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Gustav Uhre Jakobsen1, 2, 3, ∗ and Gustav Mogull1, 2, 3, †

1Institut für Physik und IRIS Adlershof, Humboldt Universität zu Berlin,
Zum Großen Windkanal 2, 12489 Berlin, Germany

2Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam, Germany
3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

Using the spinning, supersymmetric Worldline Quantum Field Theory formalism we compute the
momentum impulse and spin kick from a scattering of two spinning black holes or neutron stars up to
quadratic order in spin at third post-Minkowskian (PM) order, including radiation-reaction effects
and with arbitrarily mis-aligned spin directions. Parts of these observables, both conservative and
radiative, are also inferred from lower-PM scattering data by extending Bini and Damour’s linear
response formula. By solving Hamilton’s equations of motion we also use a conservative scattering
angle to infer a complete 3PM two-body Hamiltonian including finite-size corrections and misaligned
spin-spin interactions. Finally, we describe mappings to the bound two-body dynamics for aligned
spin vectors: including a numerical plot of the binding energy for circular orbits compared with
numerical relativity, analytic confirmation of the NNLO PN binding energy and the energy loss over
successive orbits.

The need for accurate waveform templates for com-
parison with gravitational wave signals coming from the
LIGO, Virgo and KAGRA detectors of binary merger
events [1–6] — and in the future LISA, the Einstein Tele-
scope and Cosmic Explorer [7] — has provoked enormous
interest in the gravitational two-body problem. One of
the most important physical properties influencing the
paths of massive objects following inspiral trajectories,
which as they accelerate produce gravitational waves, is
their spins. Accurately determining the spins of black
holes and neutron stars in binary orbits yields crucial
information about their origins: if the spins are approxi-
mately aligned with the orbital plane, then this suggests
formation of the binary system by slow accretion of mat-
ter; if they are mis-aligned (precessing), then this indi-
cates formation of the binary by a random capture event.

A fruitful path has been effective field theory (EFT)-
based methods, which tackle the inspiral stage of the
gravitational two-body problem using its natural sepa-
ration of length scales [8–12]: the size of the massive
bodies is far less than their separation, which in turn is
far less than their distance from us, the observer. Partial
results for the non-spinning two-body Hamiltonian are
available up to sixth post-Newtonian (PN) order [13–18];
in the spinning case a body-fixed frame on the world-
line is often used [19–22], and results are available up to
N3LO in the spin-orbit sector [23–25] and in the spin-spin
sector [26–33].

However, an excellent alternative approach to the
bound two-body problem comes by way of studying two-
body scattering: here it is natural to define gauge-
invariant scattering observables in terms of the states
at past-/future-infinity, where the gravitational field
is weak. It is also natural here to adopt the post-
Minkowskian (PM) expansion in Newton’s constant G,
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which resums terms from infinitely high velocities in the
post-Newtonian (PN) series. One may use analytic con-
tinuation to directly produce PM observables for bound
orbits [34–37]; alternatively, conservative scattering ob-
servables may be used to infer a Hamiltonian for the
two-body system [38–44]. A more sophisticated version
of this strategy is to infer an effective-one-body (EOB)
Hamiltonian [45–49], which may be extended to include
spin [50–54] and resums information from the test-body
limit.

The Worldline Quantum Field Theory (WQFT) is a
new formalism for producing gravitational scattering ob-
servables [55–63]. It builds on the highly successful PM-
based worldline EFT approach [64], which has been used
to produce scattering observables at 3PM [65–67] and
4PM orders [68–71]; the worldline EFT has also produced
gravitational Bremsstrahlung and radiative observables
including tidal effects and spin [72–75]. The WQFT goes
a step further by quantizing worldline degrees of free-
dom, which bypasses the need for intermediate off-shell
objects such as the effective action. A supersymmetric
extension to the worldline accounts for quadratic-in-spin
effects [57, 58], conveniently avoiding the typical use of
a body-fixed frame. In Ref. [61] we used the WQFT to
produce conservative scattering observables — the mo-
mentum impulse ∆pµi and spin kick ∆Sµi — at 3PM or-
der.

In this paper, we upgrade these observables to in-
clude radiation-reaction (dissipative) effects, using the
Schwinger-Keldysh in-in formalism [76–80] that has re-
cently been incorporated into both the WQFT and PM-
based worldline EFT frameworks [63, 67]. Our results
confirm the radiated four-momentum Pµrad recently pre-
dicted with the worldline EFT approach [75]. Given these
new observables, we postulate and confirm an extension
to Bini and Damour’s linear response relation [81–83]
which allows us to predict terms in the conservative and
radiative parts of the full scattering observables, depend-
ing on their behavior under the time-reversal operation
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vµi → −v
µ
i . The extension holds for arbitrary spin orien-

tations, and goes beyond linear response.

The WQFT is inspired by QFT amplitudes-based
methods for tackling the classical two-body problem [84–
87]. These build on well-honed strategies for deriving
scattering amplitudes [88–92] and performing the asso-
ciated loop integrals [93, 94]. In the non-spinning case
a slew of two-body results have been produced at 3PM
order (two loops) [95–102] and at 4PM order (three
loops) [71, 103, 104]. There has also recently been work
on N -body scattering and potentials [105]. Radiation-
reaction effects have been incorporated [106–112], and an
in-in style formalism for directly producing observables
has been introduced [113–116]. To handle spin, higher-
spin fields are used [117–126] and results have been pro-
duced at 2PM order at quadratic [52, 127, 128], quar-
tic [129] and higher orders in spin [130–132]. Similar
results have also been achieved with the closely related
heavy-particle EFT [133–138].

Most notably, a 3PM quadratic-in-spin Hamiltonian
has now been derived using amplitudes-based meth-
ods [139], involving spin on one of the two massive bodies
only and without finite-size corrections. In this paper,
using the conservative scattering observables derived in
Ref. [61] we both confirm this result and extend it to
include spin-spin effects and finite-size corrections rele-
vant for neutron stars. Quite remarkably, we find that
knowledge of a single scattering angle suffices to com-
pletely determine the Hamiltonian, also when arbitrarily
mis-aligned spin vectors are involved.

Our paper is structured as follows. In Section I we re-
view the dynamics of spinning massive bodies, including
their description up to quadratic order in spin in terms of
an N = 2 supersymmetric worldline action. We demon-
strate how, with a suitable SUSY shift, we can switch
between the canonical and covariant spin-supplementary
conditions (SSCs). In Section II we review the Schwinger-
Keldysh in-in formalism in the context of WQFT, and
in Section III put it to use deriving the complete 3PM
quadratic-in-spin momentum impulse ∆pµ1 and spin kick
∆Sµ1 including radiation-reaction effects. We present the
results schematically, demonstrate how one may intro-
duce scattering angles for mis-aligned spins, and perform
various consistency checks.

Next, in Section IV we upgrade the linear response
relation to mis-aligned spin directions, generating both
conservative and radiative terms from the full 3PM scat-
tering observables ∆pµ1 and ∆Sµ1 . In Section V we
use the conservative scattering observables, and in par-
ticular the scattering angle, to build a complete 3PM
quadratic-in-spin Hamiltonian. Finally, in Section VI we
discuss unbound-to-bound mappings for the specific case
of aligned spins: we generate the binding energy for cir-
cular orbits, both numerically and analytically and up
to 4PN order, and produce plots of the binding energy
as a function of the orbital frequency close to merger
— comparing our results with numerical relativity. We
also determine the energy radiated per orbit using an ap-

propriate analytic continuation [37]. In Section VII we
conclude.

I. SPINNING MASSIVE BODIES

A pair of black holes or neutron stars interacting
through a gravitational field in D-dimensional Einstein
gravity are described by

S = SEH[gµν ] + Sgf [gµν ] +

2∑
i=1

S(i)[gµν , x
µ
i , ψ

a
i ] , (1)

where SEH is the Einstein-Hilbert action (κ =
√

32πG),

SEH = − 2

κ2

∫
dDx
√
−g R , (2)

Sgf is a gauge-fixing term and S(i) are the two worldline
actions. Up to quadratic order in spin [57, 58]

S(i)

mi
= −

∫
dτi

[
1
2gµν ẋ

µ
i ẋ

ν
i +iψ̄i,a

Dψai
Dτi

+ 1
2Rabcdψ̄

a
i ψ

b
i ψ̄

c
iψ

d
i

+ CE,iRaµbν ẋ
µ
i ẋ

ν
i ψ̄

a
i ψ

b
iPcdψ̄

c
iψ

d
i

]
, (3)

where the projector is Pab := ηab − eaµebν ẋµi ẋνi /ẋ2
i , and

ηab is the (mostly-minus) Minkowski metric. The finite-
size multipole moment coefficients CE,i are defined such
that CE,i = 0 for black holes, and

Dψai
Dτi

:= ẋµi ∇µψ
a
i = ψ̇ai + ẋµi ωµ

abψi,b . (4)

The two bodies with masses mi have positions xµi (τi); the
complex anticommuting fields ψai (τi), defined in a local
frame eaµ(x) with gµν = eaµe

b
νηab, encode spin degrees of

freedom.
The worldline action (3) enjoys a global N = 2 super-

symmetry:

δxµi = iε̄iψ
µ
i + iεiψ̄

µ
i , δψ

a
i = −εieaµẋ

µ
i −δx

µ
i ωµ

a
bψ

b
i , (5)

with constant SUSY parameters εi and ε̄i = ε†i . As shown
in Ref. [58], these shifts are generated by the conserved
supercharges ẋi · ψi and ẋi · ψ̄i. There is also a U(1)
symmetry:

δψai = iαiψ
a
i , δψ̄ai = −iαiψ̄ai , δxµi = 0 , (6)

generated by the conserved charge ψi · ψ̄i. Lastly,
reparametrization invariance of the worldlines in τi im-
plies

ẋ2
i = 1 +Rabcdψ̄

a
i ψ

b
i ψ̄

c
iψ

d
i (7)

is also preserved. As ẋ2
i 6= 1 generically along the world-

lines this implies that τi are not the proper times; how-
ever, as we are generally only interested in the asymptotic
behavior this subtlety will not be important.



3

A. Background Symmetries

Fields are perturbatively expanded around their back-
ground values at past infinity:

gµν(x) = ηµν + κhµν(x) , (8a)

xµi (τi) = bµi + τiv
µ
i + zµi (τi) , (8b)

ψai (τi) = Ψa
i + ψ′ai (τi) , (8c)

where pµi = miv
µ
i is the initial momentum; the initial

value of the spin tensor is given by

Sabi = −2imiΨ̄
[a
i Ψ

b]
i . (9)

The antisymmetrization [ab] includes a factor 1/2 — note
that this normalization of the spin tensor differs from
that used in Refs. [57, 58, 61]. The vierbein is similarly
expanded as

eaµ = ηaν
(
ηµν +

κ

2
hµν −

κ2

8
hµρh

ρ
ν +O(κ3)

)
, (10)

which allows us to drop the distinction between space-
time µ, ν, . . . and local frame a, b, . . . indices. The global
N = 2 SUSY in the far past is

δbµi = iε̄iΨ
µ
i + iεiΨ̄

µ
i , δvµi = 0 , δΨµ

i = −εivµi ,

⇒ δSµνi = 2p
[µ
i δb

ν]
i . (11)

To fix these symmetries we find it convenient to enforce
the covariant spin-supplementary condition (SSC):

pi ·Ψi = 0 =⇒ pi,µS
µν
i = 0 , (12)

Using the reparametrization symmetry we also enforce
v2
i = 1 and b · vi = 0, where bµ = bµ2 − b

µ
1 is the impact

parameter pointing from the first to the second massive
body. Finally, γ = v1 · v2; we will also make use of unit-

normalized “hatted” variables, e.g. b̂µ = bµ/|b|.
The total initial angular momentum of the system is

Jµν = Lµν + Sµν1 + Sµν2 ,

Lµν = 2b
[µ
1 p

ν]
1 + 2b

[µ
2 p

ν]
2 ,

(13)

where Lµν is the orbital component. In this context, we
see that the background symmetries (11) correspond sim-
ply to invariance of the system’s total angular momentum
under shifts in the origins of the two bodies bµi — a point
also well-discussed in Ref. [140]. To resolve this freedom,
in D = 4 dimensions we find it convenient to introduce
orbital and spin angular momentum vectors:

Lµ := 1
2ε
µ
νρσL

νρP̂σ = − 1
E ε

µ
νρσb

νpρ1p
σ
2 , (14a)

Sµi := mia
µ
i = 1

2ε
µ
νρσS

νρ
i vσi , (14b)

where

Pµ = pµ1 + pµ2 , (15a)

pµ =
m1m2

E2

[
(γm1 +m2)vµ1 − (γm2 +m1)vµ2

]
, (15b)

are respectively the total and center-of-mass (CoM) mo-
mentum, pµ = (0,p∞). Here E = |P | = M Γ =

M
√

1 + 2ν(γ − 1) is the energy in the CoM frame, M =
m1 +m2, ν = µ/M = m1m2/M

2 are the total mass and

symmetric mass ratio; p∞ = |p∞| = µ
√
γ2 − 1/Γ is the

center-of-mass momentum. The total angular momen-
tum Jµ is then given by

Jµ := 1
2ε
µ
νρσJ

νρP̂σ

=Lµ +
∑
i

(
vi · P̂ Sµi − Si · P̂ v

µ
i

)
.

