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Abstract. We consider the problem of explaining the temporal behavior of black-box systems using human-
interpretable models. To this end, based on recent research trends, we rely on the fundamental yet interpretable
models of deterministic finite automata (DFAs) and linear temporal logic (LTL) formulas. In contrast to most
existing works for learning DFAs and LTL formulas, we rely on only positive examples. Our motivation is that
negative examples are generally difficult to observe, in particular, from black-box systems. To learn meaningful
models from positive examples only, we design algorithms that rely on conciseness and language minimality of
models as regularizers. To this end, our algorithms adopt two approaches: a symbolic and a counterexample-guided
one. While the symbolic approach exploits an efficient encoding of language minimality as a constraint satisfaction
problem, the counterexample-guided one relies on generating suitable negative examples to prune the search. Both
the approaches provide us with effective algorithms with theoretical guarantees on the learned models. To assess
the effectiveness of our algorithms, we evaluate all of them on synthetic data.
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1 Introduction

The recent surge of complex black-box systems in Artificial Intelligence has increased the demand for designing
simple explanations of systems for human understanding. In several areas such as robotics, healthcare, and transporta-
tion (Royal-Society, 2019; Gunning et al., 2019; Molnar, [2022)), inferring human-interpretable models has become the
primary focus to promote human trust in systems.

To enhance the interpretability of systems, we aim at explaining their temporal behavior. To this end, models
that are typically employed include, among others, finite state machines and temporal logics (Weiss, Goldberg, and
Yahavl, 2018}; Roy, Fisman, and Neider, [2020). We focus here on the fundamental state machine: deterministic finite
automata (DFAs) (Rabin and Scott, |1959); and formulas in the de facto standard temporal logic: linear temporal logic
(LTL) (Pnueli,|1977). These models not only possess a host of desirable theoretical properties, but also feature easy-to-
grasp syntax and intuitive semantics. The latter properties make them particularly suitable as interpretable models with
many applications, e.g., as task knowledge for robotic agents (Kasenberg and Scheutz,2017), as a formal specification
for verification (Lemieux, Park, and Beschastnikh, 2015)), as behavior classifier for unseen data (Shvo et al.| [2021)),
and many more (Camacho and Mcllraith} 2019).

The area of learning DFAs and LTL formulas is well-studied with a plethora of existing works (see related works).
Most of them tackle the typical binary classification problem (Gold, [I978)) of learning concise DFAs or LTL formulas
from a finite set of examples partitioned into a positive and a negative set. However, negative examples are hard to
obtain in many scenarios. Often, in safety-critical areas, observing negative examples from systems (e.g., from medical
devices and self-driving cars) can be unrealistic (e.g., by injuring patients or hitting pedestrians). Further, often one
only has access to a black-box implementation of the system and thus, can extract only its possible (i.e., positive)
executions.

In spite of being relevant, the problem of learning concise DFAs and LTL formulas from positive examples, i.e., the
corresponding one class classification (OCC) problem, has garnered little attention. The primary reason, we believe,
is that, like most OCC problems, this problem is an ill-posed one. Specifically, the most concise model that classifies
the positive examples correctly is the trivial model that classifies all examples as positive. This corresponds to a single
state DFA or, in LTL, the formula ¢rue. These models, unfortunately, convey no insights about the underlying system.



To ensure a well-defined problem, (Avellaneda and Petrenkol [2018), who study the OCC problem for DFAs,
propose the use of the (accepted) language of a model (i.e., the set of allowed executions) as a regularizer. Searching
for a model that has a minimal language, however, results in the one that classifies only the given examples as positive.
To avoid this overfitting, they additionally impose an upper bound on the size of the model. Thus, the OCC problem
that they state is the following: given a set of positive examples P and a size bound n, learn a DFA that (a) classifies
P correctly, (b) has size at most n, and (c) is language minimal. For language comparison, the order chosen is set
inclusion.

To solve this OCC problem, |Avellaneda and Petrenko| (2018)) then propose a counterexample-guided algorithm.
This algorithm relies on generating suitable negative examples (i.e., counterexamples) iteratively to guide the learning
process. Since only the negative examples dictate the algorithm, in many iterations of their algorithm, the learned DFAs
do not have a language smaller (in terms of inclusion) than the previous hypothesis DFAs. This results in searching
through several unnecessary DFAs.

