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Abstract
We generalize the construction of Rouquier complexes
to the setting of one-sided singular Soergel bimodules.
Singular Rouquier complexes are defined by taking
minimal complexes of restricted Rouquier complexes.
We show that they retain many of the properties of ordi-
nary Rouquier complexes: they are Δ-split, they satisfy a
vanishing formula, and when Soergel’s conjecture holds
they are perverse. As an application, we establish Hodge
theory for singular Soergel bimodules.
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1 INTRODUCTION

Consider a complex reductive algebraic group 𝐺 with Borel subgroup 𝐵 and Weyl group𝑊. The
category of 𝐵-equivariant parity sheaves on the flag variety 𝑋 = 𝐺∕𝐵 provides a categorification
of the Hecke algebra of𝑊. Soergel [14, 15] an alternative categorification of the Hecke algebra
 via certain graded bimodules over 𝑅 = Sym∙

𝕂
(𝔥∗), where 𝔥∗ is a (well-behaved) representation

of 𝑊 over a field 𝕂. A major advantage of using Soergel bimodules is that their construction
is completely algebraic, in particular their definition makes sense for an arbitrary Coxeter
group𝑊.
The situation is very similar when we consider a parabolic subgroup 𝑃 of 𝐺 containing 𝐵 and

the partial flag variety𝐺∕𝑃. Let 𝐼 be the subset of the simple reflections 𝑆 ⊂ 𝑊 corresponding to 𝑃.
Let𝑊𝐼 denote the subgroup of𝑊 generated by 𝐼. Then, 𝐵-equivariant parity sheaves on 𝐺∕𝑃 cat-
egorify the left ideal𝐼 ∶= 𝐇𝐼 of the Hecke algebra, where𝐇𝐼 ∈  is the Kazhdan–Lusztig
basis element corresponding to the longest element in𝑊𝐼 . In this case an algebraic replacement
is provided by the category of singular Soergel bimodules, introduced by Williamson in [16].
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SINGULAR ROUQUIER COMPLEXES 1333

The construction of (one-sided) singular Soergel bimodules is algebraic and works for any Cox-
eter group𝑊 and any subset 𝐼 ⊂ 𝑆 such that𝑊𝐼 is finite. Singular Soergel bimodules are graded
(𝑅, 𝑅𝐼) bimodules, where 𝑅𝐼 denotes the subring of𝑊𝐼-invariants in 𝑅. The indecomposable sin-
gular Soergel bimodules 𝑃𝑤 are parameterized (up to grading shifts) by elements 𝑤 ∈ 𝑊𝐼 , where
𝑊𝐼 is the set of elements of𝑊 which are minimal in their right𝑊𝐼-coset.
For any 𝐼 ⊂ 𝑆 such that 𝑊𝐼 is finite, we denote by 𝕊𝐵𝑖𝑚𝐼 the corresponding category of

singular Soergel bimodules. We simply write 𝕊𝐵𝑖𝑚 for 𝕊𝐵𝑖𝑚∅, the category of (ordinary)
Soergel bimodules.
For a Coxeter group𝑊, let 𝐵𝑊 denote the corresponding Artin braid group. In [13], Rouquier

introduced, inside the homotopy category of Soergel bimodules, a categorification of 𝐵𝑊 : the 2-
braid group𝔅𝑊 . Let us briefly recall its construction. For any element 𝑠 ∈ 𝑆, let 𝐵𝑠 = 𝑅 ⊗𝑅𝑠 𝑅(1)

be the corresponding indecomposable Soergel bimodule and consider the complexes

𝐹𝑠 ∶= [0 → 𝐵𝑠 → 𝑅(1) → 0]

𝐸𝑠 ∶= [0 → 𝑅(−1) → 𝐵𝑠 → 0].

We can regard 𝐹𝑠 and 𝐸𝑠 as objects in 𝑏(𝕊𝐵𝑖𝑚), the bounded homotopy category of Soergel
bimodules. Then, 𝐸𝑠 and 𝐹𝑠 are inverse to each other with respect to the tensor product operation,
so we can also write 𝐸𝑠 = (𝐹𝑠)

−1. To any word𝑤 = 𝑠
𝜀1
1
𝑠
𝜀2
2
… 𝑠

𝜀𝑘
𝑘
∈ 𝐵𝑊 (where 𝜀𝑖 = ±1) we associate

the complex

𝐹𝑤 ∶= (𝐹𝑠1
)𝜀1(𝐹𝑠2

)𝜀2 … (𝐹𝑠𝑘
)𝜀𝑘 ∈ 𝑏(𝕊𝐵𝑖𝑚)

(where concatenation indicates the tensor product of complexes). Then the objects in𝔅𝑊 are the
complexes 𝐹𝑤, for 𝑤 ∈ 𝐵𝑊 . If𝑊 is a finite group then𝔅𝑊 is a faithful categorification of 𝐵𝑊 [1,
6, 7]: we have 𝐹𝑤 ≅ 𝐹𝑣 if and only if 𝑤 = 𝑣.
Any elements of the Coxeter group𝑊 has two distinguished lifts to 𝐵𝑊 , and hence to 𝔅𝑊 . If

𝑤 = 𝑠1𝑠2 … 𝑠𝑘 ∈ 𝑊 we define 𝐹𝑠1
𝐹𝑠2

…𝐹𝑠𝑘
to be the positive lift and 𝐸𝑠1

𝐸𝑠2
…𝐸𝑠𝑘

to be the negative
lift of 𝑤 in 𝔅𝑊 . Let 𝐹𝑤 be the minimal complex of 𝐹𝑠1

𝐹𝑠2
…𝐹𝑠𝑘

, that is, 𝐹𝑤 is the complex in
𝑏(𝕊𝐵𝑖𝑚) obtained by removing all the contractible summands from 𝐹𝑠1

𝐹𝑠2
…𝐹𝑠𝑘

. Similarly, let
𝐸𝑤 be the minimal complex of 𝐸𝑠1

𝐸𝑠2
…𝐸𝑠𝑘

. The complexes 𝐹𝑤 and 𝐸𝑤 are called the (minimal)
Rouquier complexes.
One can easily repeat Rouquier’s construction in the world of singular Soergel bimodules by

restricting a complex of (𝑅, 𝑅)-bimodules to a complex of (𝑅, 𝑅𝐼)-bimodules. For any 𝑤 ∈ 𝑊𝐼 we
define the singular Rouquier complex 𝐹𝐼

𝑤 to be the minimal complex of res
𝑅,𝑅𝐼

𝑅,𝑅
(𝐹𝑤) in the category

of complexes of 𝐼-singular Soergel bimodules 𝑏(𝕊𝐵𝑖𝑚𝐼). We show that singular 2-braid group
retains some of the important properties of the 2-braid group.
In [8], Libedinsky and Williamson showed that the 2-braid groups have standard and

costandard objects. More precisely, they showed that we have the following vanishing
property:

Hom(𝐹𝑤, 𝐸𝑣[𝑖]) =

{
𝕂 if 𝑣 = 𝑤 and 𝑖 = 0

0 otherwise.
(1)

(If 𝑊 is a Weyl group and 𝕂 = ℂ, this statement is equivalent to the existence of standard and
costandard objects in category.) Themain result of this paper is the generalization of the results
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1334 PATIMO

in [8] to singular Rouquier complexes. In particular, we prove the singular version of (1):

Hom(𝐹𝐼
𝑤, 𝐸

𝐼
𝑣[𝑖]) =

{
𝕂 if 𝑣 = 𝑤 and 𝑖 = 0

0 otherwise.
(2)

It follows that also singular 2-braid groups have standard and costandard objects. We discuss
now two applications of this generalization.

∙ In [11], we restrict ourselves to the case of Grassmannians, that is, we consider the case when𝑊
is the symmetric group 𝑆𝑛 and𝑊𝐼 is a maximal parabolic subgroup. In this setting, summands
in singular Rouquier complexes can be understood using the combinatorics of Dyck partitions.
A careful study of the first two terms in singular Rouquier complexes allows us to deduce some
crucial relations involving maps of degree one. In turn, these relations allow us to explicitly
construct bases of themorphisms spaces between singular Soergel bimodules. In particular, we
also obtain bases for the intersection cohomology of Schubert varieties that naturally extend
the Schubert basis.

∙ When Soergel’s conjecture holds, for example, when we work over the real numbers and
we consider the same representation of 𝑊 as in [15, Prop. 2.1], then indecomposable Soergel
bimodules categorify the Kazhdan–Lusztig basis in the Hecke algebra. In this case, Rouquier
complexes are perverse and they categorify the inverse Kazhdan–Lusztig polynomials (as in
[5, Remark 6.10]). We show that the same is true for singular Rouquier complexes: they are
perverse and from the multiplicities of its summands we can reconstruct the inverse parabolic
Kazhdan–Lusztig polynomial.
In [5], Rouquier complexes are a crucial tool in establishing Hodge theory for Soergel bimod-

ules, and hence in proving Soergel’s conjecture. Elias and Williamson’s idea is to emulate the
geometric proof of de Cataldo andMigliorini [3] of the hard Lefschetz theorem and of the bilin-
earHodge–Riemann relations. Here the Rouquier complexes have the decisive role of providing
a surrogate for a smooth hyperplane section. After having shown that singular Rouquier com-
plexes are perverse, it is rather straightforward to adapt the arguments in [5] to singular Soergel
bimodules. Hence, we obtain a proof of the hard Lefschetz theorem (Theorem 5.2) and of the
Hodge–Riemann bilinear relations (Theorem 5.3) for singular Soergel bimodules.
We remark that using theHodge theory of singular Soergel bimodules we can give a (slightly)

different proof of Soergel’s conjecture (cf. Remark 5.6), which is closer to the geometric proof
of the decomposition theorem discussed in [3].

In [16], Williamson also developed the theory of two-sided singular Soergel bimodules. These
are graded (𝑅𝐽, 𝑅𝐼)-bimodules where 𝐼, 𝐽 ⊂ 𝑆 are subsets such that𝑊𝐼 and𝑊𝐽 are finite. However,
we only treat here the case of one-sided bimodules. In fact, we donot expect that singularRouquier
complexes can be nicely generalized to the two-sided case. As we explain in Remark 4.18, two-
sided Rouquier complexes cannot be perverse even when Soergel’s conjecture holds. Moreover,
for applications toHodge theory, two-sided bimodules are unnecessary, since the Soergelmodules
obtained starting from one-sided or two-sided bimodules coincide (see [9, Remark 4.2.5]).

2 HECKE ALGEBRA

We recall some basic notation about Coxeter groups and their Hecke algebras from [5, § 3.2] and
[16, § 2].
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SINGULAR ROUQUIER COMPLEXES 1335

Let (𝑊, 𝑆) be a Coxeter system. For 𝑠, 𝑡 ∈ 𝑆, let 𝑚𝑠𝑡 denote the order of (𝑠𝑡). We denote the
length function by 𝓁 and the Bruhat order by ≤.
The Hecke algebra  ∶= (𝑊, 𝑆) is the unital associative ℤ[𝑣, 𝑣−1] algebra with generators

𝐇𝑠, for 𝑠 ∈ 𝑆, subject to the following relations, for any 𝑠, 𝑡 ∈ 𝑆:

𝑚𝑠𝑡
⏞⎴⏞⎴⏞
𝐇𝑠𝐇𝑡 … =

𝑚𝑠𝑡
⏞⎴⏞⎴⏞
𝐇𝑡𝐇𝑠 …

𝐇2
𝑠 = −(𝑣 − 𝑣−1)𝐇𝑠 + 1.

