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We combine amortized neural posterior estimation with importance sampling for fast and accurate
gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural
networks, and then attach importance weights based on the underlying likelihood and prior. This provides
(1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample
efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the
Bayesian evidence. By establishing this independent verification and correction mechanism we address
some of the most frequent criticisms against deep learning for scientific inference. We carry out a large
study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and
IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of
magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the
log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and
for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.
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Introduction.—Bayesian inference is a key paradigm for
scientific discovery. In the context of gravitational waves
(GWs), it underlies analyses including individual-event
parameter estimation [1], tests of gravity [2], neutron-star
physics [3], populations [4], and cosmology [5]. Given a
prior pðθÞ and a model likelihood pðdjθÞ, the Bayesian
posterior

pðθjdÞ ¼ pðdjθÞpðθÞ
pðdÞ ð1Þ

summarizes, as a probability distribution, our knowledge of
the model parameters θ after observing data d. When
pðdjθÞ is tractable (as in the case of GWs) likelihood-based
samplers such as Markov chain Monte Carlo (MCMC)
[6,7] or nested sampling [8] are typically used to draw
samples from the posterior. If it is possible to sample
d ∼ pðdjθÞ (i.e., simulate data) one can alternatively use

amortized simulation-based (or likelihood-free) inference
methods [9]. These approaches are based on deep neural
networks and can be several orders-of-magnitude faster at
inference time. For GW inference, they have also been
shown to achieve similar accuracy to MCMC [10]. In
general, however, it is not clear how well such networks
generalize to out-of-distribution data and they lack diag-
nostics to be confident in results [11]. These powerful
approaches are therefore rarely used in applications where
accuracy is important and likelihoods are tractable.
In this Letter, we achieve the best of both worlds by

combining likelihood-free and likelihood-based methods
for GW parameter estimation. We take samples from
DINGO [10,12]—a fast and accurate likelihood-free
method using normalizing flows [13–16]—and treat these
as a proposal for importance sampling [17]. The combined
method (“DINGO-IS”) generates samples from the exact
posterior and now provides an estimate of the Bayesian
evidence pðdÞ. Moreover, the importance sampling effi-
ciency arises as a powerful and objective performance
metric, which flags potential failure cases. Importance
sampling is fully parallelizable.
After describing the method more fully in the following

section, we verify on two real events that DINGO-IS
produces results consistent with standard inference codes
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[18–21]. Our main result is an analysis of 42 events
from the Second and Third Gravitational-Wave Transient
Catalogs (GWTC-2 and GWTC-3) [1,22], using two
waveform models, IMRPhenomXPHM [23] and
SEOBNRv4PHM [24]. Because of the long waveform
simulation times, SEOBNRv4PHM inference would take
several months per event with stochastic samplers.
However, DINGO-IS with 64 CPU cores takes just 10 h
for these waveforms. (Initial DINGO samples are available
typically in under a minute.) Our results indicate that
DINGO(-IS) performs well for the majority of events,
and that failure cases are indeed flagged by low sample
efficiency. We also find that the log evidence is recovered
with statistical uncertainty reduced by a factor of 10
compared to standard samplers.
Machine learning methods have seen numerous appli-

cations in GW astronomy, including to detection and
parameter estimation [25]. For parameter estimation, these
methods have included variational inference [26,27], like-
lihood ratio estimation [28], and posterior estimation with
normalizing flows [10,27,29,30]. Aside from directly
estimating parameters, normalizing flows have also been
used to accelerate classical samplers, with significant
efficiency improvements [31].
Neural density estimation and importance sampling have

