.3 A Variant of Expansion of the Positivity Lemma

The following lemma will be used in the sequel. In the proof we closely follow to [32, Chap. 2].

Let M(r) > sup
Br(x0)

u, m(r) 6 inf
Br(x0)

u, ω(r) := M(r) − m(r) and set v+(x) := M(r) − u(x),

v−(x) := u(x)−m(r).

Lemma 2.3. Let u ∈ DGΦ(BR(x0)) and let conditions (Φ0), (Φ), (ΦλΛ,x0) be fulfilled. Let

ξ ∈ (0, 1) and assume that with some α0 ∈ (0, 1) there holds

∣

∣

{

x ∈ B3r/4(x0) : v±(x) 6 ξ ω(r)
}
∣

∣ 6 (1− α0) |B3r/4(x0)|. (2.3)

Then for any ν ∈ (0, 1) there exists number C∗ > 1 depending only on the known data, α0, ξ

and ν such that either

ω(r) 6
r

λ(r)
exp

(

C∗[Λλ
(

x0, r
)

]β̄1
)

, (2.4)

or

|{B3/4r(x0) : v±(x) 6 ω(r)λ(r) exp
(

− C∗[Λλ
(

x0, r
)

]β̄1
)

}| 6 ν|B3/4r(x0)|, (2.5)

here β̄1 is some fixed positive number depending only on the data.

Proof. We provide the proof of (2.5) for v+, while the proof for v− is completely similar. We

set kj := M(r) −
λ(r)

2j
ω(r), j = [log 1/ξ] + 1, 2, . . . , j∗, where j∗ to be chosen. We will assume

for all j ∈ [[log 1/ξ] + 1, j∗] that M+(kj , 3/4r) >
λ(r)

2j+1
ω(r), because if for some j this inequality

is violated then the required (2.5) with C∗ > j∗ + 1 is evident. If (2.4) is violated, then

M+(kj , r) >M+(kj , 3/4r) > r and since 2−j−1 ω(r)λ(r) 6M+(kj , r) 6 2−j ω(r)λ(r) 6

6 2M(R)λ(r), by (ΦλΛ,x0) we obtain that

ΛΦ
(

x0, r,
M+(kj , r)

r

)

6 2qΛΦ
(

x0, r,
λ(r)

r2j
ω(r)

)

6 γΛλ(x0, r).

Therefore , if (2.4) is violated, inequality (2.2) with θ = p t
t+1 can be rewritten as

ˆ

A+
kj,r

|∇u|θ ζ q dx 6 γ

(

λ(r)

2jr
ω(r)

)θ

rn [Λλ
(

x0, r
)

]
θ
p

(

|A+
kj ,r

|

|Br(x0)|

)
1
κ1

where
1

κ1
= 1 −

θ

sp
−

θ

tp
, θ = p t

t+1 and ζ ∈ C∞
0 (Br(x0)), 0 6 ζ 6 1, ζ = 1 in B3r/4(x0),

|∇ζ| 6 4/r. From this by Lemma 2.1 we obtain

λ(r)

2j+1
ω(r)|A+

kj ,3/4r
| 6

γ

α0
r

ˆ

A+
kj ,r

\A+
kj+1,r

|∇u| ζ q dx 6

6
γ

α0
r

(
ˆ

A+
kj ,r

|∇u|θ ζ q dx

)
1
θ

|A+
kj ,r

\ A+
kj+1,r

|1−
1
θ 6

6
γ

α0

λ(r)

2j
ω(r) [Λλ

(

x0, r
)

]
1
p

(

|A+
kj ,r

\ A+
kj+1,r

|

|Br(x0)|

)1− 1
θ
(

|A+
kj ,r

|

|Br(x0)|

)
1

θκ1

|Br(x0)|,
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raising the left and right hand-sides to the power
θ

θ − 1
and summing up the resulting inequal-

ities in j, j = [log 1/ξ] + 1, 2, . . . , j∗ ,we conclude that

(j∗ − [log 1/ξ] − 1)

( |A+
kj∗ ,3/4r

|

B3/4r(x0)|

)
θ

θ−1

6 γα
− θ

θ−1

0 [Λλ
(

x0, r
)

]
θ

p(θ−1) .

Choosing j∗ by the condition

j∗ − [log 1/ξ]− 1 > γ ν−
θ

θ−1 α
− θ

θ−1

0 [Λλ
(

x0, r
)

]
θ

p(θ−1) , θ = p
t

t+ 1
,

we obtain inequality (2.5), which proves Lemma 2.3 with

C∗ > 1 + log 1/ξ + γ α
− pt

(p−1)t−1

0 ν
− pt

(p−1)t−1 and β̄1 =
t

(p − 1)t− 1
.

2.4 De Giorgi Type Lemma

The following theorem is the De Giorgi type Lemma, the proof is almost standard (see e.g. [32]).

Lemma 2.4. Let u ∈ DGΦ(BR(x0)) and let conditions (Φ0), (Φ), (ΦλΛ,x0) be fulfilled. Fix

ξ, η ∈ (0, 1), there exists number ν1 ∈ (0, 1) depending only on the data and η, such that if

|{x ∈ Br(x0) : v±(x) 6 ξ ω(r)}| 6 ν1 [Λλ(x0, r)]
−β̄2 |Br(x0)|, (2.6)

then either

η (1− η) ξ ω(r) 6
r

λ(r)
, (2.7)

or

v±(x) > (1− η)2 ξ λ(r)ω(r), x ∈ B r
2
(x0). (2.8)

Here β̄2 is some fixed positive number, depending only on the data.

Proof. For j = 0, 1, 2, . . . we set rj :=
r

2
(1 + 2−j), r̄j =

rj + rj+1

2
,

kj :=M(r)− η (2− η)ξ λ(r)ω(r)−
(1− η)2

2j
ξ λ(r)ω(r), and let ζj ∈ C

∞
0 (Br̄j(x0)),

0 6 ζj 6 1, ζj = 1 in Brj+1(x0), and |∇ζj| 6 γ
2j

r
. We assume that

M+(k∞, r/2) > η(1 − η) ξ λ(r)ω(r), because in the opposite case, the required (2.8) is evident.