For any 𝑥 ∈ 𝑊 the element𝐇𝑥 is defined as𝐇𝑥 ∶= 𝐇𝑠1
…𝐇𝑠𝑙

where 𝑥 = 𝑠1𝑠2 … 𝑠𝑙 is any reduced
expression for 𝑥. The set {𝐇𝑥}𝑥∈𝑊 is a ℤ[𝑣, 𝑣−1]-basis of, called the standard basis.
We denote by (−) ∶  →  the involution defined by𝐇𝑠 = 𝐇−1

𝑠 and 𝑣 = 𝑣−1. For any 𝑥 ∈ 𝑊

the Kazhdan–Lusztig basis element𝐇𝑥. This is the unique element in such that the following
two conditions hold:

∙ 𝐇𝑥 = 𝐇𝑥,
∙ 𝐇𝑥 = 𝐇𝑥 +

∑
𝑦<𝑥 ℎ𝑦,𝑥(𝑣)𝐇𝑦 , for some polynomials ℎ𝑦,𝑥(𝑣) ∈ 𝑣ℤ[𝑣].

The polynomials ℎ𝑦,𝑥(𝑣) are called the Kazhdan–Lusztig polynomials. The set {𝐇𝑥}𝑥∈𝑊 is a
ℤ[𝑣, 𝑣−1]-basis of, called the Kazhdan–Lusztig basis.
There exists an anti-involution 𝑎 of  defined by 𝑎(𝐇𝑥) = 𝐇𝑥−1 for 𝑥 ∈ 𝑊 and 𝑎(𝑣) = 𝑣.

The trace 𝜀 is the ℤ[𝑣, 𝑣−1]-linear map defined by 𝜀(𝐇𝑤) = 𝛿𝑤,𝑖𝑑. We define a ℤ[𝑣, 𝑣−1]-bilinear
pairing

(−,−) ∶  × → 𝑍[𝑣, 𝑣−1] (3)

by (ℎ, ℎ′) = 𝜀(𝑎(ℎ)ℎ′).
For a subset 𝐼 ⊂ 𝑆, let𝑊𝐼 be the parabolic subgroup of𝑊 generated by 𝐼. A subset 𝐼 ⊆ 𝑆 is said

to be finitary if the group𝑊𝐼 is finite. We denote by𝑊𝐼 the set of right 𝐼-minimal elements, that
is, the set of elements 𝑥 ∈ 𝑊 such that 𝑥𝑠 ⩾ 𝑥 for all 𝑠 ∈ 𝐼.
Let 𝑞 ∶ 𝑊 → 𝑊∕𝑊𝐼 denote the projection map. For 𝑦 ∈ 𝑊∕𝑊𝐼 we denote by 𝑦− the minimal

element in the coset 𝑦. The bijection𝑊𝐼 ≅ 𝑊∕𝑊𝐼 induces a partial order on𝑊∕𝑊𝐼 by restricting
the Bruhat order of𝑊, that is, for 𝑦, 𝑧 ∈ 𝑊∕𝑊𝐼 we say 𝑦 ⩽ 𝑧 if and only if 𝑦− ⩽ 𝑧−. The projection
𝑞 is a strict morphism of posets:

Lemma 2.1 [4, Lemma 2.2]. Let 𝑤 ⩾ 𝑣 in𝑊. Then 𝑞(𝑤) ⩾ 𝑞(𝑣).

Let 𝐼 be finitary and let 𝑤𝐼 be the longest element in𝑊𝐼 . We define

𝐇𝐼 ∶= 𝐇𝑤𝐼
=

∑
𝑥∈𝑊𝐼

𝑣𝓁(𝑤𝐼)−𝓁(𝑥)𝐇𝑥.

Consider the left ideal 𝐼 ∶= 𝐇𝐼 of . We recall a few basis facts about 𝐼 from [16, § 2.3].
For 𝑥 ∈ 𝑊𝐼 we define𝐇𝐼

𝑥 = 𝐇𝑥𝐇𝐼 . The Kazhdan–Lusztig basis element𝐇𝑦 belongs to
𝐼 if and

only if 𝑦 is maximal in its right 𝑊𝐼-coset. Thus, for 𝑥 ∈ 𝑊𝐼 , we can define 𝐇𝐼
𝑥 = 𝐇𝑥𝑤𝐼

. The set
{𝐇𝐼

𝑥}𝑥∈𝑊𝐼 forms a ℤ[𝑣, 𝑣−1]-basis of 𝐼 , called the 𝐼-parabolic Kazhdan–Lusztig basis of 𝐼 . For
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1336 PATIMO

any 𝑥 ∈ 𝑊𝐼 we can write

𝐇𝐼
𝑥 = 𝐇𝐼

𝑥 +
∑

𝑊𝐼∋𝑦<𝑥

ℎ𝐼𝑦,𝑥(𝑣)𝐇
𝐼
𝑦.

The polynomialsℎ𝐼𝑦,𝑥(𝑣) are called the 𝐼-parabolic Kazhdan–Lusztig polynomials and are related
to the ordinary Kazhdan–Lusztig polynomials by the formula ℎ𝐼𝑦,𝑥(𝑣) = ℎ𝑦𝑤𝐼,𝑥𝑤𝐼

(𝑣).

3 ONE-SIDED SINGULAR SOERGEL BIMODULES

The main reference for this section is [16, § 7]. We fix a field 𝕂 and a reflection faithful repre-
sentation 𝔥∗ of𝑊 over 𝕂 (in the sense of [15, Definition 1.7]). Let 𝑅 denote the polynomial ring
Sym𝕂(𝔥

∗). We regard 𝑅 as a graded ring by setting deg(𝛼) = 2 for any 𝛼 ∈ 𝔥∗.
We fix now a finitary subset 𝐼 ⊆ 𝑆. We use the abbreviations (𝔥∗)𝐼 ∶= (𝔥∗)𝑊𝐼 and 𝑅𝐼 ∶= 𝑅𝑊𝐼 to

denote the corresponding subspaces of𝑊𝐼-invariants. We work in the category of graded (𝑅, 𝑅𝐼)-
bimodules. We denote by (1) the grading shift on graded bimodules; in 𝑅(1) the identity appears
in degree −1. If 𝐵 is a graded (𝑅, 𝑅)-bimodule we denote by 𝐵𝐼 the restriction of 𝐵 to a graded
(𝑅, 𝑅𝐼)-bimodule.
We make the following assumption: the ring 𝑅 regarded as a 𝑅𝐼-module is free of graded rank

𝜋(𝐼). This is always the case if we make one the following two assumptions:

∙ char(𝕂) = 0,
∙ 𝑊 is a Weyl group, 𝔥∗ = 𝑋 ⊗ℤ 𝕂 is the representation obtained by extending scalars on
the action of 𝑊 on the weight lattice and char(𝕂) is not a torsion prime for 𝑊 (cf. [16,
Remark 4.1.2]).

For 𝑠 ∈ 𝑆, let 𝐵𝑠 ∶= 𝑅 ⊗𝑅𝑠 𝑅(1). For any sequence of simple reflections 𝑤 = (𝑠1, … , 𝑠𝑘) we
consider the corresponding Bott–Samelson bimodule

𝐵𝑆(𝑤) ∶= 𝐵𝑠1
⊗𝑅 𝐵𝑠2

⊗𝑅 …⊗𝑅 𝐵𝑠𝑘
.

Definition 3.1. The category of 𝐼-singular Soergel bimodules 𝕊𝐵𝑖𝑚𝐼 is the smallest full subcate-
gory of graded (𝑅, 𝑅𝐼)-bimodules which contains all Bott–Samelson bimodules 𝐵𝑆(𝑤)𝐼 and which
is closed under direct sums, grading shifts, and taking direct summands.
Morphisms in 𝕊𝐵𝑖𝑚𝐼 are the morphisms of graded (𝑅, 𝑅𝐼)-bimodules of degree 0 and are

denoted by Hom(−,−).
If 𝐼 = ∅ then 𝕊𝐵𝑖𝑚∅ is simply denoted by 𝕊𝐵𝑖𝑚 and called the category of Soergel bimodules.

For any 𝑃, 𝑃′ ∈ 𝕊𝐵𝑖𝑚𝐼 and 𝑖 ∈ ℤ we set Hom𝑖(𝑃, 𝑃′) = Hom(𝑃, 𝑃′(𝑖)) and

Hom∙(𝑃, 𝑃′) =
⨁
𝑖∈ℤ

Hom(𝑃, 𝑃′(𝑖)).

There is a duality functor𝔻with𝔻𝑃 = Hom∙
𝑅−

(𝑃, 𝑅) on 𝕊𝐵𝑖𝑚𝐼 . The (𝑅, 𝑅𝐼)-bimodule structure
on 𝔻𝑃 is given by

(𝑟𝑓𝑟′)(𝑏) = 𝑓(𝑟𝑏𝑟′) = 𝑟𝑓(𝑏𝑟′) for any 𝑓 ∈ 𝔻𝑃, 𝑏 ∈ 𝑃, 𝑟 ∈ 𝑅, 𝑟′ ∈ 𝑅𝐼.
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SINGULAR ROUQUIER COMPLEXES 1337

Theorem 3.2 (Soergel–Williamson categorification theorem [16, Theorem 1]). There exists a
bijection

𝑊𝐼 1∶1
⟷

⎧⎪⎨⎪⎩
isomorphism classes of
indecomposable self-dual

𝐼-singular Soergel bimodules

⎫⎪⎬⎪⎭.
We denote by 𝑃𝐼𝑥 the indecomposable self-dual bimodule corresponding to 𝑥. Every indecomposable
𝐼-singular Soergel bimodule is isomorphic up to a shift to some 𝑃𝐼𝑥 .
Let 𝑥 = 𝑠1𝑠2 … 𝑠𝑘 be a reduced expression for 𝑥 ∈ 𝑊𝐼 . Then 𝑃𝐼𝑥 is the unique direct summand of

𝐵𝑆(𝑠1𝑠2 … 𝑠𝑘)𝐼 which is not a direct summand of any Bott–Samelson bimodule of smaller length.

Notation. In [16], the indecomposable Soergel bimodules are denoted by 𝐵𝐼
𝑥, for 𝑥 ∈ 𝑊𝐼 . When

the finitary set 𝐼 is clear from the context, we will remove the 𝐼 from the notation and simply
denote the indecomposable self-dual singular Soergel bimodule by 𝑃𝑥, for 𝑥 ∈ 𝑊𝐼 . If 𝐼 = ∅, we
denote the indecomposable bimodules 𝑃∅𝑦 simply by 𝐵𝑦 , for 𝑦 ∈ 𝑊.
In general, to help the reader distinguish between ordinary and singular Soergel bimodules,

we adopt the following convention: objects in 𝕊𝐵𝑖𝑚 are denoted by the letter 𝐵 while objects in
𝕊𝐵𝑖𝑚𝐼 are denoted by the letter 𝑃.