previously been combined [32] under the guise of “neural
importance sampling” [33], and similar approaches have
been applied in several contexts [34–37]. Our contributions
are to (1) extend this to amortized simulation-based
inference, (2) use it to improve results generated with
classical inference methods such as MCMC, and (3) to
highlight how the use of a forward Kullback-Leibler (KL)
loss improves reliability. We also apply it to the challenging
real-world problem of GW inference [38]. We demonstrate
results that far outperform classical methods in terms of
sample efficiency and parallelizability, while maintaining
accuracy and including simple diagnostics. We therefore
expect this work to accelerate the development and
verification of probabilistic deep learning approaches
across science.
Method.—DINGO trains a conditional density-estima-

tion neural network qðθjdÞ to approximate pðθjdÞ based on
simulated datasets ðθ; dÞ with θ ∼ pðθÞ, d ∼ pðdjθÞ—an
approach called neural posterior estimation (NPE) [40].
Once trained, DINGO can rapidly produce (approximate)
posterior samples for any measured data d. In practice,
results may deviate from the true posterior due to insuffi-
cient training, lack of network expressivity, or out-of-
distribution (OOD) data (i.e., data inconsistent with the
training distribution). Although it was shown in [10] that
these deviations are often negligible, verification of results
requires comparing against expensive standard samplers.
Here, we describe an efficient method to verify and

correct DINGO results using importance sampling (IS)
[17]. Starting from a collection of n samples θi ∼ qðθjdÞ

(the “proposal”) we assign to each one an importance
weight wi ¼ pðdjθiÞpðθiÞ=qðθijdÞ. For a perfect proposal,
wi ¼ constant, but more generally the number of effective
samples is related to the variance, neff ¼ðPiwiÞ2=

P
iðw2

i Þ
[41]. The sample efficiency ϵ ¼ neff=n ∈ ð0; 1� arises
naturally as a quality measure of the proposal.
Importance sampling requires evaluation of pðdjθÞpðθÞ

rather than the normalized posterior. The Bayesian evi-
dence can then be estimated from the normalization of
the weights as pðdÞ ¼ 1=n

P
i wi. The standard deviation

of the log evidence, σlogpðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ϵÞ=ðn ϵÞp

(see
Supplemental Material [42]), scales with 1=

ffiffiffi
n

p
, enabling

very precise estimates. The evidence is furthermore
unbiased if the support of the posterior is fully covered
by the proposal distribution [43]. The log evidence
does have a bias, but this scales as 1=n, and in all cases
considered here is completely negligible (see Supplemental
Material). If qðθjdÞ fails to cover the entire posterior, the
evidence itself would also be biased, toward lower values.
NPE is particularly well suited for IS because of two key

properties. First, by construction the proposal has tractable
density, such that we can not only sample from qðθjdÞ, but
also evaluate it. Second, the NPE proposal is expected to
always cover the entire posterior support. This is because,
during training, NPEminimizes the forwardKL divergence
DKLðpðθjdÞjjqðθjdÞÞ. This diverges unless suppðpðθjdÞÞ ⊆
suppðqðθjdÞÞ, making the loss “probability-mass cover-
ing.” Probability mass coverage is not guaranteed for finite
sets of samples generated with stochastic samplers like
MCMC (which can miss distributional modes), or machine
learning methods with other training objectives like varia-
tional inference [13,44,45].
Neural importance sampling can in fact be used to

improve posterior samples from any inference method
provided the likelihood is tractable. If the method provides
only samples (without density) then one must first train an
(unconditional) density estimator qðθÞ (e.g., a normalizing
flow [13,14,46]) to use as the proposal. This is generally
fast for an unconditional flow, and using the forward KL
loss guarantees that the proposal will cover the samples.
Success, however, relies on the quality of the initial
samples: if they are light tailed, sample efficiency will
be poor, and if they are not mass covering, the evidence
will be biased. Nevertheless, for initial samples that well
represent the posterior, this technique can provide quick
verification and improvement.
In the context of GWs, we refer to neural importance