If (2.7) is violated then M+(k∞, r/2) > r. In addition, since η(1− η)ξ λ(r)ω(r) 6M+(kj , r) 6

6 ξ λ(r)ω(r) for j = 0, 1, 2, . . ., then by (ΦλΛ,x0) we obtain that

Λ
(

x0, rj ,
M+(kj , r)

rj

)

6 η−q (1− η)−qΛ
(

x0, rj , ξ
λ(r)

rj
ω(r)

)

6 γη−q (1− η)−qΛλ(x0, r).

Therefore inequality (2.2) with θ = 1 can be rewritten as

ˆ

A+
kj,rj

|∇u| ζqj dx 6 γ 2jγ η−
q
p (1−η)−

q
p ξ λ(r)ω(r)rn[Λλ(x0, r)]

1
p

(

|A+
kj ,rj

|

|Br(x0)|

)
1
κ2

,
1

κ2
= 1−

1

sp
−

1

tp
.
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From this, by the Sobolev embedding theorem we obtain

yj+1 =
|A+

kj+1,rj+1
|

|Br(x0)|
6 γ 2jγ η

− q
p (1− η)

−2− q
p [Λλ(x0, r)]

1
p y1+κj , j = 0, 1, 2, ...,

where κ =
1

κ2
− 1 +

1

n
=

1

n
−

1

sp
−

1

tp
> 0. Choosing ν1, β̄2 from the condition

ν1 = γ−1 η
q
pκ (1− η)

2+
q
p

κ , β̄2 =
1

pκ
,

and iterating the previous inequality we arrive at the required (2.8), which completes the proof

of the lemma.

.

3 Continuity and Harnack’s Type Inequality , Proof of

Theorems 1.1–1.3 and 1.5

3.1 Continuity

Let r, ρ be arbitrary such that 0 < r < ρ < R, where R is small enough. We assume that the

following two alternative cases are possible:

∣

∣

∣

∣

{

x ∈ B 3
4
r(x0) : u(x) >M(r)−

1

2
ω(r)

}
∣

∣

∣

∣

6
1

2
|B 3

4
r(x0)|

or
∣

∣

∣

∣

{

x ∈ B 3
4
r(x0) : u(x) 6 m(r) +

1

2
ω(r)

}∣

∣

∣

∣

6
1

2
|B 3

4
r(x0)|.

Assume, for example, the first one. Then Lemmas 2.3, 2.4, the choice of constant C∗ in Lemma

2.3 and the choice of ν in Lemma 2.4 ensure the existence of β̄3 = β̄1+ β̄2
pt

(p− 1)t− 1
such that

ω
(r

2

)

6

(

1−
λ(r)

4
exp

(

− γ[Λλ(x0, r)]
β̄3

)

ω(r) + γ
r

λ(r)
exp

(

γ[Λλ(x0, r)]
β̄3
)

,

where β̄1, β̄2 were defined in Lemmas 2.3, 2.4 .

Iterating this inequality, we obtain

ω(r) 6 2M(R) exp

(

− γ

2ρ
ˆ

r

λ(s) exp
(

− γ[Λλ(x0, s)]
β̄3
) ds

s

)

+

ρ
ˆ

r
2

exp
(

γ[Λλ(x0, s)]
β̄3
) ds

λ(s)
,

from which the required continuity follows. This completes the proof of Theorem 1.1.

3.2 Proof of Theorem 1.5

Let Br(y) ⊂ Bρ(x0) ⊂ B8ρ(x0) ⊂ Ω and let the following inequality holds

|{Br(y) : u > N }| > α|Br(y)|, (3.1)
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for some 0 < N < M , α ∈ (0, 1).

Let r̄ < r be some number which we will fix later, we will assume that sup
Br(y)

(u−Nλ(r̄))− >

>
N
2 λ(r̄), because in the opposite case the required inequality (1.20) is obvious. If N > r, then

by (ΦλΛ), using the fact that λ(r̄) 6 λ(r) if r̄ 6 r, we have with any 0 < r̄ 6 r

ΛΦ
(

y, r,
M−(Nλ(r̄), r)

r

)

6 2qΛΦ
(

y, r,
λ(r̄)

r
N
)

6 2qΛλ(y, r) 6 2qΛλ(r),

apply inequality (2.2) with θ = 1 for (u− λ(r̄)N)− over the pair of balls Br(y) and B2r(y) and

with arbitrary 0 < r̄ 6 r to obtain
ˆ

Br(y)

|∇(u− λ(r̄)N)−| dx 6 γ [Λλ(r)]
1
p λ(r̄)N rn−1.

The local clustering Lemma 1.1 with k = λ(r̄)N , ν = 1
4 , ξ = 1

2 , K = γ[Λλ(r)]
1
p implies the

existence of a point x̄ ∈ Br(y) and ε ∈ (0, 1) depending only on the data such that

|{Br̄(x̄) : u >
λ(r̄)

2
N}| >

1

4
|Br̄(x̄)|, r̄ =

εα2

8γ

r

[Λλ(r)]
1
p

.

Set ε0 :=
ε

8γ
, then the previous inequality can be rewritten as

|{Br̄(x̄) : u >
λ(r̄)

2
N}| >

1

4
|Br̄(x̄)|. (3.2)

From this by Lemmas 2.3 and 2.4 we obtain

u(x) >
λ(r̄)

2
N exp

(

− γ[Λλ(2r̄))]
β̄3
)

, x ∈ B2r̄(x̄), β̄3 = β̄1 + β̄2
pt

(p− 1)t− 1
,

provided that

N >
2r̄

λ(r̄)
exp

(

γ[Λλ(2r̄)]
β̄3
)

,

where β̄1, β̄2 are the constants defined in Lemmas 2.3, 2.4.

Repeating this procedure j-times we obtain

u(x) > 2−j λ(r̄)N exp
(

− γ

2j+1r̄
ˆ

2r̄

[Λλ(s)]
β̄3 ds

s

)

, x ∈ B2j r̄(x̄),

provided that

N >
2j r̄

λ(r̄)
exp

(

γ

2j+1r̄
ˆ

2r̄

[Λλ(s)]
β̄3 ds

s

)

.