Given two bimodules 𝑃1, 𝑃2 ∈ 𝕊𝐵𝑖𝑚𝐼 and 𝑥 ∈ 𝑊𝐼 , consider the subspace

Hom∙
<𝑥(𝑃1, 𝑃2) ⊆ Hom∙(𝑃1, 𝑃2)

spanned by all the maps 𝜑 ∶ 𝑃1 → 𝑃2(𝑘)which factor through 𝑃1 → 𝑃𝑦(𝑘
′) → 𝑃2(𝑘) for some 𝑦 <

𝑥 and 𝑘′ ∈ ℤ. Let

Hom∙
≮𝑥(𝑃1, 𝑃2) ∶= Hom∙(𝑃1, 𝑃2)∕Hom

∙
<𝑥(𝑃1, 𝑃2).

Let [𝕊𝐵𝑖𝑚𝐼] denote the split Grothendieck group of 𝕊𝐵𝑖𝑚𝐼 . We regard it as a ℤ[𝑣, 𝑣−1]-module
via 𝑣 ⋅ [𝑃] = [𝑃(1)]. If 𝑉 =

⨁
𝑖∈ℤ 𝑅(−𝑖)

𝑚𝑖 is a graded free 𝑅-module we define the graded rank of
𝑉 as:

grrk(𝑉) ∶=
∑
𝑖∈ℤ

𝑚𝑖𝑣
𝑖.

The character map is a morphism of ℤ[𝑣, 𝑣−1]-modules ch ∶ [𝕊𝐵𝑖𝑚𝐼] → 𝐼 defined by

ch([𝑃]) =
∑
𝑥∈𝑊𝐼

grrkHom∙
≮𝑥(𝑃, 𝑃𝑥)𝐇

𝐼
𝑥 (4)

for any 𝑃 ∈ 𝕊𝐵𝑖𝑚𝐼 .† It follows from Theorem 3.2 that ch is an isomorphism. Moreover, the
following diagram is commutative:

† The 𝑅-module Hom∙
≮𝑥
(𝑃, 𝑃𝑥) is free: this follows from [16, Theorem 7.2.2] and the fact that Hom∙

≮𝑥
(𝑃, 𝑃𝑥) ≅

Hom∙
≮𝑥
(𝑃, 𝑅𝑥,𝐼(𝓁(𝑥))), where 𝑅𝑥,𝐼 = (𝑅𝑥)𝐼 is a standard module (cf. Remark 4.8).
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1338 PATIMO

(here𝑚 is themultiplication in). Hence 𝕊𝐵𝑖𝑚𝐼 categorifies the ideal𝐼 as amodule over. We
can use the isomorphism ch to compute the dimension of the space of morphisms in the category
𝕊𝐵𝑖𝑚𝐼 .

Theorem 3.3 (Soergel’s Hom formula for singular Soergel bimodules [16, Theorem 7.4.1]). Let
𝑃1, 𝑃2 ∈ 𝕊𝐵𝑖𝑚𝐼 . ThenHom∙(𝑃1, 𝑃2) is a free graded left 𝑅-module and

grrkHom∙
𝑅⊗𝑅𝐼

(𝑃1, 𝑃2) =
1

𝜋(𝐼)
(ch(𝑃1), ch(𝑃2)).

Here (−,−) is the pairing in the Hecke algebra, defined in (3), and 𝜋(𝐼) is the Poincaré polynomial
of𝑊𝐼 , defined as

𝜋(𝐼) ∶=
∑

𝑤∈𝑊𝐼

𝑣2𝓁(𝑤).

We can identify 𝑅 ⊗ℝ 𝑅𝐼 with the ring of regular functions on 𝔥 × (𝔥∕𝑊𝐼). Hence a Soergel
bimodule𝑃 ∈ 𝕊𝐵𝑖𝑚𝐼 can be thought as a quasi-coherent sheaf on 𝔥 × (𝔥∕𝑊𝐼). The inclusion𝑅 ⊗ℝ

𝑅𝐼 ↪ 𝑅 ⊗ℝ 𝑅 corresponds to the projection map 𝜋 ∶ 𝔥 × 𝔥 → 𝔥 × (𝔥∕𝑊𝐼).
For 𝑥 ∈ 𝑊 we denote the twisted graph of 𝑥 by 𝐺𝑟(𝑥), that is,

𝐺𝑟(𝑥) = {(𝑥 ⋅ 𝜆, 𝜆)|𝜆 ∈ 𝔥} ⊆ 𝔥 × 𝔥.

If 𝐶 ⊆ 𝑊, let 𝐺𝑟(𝐶) =
⋃

𝑥∈𝐶 𝐺𝑟(𝑥). For a coset 𝑦 ∈ 𝑊∕𝑊𝐼 let 𝐺𝑟𝐼(𝑦) ∶= 𝜋(𝐺𝑟(𝑦)). Notice that
𝐺𝑟𝐼(𝑦) = 𝜋(𝐺𝑟(𝑦)) for any 𝑦 ∈ 𝑦. Similarly, if 𝐶 ⊆ 𝑊∕𝑊𝐼 , let 𝐺𝑟𝐼(𝐶) ∶=

⋃
𝑝∈𝐶 𝐺𝑟

𝐼(𝑝).
The support of every Soergel bimodule 𝑃 ∈ 𝕊𝐵𝑖𝑚𝐼 is contained in 𝐺𝑟(𝑊∕𝑊𝐼). For 𝐶 ⊆ 𝑊∕𝑊𝐼

we define

Γ𝐼𝐶𝑃 = {𝑏 ∈ 𝑃 ∣ supp 𝑏 ⊆ 𝐺𝑟𝐼(𝐶)}.

We will simply write Γ𝐶 for Γ∅
𝐶
. For any 𝐵 ∈ 𝕊𝐵𝑖𝑚 and any 𝐶 ⊆ 𝑊∕𝑊𝐼 we have by [16,

Prop 6.1.6]

(Γ𝑞−1(𝐶)𝐵)𝐼 = Γ𝐼𝐶(𝐵𝐼). (5)

Remark 3.4. We would like to draw attention to a few slight differences with the definitions given
in [16]. Our definition of the duality functor 𝔻 contains a different shift, and thus our self-dual
indecomposable bimodules 𝑃𝑥 coincide with 𝐵𝐼

𝑥(−𝓁(𝑤𝐼)) in Williamson’s notation. The advan-
tage of our definition of 𝔻 is that it guarantees that the singular Soergel modules 𝑃𝑥 = 𝕂⊗𝑅 𝑃𝑥
have symmetric Betti numbers. This is more natural in the geometric setting where these mod-
ules are isomorphic to intersection cohomology of Schubert varieties in a partial flag variety.
This choice of the shift is particularly convenient when dealing with Hodge theoretic properties
(cf. Section 5).
We point out that with our definition of the duality𝔻wehave ch(𝐵𝐼) = ch(𝐵)𝐇𝑤𝐼

and if 𝑥 ∈ 𝑊𝐼

we have

𝑃𝑥 ⊗𝑅𝐼 𝑅(𝓁(𝑤𝐼)) ≅ 𝐵𝑥𝑤𝐼
∈ 𝕊𝐵𝑖𝑚.
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SINGULAR ROUQUIER COMPLEXES 1339

4 SINGULAR ROUQUIER COMPLEXES

Let 𝑏(𝕊𝐵𝑖𝑚𝐼) be the bounded category of complexes of 𝐼-singular Soergel bimodules and let
𝑏(𝕊𝐵𝑖𝑚𝐼) be the corresponding bounded homotopy category.
Following the notation of [5, § 6], we indicate the homological degree of an object 𝐹 ∈

𝑏(𝕊𝐵𝑖𝑚𝐼) on the left as follows:

𝐹 = [… → 𝑖−1𝐹 → 𝑖𝐹 → 𝑖+1𝐹 → …].

We denote by [−] the homological shift, so that 𝑖(𝐹[1]) = 𝑖+1𝐹.
For 𝑠 ∈ 𝑆 let 𝐹𝑠 denote the complex†

𝐹𝑠 = [0 →
0

𝐵𝑠

𝑑𝑠
ZZ→ 𝑅(1) → 0]

where 𝑑𝑠 is the map defined by 𝑓 ⊗ g ↦ 𝑓g . Then, tensoring with 𝐹𝑠 on the left induces an
equivalence on the category𝑏(𝕊𝐵𝑖𝑚𝐼). In fact, tensoring on the left with the complex

𝐸𝑠 = [0 → 𝑅(−1)
𝑑′𝑠
ZZ→

0

𝐵𝑠 → 0]. (6)

gives an inverse. Here the map 𝑑′𝑠 is the morphism of 𝑅-bimodules which sends 1 ∈ 𝑅(−1) to
𝑐𝑠 ∶=

1

2
(𝛼𝑠 ⊗ 1 + 1 ⊗ 𝛼𝑠).

Given 𝑥 ∈ 𝑊𝐼 and any reduced expression 𝑥 = 𝑠1 … 𝑠𝑘, we consider the complex 𝐹𝑠1
…𝐹𝑠𝑘

,
where concatenation indicates the tensor product of complexes. As an object in 𝑏(𝕊𝐵𝑖𝑚), the
complex 𝐹𝑠1

…𝐹𝑠𝑘
does not depend on the chosen reduced expression up to canonical isomor-

phism [13, Proposition 9.2]. Hence, (𝐹𝑠1
…𝐹𝑠𝑘

)𝐼 also does not depend on the reduced expression
up to canonical isomorphism as an object in𝑏(𝕊𝐵𝑖𝑚𝐼).

Definition 4.1. For 𝑥 ∈ 𝑊𝐼 , we denote by 𝐹𝐼
𝑥 ∈ 𝑏(𝕊𝐵𝑖𝑚𝐼) the minimal subcomplex of

(𝐹𝑠1
…𝐹𝑠𝑘

)𝐼 , where 𝑠1 … 𝑠𝑘 is a reduced expression for 𝑥 (cf. [5, § 6.1]). This means that 𝐹𝐼
𝑥 is a sum-

mand of (𝐹𝑠1
…𝐹𝑠𝑘

)𝐼 ∈ 𝑏(𝕊𝐵𝑖𝑚𝐼) such that𝐹𝐼
𝑥 does not contain any contractible direct summand

and 𝐹𝐼
𝑥 ≅ (𝐹𝑠1

…𝐹𝑠𝑘
)𝐼 in𝑏(𝕊𝐵𝑖𝑚𝐼). We call 𝐹𝐼

𝑥 the 𝐼-singular Rouquier complex of 𝑥.

Observe that if 𝐹𝑥 ∈ 𝑏(𝕊𝐵𝑖𝑚) is the Rouquier complex for 𝑥, that is, if 𝐹𝑥 is the minimal
subcomplex for 𝐹𝑠1

…𝐹𝑠𝑘
, then 𝐹𝐼

𝑥 can also be obtained as the minimal subcomplex of 𝐹𝑥,𝐼 ∶=

(𝐹𝑥)𝐼 in 𝑏(𝕊𝐵𝑖𝑚𝐼).