sampling with DINGO as DINGO-IS. Although this tech-
nique requires likelihood evaluations at inference time, in
practice it is much faster than other likelihood-based
methods because of its high sample efficiency and paral-
lelizability. Indeed, DINGO samples are independent and
identically distributed, trivially enabling full parallelization
of likelihood evaluations. This is a crucial advantage
compared to inherently sequential methods such asMCMC.
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Results.—For our experiments, we prepare DINGO
networks as described in [10], with several modifications.
First, we extend the priors over component masses to
m1; m2 ∈ ½10; 120�M⊙ and dimensionless spin magnitudes
to a1; a2 ∈ ½0; 0.99�. We also use the waveform models
IMRPhenomXPHM [23] and SEOBNRv4PHM [24],
which include higher radiative multipoles and more real-
istic precession. Finally, in addition to networks for the first
observing run of LIGO and Virgo (O1), we also train
networks based on O3 noise. For the O3 analyses, we found
performance improved by training separate DINGO
models with distance priors [0.1, 3] Gpc, [0.1, 6] Gpc, and
[0.1, 12] Gpc. We continue to use frequency-domain strain
data in the range [20, 1024] Hz with Δf ¼ 0.125 Hz and
identical data conditioning as in [10]. The network archi-
tecture, hyperparameters, and training algorithm are also
unchanged. We consider the two LIGO [47] detectors for
all analyses, and leave inclusion of Virgo [48] data to a
future publication of a complete catalog.
In our experiments, we found that DINGO often has

difficulty resolving the phase parameter ϕc. Although ϕc
itself is of little physical interest, it is nevertheless needed to
evaluate the likelihood for importance sampling. We there-
fore sample ϕc synthetically, by first evaluating the like-
lihood across a ϕc grid and caching the waveform modes
for efficiency (see Supplemental Material). This approach
is similar to standard phase marginalization [18,49,50], but
it is valid even with higher modes; it can therefore be
adapted also to stochastic samplers.
For DINGO-IS, with 105 proposal samples per event,

the total time for inference using one NVIDIA A100 GPU
and 64 CPU cores is typically less than 1 h for
IMRPhenomXPHM and ≈10 hours for SEOBNRv4PHM.
In both cases, the computation time is dominated by wave-
form simulations, which could be further reduced using
more CPUs. The rest of the time is taken up to generate the
initial DINGO proposal samples [51].

We first validate DINGO-IS against standard inference
codes for two real events, GW150914 and GW151012,
using IMRPhenomXPHM. (For SEOBNRv4PHM it is not
feasible to run classical samplers, and one would instead
need to use faster methods such as RIFT [53,54].) We
generate reference posteriors using LALINFERENCE-MCMC

[18], and compare one-dimensional marginalized posteri-
ors for each parameter using the Jensen-Shannon

TABLE I. Performance for GW150914 (upper block) and
GW151012 (lower) with waveform model IMRPhenomXPHM.
The Jensen-Shannon divergence (JSD) quantifies the deviation
from LALINFERENCE-MCMC for one-dimensional marginal poste-
riors (all values in 10−3 nat). The mean is taken across all
parameters. Posteriors with a maximum JSD ≤ 2 × 10−3 nat are
considered indistinguishable [20]; here, maxima occur for right
ascension α, luminosity distance dL, and chirp mass Mc. We also
report BILBY-DYNESTY results.

Mean JSD Max JSD logpðdÞ
DINGO 2.2 7.2 (α)
DINGO-IS 0.5 1.4 (dL) −15 831.87� 0.01
BILBY 1.8 4.0 (dL) −15 831.78� 0.10

DINGO 9.0 53.4 (Mc)
DINGO-IS 0.7 2.2 (α) −16 412.88� 0.01
BILBY 1.1 4.1 (α) −16 412.73� 0.09

FIG. 1. Chirp mass (Mc), mass ratio (q) and sky position (α, δ)
parameters for GW151012, comparing inference with DINGO
and LALINFERENCE-MCMC. Even when initial DINGO results
deviate from LALINFERENCE posteriors (upper panel), IS leads to
almost perfect agreement (lower). For comparison, the lower
panel also shows results for SEOBNRv4PHM.
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divergence (Table I). For both events, the initial small
deviations of DINGO samples from the reference are
made negligible [55] using DINGO-IS (see Fig. 1 for a
qualitative demonstration). We find sample efficiencies of
ϵ¼28.8% and ϵ ¼ 12.5% for GW150914 and GW151012,
respectively.
For the evidence, we compare against BILBY-DYNESTY