To alleviate this drawback, as our first contribution, we present a symbolic algorithm for solving the OCC problem
for DFA. Our algorithm converts the search for a language minimal DFA symbolically to a series of satisfiability
problems in Boolean propositional logic. Our novelty includes an efficient encoding of the language inclusion check
of DFAs in a propositional formula, which is polynomial in the size of the DFAs. We then exploit an off-the-shelf SAT
solver to check satisfiability of the generated propositional formulas and subsequently, construct a suitable DFA. We
expand on this algorithm in Section 3]

We then present two novel algorithms for solving the OCC problem for LTL formulas. Our first algorithm is a
semi-symbolic algorithm, which combines ideas from both the symbolic and the counterexample-guided approaches.
Roughly, this algorithm exploits negative examples to overcome the theoretical difficulties of symbolically encoding
language inclusion for LTL (since LTL inclusion check is known to be inherently harder than that for DFAs (Sistla and
Clarke, |1985)). Our second algorithm is simply a counterexample-guided algorithm that relies solely on the generation
of negative examples for learning. We detail on both the algorithms in Section ]

Finally, we empirically evaluate all of our algorithms on synthetic benchmarks to assess their efficacy. We demon-
strate that our symbolic algorithm solves the OCC problem for DFA in fewer iterations and runtime comparable to the
counterexample-guided algorithm, skipping thousands of counterexample generation. Our results show that the aver-
age ratio of the number of iterations of our symbolic algorithm to the counterexample-guided algorithm is 0.14 while
the average ratio of the inference time of our symbolic algorithm to the counterexample-guided algorithm is 1.09. We
also demonstrate that our symbolic algorithm solves the OCC problem for LTL faster than the counterexample-guided
algorithm does. Our results show that our semi-symbolic algorithm is at most 260.73% faster than the counterexample-
guided algorithm for inferring LTL formulas.

Related Works. The OCC problem described in this paper belongs to the body of works categorized as passive
learning (Gold, [1978)). As alluded to in the introduction, in this topic, the most popular problem is the binary classi-
fication problem for learning DFAs and LTL formulas. Notable works include the works by Biermann and Feldman
(1972);|Grinchtein, Leucker, and Piterman! (2006); Heule and Verwer (2010) for DFAs, and|Neider and Gavran! (2018));
Camacho and Mcllraith|(2019); Raha et al.|(2022)) for LTL formulas.

The OCC problem of learning formal models from positive examples was first studied by |Gold| (1967)). This work
showed that the exact identification of certain models (that includes DFAs and LTL formulas) from positive examples
is not possible. Thereby, works have mostly focussed on models that are learnable easily from positive examples,
such as pattern languages (Angluin, [1980), stochastic finite state machines (Carrasco and Oncina, [1999), and hidden
Markov Models (Stolcke and Omohundro, |1992)). None of these works considered learning DFAs or LTL formulas,
mainly due to the lack of a meaningful regularizer.

Recently, |Avellaneda and Petrenko| (2018)) proposed the use of language minimality as a regularizer and thereafter,
developed an effective algorithm for learning DFAs. While their algorithm cannot overcome the theoretical difficulties
shown by|Gold|(1967), they still produce a DFA that is a concise description of the positive examples. We significantly
improve upon their algorithm by relying on a novel encoding of language minimality using propositional logic.

For temporal logics, there are a few works that consider the OCC problem. Notably, [Ehlers, Gavran, and Nei-
der| (2020) propose a learning algorithm for a fragment of LTL which permits an automata representation known as
universally very-weak automata (UVWs). However, since their algorithm relies on UVWs, which has strictly less ex-



pressive power than LTL, it cannot be extended to full LTL. Further, there are works on learning LTL (Chou, Ozay, and
Berenson, [2022)) and STL (Jha et al., 2019) formulas from trajectories of high-dimensional systems. These works base
their learning on the assumption that the underlying system is optimizes some cost function. Our method, in contrast,
is based on the natural notion of language minimality to find tight descriptions, without any assumptions about the
system.

A problem similar to our OCC problem is studied in the context of inverse reinforcement learning (IRL) to learn
temporal rewards for RL agents from (positive) demonstrations. For example, Kasenberg and Scheutz| (2017) learn
concise LTL formulas based on a probabilistic measure that captures how “well” a formula distinguishes the provided
demonstrations from random executions of the system. To generate the random executions, they rely on a Markov De-
cision Process (MDP) implementation of the underlying system. Our regularizers, in contrast, assume the underlying
system to be a black-box and need no access to its internal mechanisms. |Vazquez-Chanlatte et al.| (2018)) also learn
LTL-like formulas from demonstrations. Their search requires a pre-computation of the lattice of formulas induced by
the subset order, which can be a bottleneck for scaling to full LTL.