Choosing j from the condition 2j r̄ = ρ and using condition (λ), from the previous we obtain

u(x) > γ−1 λ(r̄)

Λλ(r)
N α2 r

ρ
exp

(

− γ

2ρ
ˆ

2r̄

[Λλ(s)]
β̄3 ds

s

)

>

> γ−1 λ(ρ)

Λλ(ρ)
N ατ1

(

r

ρ

)τ2

exp
(

− γ

2ρ
ˆ

2r̄

[Λλ(s)]
β̄3 ds

s

)

>

> γ−1 λ(ρ)N ατ1
(

r

ρ

)τ2

exp
(

− γ

2ρ
ˆ

2r̄

[Λλ(s)]
β̄3 ds

s

)

, x ∈ B ρ
2
(x0),
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provided that

N > γ
ρ

λ(ρ)
α−τ1

(

ρ

r

)τ2

exp
(

γ

2ρ
ˆ

2r̄

[Λλ(s)]
β̄3 ds

s

)

,

which completes the proof of the theorem.

3.3 Proof of Theorem 1.2

Inequality (1.11) of Theorem 1.2 follows immediately from Theorem 1.5 with Λλ(ρ) 6 γ , indeed

set

m̄(ρ) =
1

λ(ρ)
{ min
B ρ

2
(x0)

u(x) + ρ}.

By Theorem 1.5 with r = ρ we obtain for θ ∈
(

0, 1
τ1

)

ρ−n
ˆ

Bρ(x0)

uθ dx = θ ρ−n
∞̂

0

|{Bρ(x0) : u(x) > N}|N θ−1 dN 6 [m̄(ρ)]θ+

+ γ[m̄(ρ)]
1
τ1

∞̂

m̄(ρ)

N
θ− 1

τ1
−1
dN 6

γτ1
1− θτ1

[m̄(ρ)]θ, (3.3)

which proves inequality (1.11).

To prove (1.12) fix σ ∈ (0, 18), s ∈ (34ρ,
7
8ρ) and let M0 := sup

Bs(x0)
u, Mσ := sup

Bs(1−σ)(x0)
u. Fix

x̄ ∈ Bs(1−σ)(x0) and for j = 0, 1, 2, .... set ρj := sσ2 (1 + 2−j), Bj := Bρj (x̄), kj = k(1 − 2−j),

where k > 0 and suppose that (u(x̄)− k)+ > ρ, then sup
Bj

(u− kj)+ > ρ. We will use inequality

(2.2), by condition (Φ1
Λ) with K =M we have

ΛΦ
(

x̄, ρj , sup
Bj

(u− kj)+/ρj
)

6 γ(M)Λ1(x̄, ρj) 6 γΛ1(ρ).

Hence, inequality (2.2) can be rewritten as

ˆ

Bj+1∩{u>kj}

|∇u| dx 6
γ

σγ
2jγM0 ρ

n−1[Λ1(ρ)]
1
p

(

|Bj ∩ {u > kj}|

|Bj |

)1− 1
tp
− 1

sp

.

Since x̄ is an arbitrary point in Bs(1−σ)(x0) this inequality by standard arguments ( see e.g. [32])

yields

M
1+ 1

κ
σ 6 γ σ−γM

1
κ
0 [Λ1(ρ)]

1
pκ ρ−n

ˆ

B0

u dx+ γ ρ1+
1
κ , κ =

1

n
−

1

tp
−

1

sp
> 0,

which by the Young inequality implies for any ε, θ ∈ (0, 1) that

Mσ 6 εM0 + γ σ−γ [Λ1(ρ)]
1

pκθ

(

ρ−n
ˆ

B0

uθ dx

)
1
θ

+ γ ρ.
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Iterating this inequality we arrive at

sup
B ρ

2
(x0)

u 6 γ [Λ1(ρ)]
1

pκθ

(

ρ−n
ˆ

B0

uθ dx

)
1
θ

+ γ ρ. (3.4)

Collecting (1.11) and (3.4) with θ =
1

2τ1
we arrive at the required (1.12) with β2 = (2pκτ1)

−1,

which completes the proof of Theorem 1.2.

3.4 Proof of Theorem 1.3

Construct the ball Bρτ (x0), τ ∈ (0, 1) and set u0 := u(x0), Mτ := max
Bρτ (x0)

u,

Nτ :=
u0
2

(1− τ)−l1 exp

(

l2
[

log log 1
(1−τ)ρ

]Ll3 − l2
[

log log 1
ρ

]Ll3

)

exp
(

c
ψ(ρ)
´

ψ((1−τ)ρ)

[log log 1
s ]
Lβ ds

s

)

,

where c and β the numbers defined in Theorem 1.5, l1, l2, l3 > 0 will be chosen depending only

on the known data and

ψ(r) = ε0 α
2(r) r [log log

1

r
]−L,

here ε0 ∈ (0, 1) is the number, defined in Theorem 1.5 and α(r) ∈ (0, 1) is continuous non-

increasing function, which will be defined later. Consider the equation

Mτ = Nτ . (3.5)

Further we will assume that

u0 > l4 ρ log
1

ρ
, (3.6)

with some l4 > 0 to be fixed later.

Let τ0 ∈ (0, 1) be the maximal root of equation (3.5) and fix y by the condition

u(y) = max
Bρτ0 (x0)

u. Since B ρ
2
(1−τ0)(y) ⊂ B ρ

2
(1+τ0)(x0), setting r =

ρ
2 (1− τ0) we have

max
Br(y)

u 6 u(y)2l1 exp

(

l2(
[

log log
1

r

]Ll3 −
[

log log
1

2r

]Ll3)

)

exp
(

c

ψ(2r)
ˆ

ψ(r)

[log log
1

s
]Lβ

ds

s

)

6

6 u(y)2l1 exp

(

l2(
[

log log
1

r

]Ll3 −
[

log log
1

2r

]Ll3)

)

exp
(

c[log log
1

ψ(r)
]Lβ log

ψ(2r)

ψ(r)

)

.