[19–21], since nested sampling generally provides a more
accurate estimate than MCMC. In Table I we see that
DINGO-IS is more precise by a factor of ≈10, but the
BILBY evidence is larger for both events by roughly one
standard deviation. This deviation could be statistical, but it
could also indicate a bias in one of the methods. (Recall that
IS requires the proposal to be mass covering for an un-
biased evidence.) To further investigate for GW151012, we
perform neural importance sampling starting from 106

BILBY samples (see Supplemental Material). This achieves
a slightly lower ϵ ¼ 8.3% than DINGO-IS, but logpðdÞ ¼
−16 412.89� 0.01 in close agreement. While this does not
fully rule out a bias in DINGO-IS samples (since the test is
not fully independent) we take this as an indication that
DINGO-IS indeed infers an unbiased evidence. More
generally, it showcases how our method can be extended
to improve the output of stochastic samplers.
We now perform a large study analyzing all 42 events in

GWTC-2 [22] and GWTC-3 [1] that are consistent with our
mass prior [56]. We stress that a study of this scope would
be infeasible with standard codes, since SEOBNRv4PHM
inference for a single event would take several months.
Across all events we achieve a median sampling efficiency
of ϵ ¼ 10.9% for IMRPhenomXPHM and ϵ ¼ 4.4% for
SEOBNRv4PHM (Table II). For most events, the initial
DINGO results are already accurate and only deviate
slightly from DINGO-IS; furthermore, DINGO-IS shows
excellent agreement between the two waveform models
(see the Supplemental Material for more detailed compar-
isons). Note that these results are based on highly complex
precessing higher-mode waveform models, and do not
include any mitigation of noise transients (see below).
With the simpler IMRPhenomPv2 [59–61] model and a
smaller mass prior (in a study on drifting detector noise
distributions [62]) DINGO-IS achieves an even larger
median sample efficiency of ϵ ¼ 36.8% on 37 events.
Importance sampling guarantees robust results by mark-

ing failure cases with a low sample efficiency. By this
metric, DINGO struggles slightly with chirp masses near
the lower prior boundary (GW191204_110529 and
GW200322_091133). For such systems, efficiency may
be improved by increasing the prior range used for training.
Events with known data quality issues also often have low
sample efficiency (see Table II): several low-ϵ events are
contaminated by glitch artifacts (which would be mitigated
in a more complete analysis [1,22]); GW200129_065458,
in addition to having a glitch [63], may not be well modeled
by either of our waveform models due to having strong

TABLE II. 42 BBH events from GWTC-3 analyzed with
DINGO-IS. We report the log evidence logpðdÞ and the sample
efficiency ϵ for the two waveform models IMRPhenomXPHM
(upper rows) and SEOBNRv4PHM (lower rows). Highlighting
colors indicate the sample efficiency (green: high; yellow:
medium; orange and red: low); DINGO-IS results can be trusted
for medium and high ϵ (see Supplemental Material). Events in
gray suffer from data quality issues [1,22].