4.1 Singular Rouquier complexes are 𝚫-split

If 𝑥 ∈ 𝑊𝐼 we write Γ𝐼
⩾𝑥 for the functor Γ

𝐼
{𝑦∈𝑊𝐼∣𝑦⩾𝑥}

on 𝕊𝐵𝑖𝑚𝐼 . We define similarly Γ𝐼>𝑥, Γ
𝐼
<𝑥, and

Γ𝐼
⩽𝑥. For 𝑃 ∈ 𝕊𝐵𝑖𝑚𝐼 , let Γ𝐼

⩾𝑥∕>𝑥
𝑃 ∶= (Γ𝐼

⩾𝑥𝑃)∕(Γ
𝐼
>𝑥𝑃) and Γ𝐼

⩽𝑥∕<𝑥
𝑃 ∶= (Γ𝐼

⩽𝑥𝑃)∕(Γ
𝐼
<𝑥𝑃). Recall the

projection 𝑞 ∶ 𝑊 → 𝑊∕𝑊𝐼 . If 𝑦 ∈ 𝑊∕𝑊𝐼 we have 𝑞−1(⩾ 𝑦) = {𝑥 ∈ 𝑊 ∣ 𝑥 ⩾ 𝑦−}. By (5), for any

†We use here the notation 0
− to indicate where the object in homological degree 0 is placed.
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1340 PATIMO

𝐵 ∈ 𝕊𝐵𝑖𝑚 we have

(Γ⩾(𝑦−)𝐵)𝐼 = Γ𝐼
⩾𝑦(𝐵𝐼). (7)

We choose an enumeration 𝑦1, 𝑦2, 𝑦3, … of 𝑊𝐼 refining the Bruhat order on 𝑊𝐼 and an
enumeration 𝑤1,𝑤2, …𝑤|𝑊𝐼 | of𝑊𝐼 refining the Bruhat order of𝑊𝐼 . Let

𝑧1 = 𝑦1𝑤1, 𝑧2 = 𝑦1𝑤2, … , 𝑧|𝑊𝐼 | = 𝑦1𝑤|𝑊𝐼 |, 𝑧|𝑊𝐼 |+1 = 𝑦2𝑤1, 𝑧|𝑊𝐼 |+2 = 𝑦2𝑤2 … .

Using Lemma 2.1 we can see that also 𝑧1, 𝑧2, 𝑧3 … is an enumeration of 𝑊 which refines the
Bruhat order.
We denote by Γ𝐼

⩾𝑚 the functor Γ𝐼
{𝑦𝑖∶𝑖⩾𝑚}

on 𝕊𝐵𝑖𝑚𝐼 and by Γ⩾𝑚 the functor Γ{𝑧𝑖∶𝑖⩾𝑚} on 𝕊𝐵𝑖𝑚. For
𝑙 ⩾ 𝑘, let

Γ𝐼
⩾𝑘∕⩾𝑙

𝐵 ∶= (Γ𝐼
⩾𝑘
𝐵)∕(Γ𝐼

⩾𝑙
𝐵).

We define similarly Γ⩾𝑘∕⩾𝑙, Γ𝐼⩽𝑘∕⩽𝑙 and Γ⩽𝑘∕⩽𝑙.
All the functors above (Γ𝐼

⩾𝑥, Γ
𝐼
⩾𝑥∕>𝑥

, etc.), extend to functors between the respective homotopy
categories, for example, the functor Γ𝐼

⩾𝑘∕⩾𝑙
extends to a functor

𝑏(𝕊𝐵𝑖𝑚𝐼) → 𝑏(𝑅-Mod-𝑅𝐼)

which we denote again simply by Γ𝐼
⩾𝑘∕⩾𝑙

.
For 𝑥 ∈ 𝑊, let 𝑅𝑥 denote the corresponding standard bimodule (cf. [5]) and for 𝑥 ∈ 𝑊𝐼 let

𝑅𝑥,𝐼 ∶= (𝑅𝑥)𝐼 . Fix 𝑦 = 𝑦𝑚𝑊𝐼 ∈ 𝑊∕𝑊𝐼 and 𝑥 ∈ 𝑊𝐼 . Let 𝑘 = |𝑊𝐼|(𝑚 − 1) + 1, so that we have
𝑦𝑚 = 𝑧𝑘 and 𝑦𝑚+1 = 𝑧𝑘+|𝑊𝐼 |. Then, we have

Γ𝐼
⩾𝑦∕>𝑦

(𝐹𝐼
𝑥) ≅ Γ𝐼

⩾𝑦∕>𝑦
(𝐹𝑥,𝐼) ≅ Γ𝐼

⩾𝑚∕⩾𝑚+1
(𝐹𝑥,𝐼) ≅ (Γ⩾𝑘∕⩾𝑘+|𝑊𝐼 |𝐹𝑥)𝐼 ∈ 𝑏(𝑅-Mod-𝑅𝐼) (8)

where the second isomorphism follows from the hin-und-her Lemma for singular Soergel
bimodules [16, Lemma 6.3.2] and the first and third isomorphism from (7).
For any 𝑖 such that 0 ⩽ 𝑖 ⩽ |𝑊𝐼| − 1we have an exact sequence of complexes of 𝑅-bimodules.

0 → Γ⩾𝑘+𝑖∕⩾𝑘+𝑖+1𝐹𝑥 → Γ⩾𝑘∕⩾𝑘+𝑖+1𝐹𝑥 → Γ⩾𝑘∕⩾𝑘+𝑖𝐹𝑥 → 0. (9)

Notice that, in general, a short exact sequence of complexes does not induce a distinguished
triangle in𝑏(𝑅-Mod-𝑅), as the following example illustrates.

Example 4.2. Let for 𝑠 ∈ 𝑆 be a simple reflection. Consider the following exact sequence of
complexes

0 → Γ⩾𝑠𝐹𝑠

𝜄
Z→ 𝐹𝑠 → 𝐹𝑠∕Γ𝑠𝐹𝑠 → 0. (10)

After we expand it, we obtain the following commutative diagram with exact rows.

(11)
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SINGULAR ROUQUIER COMPLEXES 1341

Notice that 𝐹𝑠∕Γ𝑠𝐹𝑠 is trivial as an object in the homotopy category 𝑏(𝑅-Mod-𝑅) and the map
𝜄 ∶ Γ⩾𝑠𝐹𝑠 → 𝐹𝑠 is a quasi-isomorphism. However, it is easy to see that the map 𝜄 is not a homotopy
equivalence, that is, 𝜄 does not induce an isomorphism in𝑏(𝑅-Mod-𝑅).
After we restrict to 𝑅-Mod-𝑅𝑠, the rows in (11) become split. Hence, the map 𝜄 induces an iso-

morphism in𝑏(𝑅-Mod-𝑅𝑠) and the short exact sequence (10) induces a distinguished triangle in
𝑏(𝑅-Mod-𝑅𝑠).

As the next Lemma shows, the situation in general is similar to Example 4.2: after restricting
to𝑏(𝑅−Mod-𝑅𝐼), sequence (9) does indeed induce a distinguished triangle.

Lemma 4.3. The restriction to 𝑅-Mod-𝑅𝐼 of the exact sequence of complexes (9) is termwise split
(i.e., every row is split exact).

Notice that for 𝐼 = ∅ this statement is trivial since we assumed 0 ⩽ 𝑖 ⩽ |𝑊𝐼| − 1.

Proof. Each term in Γ⩾𝑘+𝑖∕⩾𝑘+𝑖+1𝐹𝑥 is isomorphic to direct sums of shifts of 𝑅𝑦𝑚𝑤𝑖
. By induction

on 𝑖, each term in Γ⩾𝑘∕⩾𝑘+𝑖𝐹𝑥 can be obtained as an extensions of the standard modules 𝑅𝑦𝑚𝑤𝑗
,

with 𝑗 < 𝑖. By [16, Lemma 6.2.4], all the extensions between 𝑅𝑦𝑚𝑤𝑖
and 𝑅𝑦𝑚𝑤𝑗

with 𝑗 ≠ 𝑖 become
split after restricting to 𝑅-Mod-𝑅𝐼 . It follows that the exact sequence (9) becomes termwise split
after restricting to 𝑅-Mod-𝑅𝐼 . □

Hence, we have the following distinguished triangle in𝑏(𝑅-Mod-𝑅𝐼):

(Γ⩾𝑘+𝑖∕⩾𝑘+𝑖+1𝐹𝑥)𝐼 → (Γ⩾𝑘∕⩾𝑘+𝑖+1𝐹𝑥)𝐼 → (Γ⩾𝑘∕⩾𝑘+𝑖𝐹𝑥)𝐼 →
[1]
ZZ→ . (12)

Recall from [8, Prop 3.7] the following crucial statement about Rouquier complexes. For any
𝑥, 𝑦 ∈ 𝑊 we have

Γ⩾𝑦∕>𝑦(𝐹𝑥) =

{
0 if 𝑦 ≠ 𝑥,

𝑅𝑥(−𝓁(𝑥)) if 𝑦 = 𝑥.
(13)

We can now prove the singular analogue of (13).

Lemma 4.4. Let 𝑥, 𝑦 ∈ 𝑊𝐼 . Then

Γ𝐼
⩾𝑦∕>𝑦

(𝐹𝐼
𝑥) =

{
0 if 𝑦 ≠ 𝑥,

𝑅𝑥,𝐼(−𝓁(𝑥)) if 𝑦 = 𝑥.

Proof. Let𝑚 and 𝑘 be such that 𝑦𝑚 = 𝑧𝑘 = 𝑦. By (8) we have

Γ𝐼
⩾𝑦∕>𝑦

(𝐹𝐼
𝑥) ≅ (Γ⩾𝑘∕⩾𝑘+|𝑊𝐼 |𝐹𝑥)𝐼 ∈ 𝑏(𝑅-Mod-𝑅𝐼).

First assume 𝑥 ≠ 𝑦. Then 𝑥 = 𝑧𝑗 with 𝑗 < 𝑘 or 𝑗 ⩾ 𝑘 + |𝑊𝐼|. For any 𝑖with 0 ⩽ 𝑖 ⩽ |𝑊𝐼| − 1, we
have (Γ⩾𝑘+𝑖∕⩾𝑘+𝑖+1𝐹𝑥)𝐼 ≅ 0 by (13). Then, using (12) we obtain by induction Γ⩾𝑘∕⩾𝑘+|𝑊𝐼 |𝐹𝑥 ≅ 0.
Assume now 𝑥 = 𝑦, so that 𝑥 = 𝑧𝑘. In this case, by (13) we have

(Γ⩾𝑘∕⩾𝑘+1𝐹𝑥)𝐼 ≅ 𝑅𝑥,𝐼(−𝓁(𝑥)) and (Γ⩾𝑘+𝑖∕⩾𝑘+𝑖+1𝐹𝑥)𝐼 ≅ 0 for any 0 < 𝑖 < |𝑊𝐼|.
Again, we can use (12) to obtain (Γ⩾𝑘∕⩾𝑘+|𝑊𝐼 |𝐹𝑥)𝐼 ≅ 𝑅𝑥,𝐼(−𝓁(𝑥)). □
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1342 PATIMO

Dually, given 𝑥 ∈ 𝑊𝐼 we can define the complexes 𝐸𝐼
𝑥 as the minimal complex of

(𝐸𝑠1
𝐸𝑠2

…𝐸𝑠𝑘
)𝐼 , where 𝑠1𝑠2 … 𝑠𝑘 is any reduced expression of 𝑥 (the complex 𝐸𝑠 is defined in (6)).