(16)

Notice that Jµ 6= Lµ+Sµ1 +Sµ2 , which is due to Sµi being
defined in their respective inertial frames vµi rather than

the center-of-mass frame P̂µ.

B. Canonical Spin Variables

We also find it useful to introduce canonical variables
[50, 51, 141] which are designed to ensure that

Jµ = Lµcan + Sµ1,can + Sµ2,can , (17)

and P ·Lcan = P · Si,can = 0. The canonical spin vectors
Sµi,can are given by a boost of the covariant spin vectors

Sµi to the center-of-mass frame:

Sµi,can := Λµν(vi → P̂ )Sνi

= Sµi −
P̂ · Si
γi + 1

(P̂µ + vµi ) ,
(18)

where γi = P̂ · vi is the time component of vµi in the
center-of-mass frame. To ensure preservation of the total
angular momentum Jµ (16), we have

Lµcan = Lµ +

2∑
i=1

[
(γi−1)Sµi +

P̂ · Si
γi+1

(P̂µ − γivµi )

]
. (19)

The canonical impact parameter bµcan — in terms of which
Lµcan = −E−1εµνρσb

ν
canp

ρ
1p
σ
2 — is related to bµ by a spe-

cific SUSY shift (11):

εi =
P̂ ·Ψi

γi + 1
. (20)

We then have, with Ei = γimi

bµi,can = bµi +
1

Ei +mi
Sµνi P̂ν , (21a)

Ψµ
i,can = Ψµ

i −
P̂ ·Ψi

γi + 1
vµi , (21b)

and can confirm that the the canonical spin tensor

Sµνi,can = −2imiΨ̄
[µ
i,canΨ

ν]
i,can satisfies the canonical Pryce-

Newton-Wigner SSC [142–144]:

(P̂ + vi) ·Ψi,can = 0 =⇒ (P̂µ + vi,µ)Sµνi,can = 0 . (22)
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The canonical spin vector is then also given by

Sµi,can = 1
2ε
µ
νρσS

νρ
i,canP̂

σ , (23)

and has a vanishing time component in the center-of-
mass frame: P · Si,can = 0. This will be useful when we
construct a Hamiltonian in Section V.

II. WQFT IN-IN FORMALISM

Radiative observables are produced from WQFT us-
ing the Schwinger-Keldysh in-in formalism [76–80]. For-
mally this involves doubling the degrees of freedom in
our theory: hµν → {h1µν , h2µν}, zµi → {zµ1i, z

µ
2i} and

ψ′µi → {ψ
′µ
1i , ψ

′µ
2i}. Observables are defined in terms of a

path integral including two copies of the action:

〈O〉in−in :=

∫
D[hAµν , z

µ
Ai, ψ

′µ
Ai]e

i(S[{}1]−S∗[{}2])O , (24)

where A = 1, 2 and we use the shorthand {}A :=
{gAµν , xµAi, ψ

µ
Ai}. The boundary conditions on hAµν , zµAi

and ψ′µAi are that all fields equate at future infinity,

h1µν(t = +∞,x) = h2µν(t = +∞,x) , (25a)

zµ1i(τi = +∞) = zµ2i(τi = +∞) , (25b)

ψ′µ1i (τi = +∞) = ψ′µ2i (τi = +∞) , (25c)

and vanish at past infinity:

h1µν(t = −∞,x) = h2µν(t = −∞,x) = 0 , (26a)

zµ1i(τi = −∞) = zµ2i(τi = −∞) = 0 , (26b)

ψ′µ1i (τi = −∞) = ψ′µ2i (τi = −∞) = 0 . (26c)

This entangling of the boundary conditions gives rise to
off-diagonal terms in the propagator matrices involving
the doubled fields. For full details, see Ref. [63].

Fortunately, when performing calculations there is no
need to double degrees of freedom in this way. The key
insight of Ref. [63] was that tree-level single-operator ex-
pectation values (24) are produced using precisely the
same Feynman rules as in the in-out formalism, but with
retarded propagators pointing towards the outgoing line.
The retarded graviton propagator is

k

µν ρσ
= i

Pµν;ρσ

k2 + sgn(k0)i0
, (27)

where Pµν;ρσ := ηµ(ρησ)ν − 1
D−2ηµνηρσ and i0 denotes a

small positive imaginary part. For the worldline modes
zµi and ψ′µi the retarded propagators are respectively

ω

µ ν = −i ηµν

mi(ω + i0)2
, (28a)

ω

µ ν = −i ηµν

mi(ω + i0)
. (28b)

The Feynman vertices are unchanged with respect to the
in-in formalism: for example, the single-graviton emis-
sion vertex from worldline i is

hµν(k)

= −imiκ

2
eik·biδ−(k · vi)

(
vµi v

ν
i + ikρS

ρ(µ
i v

ν)
i

+
1

2
kρkσS

ρµ
i Sνσi +

CE,i

2
vµi v

ν
i kρSi

ρ
σSi

σ
λk

λ

)
,

(29)

where δ−(ω) := 2πδ(ω). At tree level the WQFT simply
provides a diagrammatic mechanism for solving the clas-
sical equations of motion in momentum space, and so
the use of retarded propagators ensures that boundary
conditions are fixed in the far past.

III. RADIATIVE OBSERVABLES

Building on Ref. [61], we compute the momentum im-
pulse and change in ψµi :

∆pµi := [miẋ
µ
i ]τi=+∞
τi=−∞ = −miω

2 〈zµi (ω)〉in−in|ω=0, (30a)

∆ψµi := [ψµi ]τi=+∞
τi=−∞ = −iω 〈ψ′µi (ω)〉in−in

∣∣
ω=0

, (30b)

but now also including radiation-reaction effects. Using
the definitions of the spin tensor Sµνi (9) and spin vector
Sµi (14b) we can then also derive the spin kick ∆Sµi :

∆Sµνi = −2imi

(
Ψ̄

[µ
i ∆ψ

ν]
i + ∆ψ̄

[µ
i Ψ

ν]
i + ∆ψ̄

[µ
i ∆ψ

ν]
i

)
,

∆Sµi = 1
2mi

εµνρσ(Sνρi ∆pσi +∆Sνρi pσi +∆Sνρi ∆pσi ). (31)

We seek the 3PM components in a PM expansion:

∆X =
∑
n

Gn∆X(n) , (32)

where ∆X could be any of these observables: ∆pµi , ∆Sµi ,
∆Sµνi or ∆ψµi .

The relevant Feynman diagrams for both calculations
are drawn in Fig. 1. As only the m2

1m
2
2 component of

∆p
(3)µ
1 and the m1m

2
2 component of ∆ψ

(3)µ
1 are specifi-

cally affected by the inclusion of radiation-reaction effects
we recompute these components; for the rest, we sim-
ply bring forwards our previous results from Ref. [61].
Integrands are assembled using the WQFT Feynman
rules [58] in D = 4− 2ε dimensions, which involves inte-
gration on the momenta or energies of all internal lines;
vertices contain either energy- or momentum-conserving
δ−-functions, whichever is appropriate. The energy inte-
grals, corresponding to internal propagation of zµi or ψ′i
modes, are trivial: conservation of energy at the world-
line vertices resolves them immediately.

Each graph has three unresolved four-momenta to inte-
grate over. The first of these integrals is a Fourier trans-
form:

∆X(bµ, vµi , S
µν
i )

=

∫
q

eiq·bδ−(q · v1)δ−(q · v2)∆X(qµ, vµi , S
µν
i ) ,

(33)



5

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v) (w) (x)

(y) (z) (aa) (bb) (cc) (dd)

FIG. 1: The 30 types of diagrams contributing to the m2
1m

2
2 components of ∆p

(3)µ
1 and the m1m

2
2 components of ∆ψ

(3)µ
1 .

Diagrams (a)–(v) were already present in the conservative calculation [61], though their expressions are modified by the
inclusion of radiation; the mushrooms (w)–(dd) appear only when radiation-reaction effects are accounted for. Diagram (y)

includes the same worldline propagator with opposite i0 prescriptions, and so belongs to the K integral family (35). For
brevity we use solid lines to represent both propagating deflection zµi and spin modes ψ′µi .

where qµ is the total momentum exchanged from the sec-
ond to the first worldline, and

∫
q

:=
∫

dDq/(2π)D. Here

we have implicitly defined the momentum-space observ-
ables ∆X(qµ, vµi , S

µν
i ), which are given as linear combi-

nations of two-loop Feynman integrals:

I(σ1;σ2;σ3)
n1,n2,...,n7

[`µ1

1 · · · `
µn
1 `ν12 · · · `

νn
2 ]

:=

∫
`1,`2

δ−(`1 · v2)δ−(`2 · v1)`µ1

1 · · · `
µn
1 `ν12 · · · `

νn
2

Dn1
1 Dn2

2 · · ·D
n7
7

,

D1 = `1 · v1 + σ1i0 , D2 = `2 · v2 + σ2i0 , (34)

D3 = (`1 + `2 − q)2 + σ3sgn(`01 + `02 − q0)i0 ,

D4 = `21 , D5 = `22 , D6 = (`1 − q)2 , D7 = (`2 − q)2 .

These integrals with retarded propagators were discussed
at length in Ref. [63]: propagators D4–D7 are prevented
from going on-shell by the requirement that `1 · v2 =
`2 · v1 = 0, so we can safely ignore their i0 prescriptions.
We also require

K(σ)
n1,n2,n3,n4,n5

[`µ1 · · · `µnkν1 · · · kνn ]

:=

∫
`,k

δ−((k − `) · v1)δ−(` · v2)`µ1 · · · `µnkν1 · · · kνn
Dn1

1 Dn2
2 Dn3

3 Dn4
4 Dn5

5

,

D1 = ` · v1 + i0 , D2 = ` · v1 − i0 , (35)

D3 = k2 + σsgn(k0)i0 , D4 = `2 , D5 = (`− q)2 ,

which accounts for the possibility of a worldline propa-
gator appearing twice, but with different i0 prescriptions
— diagram (y) in Fig. 1.

The subsequent integration steps were discussed in
Ref. [61], and are not substantially different with the
inclusion of radiation-reaction effects in the observables.
Tensorial two-loop integrals are reduced to scalar-type by

expanding on a suitable basis, and then reduced to mas-
ter integrals using integration-by-parts (IBP) identities.
Expressions for these master integrals were provided in
Ref. [63], and once the Fourier transform (33) has been
performed on the exchanged momentum qµ we are left
with the observables in D dimensions. The scalar inte-
grals themselves have simple reality properties:

I(σ1;σ2;σ3)∗
n1,n2,...,n7

= (−1)n1+n2I(σ1;σ2;σ3)
n1,n2,...,n7

,

K(σ)∗
n1,n2,...,n5

= (−1)n1+n2K(σ)
n1,n2,...,n5

,
(36)

i.e. they are either purely real or imaginary, depending
on whether they have an even or odd number of world-
line propagators respectively. While this implies that the
momentum-space observables ∆X(qµ, vµi , S

µν
i ) are com-

plex functions, the Fourier transform (33) introduces ad-
ditional factors of i, giving rise to purely real observables
∆X(bµ, vµi , S

µν
i ).