Let us estimate the terms on the right-hand side of the previous inequality. If

Ll3 < 1 and 2l2
[

log
1

2ρ

]−1
6 1, (3.7)

then

l2(
[

log log
1

r

]Ll3 −
[

log log
1

2r

]Ll3) 6 1.

By our assumption α(r) is non-increasing, therefore choosing ρ sufficiently small we have

ψ(2r)

ψ(r)
= 2

α2(2r)

α2(r)

[log log 1
r ]
L

[log log 1
2r ]

L
6 2

[log log 1
r ]
L

[log log 1
2r ]

L
6 4.
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Moreover

log log
1

ψ(r)
= log log

[log log 1
r ]
L

ε0rα(r)
6 2 log log

1

r
,

provided that ρ is small enough and

2 log
1

α(r)
6 log

1

r
. (3.8)

Therefore

max
Br(y)

u 6 u(y) 2l1+1 exp
(

8Lβ c [log log
1

r
]Lβ
)

.

Claim. There exists a positive number ν1 ∈ (0, 1) depending only on the known data and l1

such that
∣

∣

∣

∣

{

x ∈ Br(y) : u(x) >
u(y)

4

}∣

∣

∣

∣

> ν1 [log log
1

r
]−β̄2 exp

(

−
q

pκ
8Lβ c [log log

1

r
]Lβ
)

|Br(y)|,

where β̄2 is the number defined in Lemma 2.4 and κ = 1
n − 1

sp −
1
tp > 0.

Indeed, in the opposite case we apply Lemma 2.4 with the choices

M(r) = u(y) 2l1+1 exp
(

8Lβ c [log log 1
r ]
Lβ
)

, ξ ω(r) = (M(r)− 1
4u(y)),

1− η =

(

M(r)− 11
16u(y)

M(r)− 1
4u(y)

)
1
2

< 1 and η >
1

γ(l1)
exp

(

− 8Lβ c [log log 1
r ]
Lβ
)

.

By Lemma 2.4 it follows that if

η (1− η)ξ ω(r) > r (3.9)

then

u(y) 6 max
B r

2
(y)
u 6M(r)− (1− η)2ξ ω(r) =

11

16
u(y),

reaching a contradiction, which proves the claim.

We note that inequality (3.9) is a consequence of (3.6), provided that ρ is small enough and

Lβ < 1 and l4 > γ(l1). (3.10)

We set

α(r) := ν1 [log log
1

r
]−β̄2 exp

(

−
q

pκ
8Lβ c [log log

1

r
]Lβ
)

and apply Theorem 1.5 with α = α(r), r̄ = ε0α
2(r)r[log log 1

r ]
−L and N = u(y)

4 , note that by

our choices r̄ = ψ(r), so we obtain

min
B ρ

2
(x0)

u > γ−1 u(y)ατ1(r)

(

r

ρ

)τ2

exp

(

− c

ρ
ˆ

2r̄

[log log
1

s
]Lβ

ds

s

)

>

> γ−1ντ11 u(y)

(

r

ρ

)τ2

[log log
1

r
]−β̄2τ1 exp

(

− c

ρ
ˆ

ψ(2r)

[log log
1

s
]Lβ

ds

s
− c

q

pκ
8Lβ[log log

1

r
]Lβ
)

.
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If ρ is small enough, then log log
1

r
6
ρ

r
log log

1

ρ
, hence from the previous we obtain

min
B ρ

2
(x0)

u > γ−1 ντ11 u0

(

ρ

r

)l1−1−τ2−β̄2τ1

[log log
1

ρ
]−β̄2τ1 exp

(

− l2[log log
1

ρ
]Ll3
)

×

× exp

(

l2[log log
1

r
]Ll3 − c

q

pκ
8Lβ[log log

1

r
]Lβ
)

exp
(

− c

ρ
ˆ

ψ(ρ)

[log log
1

s
]Lβ

ds

s

)

.

Fix l1, l2 and l3 by the conditions

l1 = 1 + τ2 + β̄2τ1, l2 = c
q

pκ
8Lβ , l3 = β,

then the last inequality can be rewritten as

min
B ρ

2
(x0)

u > γ−1 ντ11 u0 [log log
1

ρ
]−β̄2τ1 exp

(

− l2[log log
1

ρ
]Ll3 − c

ρ
ˆ

ψ(ρ)

[log log
1

s
]Lβ

ds

s

)

.

Using the fact that log log 1
ψ(ρ) 6 γ log log 1

ρ , log
ρ

ψ(ρ) 6 γ[log log 1
ρ ]
Lβ and [log log 1

ρ ]
β̄2τ1 6

6 exp
(

γ[log log 1
ρ ]
Lβ
)

if ρ is small enough, from the previous we arrive at

min
B ρ

2
(x0)

u > γ−1 ντ11 u0 exp
(

− γ[log log
1

ρ
]Lβ
)

.

Choose l4 sufficiently large, according to (3.10), choose L sufficiently small, according to

(3.7), (3.10), choose ρ small enough, according to the second inequality in (3.7) and note that

(3.8) holds by our choice of α(r), we arrive at

min
B ρ

2
(x0)

u > γ−1 ντ11
u0

log 1
ρ

,

provided that inequality (3.6) holds. This completes the proof of Theorem 1.3.

4 Pointwise Estimates of Auxiliary Solutions, Proof of

Theorems 1.4 and 1.6

We will assume that the following integral identity holds:

ˆ

D

Φ(x, |∇w|)
∇w

|∇w|2
∇η dx = 0 for any η ∈W 1,Φ

0 (D). (4.1)

The existence of the solutions w follows from the general theory of monotone operators. Testing

(4.1) by η = (w −m)+ and by η = w− we obtain that 0 6 w 6 m 6 λ(ρ)M .

To formulate our next result, we need the notion of the capacity. For this set

CΦ(E,B8ρ(x0);m) :=
1

m
inf

v∈M(E)

ˆ

B8ρ(x0)

Φ(x,m|∇v|) dx,
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where the infimum is taken over the set M(E) of all functions v ∈ W 1,Φ
0 (B8ρ(x0)) with v > 1

on E. If m = 1, this definition leads to the standard definition of CΦ(E,B8ρ(x0)) capacity (see,

e.g. [27]).