Similar arguments to those above show that for any 𝑥, 𝑦 ∈ 𝑊𝐼 we have

Γ𝐼
⩽𝑦,<𝑦(𝐸

𝐼
𝑥) =

{
0 if 𝑦 ≠ 𝑥,

𝑅𝑥,𝐼(𝓁(𝑥)) if 𝑦 = 𝑥.

As in [8], we can define the augmented singular Rouquier complexes as

𝐹𝐼
𝑥 ∶= cone(𝑓𝑥) where 𝑓𝑥 ∶ 𝑅𝑥,𝐼(−𝓁(𝑥)) = 𝐻0(𝐹𝐼

𝑥) → 𝐹𝐼
𝑥,

𝐸𝐼
𝑥 ∶= cone(𝑒𝑥) where 𝑒𝑥 ∶ 𝐸𝐼

𝑥 → 𝑅𝑥,𝐼(𝓁(𝑥)) = 𝐻0(𝐸𝐼
𝑥).

We write Hom(−,−) to denote the morphisms in 𝑏(𝑅-Mod-𝑅𝐼). Combining [16, Theorem
7.4.1] and Lemma 4.4 we obtain, by the same argument of [8, Corollary 3.10], the following result.

Corollary 4.5. For any𝐻 ∈ 𝑏(𝕊𝐵𝑖𝑚𝐼) we have

Hom(𝐻, 𝐸𝐼
𝑥) = 0 = Hom(𝐹

𝐼
𝑥,𝐻).

We also obtain a generalization of [8, Theorem 1.1].

Lemma 4.6. For any 𝑥, 𝑦 ∈ 𝑊𝐼 and𝑚 ∈ ℤ we have

Hom(𝐹
𝐼
𝑥, 𝐸

𝐼
𝑦[𝑚]) ≅

{
𝑅𝐼 if 𝑥 = 𝑦 and𝑚 = 0,

0 otherwise.

Proof. We apply the homological functor to Hom(𝐹
𝐼
𝑥, −) to the triangle

𝐸𝐼
𝑦 → 𝑅𝑦,𝐼(𝓁(𝑦)) → 𝐸𝐼

𝑦

[1]
ZZ→ .

It follows from Corollary 4.5 that for any𝑚 ∈ ℤ we have

Hom(𝐹
𝐼
𝑥, 𝑅𝑦,𝐼(𝓁(𝑦))[𝑚]) ≅ Hom(𝐹

𝐼
𝑥, 𝐸

𝐼
𝑦[𝑚]).

Similarly, applying the cohomological functor Hom(−, 𝐸
𝐼
𝑦[𝑚]) we also obtain

Hom(𝑅𝑥,𝐼(−𝓁(𝑥)), 𝐸
𝐼
𝑦[𝑚]) ≅ Hom(𝐹

𝐼
𝑥, 𝐸

𝐼
𝑦[𝑚]).

Notice that all the summands of 𝑖𝐹𝐼
𝑥 and of

𝑖𝐸𝐼
𝑥 are of the form 𝑃𝑧(𝑚𝑧) for some 𝑧 ⩽ 𝑥 and,

moreover, we have 𝑧 < 𝑥 if 𝑖 ≠ 0. In particular, if 𝑦  𝑥 we haveHom(𝑖𝐹𝐼
𝑥, 𝑅𝑦,𝐼(𝓁(𝑦)) = 0 for all 𝑖,

hence

Hom(𝐹
𝐼
𝑥, 𝑅𝑦,𝐼(𝓁(𝑦)[𝑚]) = 0

for all𝑚. Dually, if 𝑥  𝑦 we have Hom(𝑅𝑥,𝐼(−𝓁(𝑥)),
𝑖𝐸𝐼

𝑦) = 0 for all 𝑖, hence

Hom(𝑅𝑥,𝐼(−𝓁(𝑥)), 𝐸
𝐼
𝑦[𝑚]) = 0

for all𝑚 ∈ ℤ.
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SINGULAR ROUQUIER COMPLEXES 1343

It remains to consider the case 𝑥 = 𝑦. If 𝑚 ≠ 0, we have Hom(𝑅𝑥,𝐼(−𝓁(𝑥)), 𝐸
𝐼
𝑥[𝑚]) = 0 since

all the summands in 𝑚𝐸𝐼
𝑥 are smaller than 𝑃𝑥. If𝑚 = 0, we have

Hom(𝑅𝑥,𝐼(−𝓁(𝑥)), 𝐸
𝐼
𝑥) ≅Hom(𝑅𝑥,𝐼(−𝓁(𝑥)),

0𝐸𝐼
𝑥)

≅Hom(𝑅𝑥,𝐼(−𝓁(𝑥)), Γ
𝐼
⩽𝑥∕<𝑥

(0𝐸𝐼
𝑥))

=Hom(𝑅𝑥,𝐼(−𝓁(𝑥)), 𝑅𝑥,𝐼(−𝓁(𝑥))) = 𝑅𝐼. □

4.2 Singular Rouquier complexes and the support filtration

The homological properties of (singular) Rouquier complexes observed in the last section turn out
to be useful to understand the support filtration of (singular) Rouquier complexes.
Let 𝑥 ∈ 𝑊𝐼 and consider a reduced expression 𝑥 = 𝑠1𝑠2 … 𝑠𝑘. The bimodule 𝑃𝑥 is a direct sum-

mand of 𝐵𝑆(𝑥)𝐼 = 0(𝐹𝑠1
𝐹𝑠2

…𝐹𝑠𝑘
)𝐼 , but it is not a direct summand of 𝑖(𝐹𝑠1

𝐹𝑠2
…𝐹𝑠𝑘

)𝐼 for any 𝑖 > 0.
Hence 𝑃𝑥 must also be a direct summand of 0𝐹𝐼

𝑥. Similarly 𝑃𝑥 is a direct summand of
0𝐸𝐼

𝑥.

Lemma 4.7. Let 𝑥, 𝑦 ∈ 𝑊𝐼 with 𝑦 < 𝑥 and 𝑚 ∈ ℤ. Then every map 𝑃𝑦(𝑚)
𝜑
Z→ 𝑃𝑥 factors through

−1𝐸𝐼
𝑥 .

Proof. After choosing a decomposition 0𝐸𝐼
𝑥 = 𝑃𝑥 ⊕ (0𝐸𝐼

𝑥)
′, themap 𝜑 induces amap 𝜑 ∶ 𝑃𝑦(𝑚) →

0𝐸𝐼
𝑥. By Corollary 4.5 we have an exact sequence

Hom(𝑃𝑦(𝑚), −1𝐸𝐼
𝑥) → Hom(𝑃𝑦(𝑚), 0𝐸𝐼

𝑥) → Hom(𝑃𝑦(𝑚), 𝑅𝑥,𝐼(𝓁(𝑥))) → 0.

The claim now follows since Hom(𝑃𝑦(𝑚), 𝑅𝑥,𝐼(𝓁(𝑥))) = 0 for 𝑦 < 𝑥. □

Remark 4.8. Now let 𝑥, 𝑦 ∈ 𝑊𝐼 be arbitrary. Choose a decomposition 0𝐸𝐼
𝑥 = 𝑃𝑥 ⊕ (0𝐸𝐼

𝑥)
′ as above.

Since Hom∙((0𝐸𝐼
𝑥)

′, 𝑅𝑥,𝐼) = 0, by Corollary 4.5 we also have an exact sequence of graded rings

Hom∙(𝑃𝑦,
−1𝐸𝐼

𝑥)
𝜗
Z→ Hom∙(𝑃𝑦, 𝑃𝑥) → Hom∙(𝑃𝑦, 𝑅𝑥,𝐼(𝓁(𝑥))) → 0.

We claim that the image of the map 𝜗 is Hom∙
<𝑥(𝑃𝑦, 𝑃𝑥). In fact, if a map 𝑃𝑦 → 𝑃𝑥(𝑘) fac-

tors through 𝑃𝑧(𝑘
′) for some 𝑧 < 𝑥, then by Lemma 4.7 it also factors through −1𝐸𝐼

𝑥(𝑘). As a
consequence, we have

Hom∙
≮𝑥(𝑃𝑦, 𝑃𝑥) ≅ Hom∙(𝑃𝑦, 𝑅𝑥,𝐼(𝓁(𝑥))) ≅ Hom∙(Γ𝐼

⩾𝑥∕>𝑥
𝑃𝑦, 𝑅𝑥,𝐼)(−𝓁(𝑥))

where the second isomorphism is [16, Theorem 7.3.5 (ii)]. So we can give an equivalent definition
of the character map ch ∶ [𝕊𝐵𝑖𝑚𝐼] → 𝐼 defined in (4) via

ch([𝑃]) =
∑
𝑥∈𝑊𝐼

grrkHom∙(𝑃, 𝑅𝑥,𝐼)𝑣
−𝓁(𝑥)𝐇𝐼

𝑥 =
∑
𝑥∈𝑊𝐼

grrk(Γ𝐼
⩾𝑥∕>𝑥

𝑃)𝑣𝓁(𝑥)𝐇𝐼
𝑥 (14)

where (−) ∶ ℤ[𝑣, 𝑣−1] → ℤ[𝑣, 𝑣−1] is the automorphism defined by 𝑣 = 𝑣−1.
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1344 PATIMO

We canuse Lemma4.4 to give a useful characterization of the support filtration. For𝑥 ∈ 𝑊𝐼 , the
elements in 𝑃𝑥 of degree −𝓁(𝑥) form a one-dimensional vector space. Let 𝑐bot ∈ 𝑃𝑥 be a non-zero
element of this vector space.