The final observables ∆p
(3)µ
i and ∆ψ

(3)µ
i in four di-

mensions are found by taking the limit D → 4, checking
to ensure the cancellation of all poles in the dimensional
regularization parameter ε = 2 − D

2 . Like in Ref. [61]

we have verified that the supercharges p2
i , ψi · ψ̄i, pi · ψi

and pi · ψ̄i are conserved. This means that the following
identities:

0 = p1 ·∆p(3)
1 +∆p

(1)
1 ·∆p

(2)
1 , (37)

0 = Ψ̄1 ·∆ψ(3)
1 +∆ψ̄

(3)
1 ·Ψ1+∆ψ̄

(1)
1 ·∆ψ

(2)
1 +∆ψ̄

(2)
1 ·∆ψ

(1)
1 ,

0 = p1 ·∆ψ(3)
1 +∆p

(3)
1 ·Ψ1+∆p

(1)
1 ·∆ψ

(2)
1 +∆p

(2)
1 ·∆ψ

(1)
1 .

are satisfied.
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A. Results

We find it convenient to decompose the observables
into four gauge-invariant parts each:

∆pµi = ∆p
(+)µ
i,cons + ∆p

(−)µ
i,cons + ∆p

(+)µ
i,rad + ∆p

(−)µ
i,rad , (38a)

∆Sµi = ∆S
(+)µ
i,cons + ∆S

(−)µ
i,cons + ∆S

(+)µ
i,rad + ∆S

(−)µ
i,rad . (38b)

The split into conservative ‘cons’ and radiative ‘rad’
pieces is done with respect to the integrals (34), (35):
the potential and radiative regions [63]. Meanwhile the
split into (±) sectors is defined with respect to behavior
under a time-reversal operation:

∆X(±)
∣∣∣
vµi→−v

µ
i

= ±∆X(±) , (39)

which flips the signs on the timelike vectors vµi (and the
momenta pµi = miv

µ
i ) but not the spacelike vectors bµ

and aµi , leaving γ = v1 · v2 invariant. Under this opera-
tion, Sµνi = εµνρσp

ρ
i a
σ
i changes sign.

For the impulse, we have

∆p
(3;+)µ
1,cons =

m2
1m

2
2

|b|3
[
c
(+)µ
1

arccoshγ√
γ2 − 1

+

3∑
n=1

(m1

m2

)n−2

c
(+)µ
n+1

]
,

∆p
(3;+)µ
1,rad =

m2
1m

2
2

|b|3
I(v)c

(+)µ
5

∆p
(3;−)µ
1,cons =

3∑
n=1

πm2
1m

2
2

|b|3
(m1

m2

)n−2

c(−)µ
n , (40)

∆p
(3;−)µ
1,rad =

πm2
1m

2
2

|b|3
×[

c
(−)µ
4 + c

(−)µ
5

arccoshγ√
γ2 − 1

+c
(−)µ
6 log

(
1 + γ

2

)]
,

where

I(v) = −8

3
+

1

v2
+

(3v2 − 1)

v3
arccosh(γ) (41)

is a universal prefactor, and v =
√
γ2 − 1/γ. The vectors

are given by

c(±)µ
n = ~f (±)

n (γ,CE,i) · ~ρµ± , (42)

with basis elements even/odd under time reversal:

~ρµ+ =

{
b̂µ,

ai · L̂
|b|

b̂µ,
ai · b̂
|b|

L̂µ,
ai · aj
|b|2

b̂µ,
ai · b̂ aj · b̂
|b|2

b̂µ,

ai · vı̄ aj · v̄
|b|2

b̂µ,
ai · b̂ aj · L̂
|b|2

L̂µ,
ai · b̂ aj · v̄
|b|2

vµk

}
, (43a)

~ρµ− =

{
vµi ,

ai · L̂
|b|

vµj ,
ai · vı̄
|b|

L̂µ,
ai · aj
|b|2

vµk ,
ai · vı̄ aj · v̄
|b|2

vµk ,

ai · b̂ aj · b̂
|b|2

vµk ,
ai · vı̄ aj · L̂
|b|2

L̂µ,
ai · vı̄ aj · b̂
|b|2

b̂µ
}
, (43b)

where i, j, k = 1, 2 and 1̄ = 2, 2̄ = 1, L̂µ = Lµ/|L| and

b̂µ = bµ/|b| being unit-normalized vectors. Except for
denominators of (γ2 − 1)n/2 the remaining scalar com-

ponents ~f
(±)
n are polynomials in γ, CE,i, so we refrain

from providing explicit expressions in the text; instead,
we refer the reader to the ancillary file attached to the
arXiv submission of this paper for full expressions.

Let us remark on certain properties of this result.

∆p
(3;+)µ
i and ∆p

(3;−)µ
i are respectively associated with

the real (imaginary) integrals (36), i.e. those with an even
(odd) number of worldline propagators. The factors of

π in ∆p
(3;−)µ
i thus arise from the overall factors of iπ in

the purely imaginary master integrals — see Ref. [63].
We also note the behavior under v → −v: in each case,
the radiative components pick up the opposite sign from
the conservative components. Finally, the function I(v)
is familiar: it appears in the 2PM radiated angular mo-

mentum (55). As we shall see in Section IV, ∆p
(3;+)µ
i,rad

and ∆p
(3;−)µ
i,cons can be inferred directly from lower-PM ob-

servables, using a generalization to the linear response
relation [81–83].

From the impulse ∆pµi we straightforwardly recover
the four-momentum radiated from the scattering event:

Pµrad = −∆Pµ = −∆pµ1 −∆pµ2 , (44)

which vanishes if we consider only conservative scat-
tering. Here we agree with a recent 3PM worldline
EFT result for Pµrad obtained by Riva, Vernizzi and
Wong [75]. We also agree with our own previous result
for the leading-order radiated energy in the CoM frame
Erad = P̂ · Prad, produced in collaboration with Plefka
and Steinhoff [57], in which performing the required in-
tegrals necessitated a PN expansion — now we no longer
need to do so. While knowledge of both θ and Pµrad al-
lows one to reconstruct ∆pµi for aligned spins, this is not
true in general — thus, in this work we fill in the missing
pieces from Ref. [75]. However, we note that a corre-
sponding expression for Jµrad at 3PM order is still lacking
(the leading-order 2PM is known, see Eq. (55) below).

The 3PM spin kick takes a similar form as the impulse:

∆S
(3;−)µ
1,cons =

m2
1m

2
2

|b|3
[
d

(−)µ
1

arccoshγ√
γ2 − 1

+

3∑
n=1

(m1

m2

)n−2

d
(−)µ
n+1

]
,

∆S
(3;−)µ
1,rad =

m2
1m

2
2

|b|3
I(v)d

(−)µ
5

∆S
(3;+)µ
1,cons =

3∑
n=1

πm2
1m

2
2

|b|3
(m1

m2

)n−2

d(+)µ
n , (45)

∆S
(3;+)µ
1,rad =

πm2
1m

2
2

|b|3
×[

d
(+)µ
4 + d

(+)µ
5

arccoshγ√
γ2 − 1

+d
(+)µ
6 log

(
1 + γ

2

)]
,

but in this case ∆S
(3;−)µ
1 is associated with real integrals

and ∆S
(3;+)µ
1 with imaginary integrals (36). The vectors
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dµn, d̃µn are given by

d(±)µ
n = ~g (±)

n (γ,CE,i) · ~ρµ± , (46)

and involve the same basis of vectors (43). Again, we
refer the interested reader to the ancillary file for fully
explicit results.

B. Scattering Angles

Conservative dynamics with spin vectors aligned to the
scattering plane are described by a single angle:

∆pµ1,cons = pµ(cos θcons − 1) + p∞b̂
µ sin θcons , (47)

where pµ is the CoM momentum (15b). However, generic
spins and radiative effects both require a generalization
of this simple parameterization. Generic spins result in
non-planar motion and a non-zero spin kick; radiative
effects in loss of total four-momentum Pµrad — we will
present a more generic parametrization below (56).

For generic mis-aligned spin directions the impulse and
spin kick are parameterized in spherical coordinates in
terms of several angles. We focus on the following two,
including radiation-reaction effects:

sin

(
θ1

2

)
=
|∆p1|
2p∞

, sin

(
θ2

2

)
=
|∆p2|
2p∞

, (48a)

sin(φ1) =
b̂ ·∆p1

p∞
, sin(φ2) = − b̂ ·∆p2

p∞
. (48b)

The conservative counterparts of these angles, θcons and
φcons, are defined by instead inserting ∆pµi,cons on the
right-hand side. In this case the particle label on the
angles is superficial as ∆pµ1,cons = −∆pµ2,cons. For aligned
spins at 3PM order these two definitions are equivalent
to each other: θi = φi, which using Eq. (47) holds to
all PM orders for strictly conservative scattering. Up
to linear order in spin the angles equate even for mis-
aligned spin vectors: θi = φi +O(S2), as dependence on
the spin vectors Sµi only enters through the spin-orbit
terms L · Si. Surprisingly though, and in contrast to the
use of spherical coordinates, we will find that only one
of these angles suffices to fully describe the conservative
impulse and spin kick.

In the conservative case the interpretation of θcons and
φcons is simple. First, φcons measures the total scattering

angle in the CoM frame in the plane spanned by b̂µ and
p̂µ. Second, θcons measures the total angle between the
initial and final momentum (which may point out of the
initial plane). Including radiation-reaction effects, one
may interpret them similarly where now, however, the
scattering angles of the two bodies may differ. In this
case, there is a difference depending on whether p∞ in
Eqs. (48) is evaluated at past or future infinity. At 3PM
order, however, this difference may be safely neglected.
We also note that, while θi is independent of the choice
of SSC, φi is not due to the manifest dependence on bµ,
which transforms under SUSY shifts. To put it another
way: the notion of initial plane of scattering depends on
the SSC. For this reason we will mostly focus on θcons and
later use it to parameterize the Hamiltonian in Section V.

We expand the angle θi in G and spins:

θk
Γ

=

3∑
n=1

(
GM

|b|

)n[
θ(n;0) −

∑
i

θ(n;1,i) L̂ · ai
|b|

(49)

+
∑
i,j

aµi a
ν
j

|b|2

(
− θ(n;2,1,i,j)ηµν + θ(n;2,2,i,j)b̂µb̂ν

+ θ(n;2,3,i,j)vµı̄ v
ν
̄ + θ

(n;2,4,i,j)
k b̂µvν̄

)]
+O(S3, G4) .

Here i and j take the values 1,2. The coefficients θ(n;A)

are functions only of γ, ν and CE,i. Note that only the

final coefficients θ
(n;2,4,i,j)
k depend on the particle label.

The coefficients θ(3;A) are provided in Appendix B and
full expressions for the angles in the ancillary file. Ex-

pansion coefficients for θcons, i.e. θ
(n;A)
cons , are defined in an

equivalent manner.

For aligned spins we verify our results for θ1 = θ2

against several results from the literature. First, we re-
produce the result of our earlier work [61] where the ra-
diative part of θi was computed using linear response
(see Section IV) and has subsequently been extended to
all spin orders by Alessio and Di Vecchia [145]. Second,
we match our results for the probe limit and comparable-
mass PN results [52, 146, 147]. Finally, for mis-aligned
spin vectors in the high-energy limit where we let γ →∞
while keeping E and aµi constant we recover a finite re-
sult:

θi = 4
GE

|b|

[
1 +

L̂ · a+

|b|
−

2a2
+ + 3

(
b̂ · a+

)2
2|b|2

+
∑
j

CE,j

a2
j + 2

(
b̂ · aj

)2
|b|2

]
+

32

3

(
GE

|b|

)3[
1 + 3

L̂ · a+

|b|

− 3

20

41a2
+ + a2

− + 50
(
b̂ · a+

)2
|b|2

− 945π

8192
CE,i

b̂ · ai vı̄ · ai
|b|2

+
6

5

∑
j

CE,j

2a2
j + 5

(
b̂ · aj

)2
|b|2

]
+O(γ−1/2, G4) .