Further we will assume that

Λ−1
+,x0,8ρ

(

CΦ(E,B8ρ(x0);m)

ρn−1 [Λλ
(

x0, ρ
)

]c̄1

)

> c̄, (4.2)

where Λ−1
+,x0,8ρ

(·) is the inverse function to Λ+,ϕ(x0, 8ρ, ·), ϕ(x, v) :=
Φ(x, v)

v
, v > 0 and c̄, c̄1 > 0

to be chosen later depending only on the data.

4.1 Upper bound for the function w

We note that in the standard case (i.e. if p = q) the upper bound for the function w was proved

in [42] (see also [43, Chap. 8, Sec. 3], [44]).

Lemma 4.1. There exists β̄ > 0 depending only on the data such that

w(x) 6 γ ρΛ−1
+,x0,8ρ

(

[

Λλ(x0, ρ)
]β̄ CΦ(E,B8ρ(x0);m)

ρn−1

)

, x ∈ K 3
2
ρ,8ρ = B8ρ(x0) \B 3

2
ρ(x0).

Proof. Fix σ ∈ (0, 18), s ∈ ((1 + σ)ρ, (8 − σ)ρ) and let M0 := sup
Ks,8ρ

w, Mσ := sup
Ks(1+σ),8ρ

w. Fix

x̄ ∈ Ks(1+σ),8ρ and for j = 0, 1, 2, .... set ρj := sσ2 (1 + 2−j), Bj := Bρj(x̄), kj = k(1 − 2−j),

where k > 0 and suppose that (w(x̄)− k)+ > c̄ρ
[

Λλ(x0, ρ)
]c̄1 , then sup

Bj

(w − kj)+ > ρ. We will

use inequality (2.2), by condition (ΦλΛ,x0) with K =M , using the fact that sup
Bj

(w − kj)+ 6

6 m 6 λ(ρ)M we have

ΛΦ
(

x̄, ρj , sup
Bj

(w − kj)+/ρj
)

6 γ(M)Λλ(x̄, ρj) 6 γΛλ(x0, ρ).

Hence, inequality (2.2) with θ = p t
t+1 can be rewritten as

ˆ

Bj+1∩{u>kj}

|∇w|θ dx 6
γ

σγ
2jγ
(

M0

ρ

)θ

ρn[Λλ(x0, ρ)]
θ
p

(

|Bj ∩ {w > kj}|

|Bj|

)1− θ
tp
− θ

sp

.

Since x̄ is an arbitrary point in x̄ ∈ Ks(1+σ),8ρ this inequality by standard arguments ( see

e.g. [32]) yields

M
θ+ 1

κ
σ 6 γ σ−γM

1
κ

0 [Λλ(x0, ρ)]
1
pκ ρ−n

ˆ

Ks,8ρ

wθ dx+ γ σ−γρθ+
1
κ

[

Λλ(x0, ρ)
](θ+ 1

κ
)c̄1 ,

where κ = 1
n − 1

tp −
1
sp > 0. Using the Young inequality we obtain for any ε ∈ (0, 1)

Mσ 6 εM0+γ σ
−γ ε−γ [Λλ(x0, ρ)]

1
pθκ

(

ρ−n
ˆ

Ks,8ρ

wθ dx

)
1
θ

+γ ρ
[

Λλ(x0, ρ)
]c̄1 , θ = p

t

t+ 1
. (4.3)
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Let us estimate the second term on the right-hand side of (4.3). For this we assume that

Mσ > c̄σ−γρ
[

Λλ(x0, ρ)
]c̄1

> ρ, because otherwise, by (4.2) the upper estimate is evident. Set

wM0 := min{w,M0}, by the Poincare and Hölder inequalities we have with arbitrary ε1 ∈ (0, 1)

(

ρ−n
ˆ

Ks,8ρ

wθ dx

)
1
θ

=

(

ρ−n
ˆ

Ks,8ρ

wθM0
dx

)
1
θ

6 γρ

(

ρ−n
ˆ

D

|∇wM0 |
θ dx

)
1
θ

6

6 γρ

(

ρ−n
ˆ

D

|∇wM0 |
pϕp
(

x, ε1
M0

ρ

)

dx

)
1
p
(

ρ−n
ˆ

B8ρ(x0)

[

ϕp
(

x, ε1
M0

ρ

)]−t
dx

)
1
pt

=

= γε1M0

(

ρ−n
ˆ

D

|∇wM0 |
pϕp
(

x, ε1
M0

ρ

)

dx

)
1
p
(

ρ−n
ˆ

B8ρ(x0)

[

Φ
(

x, ε1
M0

ρ

)]−t
dx

)
1
pt

6

6 γε1M0

(

ρ−n
ˆ

D

Φ
(

x, |∇wM0 |
)

dx+ ρ−n
ˆ

B8ρ(x0)

Φ
(

x, ε1
M0

ρ

)

dx

)
1
p

×

×

(

ρ−n
ˆ

B8ρ(x0)

[

Φ
(

x, ε1
M0

ρ

)]−t
dx

)
1
pt

, (4.4)

above we also used inequality (2.1) with ε = 1. Fix ε1 by the condition

ε1 = γ−1ε1+γσγ
[

Λλ(x0, ρ)
]− 1

p
(1+ 1

θκ
)
.