Lemma 4.9. Let 𝑃 ∈ 𝕊𝐵𝑖𝑚𝐼 and 𝑦 ∈ 𝑊𝐼 . Then

Γ𝐼
⩽𝑦𝑃 = span𝑅⟨𝜑(𝑐bot) ∣ 𝜑 ∈ Hom∙(𝑃𝑦, 𝑃)⟩. (15)

Proof. For 𝑏 ∈ 𝑃𝑦 , we clearly have supp𝜑(𝑏) ⊆ supp 𝑏 ⊆ {⩽ 𝑦}, hence the inclusion ⊇ in (4.9)
follows. We show now the reverse inclusion.
If 𝑦 ⩾ 𝑧 we claim that there exists a morphism 𝜓 ∶ 𝑃𝑦 → 𝑃𝑧(𝓁(𝑦) − 𝓁(𝑧)) such that 𝜓(𝑐bot) =

𝑐bot.
Let 𝑦 and 𝑧 be reduced words for 𝑦 and 𝑧. Then the inclusion 𝑃𝑦 ↪ 𝐵𝑆(𝑦) (respectively the

projection 𝐵𝑆(𝑧) ↠ 𝑃𝑧) is an isomorphism in degree −𝓁(𝑦) (respectively −𝓁(𝑧)). We can define
𝜓 ∶ 𝑃𝑦 → 𝑃𝑧(𝓁(𝑦) − 𝓁(𝑧)) as the composition

𝑃𝑦 ↪ 𝐵𝑆(𝑦)
𝜓
Z→ 𝐵𝑆(𝑧)(𝓁(𝑦) − 𝓁(𝑧)) ↠ 𝑃𝑧(𝓁(𝑦) − 𝓁(𝑧)),

where 𝜓 ∶ 𝐵𝑆(𝑦) → 𝐵𝑆(𝑧)(𝓁(𝑦) − 𝓁(𝑧)) is the morphism corresponding to the unique light leaf
with only ups in its stroll (see, e.g., [10, Lemma 30] for a construction of the map 𝜓).
So, we can now replace the RHS in (15) with

span𝑅⟨𝜑(𝑐bot) ∣ 𝜑 ∈ Hom∙(𝑃𝑧, 𝑃) for some 𝑧 ⩽ 𝑦⟩.
It is enough to show the claim for 𝑃 indecomposable, that is, 𝑃 = 𝑃𝑥 for some 𝑥 ∈ 𝑊𝐼 . Since

Γ𝐼
⩽𝑦(𝑃𝑥) =

⋃
𝑧⩽𝑥 and 𝑧⩽𝑦

Γ𝐼
⩽𝑧𝑃𝑥,

it is enough to consider the case 𝑦 ⩽ 𝑥. Let 𝑏 ∈ Γ𝐼
⩽𝑦(𝑃𝑥). Consider the singular Rouquier complex

𝐸𝐼
𝑥. If 𝑦 < 𝑥, from Γ⩽𝑦𝐸

𝐼
𝑥 ≅ 0 we deduce that Γ⩽𝑦(−1𝐸𝑥) → Γ⩽𝑦(𝑃𝑥) is surjective. Moreover, every

direct summand in −1𝐸𝑥 is of the form 𝑃𝑧(𝑘) with 𝑧 < 𝑥, so the claim easily follows by induction
on 𝓁(𝑥).
If 𝑦 = 𝑥 we have Γ⩽𝑥∕<𝑥𝑃𝑥 ≅ 𝑅𝑥,𝐼(𝓁(𝑥)), and it is generated by the image of 𝑐bot. Hence for any

𝑏 ∈ 𝑃𝑥 there exists 𝑓 ∈ 𝑅 such that 𝑏 − 𝑓𝑐bot ∈ Γ𝐼<𝑦𝑃𝑥. The claim now follows from the previous
case. □

4.3 Soergel’s conjecture and the perverse filtration

For some of our applications we need Soergel’s conjecture to hold for our representation 𝔥∗. To
ensure this, we require that the results of [5] are available, that is, we require that 𝕂 = ℝ and
assume that 𝔥∗ is a reflection faithful representation of𝑊 with a good notion of positive roots (cf.
[2, § 2]). Such a representation always exist: see, for example, the construction given in [15, Prop
2.1] or in [12, Prop 1.1]. By [16, Theorem 3], Soergel’s conjecture for Soergel bimodule [5] implies
the corresponding result for singular Soergel bimodules:
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SINGULAR ROUQUIER COMPLEXES 1345

Theorem 4.10. Assume 𝕂 = ℝ and 𝔥∗ as above. Then for 𝑥 ∈ 𝑊𝐼 we have ch(𝑃𝑥) = 𝐇𝐼
𝑥 .

With these assumptions, it follows from Theorem 3.3 that for 𝑥 > 𝑦 we have

grrkHom∙
≮𝑦(𝑃𝑥, 𝑃𝑦) = ℎ𝐼𝑦,𝑥(𝑣)

and, as a consequence, for any 𝑥, 𝑦 ∈ 𝑊𝐼

Hom𝑖(𝑃𝑥, 𝑃𝑦) ≅

{
0 if 𝑖 < 0, or 𝑖 = 0 and 𝑥 ≠ 𝑦

ℝ if 𝑖 = 0 and 𝑥 = 𝑦.
(16)

For any bimodule 𝑃 ∈ 𝕊𝐵𝑖𝑚𝐼 we have a (non-canonical) decomposition

𝑃 =
⨁

(𝑃𝑥(𝑖))
⊕𝑚𝑥,𝑖 , (17)

and we can define the perverse filtration 𝜏 on 𝑃 as

𝜏⩽𝑗𝑃 =
⨁
𝑖⩾−𝑗

(𝑃𝑥(𝑖))
⊕𝑚𝑥,𝑖 .

As a consequence of the vanishing of homomorphisms of negative degree (16), the perverse
filtration does not depend on the choice of the decomposition in (17).
A bimodule 𝑃 ∈ 𝕊𝐵𝑖𝑚𝐼 is said to be perverse if we can write ch([𝑃]) =

∑
𝑥∈𝑊𝐼 𝑚𝑥𝐇

𝐼
𝑥 with𝑚𝑥 ∈

ℤ⩾0 or, equivalently, if 𝜏⩽−1𝑃 = 0 and 𝜏⩽0𝐵 = 𝐵.

Definition 4.11. We define 𝑝⩾0 to be the full subcategory of𝑏(𝕊𝐵𝑖𝑚𝐼)with objects complexes
in𝑏(𝕊𝐵𝑖𝑚𝐼) which are isomorphic to a complex 𝐹 satisfying 𝜏⩽−𝑖−1𝑖𝐹 = 0 for all 𝑖 ∈ ℤ.
Similarly, we define 𝑝⩽0 to be the full subcategory whose objects are complexes in𝑏(𝕊𝐵𝑖𝑚𝐼)

which are isomorphic to a complex 𝐹 satisfying 𝑖𝐹 = 𝜏⩽−𝑖
𝑖𝐹 for all 𝑖 ∈ ℤ.

Let 𝑝0 ∶= 𝑝⩾0 ∩ 𝑝⩽0.

It follows from Theorems 4.10 and 3.3 that the pair (𝑝⩽0, 𝑝⩾0) defines a non-degenerate 𝑡-
structure on 𝑏(𝕊𝐵𝑖𝑚𝐼), called the perverse 𝑡-structure. We denote by 𝑝0 the heart of this 𝑡-
structure. One should regard 𝑝0 as the category of equivariant mixed perverse sheaves on the
(possibly non-existent) partial flag variety associated with 𝐼.
It is clear that the following statement analogous to [5, Lemma 6.1] holds in the singular setting:

for a distinguished triangle

𝐹′ → 𝐹 → 𝐹′′ [1]
ZZ→

in𝑏(𝕊𝐵𝑖𝑚𝐼), if 𝐹′, 𝐹′′ ∈ 𝑝⩾0 (respectively⩽0), then 𝐹 ∈ 𝑝⩾0 (respectively⩽0).

Lemma 4.12. Given a Rouquier complex 𝐹𝑥 ∈ 𝑏(𝕊𝐵𝑖𝑚), the functor

𝐹𝑥 ⊗ (−) ∶ 𝑏(𝕊𝐵𝑖𝑚𝐼) → 𝑏(𝕊𝐵𝑖𝑚𝐼)

is left 𝑡-exact with respect to the perverse 𝑡-structure, that is, it restricts to a functor 𝑝⩾0 → 𝑝⩾0.
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1346 PATIMO

Proof. We can assume 𝑥 = 𝑠 ∈ 𝑆. Since the category 𝑝⩾0 is generated under extensions by the
objects 𝑃𝑦(𝑚)[𝑛], with 𝑦 ∈ 𝑊𝐼 and 𝑚 + 𝑛 ⩽ 0 it is enough to show that 𝐹𝑠𝑃𝑦 ∈

𝑝⩾0 for all 𝑦 ∈

𝑊𝐼 . We divide the proof into two cases:

(i) Assume 𝑠𝑦𝑤𝐼 > 𝑦𝑤𝐼 . We have ch(𝐵𝑠𝑃𝑦) = 𝐇𝑠𝐇
𝐼
𝑦 = 𝐇𝐼

𝑠𝑦 +
∑

𝑧∈𝑊𝐼

𝑧<𝑦𝑠

𝑚𝑧𝐇
𝐼
𝑧 with𝑚𝑧 ∈ ℤ⩾0. From

Theorem 4.10, we get

𝐵𝑠𝑃𝑦 ≅ 𝐵𝐼
𝑠𝑦 ⊕

⨁
𝑧∈𝑊𝐼

𝑧<𝑠𝑦

(𝑃𝑧)
⊕𝑚𝑧

and the complex

𝐹𝑠𝑃𝑦 = [0 →
0

𝐵𝑠𝑃𝑦 → 𝑃𝑦(1) → 0]

is manifestly in 𝑝⩾0.
ii) Assume 𝑠𝑦𝑤𝐼 < 𝑦𝑤𝐼 . Then we have ch(𝐵𝑠𝑃𝑦) = 𝐇𝑠𝐇

𝐼
𝑦 = 𝐇𝑠𝐇𝑦𝑤𝐼

= (𝑣 + 𝑣−1)𝐇𝐼
𝑦 . Therefore

𝐵𝑠𝑃𝑦 ≅ 𝑃𝑦(1) ⊕ 𝑃𝑦(−1) and

𝐹𝑠𝑃𝑦 = [0 →
0

𝑃𝑦(1) ⊕ 𝑃𝑦(−1) → 𝑃𝑦(1) → 0].

Tensoring with 𝐹𝑠 induces an equivalence on the category 𝑏(𝕊𝐵𝑖𝑚𝐼). Since 𝑃𝑦 is indecom-
posable, the complex 𝐹𝑠𝑃𝑦 must also be indecomposable. Therefore, the map 𝑃𝑦(1) → 𝑃𝑦(1)

cannot be trivial, otherwise
0

𝑃𝑦(1) would be a non-trivial direct summand of 𝐹𝑠𝑃𝑦 . Since
𝑃𝑦(1) → 𝑃𝑦(1) is non-zero, it is an isomorphism by (16) and 𝑃𝑦(1) → 𝑃𝑦(1) is a contractible
direct summand. Removing this contractible summand we obtain 𝐹𝑠𝑃𝑦 ≅ 𝑃𝑦(−1) ∈

𝑝⩾0.

□

Corollary 4.13. For any 𝑥 ∈ 𝑊𝐼 we have 𝐹𝐼
𝑥 ∈ 𝑝⩾0.

Proof. This easily follows fromLemma4.12 since𝑅𝐼 ∈ 𝑝⩾0 and𝐹𝐼
𝑥 ≅ 𝐹𝑥 ⊗ 𝑅𝐼 in𝑏(𝕊𝐵𝑖𝑚𝐼). □

4.4 Singular Rouquier complexes are linear

When Soergel’s conjecture holds, we can describe quite explicitly the singular Rouquier com-
plexes. (This explicit description is a crucial tool in [11] where the case of Grassmannians is studied
in detail.)