(50)



8

Here we use the notation aµ± = aµ1 ± a
µ
2 . Cancellations

between the conservative and radiative pieces are essen-
tial to ensure the finiteness of this result. Note the de-
pendence on the particle label in the second term of the
second line, which disappears for Kerr black holes.

Finally, let us discuss parameterizations of the full ra-
diative observables. One may introduce Lorentz trans-
formations Λi

µ
ν that transform the initial momenta and

spin vectors to the final ones [51, 53, 148]:

∆pµi = (Λi
µ
ν − δµν )pνi , (51a)

∆Sµi = (Λi
µ
ν − δµν )Sνi . (51b)

The same transformation acts on both pµi and Sµi : one
sees this naturally given the requirement that p2

i , S
2
i and

pi · Si must all be explicitly conserved. Conservation of
p2
i (S2

i ) implies that the final momentum (spin vector) is
given by a boost (rotation) of the initial one. Conserva-
tion of pi ·Si implies that the boost and rotation may be
combined into a single Lorentz transformation.

IV. LINEAR RESPONSE

The Bini-Damour linear response relation is used to
infer radiative contributions to the scattering angle θ
from (angular) momentum loss at lower-PM orders. For
aligned spins [81–83]

θrad = −1

2

(
∂θ

∂J
Jrad +

∂θ

∂E
Erad

)
, (52)

where Jrad and Erad are respectively the angular mo-
mentum and energy losses. In Ref. [61] this was used to
deduce the radiative part of the quadratic-in-spin 3PM

scattering angle θ
(3)
rad for aligned spins, which we have now

re-confirmed with our full calculation of ∆p
(3)µ
1 . At 3PM

order, given that Erad ∼ O(G3) the second term plays
no role: the linear response is entirely accounted for by
the radiated angular momentum Jrad ∼ O(G2).

Using our newly derived observables we have checked
and can confirm that at 3PM order the linear response
relation (52) generalizes for mis-aligned spin vectors to

∆p
(+)µ
1,rad =

1

2

(
∂∆pµ1
∂Jν

Jνrad +
∂∆pµ1
∂P ν

P νrad

)
. (53)

Again, the part of this formula carrying Pµrad vanishes at
3PM order, but we include it to maintain the analogy

with Eq. (52); in Eq. (38a) we defined ∆p
(+)µ
i as the

part of the impulse even under a time-reversal operation,
where vµi → −v

µ
i . For the spin kick we learn about the

odd part ∆S
(−)µ
i :

∆S
(−)µ
1,rad =

1

2

(
∂∆Sµ1
∂Jν

Jνrad +
∂∆Sµ1
∂P ν

P νrad

)
. (54)

The Jν-derivative is equivalent to an Lν-derivative (16):
when taking these vectorial derivatives, we ignore all

constraints (e.g. L · pi = 0) and treat the vectors in-
volved (Lµ, pµi , aµi ) as independent. All dependence on
bµ should be re-expressed in terms of Lµ by inverting
Lµ = −E−1εµνρσb

νpρ1p
σ
2 .

Both of these linear response relations involve the full
vectorial radiated angular momentum Jµrad. We require
it only up to 2PM order:

J
(2)µ
rad = <

[
− 4M3ν2(2γ2 − 1)

|b|Γ
I(v)ζµ (55)

×
(

1 +
2v a3 · ζ
|b|(1 + v2)

+
(a3 · ζ)2

|b|2
−

2∑
i=1

CE,i

|b|2
(ai · ζ)2

)]
,

where v =
√
γ2 − 1/γ is the relative velocity, aµ3 = aµ1 +

aµ2 and the complex vector is ζµ = L̂µ+ib̂µ; the universal
prefactor I(v) was given in Eq. (41).

For zero or aligned spins, one may straightforwardly
show that the new linear response relation (53) reduces
to the Bini-Damour formula (52) by inserting [36]:

∆pµ1 = p∞b̂
µ sin θ − v2 · Prad

γvµ1 − v
µ
2

γ2 − 1
+ (cos θ−1)pµ ,

(56)

which holds up to the desired 3PM order. This schematic
form of the impulse shows that ∆pµ1 is fully character-

ized by θ and Pµrad: as ∆p(+)µ = p∞ sin θ b̂µ knows only
about the scattering angle, the linear response relation-
ship yields no information concerning Pµrad. We use the

fact that, for aligned spins, Jµrad = −JradL̂
µ.

However, in this section we go further. The linear re-
sponse relation (53) forms part of a more general pair
of relationships that allow us to reconstruct conserva-
tive and radiative parts of the scattering observables at
higher-PM orders:

∆pµi,cons = 1
2

(
∆pµi (Lµ, pµi , S

µ
i ) (57a)

+∆pµi (Lµ + ∆Lµ,−pµi −∆pµi , S
µ
i + ∆Sµi )

)
,

∆pµi,rad = 1
2

(
∆pµi (Lµ, pµi , S

µ
i ) (57b)

−∆pµi (Lµ + ∆Lµ,−pµi −∆pµi , S
µ
i + ∆Sµi )

)
,

for the impulse, and

∆Sµi,cons = 1
2

(
∆Sµi (Lµ, pµi , S

µ
i ) (58a)

−∆Sµi (Lµ + ∆Lµ,−pµi −∆pµi , S
µ
i + ∆Sµi )

)
,

∆Sµi,rad = 1
2

(
∆Sµi (Lµ, pµi , S

µ
i ) (58b)

+∆Sµi (Lµ + ∆Lµ,−pµi −∆pµi , S
µ
i + ∆Sµi )

)
,

for the spin kick; we will define the split ∆X = ∆Xcons +
∆Xrad of the full observables into conservative and radia-
tive parts below. We interpret all observables as real
functions of the initial kinematic vectors: the orbital
angular momentum vector Lµ (14a), the spin vectors
Sµi = mia

µ
i , and the momenta pµi = miv

µ
i .
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A. Derivation

We define the conservative part of a single-operator
expectation value as the average of its value evaluated in
the in-in and out-out prescriptions:

〈O〉cons := 1
2 (〈O〉in−in + 〈O〉out−out) . (59)

The expectation 〈O〉out−out is computed using precisely
the same Feynman rules as 〈O〉in−in, but with advanced
propagators pointing towards the outgoing line instead of
retarded, both on the worldlines and in the bulk. At 3PM
order, one may verify by explicit calculation that this def-
inition of the conservative dynamics coincides precisely
with evaluating integrals only in the potential region —
the approach previously taken for the conservative 3PM
spinning dynamics in Ref. [61].

Specializing to the impulse ∆pµi , we therefore have

∆pµi,cons (60)

= 1
2

(
∆pµi,in−in(Lµ−, p

µ
i−, S

µ
i−)+∆pµi,out−out(L

µ
+, p

µ
i+, S

µ
i+)
)
.

While ∆pµi,in−in is given in terms of background param-

eters defined at past infinity (− subscript), ∆pµi,out−out
is evaluated in terms of parameters defined at future in-
finity (+ subscript). As we prefer to express ∆pµi,cons in
terms of initial variables we insert

Lµ− = Lµ , Lµ+ = Lµ + ∆Lµ , (61a)

pµi− = pµi , pµi+ = pµi + ∆pµi , (61b)

Sµi− = Sµi , Sµi+ = Sµi + ∆Sµi . (61c)

Thus pµi+ and Sµi+ are given using our pre-existing knowl-
edge of the impulse ∆pµi and spin kick ∆Sµi . We can infer
∆Lµ — and therefore Lµ+ — up to 2PM order from the
known 2PM angular momentum loss Jµrad (55). Using
Eq. (16)

∆Jµ = −Jµrad (62)

= ∆Lµ +
∑
i

1
mi

(
P̂ ·∆pi Sµi + P̂ · (pi + ∆pi)∆S

µ
i

− P̂ ·∆Si pµi − P̂ · (Si + ∆Si)∆p
µ
i

)
,

which we can rearrange to find ∆Lµ — ignoring the (lin-
ear) momentum loss Pµrad ∼ O(G3). In the non-spinning
case ∆Lµ = −Jµrad, i.e. the change in the orbital angular
momentum vector is given precisely by the total loss of
angular momentum.

Finally, to obtain Eq. (57) we use the fact that

∆pµi,out−out(L
µ, pµi , S

µ
i ) = ∆pµi,in−in(Lµ,−pµi , S

µ
i ) , (63)

which simply tells us that, having computed ∆pµi,in−in, we

may easily derive ∆pµi,out−out by continuing pµi → −p
µ
i .

This works because the time-reversal operation induces
a change of sign on the i0 prescription of the propaga-
tors (27) and (28). For the graviton propagator (27)

sgn(k0)i0 = (k · vi)i0: the sign on the energy com-
ponent of kµ is defined by the direction of either ve-
locity vector vµi . For the worldline propagators (28),
ω → −ω: the zi propagator (28a) remains the same, but
with i0→ −i0, while the ψ′i propagator (28b) also picks
up an overall sign. This overall sign is compensated for
in the WQFT Feynman rules for by the vertices, which
are themselves invariant under time reversal except for
Sµνi = εµνρσv

ρ
i S

σ
i , which flips as Sµνi → −Sµνi . Each

time we propagate an internal spin mode we pick up a
factor of Sµνi , which compensates for the additional sign.

The derivation of Eq. (58) for the spin kick proceeds
similarly, although in this case as ∆Sµi is defined indi-
rectly via ∆pµi and ∆Sµνi (31) we obtain the different
relative signs. One can see why this is necessary by ex-
amining the spin kick at 1PM order:

∆S
(1)µ
1 =

4m1m2a1νb
[ν(v1 − 2γv2)µ]

|b|2
√
γ2 − 1

+O(S2) , (64)

which is of course purely conservative. It is odd under the
time-reversal vµi → −v

µ
i , which agrees with Eq. (58b): we

have ∆S
(1)µ
i (Lµ, pµi , S

µ
i ) = −∆S

(1)µ
i (Lµ,−pµi , S

µ
i ).

B. Interpretation

We can now derive ∆p
(m;−)µ
i,cons at any PM order m. To

do so, we insert the PM decomposition (32) into Eq. (57a)
and perform a Taylor-series expansion of the right-hand
side, picking out the desired PM order m:

∆p
(m)µ
i,cons = 1

2

(
∆p

(m)µ
i (Lµ, pµi , S

µ
i ) + ∆p

(m)µ
i (Lµ,−pµi , S

µ
i )

+
∂∆p

(m−1)µ
i (Lµ,−pµi , S

µ
i )

∂Lν
∆L(1)ν

+

2∑
j=1

(
− ∂∆p

(m−1)µ
i (Lµ,−pµi , S

µ
i )

∂pνj
∆p

(1)ν
j

+
∂∆p

(m−1)µ
i (Lµ,−pµi , S

µ
i )

∂Sνj
∆S

(1)ν
j

)
+ · · ·

)
. (65)

Taking the difference between this formula and its coun-

terpart with pµi → −p
µ
i gives ∆p

(m;−)µ
i,cons on the left-hand

side, and the first two terms on the right-hand side can-

cel out. Thus, ∆p
(m;−)µ
i,cons is given entirely by lower-PM

observables. Similarly, using Eq. (58a) we may predict

∆S
(m;+)µ
i,cons .

Using Eqs. (57b) and (58b) by the same procedure we

may determine ∆p
(+)µ
i,rad and ∆S

(−)µ
i,rad . However, at 3PM

order an additional simplification is possible: using the
fact that the conservative and radiative observables have
opposite behaviors under v → −v. As Jµrad is the only
non-zero radiative observable at 2PM order, it follows
that all other contributions to the linear response rela-
tion cancel out at 3PM order, leaving us with Eqs. (53)
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and (54) as proposed earlier. This we have checked care-
fully by direct calculation.