Event logpðdÞ ϵ (%)

GW190408_181802 −16 178.332� 0.012 6.9
−16 178.172� 0.010 9.3

GW190413_052954 −15 571.413� 0.006 22.5
−15 571.391� 0.005 26.3

GW190413_134308 −16 399.331� 0.009 12.4
−16 399.139� 0.014 4.7

GW190421_213856 −15 983.248� 0.008 15.3
−15 983.131� 0.010 9.4

GW190503_185404 −16 582.865� 0.022 2.0
−16 583.352� 0.027 1.4

GW190513_205428 −15 946.462� 0.043 0.6
−15 946.581� 0.017 3.4

GW190514_065416 −16 556.466� 0.009 11.6
−16 556.314� 0.017 3.5

GW190517_055101 −16 271.048� 0.027 1.3
−16 272.428� 0.034 0.9

GW190519_153544 −15 991.171� 0.008 15.2
−15 991.287� 0.068 0.2

GW190521_074359 −16 008.876� 0.008 13.4
−16 008.037� 0.015 4.2

GW190527_092055 −16 119.012� 0.008 13.8
−16 118.781� 0.013 6.1

GW190602_175927 −16 036.993� 0.006 25.0
−16 037.529� 0.006 23.5

GW190701_203306 −16 521.381� 0.040 0.6
−16 521.609� 0.010 10.1

GW190719_215514 −15 850.492� 0.008 13.4
−15 850.339� 0.011 8.0

GW190727_060333 −15 992.017� 0.009 10.3
−15 992.428� 0.005 30.8

GW190731_140936 −16 376.777� 0.005 32.6
−16 376.763� 0.005 31.0

GW190803_022701 −16 132.409� 0.006 21.4
−16 132.408� 0.005 27.8

GW190805_211137 −16 073.261� 0.006 20.0
−16 073.656� 0.007 16.6

GW190828_063405 −16 137.220� 0.009 12.2
−16 136.799� 0.010 9.1

GW190909_114149 −16 061.634� 0.011 7.4
−16 061.275� 0.016 3.8

(Table continued)
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precession [64]; and GW200322_091133 may be simply a
Gaussian noise fluctuation [65]. In these cases, DINGO-IS
marks events for additional investigation.
Data quality issues such as non-Gaussian noise or

observed signals that do not match models correspond to
OOD data, i.e., data not consistent with the training
distribution. Since OOD data are not seen during training,
DINGO cannot be expected to return their true posterior,
which results in a low sample efficiency. As an additional
test, running DINGO-IS on signal-free data with a blip
glitch [66] in the LIGO Hanford detector (GPS time 1 238
613 687.5) results in ϵ ≈ 0.001%. Likewise, we find that
DINGO-IS successfully flags adversarial examples [67,68]
that are intentionally corrupted to mislead the inference
network (ϵ ≈ 0.01%; see Supplemental Material)—
addressing a common failure mode of neural networks.
Our general view, therefore, is that although there can be
various reasons for low-ϵ results, it often serves as a useful
heuristic to identify OOD events.
Conclusions.—We have described the use of importance

sampling to improve the results of NPE in amortized
inference problems, and we applied it to the case of
GWs. Neural importance sampling provides rapid verifi-
cation of results and corrects any inaccuracies in deep
learning output; it provides an evidence estimate with
precision far exceeding that of classical samplers; and it
marks potentially OOD data for further investigation. With
high sample efficiency and rapid initial results, DINGO-IS
becomes a comprehensive inference tool for accurately
analyzing the large numbers of binary black hole (BBH)
events expected soon.
High sample efficiencies are predicated on a high quality

proposal, which DINGO thankfully provides. A key
element is the probability-mass covering property, which
is guaranteed by the forward KL training loss. This tends to
produce broad tails, which are downweighted in impor-
tance sampling. Overly broad proposals would nevertheless
result in low sample efficiency, so highly expressive density
estimators such as normalizing flows are essential, along
with DINGO innovations such as group-equivariant NPE
(GNPE) [10,52] and GW training data augmentation.
DINGO posteriors are rarely light tailed, but this does
occasionally lead to underestimated evidence for small n.
With the inclusion of importance sampling, the DINGO

pipeline can now be used in several different ways. When
low latency is desired, complete posteriors are still avail-
able without importance sampling in a matter of seconds.
Results include sky position and mass parameters and
could therefore play an important role in directing electro-
magnetic followup observations once we extend DINGO to
mergers involving neutron stars (see Ref. [56]). By com-
paring against DINGO-IS, we have shown that in the
majority of cases, initial results are already very reliable,
with only minor deviations in marginal distributions.