Lemma 4.14. Let 𝑥 ∈ 𝑊𝐼 and 𝑖 > 0. If 𝑖𝐹𝐼
𝑥 contains a direct summand isomorphic to 𝑃𝑧(𝑗), then

𝑖−1𝐹𝐼
𝑥 contains a direct summand isomorphic to 𝑃𝑧′(𝑗

′) with 𝑧′ > 𝑧 and 𝑗′ < 𝑗.

Proof. The proof is basically the same as in [5, Lemma 6.11]. From Theorem 4.10 and (14) we see
that, for any 𝑦, 𝑧 ∈ 𝑊𝐼 such that 𝑦 > 𝑧, the bimodule Γ𝐼

⩾𝑧∕>𝑧
(𝑃𝑦) is generated in degree < 𝓁(𝑧).

Moreover, we have Γ𝐼
⩾𝑦∕>𝑦

(𝑃𝑦) ≅ 𝑅𝑦,𝐼(−𝓁(𝑦)).
The image of 𝑃𝑧(𝑗) in 𝑖+1𝐹𝐼

𝑥 is contained in 𝜏<−𝑗(
𝑖+1𝐹𝐼

𝑥) because of (16): in fact any non-zero
homomorphism in degree 0 is an isomorphism and thus yields a contractible direct summand.
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SINGULAR ROUQUIER COMPLEXES 1347

Applying Γ𝐼
⩾𝑧∕>𝑧

to 𝐹𝐼
𝑥, the direct summand 𝑃𝑧(𝑗) returns a summand 𝑅𝑧,𝐼(𝑗 − 𝓁(𝑧)). This can-

not be a direct summand in Γ𝐼
⩾𝑧∕>𝑧

(𝜏<−𝑗
𝑖+1𝐹𝐼

𝑥), and cannot survive in the cohomology of the
complex because of Lemma 4.4. Thus 𝑅𝑧,𝐼(𝑗 − 𝓁(𝑧)) must be the image of a direct summand
𝑅𝑧,𝐼(𝑗 − 𝓁(𝑧)) in Γ⩾𝑧∕>𝑧(𝜏>−𝑗(

𝑖−1𝐹𝑥)).
This implies that there is a direct summand 𝑃𝑧′(𝑗′) in 𝑖−1𝐹𝑥 with 𝑧′ > 𝑧 and 𝑗′ < 𝑗. □

Theorem 4.15. Let 𝑥 ∈ 𝑊𝐼 and let 𝐹𝐼
𝑥 be a singular Rouquier complex. Then:

(i) 0𝐹𝐼
𝑥 = 𝑃𝑥 .

(ii) For 𝑖 ⩾ 1, 𝑖𝐹𝐼
𝑥 =

⨁
(𝑃𝑧(𝑖))

⊕𝑚𝑧,𝑖 with 𝑧 < 𝑥, 𝑧 ∈ 𝑊𝐼 and𝑚𝑧,𝑖 ∈ ℤ⩾0.

In particular, 𝐹𝐼
𝑥 ∈ 𝑝0.

Proof. We can use the same argument as in Lemma 4.14 to deduce that, since −1(𝐹𝐼
𝑥) = 0 and

Γ⩾𝑥∕>𝑥𝐹
𝐼
𝑥 ≅ 𝑅𝑥,𝐼(−𝓁(𝑥)), we must have 0(𝐹𝐼

𝑥) ≅ 𝑃𝑥. By induction on 𝑖 we get 𝑖𝐹𝐼
𝑥 = 𝜏⩽−𝑖𝐹

𝐼
𝑥 for

any 𝑖 > 0. Now ii) follows since we already know 𝐹𝐼
𝑥 ∈ 𝑝⩾0 from Corollary 4.13. □

Remark 4.16. We can define the character of a complex 𝐹 ∈ 𝑏(𝕊𝐵𝑖𝑚𝐼) by

ch(𝐹) =
∑
𝑖∈ℤ

(−1)𝑖 ch(𝑖𝐹) ∈ .

If 𝑥 ∈ 𝑊𝐼 and 𝑥 = 𝑠1𝑠2 … 𝑠𝑘 is a reduced expression we have

ch(𝐹𝐼
𝑥) = ch((𝐹𝑠1

𝐹𝑠2
…𝐹𝑠𝑘

)𝐼) = 𝐇𝑥𝐇𝐼 =∶ 𝐇𝐼
𝑥.

An immediate consequence of Theorem 4.10 is that there is a non-trivial morphism of degree 𝑖
between 𝑃𝑥 and 𝑃𝑦 for 𝑥, 𝑦 ∈ 𝑊𝐼 only if 𝑖 and 𝓁(𝑥) − 𝓁(𝑦) have the same parity. Therefore for
all summands 𝑃𝑦(𝑖) ⊂⊕ 𝑖 𝐹𝐼

𝑥 the number 𝑖 − 𝓁(𝑦) + 𝓁(𝑥) is even. Because of Theorem 4.15 we can
write

𝐇𝐼
𝑥 =

∑
𝑖⩾0

(−1)𝑖 ch(𝑖𝐹𝑥) =
∑
𝑦⩽𝑥

(−1)𝓁(𝑦)−𝓁(𝑥)g 𝐼𝑦,𝑧(𝑣)𝐇
𝐼
𝑦 (18)

with g𝑥,𝑥(𝑣) = 1 and g𝑦,𝑥(𝑣) =
∑

𝑖>0 𝑚𝑦,𝑖𝑣
𝑖 ∈ 𝑣ℕ[𝑣]. The polynomials g 𝐼𝑥,𝑦 are called the 𝐼-

parabolic inverse Kazhdan–Lusztig polynomials, and they are also determined by the following
inversion formula: ∑

𝑦∈𝑊𝐼

(−1)𝓁(𝑦)−𝓁(𝑥)g 𝐼𝑥,𝑦(𝑣)ℎ
𝐼
𝑦,𝑧(𝑣) = 𝛿𝑥,𝑧. (19)

One can use (18) to deduce that the 𝐼-parabolic inverse Kazhdan–Lusztig polynomials g 𝐼𝑥,𝑦(𝑣) have
non-negative coefficients.

By a dual argument we have that 𝑖𝐸𝐼
𝑥(𝑖) ≅

𝑖𝐹𝐼
𝑥(−𝑖) for all 𝑖, so in particular also 𝐸

𝐼
𝑥 ∈ 𝑝0.

By looking at the coefficient of 𝑣 in (19) we see that 𝑚𝑧,1, the coefficient of 𝑣 in g 𝐼𝑧,𝑥(𝑣), equals
the coefficient of 𝑣 in ℎ𝐼𝑧,𝑥(𝑣), hence they both coincide with dimHom1(𝑃𝑧, 𝑃𝑥). In particular,
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1348 PATIMO

we have

−1𝐸𝐼
𝑥 =

⨁
𝑧

(𝑃𝑧(−1))
⊕𝑚𝑧,1 . (20)

We denote by 𝑑𝑖𝑥, for 𝑖 < 0, the differentials in the complex 𝐸𝐼
𝑥. We now describe the first

differential 𝑑−1𝑥 .

Lemma 4.17. Let 𝑥 ∈ 𝑊𝐼 . For any 𝑧 ∈ 𝑊𝐼 fix a basis {𝜑𝑧
𝑖
}
𝑚𝑧,1

𝑖=1
of Hom1(𝑃𝑧, 𝑃𝑥). Then there exists

an isomorphism 𝐾 ∶ (𝑃𝑧(−1))
⊕𝑚𝑧,1

∼
Z→ −1𝐸𝐼

𝑥 such that the following diagram

commutes.

Proof. Let 𝑃 ∶=
⨁

𝑧(𝑃𝑧(−1))
⊕𝑚𝑧,1 and consider the map 𝜑 ∶=

⨁
𝑧,𝑖 𝜑

𝑧
𝑖
∶ 𝑃 → 𝑃𝑥. Then 𝜑 induces

a map of complexes concentrated in homological degree 0

𝜑 ∶ 𝐹 ∶=
⨁
𝑧,𝑖

𝐹𝐼
𝑧(−1)

⊕𝑚𝑧,1 → 𝐸𝐼
𝑥.

From Lemma 4.6 we see that 𝜑 is homotopic to 0. Let 𝐾 be a chain homotopy between 𝜙 and 0,
with 𝑖𝐾 ∶ 𝑖𝐹 → 𝑖−1𝐸𝐼

𝑥. Then
1𝐾 ∶ 1𝐹 → 0𝐸𝐼

𝑥 = 𝑃𝑥 must be trivial by (16) since 1𝐹 is perverse. It
follows that 𝑑−1𝑥 ◦0𝐾 = 𝜑, where 0𝐾 ∶ 𝑃 → −1𝐸𝐼

𝑥.
Since {𝜑𝑧

𝑖
}𝑖 is a basis, the map 0𝐾 cannot vanish on any direct summand of 𝑃. Notice that 0𝐾

is of degree 0, therefore 0𝐾 is a split injection. Since 𝑃 ≅ −1𝐸𝑥 by (20), we conclude that 0𝐾 is an
isomorphism. □

Remark 4.18. In [16], Williamson also developed the theory of two-sided (𝐼, 𝐽)-singular Soergel
bimodules 𝐽𝕊𝐵𝑖𝑚𝐼 for any pair of finitary subsets 𝐼, 𝐽 ⊂ 𝑆. It seems natural to define a two-
sided singular Rouquier complex 𝐼𝐹𝐽

𝑥 as the minimal subcomplex of the restriction of an
ordinary Rouquier complex to a (𝑅𝐽, 𝑅𝐼)-bimodule. However, there is no immediate analogue of
Theorem 4.15 holding in this case as the following example shows.
We adopt the notation of [16]. Let 𝑊 be a Weyl group of type 𝐴3 with simple reflections

𝑆 = {𝑠, 𝑡, 𝑢}. Let 𝐼 = {𝑠, 𝑢} and 𝐽 = {𝑡}. There are four classes of indecomposable of indecom-
posable (𝐼, 𝐽)-singular Soergel bimodules, corresponding to the double cosets {𝑖𝑑, 𝑠𝑡, 𝑢𝑡, 𝑠𝑢𝑡} =
𝑊𝐽∖𝑊∕𝑊𝐼 . We have

ch(𝐽𝐵𝐼
𝑖𝑑
) = 𝐇𝑡𝑢𝑠,

𝐽𝐵𝐼
𝑠𝑡 = 𝐇𝑠𝑡𝑢𝑠,

𝐽𝐵𝐼
𝑢𝑡 = 𝐇𝑢𝑡𝑢𝑠 and

𝐽𝐵𝐼
𝑠𝑢𝑡 = 𝐇𝑠𝑡𝑢𝑠𝑡𝑠.
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SINGULAR ROUQUIER COMPLEXES 1349

From the Hom formula [16, Theorem 7.4.1], we see that

Hom(𝐽𝐵𝐼
𝑠𝑢𝑡, 𝑃(1)) = 0

for all the perverse 𝑃 ∈ 𝐽𝕊𝐵𝑖𝑚𝐼 . Hence, if 0(𝐽𝐹𝐼
𝑠𝑢𝑡) =

𝐽𝐵𝐼
𝑠𝑢𝑡 and

1𝑑𝑠𝑢𝑡 ≠ 0, the bimodule 1(𝐽𝐹𝐼
𝑠𝑢𝑡)

cannot be perverse.