We anticipate that Eq. (58) will be useful for future
4PM computations, as we will not need to calculate the
complete radiative observables: for the impulse we need

only calculate ∆p
(4;+)µ
1,cons and ∆p

(4;−)µ
1,rad directly. This cuts

down on the regions within which we need to evaluate
the master integrals: only the conservative sector for the
real integrals, and the radiative sector for the pseudoreal
integrals. However, in the radiative sector this is predi-
cated on our knowing the 3PM angular momentum loss

J
(3)µ
rad , which currently we have only up to the leading

2PM order (55) in the spinning case. For non-spinning
bodies, the 3PM angular momentum loss has been deter-
mined and used to infer contributions to 4PM scattering
observables [140]; a similar concept will certainly apply
in the presence of spin.

V. HAMILTONIAN

Let us now focus on the strictly conservative part of
the dynamics, encoded by ∆pµi,cons and ∆Sµi,cons. Com-
puting a 3PM quadratic-in-spin Hamiltonian maps these
unbound observables into bound dynamics, which in the
spinning context is especially useful given the current
lack of direct analytic continuations between bound and
unbound observables with generic mis-aligned spin direc-
tions. In line with recent literature on Post-Minkowskian
dynamics [127, 130, 139] we work in the CoM-frame with
canonical variables p(t) and x(t) describing the rela-
tive momentum and position of the two bodies respec-
tively. These dynamical variables satisfy canonical Pois-
son brackets:

{xm(t),pn(t)}P.B. = δmn , (66a)

{Smi (t),Sni (t)}P.B. = εmnkSki (t) . (66b)

The spin of each body is described by the spin vectors
Si(t), with the canonical SSC described in Sec. I B.

The Hamiltonian H is fixed in isotropic gauge, mean-
ing that it does not depend on x(t) · p(t). It takes the
general form

H
(
x,p,Si

)
=
√

p2 +m2
1+
√
p2 +m2

2+V
(
x,p,Si

)
(67)

with gravitational potential

V
(
x,p,Si

)
=
∑
A

OA V A(x,p) +O(S3) (68)

= V (0)+
∑
i

V (1,i)O(1,i)+
∑
i,j,a

V (2,a,i,j)O(2,a,i,j)+O(S3).

The potential is expanded in spin structures:

O(0) = 1 , (69a)

O(1,i) =
(x× p) · ai
|x|2

, (69b)

O(2,1,i,j) =
ai · aj
|x|2

, (69c)

O(2,2,i,j) =
x · aix · aj
|x|4

, (69d)

O(2,3,i,j) =
p · aip · aj
|x|2

, (69e)

where ai = Si/mi. In each case the first index counts the
spin order; subsequent indices count the specific struc-
tures involved. Note that the symmetric spin structures
O(2,a,1,2) = O(2,a,2,1) are counted twice and their coef-
ficients are equal. Finally, we PM-expand each compo-
nent:

V A(x,p) =
∑
n

(
GM

|x|

)n
c(n;A)(p2) . (70)

These coefficients c(n;A) fully encode the Hamiltonian.
We fix the coefficients c(n;A)(p2) by matching observ-

ables computed from the Hamiltonian H with scattering
observables from the WQFT. Hamilton’s equations for
the dynamical variables are

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, Ṡi = −Si ×

∂H

∂Si
, (71)

and we solve them perturbatively up to third order in G:

x(t) = x(0) +

3∑
n=1

Gnx(n)(t) +O(G4) , (72a)

p(t) = p(0) +

3∑
n=1

Gnp(n)(t) +O(G4) , (72b)

Si(t) = S
(0)
i +

3∑
n=1

GnS
(n)
i (t) +O(G4) . (72c)

The zeroth-order scattering trajectories are

x(0) = t
p∞
ξE
− bcan , p(0) = p∞ , S

(0)
i = Si,∞ , (73)

where pµ = (0,p∞), Sµi,can = (0,Si,∞) and bµcan =

(0,bcan). The dimensionless parameter ξ is defined as

ξ = E1E2/E
2, where E = E1 +E2 and Ei =

√
p2
∞ +m2

i .
Inserting the expansions of the dynamical variables (72)
into Hamilton’s equations (71) we get perturbative equa-
tions of motion at each PM order. The spatial compo-
nents of the impulse and spin kick in the CoM frame are
then given by

∆p(n) =

∫ ∞
−∞

dt ṗ(n)(t) , (74a)

∆S
(n)
i =

∫ ∞
−∞

dt Ṡ
(n)
i (t) , (74b)
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where these are the conservative 3-vector components of
∆pµ1 and ∆Sµi,can. The change in the canonical spin vector
is given in terms of the covariant spin kick by

∆Sµi,can −∆Sµi (75)

= −miP̂ ·∆Si(P̂µ + vµi ) + P̂ · (Si + ∆Si)∆p
µ
i

Ei +mi
,

having used the definition of Sµi,can (18), and assuming
conservative scattering.

Quite remarkably though, we find that knowledge of
θcons (48) suffices in order to fully fix all coefficients in

the Hamiltonian. The impulse and spin kick may then
be expressed in terms of the coefficients c(n;A)(p2) and
derivatives thereof. The derivatives come about when we
evaluate ẋ by differentiating H with respect to p:

∂c(n;A)(p2)

∂p
= 2p

∂c(n;A)(p2)

∂p2
= 2p c(n;A;1)(p2) , (76)

where c(n;A;m) := ∂mc(n;A)/(∂p2)m — the observables
are written as functions of c(n;A;m). We then match
those expressions to the explicit WQFT-derived results
and solve for the coefficients. We print the results until
linear in spins here, and the results quadratic in spins in
Appendix C:

c(3;0)(p2) = − p2
∞

4Eξ
θ(3;0)

can +
1

2πp2
∞
D
[p4
∞
Eξ

θ(1;0)
can θ(2;0)

can

]
− 1

48p2
∞
D2
[p4
∞
Eξ

(θ(1;0))3
]∣∣∣∣
p∞→|p|

, (77)

c(3;1,i)(p2) = − p∞
4Eξ

θ(3;1,i)
can +

1

2πp4
∞
D
[p5
∞
Eξ

(
θ(1;0)

can θ(2;1,i)
can + θ(2;0)

can θ(1;1,i)
can

)]
− 1

16p4
∞
D2
[p5
∞
Eξ

(θ(1;0)
can )2θ(1;1,i)

can

]∣∣∣∣
p∞→|p|

.

Here φ
(n;A)
can are canonical expansion coefficients defined

in Appendix A and related to the covariant expansion
coefficients of Eq. (49) by:

θ(n;0)
can = Γ θ(n;0)

cons (78a)

θ(n;1,i)
can = Γ

(
θ(n;1,i)

cons + n
p∞

Ei +mi
θ(n;0)

cons

)
(78b)

A particular subtlety here is that θ
(n;A)
can is given in terms

of the previously-defined background variables p∞, γ,
Ei =

√
p2
∞ +m2

i evaluated at past infinity, e.g.

γ =
p1 · p2

m1m2
=
E1E2 + p2

∞
m1m2

, (79)

instead of the dynamical momentum p(t): we interpo-
late to the full dynamical coefficients c(n;A;m) simply by
replacing one with the other. We have also introduced
the differential operator

D[X] :=
∂(p∞X)

∂p∞
, (80)

and D2[X] = D[D[X]]. The angle and its coefficients
are given in Appendix B, together with full expressions
for the Hamiltonian coefficients given in the ancillary file
attached to the arXiv submission of this paper.

We have checked this Hamiltonian numerically against
the recent results obtained in Ref. [139], which also in-
cluded 3PM quadratic-in-spin terms. Our results comple-
ment those by adding S1S2 contributions to the Hamil-
tonian together with finite-size effects (CE,i terms) in the
S2
i sector. We have also verified that the PN-expansion

of this Hamiltonian correctly reproduces 4PN results in

the isotropic gauge [29]. We did so by PN-expanding the
c(n;A)(p2) coefficients in powers of p2.

Finally, let us observe that: having expressed the co-
efficients of the Hamiltonian in terms only of the scat-
tering angle φcan, this implies that the full conservative

scattering observables ∆p
(3)µ
i,cons and ∆S

(3)µ
i,cons may them-

selves be expressed in terms of this angle. We would ob-
tain the precise relationship by solving Hamilton’s equa-
tions again for the impulse and spin kick, but this time
plugging in expressions in terms of φcons. In contrast to
the Hamiltonian, the relations thus obtained are gauge-
invariant and will be an intriguing topic of future studies.

VI. UNBOUND-TO-BOUND MAPPINGS

Let us now discuss how our results may be applied
to describe bound orbits, which the now-complete 3PM
quadratic-in-spin Hamiltonian (67) gives us partial access
to. This will allow us to determine the binding energy,
which together with the radiative fluxes may be used
to inform complete gravitational waveform models. In
this section we specialize to spin vectors aligned with the
orbital angular momentum vector:

Sµi = mia
µ
i = Gm2

iχiL̂
µ , (81)

where χi are the directed spin lengths and Sµi,can = Sµi .

For Kerr black holes mi|χi| are the radii of the ring sin-
gularities, and −1 < χi < 1. Using Eq. (19) we see that

for aligned spins L̂µ = L̂µcan; however, their magnitudes
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FIG. 2: The reduced binding energy E = (H −M)/µ for
circular orbits determined numerically and plotted as a
function of orbital frequency GMΩ up to the innermost

stable circular orbit. It is compared for different PM and
spin orderswith a Numerical Relativity (NR) simulation
provided by the Simulating eXtreme Spacetimes (SXS)

collaboration [149].

differ and so using Eq. (19) we introduce

λ =
|Lcan|
GMµ

=
|b|p∞
GMµ

+
E
2

(
χ+ +

δ

Γ
χ−

)
, (82)

where E = (E − M)/µ is the reduced binding energy,
δ = (m2 −m1)/M and

χ± =
m1χ1 ±m2χ2

M
, (83)

χ2
E,± =

CE,1m
2
1χ

2
1 ± CE,2m

2
2χ

2
2

M2
. (84)

Using axial symmetry the Hamiltonian E =
H(r, pr, λ, χi) depends — besides the masses mi and
finite-size coefficients CE,i — on the radial coordinate r
and momentum pr, where in axial coordinates

p2 = p2
r +

p2
φ

r2
. (85)

The axial momentum pφ = |Lcan| is a constant of motion.
In all of these expressions we leave the dependence on
masses mi and finite-size coefficients CE,i implicit.

A. Numerical PM binding energy

In Fig. 2 we plot the reduced binding energy E =
(H−M)/µ for circular orbits as a function of the orbital
frequency GMΩ leading up to merger. It is compared
with a Numerical Relativity (NR) simulation provided

by the Simulating eXtreme Spacetimes (SXS) collabora-
tion [149], extracted in Ref. [150]. Our plots are also
determined numerically: within the Hamiltonian we set
pr = 0 and, using ṗr = 0 = −∂H/∂r, we solve for λ(r)
for different orbital separations r and with specific val-
ues of χ1, χ2. The reduced binding energy E is plotted
against the orbital frequency:

x3/2 = GMΩ =
dE
dλ

, (86)

with the number of orbits leading up to merger provided
by NR — see Refs. [48, 71] for more details.

The conclusion of these plots is somewhat disappoint-
ing: the quadratic-in-spin part of the Hamiltonian yields
little improvement over the spin-orbit contribution. How-
ever, there is a far more noticeable improvement when
going from 2PM to 3PM order, which suggests that pro-
ducing a 4PM spinning Hamiltonian will be a worth-
while endeavor. A similar improvement of the 4PM (hy-
perbolic) Hamiltonian over the 3PM seen in the non-
spinning case [71] also encourages us in this direction;
however, it will also be important to resum in the test-
body limit by feeding these results into a suitable EOB
model [45]. It is also worth noting that, as these plots are
generated for circular orbits, they do not showcase PM
results in the best possible light: it is anticipated that
PM-based results will perform better for highly elliptical
orbits, where the velocity at closest approach between
the massive bodies is large [71].