The second term on the right-hand side of (4.4) we estimate using condition (ΦλΛ,x0). By our

choice ε1M0 > ε1c̄σ
−γ
[

Λ(x0, ρ)
]c̄1ρ > ρ, provided that c̄ > ε−1−γ γ and c̄1 >

1
p(1+

1
θκ), moreover

ε1M0 6 m 6 λ(ρ)M , therefore by condition (ΦλΛ,x0)

(

ρ−n
ˆ

B8ρ(x0)

[

Φ
(

x, ε1
M0

ρ

)]s
dx

)
1
ps
(

ρ−n
ˆ

B8ρ(x0)

[

Φ
(

x, ε1
M0

ρ

)]−t
dx

)
1
pt

6

6 γ
[

Λ+,Φ(x0, 8ρ, ε1
M0

ρ
)
]
1
p
[

Λ−,Φ(x0, 8ρ, ε1
M0

ρ
)
]
1
p 6 γ

[

Λλ(x0, ρ)
]
1
p . (4.5)

Combining estimates (4.3)–(4.5) and using condition (Φ) we arrive at

Mσ 6 2εM0 + γM0

[

Λλ(x0, ρ)
]

1
p

[

Λ+,Φ(x0, 8ρ, ε1
M0

ρ
)
]
1
p

(

ρ−n
ˆ

D

Φ(x, |∇wM0 | dx

)
1
p

+ γρ
[

Λλ(x0, ρ)
]c̄1

6

6 2εM0 + γε−γσ−γM0

[

Λλ(x0, ρ)
]β̄4

[

Λ+,Φ(x0, 8ρ,
M0

ρ
)
]
1
p

(

ρ−n
ˆ

D

Φ(x, |∇wM0 | dx

)
1
p

+ γρ
[

Λλ(x0, ρ)
]c̄1 ,

(4.6)

where β̄4 =
1
p(1 + (q − 1) 1

θκ).

We need to estimate the integral on the right-hand side of (4.6). Let ψ ∈ W 1,Φ
0 (B8ρ(x0)),

ψ = 1 on E, be such that 1
m

´

B8ρ(x0)

Φ(x,m|∇ψ|) dx 6 γCΦ(E,B8ρ(x0);m) + γρn, test identinty
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(4.1) by η = w −mψ, using inequality (2.1) with θ = 1, a = |∇w|, b = |∇ψ| and sufficiently

small ε we obtaint
ˆ

D

Φ(x, |∇w|) dx 6 γ

ˆ

B8ρ(x0)

Φ(x,m|∇ψ|) dx 6 γmCΦ(E,B8ρ(x0);m) + γmρn.

Now testing identity (4.1) by η = wM0−
M0

m
w, using (2.1) and the previous inequality we obtain

ˆ

D

Φ(x, |∇wM0 |) dx 6 γ
M0

m

ˆ

D

Φ(x, |∇w|) dx 6 γM0CΦ(E,B8ρ(x0);m) + γM0ρ
n. (4.7)

Combining estimates (4.6) and (4.7), using the fact that Λ+,Φ(x0, 8ρ,
M0
ρ ) = M0

ρ Λ+,ϕ(x0, 8ρ,
M0
ρ )

and using our assumption that M0 > c̄ρ
[

Λλ(x0, ρ)
]c̄1 we obtain

Mσ 6 2εM0 + γε−γσ−γM0

[

Λλ(x0, ρ)
]β̄4

[

Λ+,Φ(x0, 8ρ,
M0
ρ )
]
1
p

(

ρ−nM0CΦ(E,B8ρ(x0);m) +M0

)
1
p

+

+γρ
[

Λλ(x0, ρ)
]c̄1

6 (2ε+
γ

c̄
)M0+γε

−γσ−γM0

[

Λλ(x0, ρ)
]β̄4

[

Λ+,ϕ(x0, 8ρ,
M0
ρ )
]
1
p

(

ρ1−nCΦ(E,B8ρ(x0);m)+ρ

)
1
p

6 (2ε +
γ

c̄
)M0 + γε−γσ−γM0

[

Λλ(x0, ρ)
]β̄4

[

Λ+,ϕ(x0, 8ρ,
M0
ρ )
]
1
p

(

ρ1−nCΦ(E,B8ρ(x0);m)

)
1
p

.

By the fact that Λ+,ϕ(x0, ρ, ε0
M0
ρ ) 6 εp−1

0 Λ+,ϕ(x0, ρ,
M0
ρ ), ε0 ∈ (0, 1) and using (2.1) with

a = Mσ

ρ , b = 1, ε replaced by ε0
M0
ρ and ϕp(x, ·) replaced by

[

Λ+,ϕ(x0, ρ, ·)
]

1
p from this we

obtain

[

Λ+,ϕ(x0, 8ρ,
Mσ

ρ
)
]
1
p 6

Mσ

ε0M0

[

Λ+,ϕ(x0, 8ρ,
Mσ

ρ
)
]
1
p +

[

Λ+,ϕ(x0, 8ρ, ε0
M0

ρ
)
]
1
p 6

6
Mσ

ε0M0

[

Λ+,ϕ(x0, 8ρ,
M0

ρ
)
]
1
p + ε

p−1
p

0

[

Λ+,ϕ(x0, 8ρ,
M0

ρ
)
]
1
p 6

6 (ε
p−1
p +2

ε

ε0
+
γ

c̄
)
[

Λ+,ϕ(x0, 8ρ,
M0

ρ
)
]
1
p+γε−1

0 ε−γσ−γ
[

Λλ(x0, ρ)
]β̄4

(

ρ1−nCΦ(E,B8ρ(x0);m)

)
1
p

.

Fix ε, c̄ by the conditions ε = 1
4ε

2+ p
p−1

0 , c̄ > 4γ
ε0
, ε0 ∈ (0, 1), then the last inequality yields

[

Λ+,ϕ(x0, 8ρ,
Mσ

ρ
)
]
1
p 6 ε0

[

Λ+,ϕ(x0, 8ρ,
M0

ρ
)
]
1
p+γε−γ0 σ−γ

[

Λλ(x0, ρ)
]β̄4

(

ρ1−nCΦ(E,B8ρ(x0);m)

)
1
p

.

Iterating this inequality we arrive at

[

Λ+,ϕ(x0, 8ρ,
M0

ρ
)
]
1
p 6 γ

[

Λλ(x0, ρ)
]β̄4

(

ρ1−nCΦ(E,B8ρ(x0);m)

)
1
p

,

which proves the required upper bound with β̄ = pβ̄4 = 1 + (q − 1) t+1
ptκ . This completes the

proof of the lemma.
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4.2 Lower bound for the function w

The main step in the proof of the lower bound is the following lemma.