5 HODGE THEORY OF SINGULAR SOERGEL BIMODULES

Once we have Lemma 4.1 at disposal, we can adapt almost word by word the arguments of [5] to
the setting of singular Soergel bimodules. As the proof of the results in this section are completely
analogous to [5, § 6.6] (but nevertheless rather long and technical) we do not carry out the details
in this paper, but we refer to [9, Chapter 4] for exhaustive proofs.
We assume that we are in the setting of Section 4.3, so 𝕂 = ℝ and Soergel’s conjecture holds for

𝔥∗. We denote by (𝔥∗)𝐼 ⊂ 𝔥∗ the subspace of𝑊𝐼-invariants. Let 𝜌 ∈ (𝔥∗)𝐼 ⊆ 𝑅𝐼 .

Definition 5.1. We say that 𝜌 ∈ (𝔥∗)𝐼 is ample if 𝜌(𝛼∨
𝑠 ) > 0 for any 𝑠 ∈ 𝑆 ⧵ 𝐼.

Note that there always exists an ample 𝜌 ∈ (𝔥∗)𝐼 since the set {𝛼∨
𝑠 }𝑠∈𝑆 is linearly independent

in 𝔥∗.

Theorem 5.2 (Hard Lefschetz theorem for singular Soergel bimodules). Let 𝜌 ∈ (𝔥∗)𝐼 be ample.
Then right multiplication by 𝜌 induces a degree 2 map on 𝑃𝑥 ∶= ℝ⊗𝑅 𝑃𝑥 such that, for any 𝑖 > 0

we have an isomorphism

𝜌𝑖 ∶ (𝑃𝑥)
−𝑖 → (𝑃𝑥)

𝑖.

Here (𝑃𝑥)𝑖 denotes the degree 𝑖 component of 𝑃𝑥 .

The indecomposable bimodules 𝑃𝑥 are self-dual, andmoreoverHom(𝑃𝑥, 𝑃𝑥) ≅ ℝ. This implies
that there exists a unique (up to scalar) bilinear form

⟨−,−⟩𝑃𝑥 ∶ 𝑃𝑥 × 𝑃𝑥 → 𝑅

such that for any 𝑏, 𝑏′ ∈ 𝑃𝑥, 𝑓 ∈ 𝑅 and g ∈ 𝑅𝐼 we have

⟨𝑓𝑏, 𝑏′⟩𝑃𝑥 = ⟨𝑏, 𝑓𝑏′⟩𝑃𝑥 = 𝑓⟨𝑏, 𝑏′⟩𝑃𝑥 ,
⟨𝑏g , 𝑏′⟩𝑃𝑥 = ⟨𝑏, 𝑏′g⟩𝑃𝑥 .

Let 𝜌 ∈ (𝔥∗)𝐼 be ample. Then we fix the sign by requiring that ⟨𝑏, 𝑏 ⋅ 𝜌𝓁(𝑥)⟩𝑃𝑥 > 0 for any 0 ≠ 𝑏 ∈

(𝑃𝑥)
−𝓁(𝑥). We call ⟨−,−⟩𝑃𝑥 the intersection form of 𝑃𝑥.

The intersection form induces a real valued symmetric and 𝑅𝐼-invariant form ⟨−,−⟩𝑃𝑥 on 𝑃𝑥.
For 𝑖 ⩾ 0 we define the Lefschetz form

(−,−)−𝑖𝜌 ∶= ⟨−,− ⋅ 𝜌𝑖⟩𝑃𝑥 ∶ 𝑃𝑥
−𝑖

× 𝑃𝑥
−𝑖

→ ℝ.
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Theorem 5.3 (Hodge–Riemann bilinear relations for singular Soergel modules). Let 𝑥 ∈

𝑊𝐼 . For all 𝑖 ⩾ 0 the restriction of Lefschetz form (−,−)−𝑖𝜌 to Prim(𝜌, 𝑖) ∶= ker(𝜌𝑖+1) ⊆ (𝑃𝑥)
−𝑖 is

(−1)(−𝓁(𝑥)+𝑖)∕2-definite.

Theorems 5.2 and 5.3 have also consequences for non-singular bimodules, allowing us to extend
the hard Lefschetz theorem and the Hodge–Riemann relations “on the walls.”
Let 𝑥 ∈ 𝑊 and 𝑠 ∈ 𝑆 be such that 𝑥𝑠 > 𝑥. Let𝐵𝑥 ∈ 𝕊𝐵𝑖𝑚 be the corresponding indecomposable

(non-singular) Soergel bimodule. Assume 𝐼 = {𝑠}, so that𝑤𝐼 = 𝑠. Then (𝐵𝑥)𝐼 is a perverse singular
Soergel bimodule, in fact we have:

ch((𝐵𝑥)𝐼) = 𝐇𝑥𝐇𝑠 = 𝐇𝐼
𝑥 +

∑
𝑦𝑠>𝑦
𝑦<𝑥

𝑚𝑦𝐇
𝐼
𝑦 with𝑚𝑦 ∈ ℤ⩾0 (21)

We obtain the following:

Corollary 5.4. Let 𝐼 = {𝑠} and 𝑥 ∈ 𝑊𝐼 , that is, 𝑥 ∈ 𝑊 such that 𝑥𝑠 > 𝑥. Assume that 𝜌 ∈ (𝔥∗)𝑠 is
ample, that is, 𝜌(𝛼∨𝑠 ) = 0 and 𝜌(𝛼∨

𝑡 ) > 0 for all 𝑡 ≠ 𝑠. Then, right multiplication by 𝜌 on 𝐵𝑥 satisfies
the hard Lefschetz theorem and the Hodge–Riemann bilinear relations.

Proof. We have

(𝐵𝑥)𝐼 ≅ 𝑃𝑥 ⊕
⨁
𝑦𝑠>𝑦
𝑦<𝑥

(𝑃𝑦)
⊕𝑚𝑦 . (22)

By Theorem 5.2, the hard Lefschetz for 𝜌 holds for 𝑃𝑦 such that 𝑃𝑦 is a direct summand in (22). It
follows that multiplication by 𝜌 satisfies the hard Lefschetz theorem on 𝐵𝑥,𝐼 , hence on 𝐵𝑥 since
𝐵𝑥 and 𝐵𝑥,𝐼 have the same underlying left 𝑅-module structure.
Let𝜛𝑠 be a fundamental weight for 𝑠 and let 𝜌𝜁 = 𝜌 + 𝜁𝜛𝑠 for 𝜁 ⩾ 0. We know from the non-

singular case [5, Theorem 1.4], multiplication by 𝜌𝜁 satisfies hard Lefschetz on 𝐵𝑥 for all 𝜁 ⩾ 0 and
Hodge–Riemann for every 𝜁 > 0. If the hard Lefschetz theorem holds, for a continuous family of
operators, then the Hodge–Riemann bilinear relations are equivalent to a statement about the
signature of the Lefschetz forms (see [5, Lemma 2.1]). Since the signature of a family of non-
degenerate forms does not change, we deduce the Hodge–Riemann bilinear relations for 𝜌0 =
𝜌. □

Remark 5.5. Corollary 5.4 has the following geometric motivation. Assume that 𝑊 is the Weyl
group of a complex semisimple group𝐺. Let𝑥 ∈ 𝑊 be such that𝑥𝑠 > 𝑥 for 𝑠 ∈ 𝑆 and let𝑋𝑥 ⊆ 𝐺∕𝐵

be the corresponding Schubert variety. Let𝐏𝑠 be theminimal parabolic subgroup of𝐺 containing 𝑠.
Then the restriction of the projection𝐺∕𝐵 → 𝐺∕𝐏𝑠 to𝑋𝑥 is semismall. It follows from [3, Theorem
2.3.1] that the pull-back of any ample class on 𝐺∕𝐏𝑠 satisfies hard Lefschetz and Hodge–Riemann
on 𝑋𝑥.

Remark 5.6. We can obtain from Corollary 5.4 an alternative proof of Soergel’s conjecture,
that translates more closely de Cataldo and Migliorini’s proof of the decomposition theorem
in [3].
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SINGULAR ROUQUIER COMPLEXES 1351

Assume 𝑤 ∈ 𝑊 such that 𝑤𝑠 > 𝑤 and assume ch(𝐵𝑥) = 𝐇𝑥 for all 𝑥 < 𝑤𝑠. Let 𝐼 = {𝑠} and fix
𝜌 ample in (𝔥∗)𝑠. Let 𝑥 < 𝑤 ∈ 𝑊 be such that 𝑥𝑠 > 𝑥. Consider the primitive subspace

Prim(𝜌, 𝑘) ∶= ker(𝜌𝑘+1) ∩ (𝐵𝑤)
−𝑘.

We have a symmetric form

(−,−) ∶ Hom(𝑃𝑥, (𝐵𝑤)𝐼) × Hom(𝑃𝑥, (𝐵𝑤)𝐼) → End(𝑃𝑥) ≅ ℝ

defined by (𝑓, g) = g∗◦𝑓, where g∗ denotes the map adjoint to g with respect of the intersection
forms. Then we can show, as in [5, Theorem 4.1], that the map

𝜄 ∶ Hom(𝑃𝑥, (𝐵𝑤)𝐼) → Prim(𝜌,𝓁(𝑥))

defined by 𝑓 ↦ 𝑓(𝑐bot) is injective. Moreover, if we equip Prim(𝜌,𝓁(𝑥)) with the Lefschetz
form, then 𝜄 is an isometry (up to a positive scalar) and, by the Hodge–Riemann bilinear rela-
tions, the form (−,−) is definite on Hom(𝑃𝑥, (𝐵𝑤)𝐼) and, in particular, non-degenerate. If 𝑑 =

dimHom(𝑃𝑥, (𝐵𝑤)𝐼), it follows that (𝑃𝑥)⊕𝑑 is a direct summand of (𝐵𝑤)𝐼 , hence (𝐵𝑥𝑠)
⊕𝑑 is a direct

summand of 𝐵𝑤𝐵𝑠.

Example 5.7. In Corollary 5.4 it is crucial that (𝐵𝑥)𝐼 is perverse when 𝐼 = {𝑠} and 𝑥 < 𝑥𝑠 (cf. (21)).
The analogous statement is false for larger parabolic subgroup, as this example illustrates.
Let𝑊 be the Weyl group of type 𝐴3 with simple reflections labeled 𝑠, 𝑡, 𝑢. Let 𝐼 = {𝑠, 𝑡}, so that

𝑤𝐼 = 𝑠𝑡𝑠. Then 𝑠𝑡𝑢 ∈ 𝑊𝐼 but a simple computation in the Hecke algebra shows that

𝐇𝑠𝑡𝑢𝐇𝑠𝑡𝑠 = 𝐇𝐼
𝑠𝑡𝑢 + 𝐇𝐼

𝑢 + (𝑣 + 𝑣−1)𝐇𝐼
𝑖𝑑
.

Therefore, the singular Soergel bimodule (𝐵𝑠𝑡𝑢)𝐼 is not perverse, and there is no 𝜌 ∈ (𝔥∗)𝐼 which
satisfies hard Lefschetz on 𝐵𝑠𝑡𝑢.
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