2 Preliminaries

In this section, we set up the notation for the rest of the paper.
Let N = {1,2,...} be the set of natural numbers and [n] = {1,2,...,n} be the set of natural numbers up to n.

Words and Languages. To formally represent system executions, we rely on the notion of words, defined over a finite
and nonempty alphabet 3. The elements of X/, which denote relevant system states, are referred to as symbols.

A word over X is a finite sequence w = ay . .. a, with a; € X, i € [n]. The empty word € is the empty sequence.
The length |w| of w is the number of symbols in it (note that |¢| = 0). Moreover, X* denotes the set of all words over
Y. Further, we use w[i] = a; to denote the i-th symbol of w and w[i:] = a; - - - a,, to denote the suffix of w starting
from position <.

A language L is any set of words from X*. We allow the standard set operations on languages such as L; C Lo,
Ly C Ly and Iy \ Lo.

Propositional logic. All our algorithms rely on propositional logic and thus, we introduce it briefly. Let Var be a
set of propositional variables, which take Boolean values {0, 1} (0 represents false, 1 represents true). Formulas in
propositional logic—which we denote by capital Greek letters—are defined recursively as

P=xecVar|P| PV

. As syntax sugar, we allow the following standard formulas: true, false, b ANV, — ¥ and @ < V.
An assignment v: Var — {0,1} maps propositional variables to Boolean values. Based on an assignment v, we
define the semantics of propositional logic using a valuation function V' (v, ¢), which is inductively defined as follows:

Vv, z) = v(x)
V(v,~¥)=1-V(v,¥)
V(v, ¥V ®) = maz{V(v,¥),V(v,P)}

We say that v satisfies @ if V (v, ®) = 1, and call v a model of ¢. A formula @ is satisfiable if there exists a model v
of .

Arguably, the most well-known problem in propositional logic—the satisfiability (SAT) problem—is the problem
of determining whether a propositional formula is satisfiable or not. With the rapid development of SAT solvers (L1
and Manya, 2021)), checking satisfiability of formulas with even millions of variables is feasible. Most solvers can also
return a model when a formula is satisfiable.



3 Learning DFA from Positive Examples

In this section, we present our symbolic algorithm for learning DFAs from positive examples. We begin by formalizing
DFAs.

A deterministic finite automaton (DFA) is a tuple A = (Q, X, 6, q;, F') where @ is a finite set of states, X' is the
alphabet, q; € @ is the initial state, F' C @ is the set of final states, and §: Q) x X' — @ is the transition function. We
define the size |.A| of a DFA as its number of states |Q)|.

Given a word w = aj...a, € X*, the run of A on w, denoted by A: ¢; BN Qn+1, 18 a sequence of states
and symbols ¢qia1qeas - - - anqn1, such that ¢; = gr and for each i € [n], ¢;+1 = d(g;, a;). Moreover, we say w is
accepted by A if ¢,+1 € F. Finally, we define the language of A as L(A) = {w € X* | w is accepted by A}.

To introduce the OCC problem for DFAs, we first describe the learning setting. The OCC problem relies on a set
of positive examples, which we represent using a finite set of words P C X™*. Additionally, the problem allows a
bound 7 to restrict the size of the learned DFA. The role of this size bound is two-fold. First, it ensures that the learned
DFA does not overfit P. Second, using a suitable bound, one can force the learned DFAs to be concise (and thus,
interpretable).

Finally, we define a DFA A to be an n-description of P if P C L(A) and |A| < n. When clear from the context,
we simply say n-description, instead of n-description of P.

Having set up the prerequisites, we now state the OCC problem for DFA as follows:

Problem 1 (OCC problem for DFAs). Given a set of positive words P and a size bound n, learn a DFA A such that:

(1) Ais an n-description; and
(2) for all DFA A’ that is an n-description, L(A’) ¢ L(A).

Intuitively, the problem stated above asks to search for an n-description DFA with a minimal language. Note that
several such DFAs can exist since the language inclusion order used to determine minimality is only a partial order
on the languages of DFA. We, here, are interested in learning only one such DFA, leaving the problem of learning all
such DFAs as interesting future work.