Lemma 4.2. There exist numbers ε, ϑ ∈ (0, 1), β̄5 > 0 depending only on the data such that

∣

∣

∣

∣

{

K 3
2
ρ, 4ρ : w(x) 6 ε ρΛ−1

+,x0,8ρ

(

CΦ(E,B8ρ(x0);m)

ρn−1

)}
∣

∣

∣

∣

6

6

(

1− ϑ
[

Λλ(x0, ρ)
]−β̄5

)

|K 3
2
ρ, 4ρ|. (4.8)

Proof. Let ζ1(x) ∈ C∞
0 (B3ρ(x0)), 0 6 ζ1(x) 6 1, ζ1(x) = 1 in B2ρ(x0) and |∇ζ1| 6

γ
ρ . Test

(4.1) by η = w − mζq and use the Young inequality (2.1) with θ = 1 we obtain with any

ε1 ∈ (ρ,Mλ(ρ))

ˆ

D

Φ(x, |∇w|) dx 6 γ
m

ρ

ˆ

K2ρ,3ρ

ϕ(x, |∇w|) ζq−1
1 dx 6 γ

m

ε1

ˆ

K2ρ,3ρ

Φ(x, |∇w|) dx+

+ γ
m

ρ

ˆ

K2ρ,3ρ

ϕ(x,
ε1
ρ
) dx 6 γ

m

ε1

ˆ

K2ρ,3ρ

Φ(x, |∇w|) dx + γmρn−1

(

ρ−n
ˆ

B8ρ(x0)

[

ϕ(x,
ε1
ρ
)
]s
dx

)
1
s

6

6 γ
m

ε1

ˆ

K2ρ,3ρ

Φ(x, |∇w|) dx + γmρn−1Λ+,ϕ(x0, 8ρ,
ε1
ρ
).

Let ζ2(x) ∈ C∞
0 (K 3

2
ρ,4ρ), 0 6 ζ2(x) 6 1, ζ2(x) = 1 in Kρ,2ρ and |∇ζ2| 6

γ
ρ . Testing (4.1) by

η = w ζq and using the Young inequality (2.1) we estimate the first term on the right-hand side

of the previous inequality as follows

ˆ

K2ρ,3ρ

Φ(x, |∇w|) dx 6

ˆ

K 3
2 ρ,4ρ

Φ(x, |∇w|) ζq2 dx 6 γ

ˆ

K 3
2 ρ,4ρ

Φ
(

x,
w

ρ

)

dx.

Combining the last two inequalities and using the definition of the capacity we obtain

CΦ(E,B8ρ(x0);m) 6
1

m

ˆ

D

Φ(x, |∇w|) dx 6
γ

ε1

ˆ

K 3
2 ρ,4ρ

Φ
(

x,
w

ρ

)

dx+γρn−1Λ+,ϕ(x0, 8ρ,
ε1
ρ
). (4.9)

Choose ε1 by the condition γρn−1Λ+,ϕ(x0, 8ρ,
ε1
ρ ) =

1
4CΦ(E,B8ρ(x0);m), i.e.

ε1 = ρΛ−1
+,x0,8ρ

(

CΦ(E,B8ρ(x0);m)

4γ ρn−1

)

> (4γ)−
1

p−1 ρΛ−1
+,x0,8ρ

(

CΦ(E,B8ρ(x0);m)

ρn−1

)

.

Hence inequality (4.9) implies

CΦ(E,B8ρ(x0);m) 6
γ

ε1

ˆ

K 3
2 ρ,4ρ

Φ
(

x,
w

ρ

)

dx. (4.10)

Let us estimate the integral on the right-hand side of inequality (4.10), for this we decompose

K 3
2
ρ,4ρ as K 3

2
ρ,4ρ = K ′ ∪ K ′′, K ′ := K 3

2
ρ,4ρ ∩

{

w 6 ε ρ δ(ρ,m)
}

and K ′′ := K 3
2
ρ,4ρ \ K ′,



Continuity and Harnack inequalities.... 23

δ(ρ,m) = Λ−1
+,x0,8ρ

(

CΦ(E,B8ρ(x0);m)
ρn−1

)

. By (Φ) and our choice of ε1 we have

γ

ε1

ˆ

K ′

Φ
(

x,
w

ρ

)

dx 6
γεp

ε1
δ(ρ,m) ρn

(

ρ−n
ˆ

B8ρ(x0)

[

ϕ(x, δ(ρ,m))
]s
dx

)
1
s

6

6 γεpρn−1Λ+,ϕ(x0, 8ρ, δ(ρ,m)) 6 γεpCΦ(E,B8ρ(x0);m). (4.11)

Similarly, by (Φ), Lemma 4.1 and our choice of ε1

γ

ε1

ˆ

K ′′

Φ
(

x,
w

ρ

)

dx 6
γ

ε1
δ(ρ,m) ρn[Λλ(x0, ρ)]

qβ̄
p

(

ρ−n
ˆ

B8ρ(x0)

[

ϕ(x, δ(ρ,m))
]s
dx

)
1
s
(

|K ′′|

|K 3
2
ρ,4ρ|

)1− 1
s

6 γCΦ(E,B8ρ(x0);m)[Λλ(x0, ρ)]
qβ̄
p

(

|K ′′|

|K 3
2
ρ,4ρ|

)1− 1
s

. (4.12)

Collecting estimates (4.10)–(4.12) we obtain

1 6 γεp + γ[Λλ(x0, ρ)]
qβ̄
p

(

|K ′′|

|K 3
2
ρ,4ρ|

)1− 1
s

,

choosing ε from the condition γεp = 1
2 , from the previous we arrive at the required (4.8) with

β̄5 =
s
s−1

qβ̄
p , which completes the proof of the lemma.

The following lemma is the main result of this Paragraph.

Lemma 4.3. There exist numbers ε̄ ∈ (0, 1), β̄6, β̄7 > 0 depending only on the data such that

∣

∣

{

K 3
2
ρ,4ρ : w 6 ε̄m

[

Λλ(x0, ρ)
]−β̄6

(

|E|

ρn

)β̄7
}∣

∣ 6
(

1− ϑ
[

Λλ(x0, ρ)
]−β̄5)|K 3

2
ρ, 4ρ|, (4.13)

provided that

m

(

|E|

ρn

)β̄7

>
ρ

ε̄

[

Λλ(x0, ρ)
]β̄6 , (4.14)

where β̄5, ϑ > 0 were defined in Lemma 4.2.