TABLE II. (Continued)

Event logpðdÞ ϵ (%)

GW190915_235702 −16 083.960� 0.015 20.8
−16 083.937� 0.027 4.8

GW190926_050336 −16 015.813� 0.019 2.8
−16 015.861� 0.009 12.1

GW190929_012149 −16 146.666� 0.018 3.2
−16 146.591� 0.021 2.4

GW191109_010717 −17 925.064� 0.025 1.7
−17 922.762� 0.041 0.6

GW191127_050227 −16 759.328� 0.019 2.7
−16 758.102� 0.029 1.2

aGW191204_110529 −15 984.455� 0.015 4.2
−15 983.618� 0.063 0.3

GW191215_223052 −16 001.286� 0.013 5.8
−16 000.846� 0.052 0.4

GW191222_033537 −15 871.521� 0.007 16.5
−15 871.450� 0.005 25.8

GW191230_180458 −15 913.798� 0.009 12.2
−15 913.918� 0.010 8.8

GW200128_022011 −16 305.128� 0.013 6.1
−16 304.510� 0.007 18.3

aGW200129_065458 −16 226.851� 0.109 0.1
−16 231.203� 0.051 0.4

GW200208_130117 −16 136.381� 0.007 16.6
−16 136.531� 0.009 11.2

GW200208_222617 −16 775.200� 0.011 7.4
−16 774.582� 0.021 2.2

GW200209_085452 −16 383.847� 0.009 12.5
−16 384.157� 0.025 1.6

GW200216_220804 −16 215.703� 0.017 3.4
−16 215.540� 0.018 3.1

GW200219_094415 −16 133.457� 0.011 9.6
−16 133.157� 0.017 4.0

GW200220_061928 −16 303.782� 0.007 17.3
−16 303.087� 0.026 1.5

GW200220_124850 −16 136.600� 0.008 13.2
−16 136.519� 0.037 0.7

GW200224_222234 −16 138.613� 0.006 22.5
−16 139.101� 0.006 21.4

aGW200308_173609 −16 173.938� 0.013 6.0
−16 173.692� 0.025 1.7

GW200311_115853 −16 117.505� 0.011 7.4
−16 117.583� 0.009 11.9

aGW200322_091133 −16313.568� 0.307 0.0
−16 313.110� 0.105 0.1

aSee remarks on these events in text.
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Indeed, validation of DINGO results was a major motiva-
tion in exploring importance sampling.
When high accuracy is desired, DINGO-IS reweights

results to the true posterior and includes an estimate of the
evidence. Results are verified and include probability mass-
covering guarantees that ensure secondary modes are not
missed. Sample efficiencies are often 2 orders of magnitude
higher than MCMC or nested sampling, and importance
sampling is fully parallelizable. As a consequence,
results are typically available within an hour for
IMRPhenomXPHM, or ten hours for SEOBNRv4PHM.
This represents a significant advantage when considering
the event rates likely to be reached with advanced detectors
(three per week or higher in the upcoming LIGO-Virgo-
KAGRA observing run O4).
DINGO-IS opens several new possibilities for GW

analysis: (1) rapid inference means that the most accurate
waveform models, which include all physical effects, could
be used for all events; (2) high-precision evidences enable
detailed model comparison; and (3) low sample efficiencies
can identify data that do not fit the noise or waveform
model. We believe that these results have highlighted clear
benefits of combining likelihood-free and likelihood-based
methods in Bayesian inference. Going forward, as DINGO-
IS validates and builds trust in DINGO, it will help to set
the stage for noise-model-free inference, which is truly
likelihood-free.

The code for DINGO and DINGO-IS is available at [70].
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