B. Analytic PN binding energy

Working in the PN expansion we may derive precise
analytic formulae for the binding energy E and periastron
advance ∆φ. Following closely the discussion in Ref. [147]
(see also Refs. [35, 148]) our starting point is the radial
action for unbound orbits:

wr(E , λ, χi) =
1

GMµπ
Pf

∫ ∞
rmin

dr pr(r, E , λ, χi) , (87)

where Pf denotes the partie finie of the radial action; the
energy constraint E = H(r, pr, λ, χi) can be solved for
the radial momentum pr — but we refrain from doing
so explicitly. The innermost point rmin is given by the
root of pr(rmin, E , λ, χi) = 0. This unbound radial ac-
tion is related to the bound radial action ir by analytic
continuation:

ir(E , λ, χi) = wr(E , λ, χi)− wr(E ,−λ;−χi) , (88)

which sends λ → −λ and χi → −χi. For unbound dy-
namics the reduced binding energy E > 0 (γ > 1), but
now we consider values E < 0 (0 < γ < 1) as we see in
Fig. 2. The reduced binding energy E for circular orbits
is derived by setting the bound radial action to zero:

ir(E , λ, χi) = 0 . (89)
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Using Eqs. (89) and (86) we may write E as a function
of x, the spins χ±, χE,±, and ν.

Rather than the Hamiltonian, we prefer to derive the
radial action — and thus the binding energy E — from
the gauge-invariant conservative scattering angle θcons.
It is given by a λ-derivative of the unbound radial action
wr:

2π
∂

∂λ
wr(E , λ, χi) = −(θcons(E , λ, χi) + π) , (90)

and by analytic continuation it is related to the perias-
tron advance for bound orbits [34–37]:

∆φ(E , λ, χi) = θcons(E , λ, χi) + θcons(E ,−λ,−χi) . (91)

We PM-expand the angle in λ as

θcons =
∑
n

θ̃(n)

λn
, (92)

where θ̃(n) depends on χi through the ratios χi/λ. The
analytic continuation in λ (88) is trivial for all terms in
wr except the one coming from the non-spinning part
of θ̃(1), wherein the dependence on λ is log(λ). With
this exception the odd-in-G terms in the PM expansion
disappear in the difference (88), and the analytic contin-
uation of log(−λ) − log(λ) leaves behind a finite piece.
We therefore have

ir(E , λ, χi) = −λ+
2γ2 − 1√

1− γ2
− 1

π

∑
n

∫
dλ
θ̃(2n)

λ2n
. (93)

Here γ should be re-expressed in terms of E . The integral
on λ is elementary but left unresolved because of the
remaining λ-dependence inside θ̃(2n).

Naively this result indicates that our 3PM results have
no relevance for the mapping to bound results. How-
ever, this obstacle is conveniently circumvented in the
PN expansion by use of the so-called impetus formula
with PM-coefficients fk:

p2 = p2
∞ +

∞∑
k=1

Gk

rk
fk . (94)

This is fed into the definition of the scattering angle by
way of the radial action (87):

π + θcons = − 2

GMµ

∫ ∞
rmin

dr
∂

∂λ
pr(r, E , λ) (95)

= −2

∫ ∞
rmin

dr
∂

∂λ

√√√√ 1

G2M2µ2

(
p2
∞ +

∞∑
k=1

Gk

rk
fk

)
− λ2

r2
.

This integral has been performed up to high orders in
G in Ref. [43] and the scattering angle is then expressed
in terms of fk. Knowledge of the 1PM, 2PM and 3PM
scattering angles suffices in order to fully determine fk≤3,
which may in turn be used to reconstruct the leading-PN
terms of the angle at higher PM orders.

In order to reconstruct the quadratic-in-spin binding
energy up to 4PN order, we find it necessary to recon-
struct the leading-PN and sub-leading-PN parts of θ̃(6)

and θ̃(4) respectively, at both linear and quadratic order
in spin. Following this procedure, we discover that the
binding energy is

−2E = x

[
1− x9 + ν

12
− x2 81− 57ν + ν2

24
+ · · ·

]
(96)

+x5/2

[
7χ+ − δχ−

3
+ x

(99− 61ν)χ+ − (45− ν)δχ−
18

+ x2 (405− 1101ν + 29ν2)χ+ − (243− 165ν − ν2)δχ−
24

+ · · ·
]

−x3

[
χ2

+ +
5x

36

(
(5− 6ν)χ2

+ − 44χ+χ− − (1 + 8ν)χ2
−

)
+

7x2

216

(
(198− 680ν + 3ν2)χ2

+ − 2(171− 137ν)δχ−χ+ + (63− 251ν + 56ν2)χ2
−

)
+ χ2

E,+ +
5x

6

(
(5− ν)χ2

E,+ − 2δχ2
E,−

)
+
x2

72

(
(1125− 1025ν + 7ν2)χ2

E,+ − 2δ(279− 70ν)χ2
E,−

)
+ · · ·

]
.

At each order in spin, we give the terms up to and in-
cluding next-to-next-to-leading order in the PN expan-
sion. With the non-spinning terms appearing up to 2PN
order, the spin-orbit and spin-spin terms appear up to
3.5PN and 4PN order respectively.

C. Radiated energy

Finally, we may also determine the energy radiated per
orbit in the CoM frame [37]:

Ebound
rad (E , λ, χi) = Erad(E , λ, χi)− Erad(E ,−λ,−χi) ,

(97)
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where Erad = P̂ · Prad derives from the full radiative
momentum impulse ∆pµ1 (44). The same analysis was
also done successfully by Riva, Vernizzi and Wong [75],
who confirmed that this result for the radiated energy for
bound orbits agrees with the corresponding 4PN terms
from Ref. [32]. To leading-PN at each spin order, we find
that

Ebound
rad =

2πµ2

M

(
148E2

15λ3
− 4(67χ+ − 2δχ−)E3

5λ4
(98)

+
(236(χ2

+ − χ2
E,+) + 9χ2

−)E3

5λ5

)
+ · · · .

Like in the binding energy (96), we see that the linear-
in-spin terms appear at 1.5PN above the non-spinning;
the quadratic-in-spin terms at 2PN above.

However, we emphasize that, unlike in the case of the
binding energy, this result for the radiated energy does
not encode the full leading-PN result. To see why, we
recall that in the non-spinning case the leading-PN radi-
ated energy may be derived from Einstein’s quadrupole
formula:

Ebound
rad =

2πµ2

M

(
148E2

15λ3
+

244E
5λ5

+
85

3λ7

)
+ · · · . (99)

While we do reproduce the λ−3 contribution, gaining
access to the λ−5 and λ−7 contributions via PM-based
scattering calculations would necessitate 5PM and 7PM
calculations respectively: a seemingly impossible task!
However, a more encouraging conclusion was reached in
Ref. [36]: that by instead using the PM-scattering data
to fix the form of the (gauge-dependent) instantaneous
fluxes of energy and angular momentum, the leading-
PN information could instead be extracted from a future
4PM derivation. Such an approach might be especially
beneficial in the spinning case, given the unbound-to-
bound mapping’s current limitation to aligned spin vec-
tors. This would be similar to our present use of the con-
servative scattering observables to reconstruct a Hamil-
tonian, a prospect that we leave for future work.

VII. CONCLUSIONS

In this paper we have for the first time provided com-
plete expressions for the impulse ∆pµ1 and spin kick ∆Sµ1
at third Post-Minkowskian (3PM) order to quadratic or-
der in the spins of two scattering bodies, including finite-
size corrections. The computation relied on our use of
the spinning, supersymmetric WQFT formalism [57, 58]
and its extension to utilize the Schwinger-Keldysh in-in
formalism [63, 76–80]. These results upgrade the previ-
ously obtained conservative observables provided by the
present authors [61], and include knowledge of the to-
tal radiated four-momentum Pµrad which has also recently
been computed using worldline EFT methods [75]. We
also wrote down a scattering angle that encapsulates the
motion for arbitrarily mis-aligned spin directions.

Next, we demonstrated how both conservative and ra-
diative parts of these observables may be reconstructed
using an extension of Bini and Damour’s linear response
relation [81–83], incorporating the full 2PM radiated an-
gular momentum Jµrad. These relations build on a split
into conservative and radiative parts as an average of the
full in-in and out-out observables. It will be exciting to
see how these relations may help produce results at 4PM
order. For spin effects this will require a 3PM compu-
tation of Jµrad with spin, but one may already explore
non-spinning applications of the formula. Similar studies
have already been initiated in the non-spinning case in
Ref. [140].

Using the conservative parts of our results — already
known from Ref. [61] — we constructed a two-body
Hamiltonian mapping our unbound results to bound mo-
tion. This Hamiltonian describes the conservative two-
body dynamics up to 3PM order and to quadratic or-
der in their spins — it complements the Hamiltonian of
Ref. [139] by adding the terms O(S1S2) and finite-size
effects. We note that the coefficients of the Hamiltonian
are more complicated than the scattering observables.
While the observables can easily be reduced to a number
of polynomials in γ, the Hamiltonian coefficients depend
on the center-of-mass variables in a complicated manner.
This is partly due to its gauge dependence, but also the
necessity of using a canonical spin-supplementary con-
dition (SSC). This canonical Pryce-Newton-Wigner SSC
[142–144] we showed is related to the covariant SSC by a
supersymmetry transformation.

It is an interesting study to explore whether gauge
choices other than the isotropic gauge could lead to sim-
pler coefficients in the Hamiltonian. Quite intriguingly,
we found it possible to fix all coefficients of the Hamilto-
nian by matching to a single scattering angle defined for
generic spins. This in turn leads to the exciting result
that the conservative dynamics for generic spins can be
described by a single scalar. The expressions for the im-
pulse and spin kick in terms of the scattering angle thus
obtained are gauge invariant. They deserve further study
and preferably a direct relation highlighting the gauge
invariance. Such relations are similar to the eikonal rela-
tions explored in Ref. [127].

We also studied mappings to bound orbits. This began
with using the complete 3PM Hamiltonian to produce
numerical plots of the binding energy for circular orbits
leading up to merger, in comparison with Numerical Rel-
ativity (NR) simulations [149]. We successfully repro-
duced the known 4PN quadratic-in-spin binding energy,
and the leading-PM radiated energy for bound orbits.
Unfortunately, these plots did not show a significant im-
provement of the quadratic-in-spin Hamiltonian over its
spin-orbit counterpart; however, the effect of going from
2PM to 3PM order was more significant. This calls for
the future determination of the 4PM spinning Hamilto-
nian, which — similar to the non-spinning case, and due
to the presence of tails — encounters non-localities that
distinguish between bound and unbound dynamics [68–
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71, 103, 104]. To inform realistic waveform models, it
will also be important to incorporate knowledge of the
test-body limit by way of the effective-one-body (EOB)
formalism [45, 46].

Finally, we determined the energy radiated per orbit in
the CoM frame from an appropriate unbound-to-bound
mapping [37]. Current limitations in this mapping re-
strict us to considering only aligned spins; furthermore,
this approach does not reproduce the full leading-PN
result — which in the non-spinning case may be de-
rived from Einstein’s quadrupole formula. To overcome
both of these limitations, and following the suggestion
of Ref. [36], we believe that in the future it will be
more profitable to focus on reconstructing the (gauge-
dependent) instantaneous momentum and angular mo-
mentum fluxes. In this case, a complete 4PM result
would suffice to reconstruct the leading-PN form of the
radiated energy. Alternatively, we hope that improved
unbound-to-bound mappings for spinning bodies will fur-
ther alleviate these issues.