Proof. To prove inequality (4.13) we need to estimate the term on the left-hand side of (4.8).

Let ψ ∈W 1,Φ
0 (B8ρ(x0)), ψ(x) = 1 for x ∈ E and fix θ ∈ (1 + 1

t , p). By the Poincare and Hölder

inequalities and using (2.1) with ε ∈ (0, 1) we have

m|E| 6 m

ˆ

B8ρ(x0)

|ψ| dx 6 γ ρ

ˆ

B8ρ(x0)

|∇(mψ)| dx 6

6 γ ρ

(
ˆ

B8ρ(x0)

|∇(mψ)|θ ϕθ(x,
m

ρ
) dx

)
1
θ
(
ˆ

B8ρ(x0)

[

ϕθ(x,
m

ρ
)
]− 1

θ−1 dx

)1− 1
θ

6

6 γmρn
(

ε−θρ−n
ˆ

B8ρ(x0)

Φ(x, |∇(mψ)|) dx + εp−θ
(

ρ−n
ˆ

B8ρ(x0)

[

Φ(x,
m

ρ
)
]s
dx

)
1
s
)

1
θ

×

×

(

ρ−n
ˆ

B8ρ(x0)

[

Φ(x,
m

ρ
)
]−t

dx

)
1
θt

. (4.15)
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Let us estimate the terms on the right-hand side of (4.15). Since ρ 6 m 6 λ(ρ)M , by (ΦλΛ,x0)

we have

(

ρ−n
ˆ

B8ρ(x0)

[

Φ(x,
m

ρ
)
]s
dx

)
1
θs
(

ρ−n
ˆ

B8ρ(x0)

[

Φ(x,
m

ρ
)
]−t

dx

)
1
θt

6 γ[Λλ(x0, ρ)]
1
θ , (4.16)

therefore, choosing ε from the condition

γρnε
p−θ
θ [Λλ(x0, ρ)]

1
θ =

1

2
|E|, i.e. ε = (2γ)−

θ
p−θ [Λλ(x0, ρ)]

− 1
p−θ

(

|E|

ρn

)
θ

p−θ

< 1,

we obtain from (4.15), (4.16)

γ−1 εθ
(

|E|

ρn

)θ

6
Λλ(x0, ρ)

(

ρ−n
´

B8ρ(x0)

[

Φ(x, mρ )
]s
dx

)
1
s

ρ−n
ˆ

B8ρ(x0)

Φ(x, |∇(mψ)|) dx.

From this, using the definition of capacity and using the fact that Φ(x, v) = vϕ(x, v), v > 0, we

obtain

Λ+,ϕ(x0, 8ρ,
m

ρ
)

(

|E|

ρn

)θ

6 γε−θΛλ(x0, ρ)ρ
1−nCΦ(E,B8ρ(x0);m),

which yields by our choice of ε

ρΛ−1
+,x0,8ρ

(

CΦ(E,B8ρ(x0);m)

ρn−1

)

> γ−1 m

(

εθ
[

Λλ(x0, ρ)
]−1
(

|E|

ρn

)θ) 1
p−1

=

= γ−1 m
[

Λλ(x0, ρ)
]−β̄6

(

|E|

ρn

)β̄7

, β̄6 =
p

(p− θ)(p− 1)
, β̄7 =

pθ

(p − θ)(p− 1)
. (4.17)

Therefore, inequality (4.13) is a consequence of (4.8), provided that (4.2) is valid. By (4.17),

inequality (4.2), in turn, is a consequence of (4.14), provided that c̄ is large enough and c̄1 > β̄6.

This completes the proof of the lemma.

4.3 Proof of Theorems 1.4 and 1.6

Let u > 0 be a super-solution to Eq. (1.14) in Ω and construct the sets E(ρ,N) := Bρ(x0) ∩

∩ {u > N} and Eλ(ρ,N) := Bρ(x0) ∩ {u > λ(ρ)N}, 0 < N < M , E(ρ,N) ⊂ Eλ(ρ,N). Let w

be an auxiliary solution to the problem (1.24) in D = B8ρ \ Eλ(ρ,N). Since u > w on ∂D, by

the monotonicity condition (1.16) u > w in D and Lemma 4.3 with m = λ(ρ)N implies

∣

∣

{

B2ρ(x0) : u 6 ε̄λ(ρ)N
[

Λλ(x0, ρ)
]−β̄6

(

|Eλ(ρ)|

ρn

)β̄7
}
∣

∣ 6
(

1−ϑ
[

Λλ(x0, ρ)
]−β̄5)|B2ρ(x0)|, (4.18)

provided that

λ(ρ)N

(

|Eλ(ρ,m)|

ρn

)β̄7

>
ρ

ε̄

[

Λλ(x0, ρ)
]β̄6 , (4.19)

with some positive β̄5, β̄6, β̄7 and ϑ ∈ (0, 1) depending only on the data.
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We use Lemmas 2.3, 2.4 with α0 = ϑ
[

Λλ(x0, ρ)
]−β̄5 and ν defined in Lemma 2.4. These

lemmas ensure the existence of C, β̄8 = β̄1 + pβ̄1β̄5 + pβ̄1β̄2 > 0, where β̄1, β̄2 > 0 were defined

in Lemmas 2.3 and 2.4 depending only on the data, such that

λ(ρ)N

(

|E(ρ,m)|

ρn

)β̄7

6 λ(ρ)N

(

|Eλ(ρ,m)|

ρn

)β̄7

6

6
[

Λλ(x0, ρ)
]−β̄6 exp

(

C
[

Λλ(x0, ρ)
]β̄8){ inf

B ρ
2
(x0)

u+ ρ} 6

6 exp
(

C
[

Λλ(x0, ρ)
]1+β̄8){ inf

B ρ
2
(x0)

u+ ρ}.

This completes the proof of Theorem 1.6.

The proof of the weak Harnack-type inequality (1.17) and the upper bound (1.18) is almost

the same as for Theorem 1.2, inequalities (1.11) and (1.12), see Section 3.3 for details, we leave

them to the reader.
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