A natural continuation of this work will therefore be
to progress upwards in the perturbative series — both to
higher PM orders and higher spin orders. While higher
PM orders will present a challenge for the integration
step, there has recently been a promising development
in this area: the first complete analytic result for the

4PM momentum impulse including radiation-reaction ef-
fects [70], wherein loop integrals with retarded propaga-
tors were also used. With a similar basis of master in-
tegrals, it will be possible to tackle spin effects at 4PM
order. While higher PM orders present a challenge re-
garding the integration steps, higher spin orders rather
challenge the construction of the integrand. In this case,
it will be necessary to upgrade the spinning N = 2 su-
persymmetric worldline action to include more supersym-
metry — a tantalizing prospect that we leave for future
work.
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Appendix A: Canonical expansion of scattering angle

Here we discuss the relationship between the canonical and covariant expansions of the conservative scattering angle
θcons. As the angle is independent of the choice of SSC, only its expansion coefficients change when we expand in
canonical rather than covariant variables. The canonical expansion is defined analogously to the covariant expansion
in Eq. (49):

θcons =

3∑
n=1

( GM
|bcan|

)n[
θ(n;0)

can −
∑
i

θ(n;1,i)
can

L̂can · ai,can

|bcan|
(A1)

+
∑
i,j

aµi,cana
ν
j,can

|bcan|2

(
− θ(n;2,1,i,j)

can ηµν + θ(n;2,2,i,j)
can b̂µcanb̂

ν
can + θ(n;2,3,i,j)

can p̂µp̂ν + θ(n;2,4,i,j)
can b̂µcanp̂

ν

)]
+O(S3, G4) .

Using the definitions of the canonical variables from Sec. I B we relate the canonical expansion coefficients, θ
(n;A)
can , to

the covariant ones, θ
(n;A)
cons :

θ(n;0)
can = Γ θ(n;0)

cons , (A2a)

θ(n;1,i)
can = Γ

(
θ(n;1,i)

cons + n
p∞

Ei +mi
θ(n;0)

cons

)
, (A2b)

θ(n;2,1,i,j)
can = Γ

(
θ(n;2,1,i,j)

cons +
(n+ 1)p∞
2(Ej +mj)

θ(n;1,i)
cons +

(n+ 1)p∞
2(Ei +mi)

θ(n;1,j)
cons +

n(n+ 1)p2
∞

2(Ei +mi)(Ej +mj)
θ(n;0)

cons

)
, (A2c)

θ(n;2,2,i,j)
can = Γ

(
θ(n;2,2,i,j)

cons − (n+ 2)p∞
2(Ej +mj)

θ(n;1,i)
cons − (n+ 2)p∞

2(Ei +mi)
θ(n;1,j)

cons − n(n+ 2)p2
∞

2(Ei +mi)(Ej +mj)
θ(n;0)

cons

)
, (A2d)

θ(n;2,3,i,j)
can = Γ

(
(−1)i+j

p2
∞Γ2

µ2
θ(n;2,3,i,j)

cons +
1− (−1)i+j

2

E1E2 −m1m2 + p2
∞

m1m2
θ(n;2,1,1,2)

cons

− (n+ 1)p∞
2(Ej +mj)

θ(n;1,i)
cons − (n+ 1)p∞

2(Ei +mi)
θ(n;1,j)

cons − n(n+ 1)p2
∞

2(Ei +mi)(Ej +mj)
θ(n;0)

cons

)
. (A2e)
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The covariant coefficients θ
(n;A)
cons are given in Appendix B.

Appendix B: Scattering Angle

In this section we print the 3PM contributions to the covariant expansion coefficients of the scattering angle θ defined
in Eqs. (48) and (49). First, we print the conservative contributions which are used for the Hamiltonian. Then, we
print the radiative contributions. The coefficients that we have not printed here may be obtained by exchanging the
two particles. The conservative non-spinning and spin-orbit coefficients are:

θ(3;0)
cons =

2
(
64γ6 − 120γ4 + 60γ2 − 5

)
Γ2

3 (γ2 − 1)
3 −

8γ
(
14γ2 + 25

)
ν

3 (γ2 − 1)
−

8
(
4γ4 − 12γ2 − 3

)
ν arccoshγ

(γ2 − 1)
3/2

, (B1)

θ(3;1,1)
cons = −

2γ
(
16γ4 − 20γ2 + 5

) (
5Γ2 − δ

)
(γ2 − 1)

5/2
+

4
(
44γ4 + 100γ2 + 41

)
ν

(γ2 − 1)
3/2

+
48γ

(
γ2 − 6

) (
2γ2 + 1

)
ν arccoshγ

(γ2 − 1)
2 . (B2)

These agree with the ones in Ref. [61] as expected from the discussion beneath Eq. (48). The coefficients θ
(3;2,1,i,j)
cons

are:

θ(3;2,1,1,1)cons = Γ2

(
4
(
96γ6 − 160γ4 + 70γ2 − 5

)
(γ2 − 1)3

−
4
(
1772γ6 − 2946γ4 + 1346γ2 − 137

)
CE,1

35 (γ2 − 1)3

)
(B3)

+ δ

(
−

8
(
4γ2 − 2γ − 1

) (
4γ2 + 2γ − 1

)
(γ2 − 1)2

+
8
(
214γ4 − 223γ2 + 44

)
CE,1

35 (γ2 − 1)2

)

−
16γ

(
148γ4 + 374γ2 + 383

)
ν

5 (γ2 − 1)2
+

8γ
(
3244γ4 + 7972γ2 + 4639

)
CE,1ν

105 (γ2 − 1)2

+ arccoshγ

(
−

192
(
γ6 − 8γ4 − 7γ2 − 1

)
ν

(γ2 − 1)5/2
+

16
(
8γ6 − 56γ4 − 24γ2 − 3

)
CE,1ν

(γ2 − 1)5/2

)

θ(3;2,1,1,2)cons =
4
(
96γ6 − 160γ4 + 70γ2 − 5

)
Γ2

(γ2 − 1)3
−

32γ
(
15γ4 + 46γ2 + 47

)
ν

(γ2 − 1)2
−

48
(
4γ6 − 36γ4 − 35γ2 − 5

)
ν arccoshγ

(γ2 − 1)5/2
(B4)

The coefficients θ
(3;2,2,i,j)
cons are:

θ(3;2,2,1,1)cons =
4γ
(
9000γ10 + 4404γ8 − 2152γ6 − 12152γ4 + 8379γ2 − 1479

)
ν

15 (γ2 − 1)3 (2γ2 − 1)2
(B5)

+ π2

(
−
(
5γ2 − 3

) (
10γ4 − 5γ2 + 9

)
γ2δ

128 (γ2 − 1)2 (2γ2 − 1)2
+

(
100γ8 − 160γ6 + 193γ4 − 78γ2 + 45

)
γ2Γ2

128 (γ2 − 1)2 (2γ2 − 1)3

−
(
100γ9 − 160γ7 − 60γ6 + 193γ5 − 12γ4 − 78γ3 + 12γ2 + 45γ − 36

)
γ2ν

64 (γ2 − 1)2 (2γ2 − 1)3

)
+ δ

(
10
(
4γ2 − 2γ − 1

) (
4γ2 + 2γ − 1

)
(γ2 − 1)2

−
2
(
1192γ4 − 1382γ2 + 295

)
CE,1

35 (γ2 − 1)2

)
−

4γ
(
10744γ6 + 13474γ4 + 2665γ2 + 9237

)
CE,1ν

105 (γ2 − 1)3

+ Γ2

(
2
(
6568γ6 − 11114γ4 + 5079γ2 − 463

)
CE,1

35 (γ2 − 1)3
−

2
(
960γ10 − 2560γ8 + 2540γ6 − 1150γ4 + 225γ2 − 13

)
(γ2 − 1)3 (2γ2 − 1)2

)

+ arccoshγ

(
16γ2

(
60γ10 − 600γ8 + 551γ6 − 63γ4 − 63γ2 + 15

)
ν

(γ2 − 1)7/2 (2γ2 − 1)2
−

32
(
8γ8 − 56γ6 + 26γ4 − 18γ2 − 3

)
CE,1ν

(γ2 − 1)7/2

)

θ(3;2,2,1,2)cons = −
2
(
960γ10 − 2560γ8 + 2540γ6 − 1150γ4 + 225γ2 − 13

)
Γ2

(γ2 − 1)3 (2γ2 − 1)2
(B6)

+
4γ
(
1800γ10 + 2020γ8 − 424γ6 − 3032γ4 + 1703γ2 − 231

)
ν

3 (γ2 − 1)3 (2γ2 − 1)2

+
16
(
60γ12 − 664γ10 + 519γ8 − 31γ6 − 43γ4 + 7γ2 − 1

)
ν arccoshγ

(γ2 − 1)7/2 (2γ2 − 1)2

+ π2

(
3
(
γ2 + 1

) (
5γ4 − 4γ2 + 3

)
γ2Γ2

32 (γ2 − 1)2 (2γ2 − 1)3
+

(
100γ8 − 60γ7 − 160γ6 − 12γ5 + 193γ4 + 12γ3 − 78γ2 − 36γ + 45

)
γ2ν

64 (γ2 − 1)2 (2γ2 − 1)3

)
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The coefficients θ
(3;2,3,i,j)
cons are:

θ(3;2,3,1,1)cons =
γ
(
18624γ8 + 24848γ6 − 45192γ4 − 58631γ2 + 36351

)
ν

15 (γ2 − 1)4 (2γ2 − 1)
+ δ

(
704γ6 − 880γ4 + 312γ2 − 23

2 (γ2 − 1)3 (2γ2 − 1)
(B7)

−
2
(
1376γ4 − 1294γ2 + 233

)
CE,1

35 (γ2 − 1)3

)
−

4γ
(
8720γ6 + 14894γ4 − 22663γ2 − 37071

)
CE,1ν

105 (γ2 − 1)4

+ Γ2

(
2
(
4064γ6 − 6562γ4 + 2997γ2 − 359

)
CE,1

35 (γ2 − 1)4
− 1728γ8 − 3664γ6 + 2584γ4 − 673γ2 + 41

2 (γ2 − 1)4 (2γ2 − 1)

)

+ arccoshγ

(
64
(
3γ8 − 35γ6 + 9γ4 + 42γ2 + 6

)
ν

(γ2 − 1)9/2
−

16
(
8γ8 − 80γ6 + 44γ4 + 99γ2 + 15

)
CE,1ν

(γ2 − 1)9/2

)

θ(3;2,3,1,2)cons =
4γ
(
96γ6 − 148γ4 + 55γ2 − 1

)
Γ2

(γ2 − 1)4
−

16γ
(
12γ8 − 136γ6 − 21γ4 + 210γ2 + 88

)
ν arccoshγ

(γ2 − 1)9/2
(B8)

−
(
2880γ10 + 7712γ8 − 5664γ6 − 22688γ4 + 9219γ2 + 1197

)
ν

3 (γ2 − 1)4 (2γ2 − 1)

The coefficients θ
(3;2,4,i,j)
cons are:

θ(3;2,4,1,1)cons = π

(
−
(
80γ9 − 144γ7 − 12γ6 + 42γ5 + 33γ4 + 32γ3 − 21γ2 − 18γ + 6

)
ν

4 (γ2 − 1)5/2 (2γ2 − 1)2
−

3
(
30γ3 − 15γ2 − 6γ + 1

)
CE,1ν

4 (γ2 − 1)3/2
(B9)

+ Γ2

(
80γ8 − 104γ6 + 12γ5 + 20γ4 − 15γ3 + 18γ2 + 9γ − 6

8 (γ2 − 1)5/2 (2γ2 − 1)2
+

3
(
30γ4 + 15γ3 − 21γ2 − γ + 3

)
CE,1

8 (γ2 − 1)5/2

)

+ δ

(
−80γ8 − 104γ6 − 12γ5 + 20γ4 + 15γ3 + 18γ2 − 9γ − 6

8 (γ2 − 1)5/2 (2γ2 − 1)2
−

3
(
30γ4 − 15γ3 − 21γ2 + γ + 3

)
CE,1

8 (γ2 − 1)5/2

))

θ(3;2,4,1,2)cons = π

(
−
(
20γ7 + 12γ6 − 21γ5 − 24γ4 + 4γ3 + 15γ2 + 3γ − 3

)
Γ2

4 (γ2 − 1)5/2 (2γ2 − 1)2
(B10)

+

(
20γ7 − 12γ6 − 21γ5 + 24γ4 + 4γ3 − 15γ2 + 3γ + 3

)
δ

4 (γ2 − 1)5/2 (2γ2 − 1)2

+

(
120γ8 − 56γ7 − 194γ6 + 48γ5 + 124γ4 − γ3 − 36γ2 − 9γ + 6

)
ν

4 (γ2 − 1)5/2 (2γ2 − 1)2

)

Let us then print the radiative contributions. All coefficients are proportional to the universal function I(v) except

θ3;2,4,i,j
k,rad . These coefficients depend on the particle label k.

θ
(3;0)
rad =

4
(
1− 2γ2

)2
ν

(γ2 − 1)3/2
I(v) (B11)

θ
(3;1,1)
rad = −

24γ
(
2γ2 − 1

)
ν

γ2 − 1
I(v) (B12)

θ
(3;2,1,1,1)
rad = −

16ν
(
γ4(4CE,1 − 6) + γ2(6− 4CE,1) + CE,1 − 1

)
(γ2 − 1)3/2

I(v) (B13)

θ
(3;2,1,1,2)
rad =

16
(
6γ4 − 6γ2 + 1

)
ν

(γ2 − 1)3/2
I(v) (B14)

θ
(3;2,2,1,1)
rad =

8ν
(
γ4(16CE,1 − 15) + γ2(15− 16CE,1) + 4(CE,1 − 1)

)
(γ2 − 1)3/2

I(v) (B15)

θ
(3;2,2,1,2)
rad = −

8
(
15γ4 − 15γ2 + 4

)
ν

(γ2 − 1)3/2
I(v) (B16)

θ
(3;2,3,1,1)
rad =

16ν
(
γ4(4CE,1 − 6) + γ2(6− 4CE,1) + CE,1 − 1

)
(γ2 − 1)5/2

I(v) (B17)

θ
(3;2,3,1,2)
rad =

16γ
(
6γ4 − 6γ2 + 1

)
ν

(γ2 − 1)5/2
I(v) (B18)
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The coefficients θ3;2,4,i,j
k,rad are:

θ
(3;2,4,1,1)
1,rad =

3πγ
(
28γ8 − 80γ6 + 41γ4 + 34γ2 − 15

)
ν arccoshγ

32 (γ2 − 1)7/2 (2γ2 − 1)
(B19)

−
3π
(
14γ7 + 14γ6 + 101γ5 − 323γ4 + 236γ3 − 60γ2 − 23γ + 25

)
ν log

(
γ+1
2

)
16(γ − 1)2(γ + 1)3 (2γ2 − 1)

+
π
(
280γ10 + 470γ9 + 1930γ8 + 5397γ7 − 88373γ6 + 244865γ5 − 273845γ4 + 73199γ3 + 112249γ2 − 102411γ + 25759

)
ν

160(γ − 1)3(γ + 1)5 (2γ2 − 1)

+ CE,1

(
3πγ

(
98γ6 − 239γ4 + 164γ2 − 39

)
ν arccoshγ

64 (γ2 − 1)7/2
−

3π
(
49γ5 + 169γ4 − 306γ3 + 150γ2 − 63γ + 33

)
ν log

(
γ+1
2

)
32(γ − 1)2(γ + 1)3

−
π
(
1575γ9 − 810γ8 + 1020γ7 + 4140γ6 + 26442γ5 − 196568γ4 + 442476γ3 − 521244γ2 + 321447γ − 80398

)
ν

640(γ − 1)3(γ + 1)5

)

θ
(3;2,4,2,2)
1,rad = −

3π
(
2γ4 − 13γ2 + 15

)
γ2ν arccoshγ

16 (γ2 − 1)7/2 (2γ2 − 1)
+

3π
(
−110γ5 + 259γ4 − 186γ3 + 8γ2 + 40γ − 19

)
ν log

(
γ+1
2

)
8(γ − 1)2(γ + 1)3 (2γ2 − 1)

(B20)

+
π
(
−2070γ9 + 2740γ8 + 20777γ7 − 153646γ6 + 408765γ5 − 463000γ4 + 119039γ3 + 196158γ2 − 168991γ + 40708

)
ν

160(γ − 1)3(γ + 1)5 (2γ2 − 1)

+ CE,2

(
−

3π
(
30γ4 − 59γ2 + 21

)
γ2ν arccoshγ

32 (γ2 − 1)7/2
−

3π
(
65γ4 − 190γ3 + 156γ2 − 74γ + 27

)
ν log

(
γ+1
2

)
16(γ − 1)2(γ + 1)3

+
π
(
−1075γ7 + 980γ6 − 6738γ5 + 73384γ4 − 198749γ3 + 236162γ2 − 135438γ + 30994

)
ν

160(γ − 1)3(γ + 1)5

)

θ
(3;2,4,1,2)
1,rad = −

3π
(
8γ6 − 22γ4 + 9γ2 + 9

)
γ2ν arccoshγ

16 (γ2 − 1)7/2 (2γ2 − 1)
+

3π
(
17γ6 − 63γ5 + 107γ4 − 81γ3 + 8γ2 + 16γ − 8

)
ν log

(
γ+1
2

)
4(γ − 1)2(γ + 1)3 (2γ2 − 1)

+
π
(
−630γ10 − 480γ9 + 4481γ8 + 11476γ7 − 88357γ6 + 195970γ5 − 191553γ4 + 34776γ3 + 87891γ2 − 69710γ + 16328

)
ν

64(γ − 1)3(γ + 1)5 (2γ2 − 1)
(B21)

θ
(3;2,4,2,1)
1,rad =

3πγ
(
4γ6 − 24γ4 + 33γ2 − 9

)
ν arccoshγ

16 (γ2 − 1)7/2 (2γ2 − 1)
+

3π
(
20γ6 − 76γ5 + 120γ4 − 73γ3 − γ2 + 25γ − 11

)
ν log

(
γ+1
2

)
4(γ − 1)2(γ + 1)3 (2γ2 − 1)

+
π
(
−98γ9 + 1488γ8 + 9431γ7 − 75972γ6 + 188037γ5 − 200914γ4 + 48417γ3 + 85464γ2 − 73947γ + 17902

)
ν

64(γ − 1)3(γ + 1)5 (2γ2 − 1)
(B22)

Appendix C: Hamiltonian coefficients

Here we give the Hamiltonian coefficients in terms of those of the scattering angle. We do not print the expressions
for the spin-spin coefficients at 3PM order which are found in the ancillary file. We start with the simpler spinless
and spin-orbit coefficients. At 1PM order we find:

c(1;0)(p2) = − p2
∞

2Eξ
θ(1;0)

can

∣∣∣∣
p∞→|p|

, (C1)

c(1;1,i)(p2) = − p∞
2Eξ

θ(1;1,i)
can

∣∣∣∣
p∞→|p|

.

At 2PM order we find:

c(2;0)(p2) = − p2
∞

πEξ
θ(2;0)

can +
1

8p∞
D
[p3
∞
Eξ

(
θ(1;0)

can

)2]∣∣∣∣
p∞→|p|

, (C2)

c(2;1,i)(p2) = − p∞
πEξ

θ(2;1,i)
can +

1

4p3
∞
D
[p4
∞
Eξ

θ(1;0)
can θ(1;1,i)

can

]∣∣∣∣
p∞→|p|

.
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Finally we reprint the non-spinning and spin-orbit coefficients at 3PM order from Eq. (77):

c(3;0)(p2) = − p2
∞

4Eξ
θ(3;0)

can +
1

2πp2
∞
D
[p4
∞
Eξ

θ(1;0)
can θ(2;0)

can

]
− 1

48p2
∞
D2
[p4
∞
Eξ

(θ(1;0))3
]∣∣∣∣
p∞→|p|

, (C3)

c(3;1,i)(p2) = − p∞
4Eξ

θ(3;1,i)
can +

1

2πp4
∞
D
[p5
∞
Eξ

(
θ(1;0)

can θ(2;1,i)
can + θ(2;0)

can θ(1;1,i)
can

)]
− 1

16p4
∞
D2
[p5
∞
Eξ

(θ(1;0)
can )2θ(1;1,i)

can

]∣∣∣∣
p∞→|p|

.

The spin-spin coefficients do not seem to obey the same simplicity as the above spinless and spin-orbit coefficients.
At the first Post-Minkowskian order we find:

c(1;2,1,i,j)(p2) = − p2
∞

4Eξ
θ(1;2,1,i,j)

can

∣∣∣∣
p∞→|p|

, (C4a)

c(1;2,2,i,j)(p2) = −3p2
∞

8Eξ
θ(1;2,2,i,j)

can +
3p2
∞

16Eξ

θ
(1;1,i)
can θ

(1;1,j)
can

θ
(1;0)
can

∣∣∣∣∣
p∞→|p|

, (C4b)

c(1;2,3,i,j)(p2) = − 1

4Eξ

(
θ(1;2,3,i,j)

can − 1

2
θ(1;2,2,i,j)

can

)
− 1

16Eξ

θ
(1;1,i)
can θ

(1;1,j)
can

θ
(1;0)
can

∣∣∣∣∣
p∞→|p|

. (C4c)

At second Post-Minkowskian order we find:

c(2;2,1,i,j)(p2) = − 2p2
∞

3πEξ
θ(2;2,1,i,j)

can +
1

32p3
∞
D
[p5
∞
Eξ

(
3θ(1;1,i)

can θ(1;1,j)
can + 4θ(1;0)

can θ(1;2,1,i,j)
can

)]∣∣∣∣
p∞→|p|

(C5a)

c(2;2,2,i,j)(p2) = −p
2
∞
Eξ

(
8θ

(2;2,2,i,j)
can

9π
+
θ

(1;0)
can θ

(1;2,2,i,j)
can

8
− θ

(1;1,i)
can θ

(1;1,j)
can

16
+
p∞
16

(θ(1;1,i)
can

mi
+
θ

(1;2,j)
can

mj

)
θ(1;2,2,i,j)

can

)
(C5b)

+
1

32p3
∞
D
[p5
∞
Eξ

(
6θ(1;0)

can θ(1;2,2,i,j)
can − 7θ(1;1,i)

can θ(1;1,j)
can

)]
− 4p2

∞
9πEξ

θ
(2;0)
can θ

(1;1,i)
can θ

(1;1,j)
can(

θ
(1;0)
can

)2
+

p2
∞

Eξθ
(1;0)
can

(
p∞
32

(θ(1;1,i)
can

mi
+
θ

(1;1,j)
can

mj

)
θ(1;1,i)

can θ(1;1,j)
can +

2

9π

(
θ(1;1,i)

can θ(2;1,j)
can + θ(2;1,i)

can θ(1;1,j)
can

))∣∣∣∣∣
p∞→|p|

c(2;2,3,i,j)(p2) = − 1

Eξ

(
2θ

(2;2,3,i,j)
can

3π
− 2θ

(2;2,2,i,j)
can

9π
− θ

(1;0)
can θ

(1;2,2,i,j)
can

8
− p∞

16

(θ(1;1,i)
can

mi
+
θ

(1;2,j)
can

mj

)
θ(1;2,2,i,j)

can

)
(C5c)

+
θ

(1;1,i)
can θ

(1;1,j)
can

16
− 1

32p5
∞
D
[p5
∞
Eξ

(
2θ(1;0)

can θ(1;2,2,i,j)
can + θ(1;1,i)

can θ(1;1,j)
can − 4θ(1;0)

can θ(1;2,3,i,j)
can

)]
− 1

Eξθ
(1;0)
can

(
p∞
32

(θ(1;1,i)
can

mi
+
θ

(1;1,j)
can

mj

)
θ(1;1,i)

can θ(1;1,j)
can +

1

18π

(
θ(1;1,i)

can θ(2;1,j)
can + θ(2;1,i)

can θ(1;1,j)
can

))

+
1

9πEξ

θ
(2;0)
can θ

(1;1,i)
can θ

(1;1,j)
can(

θ
(1;0)
can

)2
∣∣∣∣∣
p∞→|p|

The 3PM spin-spin coefficients are found in the ancillary file.
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