3.1 The Symbolic Algorithm

We now present our algorithm for solving Problem[I} The underlying idea of our algorithm is to reduce the search for
an appropriate DFA to a series of satisfiability checks of propositional formulas. Each satisfiable propositional formula
helps us to construct a hypothesis DFA A, which is the current guess. Based on the hypothesis A, we construct
a propositional formula & which enables the search for the next hypothesis A’ that has a language smaller (in
the inclusion order) than the current one. Precisely, we construct a propositional formula ¢ that has the following
properties: 1. @ is satisfiable if and only if there exists a DFA A’ that is an n-description and L(A’) C L(A); and
2. based on a model v of &4, one can construct such a DFA.

Based on this main ingredient #, we design our learning algorithm, which we sketch in Algorithm |1} Our algo-
rithm initializes the hypothesis DFA A to be Ax~, which is the one-state DFA that accepts all words in X*. Observe
that Ay~ is trivially an n-description, since P C X* and | Ax+«| = 1. The algorithm then iteratively exploits P4 to
construct the next hypothesis DFAs, until - is unsatisfiable for some .A. On being unsatisfiable, we terminate and
return the current hypothesis .4 as a solution. The correctness of this algorithm follows from the following theorem:

Theorem 1. Given positive words P and a size bound n, Algorithm|[l|learns a DFA A that is an n-description and
for all DFA A’ that is an n-description, L(A’) ¢ L(A).

We now turn to the construction of #4. To achieve the aforementioned properties, we define & as follows:
P = Ppey AN DPp ADc g ADpa (1)

The first conjunct $ppy ensures that we learn a valid DFA A’. The second conjunct @p ensures that A" accepts all
positive words. The third conjunct @ 4 ensures that L(.A’) is a subset of L(.A). The final conjunct $3 4 ensures that



Algorithm 1: Symbolic Algorithm for Learning DFA
Input: Positive words P, bound n

1: A+ Ag-, A = Dppa N Pp
2: while & is satisfiable (with model v) do
3 A < DFA constructed from v
4 A =Py ANPp APca APoa
5
6

: end while
: return A

L(A’) is not a superset of L(.A). Together, conjuncts ¢ 4 and P 4 ensure that L(A’) is a proper subset of L(.A). In
what follows, we detail the construction of each conjunct.

To encode the hypothesis DFA A" = (Q', X, ¢, q;’, F') symbolically, we follow [Heule and Verwer| (2010) and
rely on the propositional variables: (1) d,, 4 Where p,q € [n] and @ € X; and (2) f, where ¢ € [n]. The variables
dp.q,q and f, encode the transition function ¢’ and the final states F”, respectively, of A’. Mathematically speaking, if
dp a,q is set to true, then ¢’(p, a) = ¢ and if f; is set to true, then ¢ € F”. Note that we denote the states ()’ using set
[n] and the initial state ¢;" using numeral 1.

Now, to ensure A’ has a deterministic transition function ¢’, ®pr, asserts the following constraint:

/\ /\ [ \/ dp,a,q N /\ [ dpya,q\/_‘dna,q’]]-

pE[n]acX’  q€[n] q#£q’'€[n

Based on a model v of the variables dj, , 4 and f,, we can simply construct .A’. We set §’(p, a) to be the unique
state ¢ for which v(dy, 4,4) = 1and ¢ € F' if v(f;) = 1.

Next, to construct conjunct $ p, we introduce variables x,, , where u € Pref(P) and ¢ € [n], which track the run
of A’ on all words in Pref (P), which is the set of prefixes of all words in P. Precisely, if x,, 4 is set to true, then there

is a run of LA’ on u ending in state ¢, i.e., A": ¢/’ = ¢.
Using the introduced variables, @ p ensures that the words in P are accepted by imposing the following constraints:

Te1 N /\ e g
qe{2,...,n}

/\ /\ /\ Lu,p A dp-,a,q] — Tua,q

w€ Pref (P) p,qg€[n] a€X
A N wwa=ta
weP g€[n]

The first constraint above ensures that the runs start in the initial state g;’ (denoted using numeral 1) while the second
constraint ensures that the runs adhere to the transition function. The third constraint ensures that the run of A’ on
every w € P ends in a final state, ensuring their acceptance.

For the third conjunct ¢ 4, we must track the synchronized runs of the current hypothesis .4 and the next hy-
pothesis A’ to compare their runs on all words in X*. Towards this, we introduce some more variables, y;‘}q, where

q,q" € [n]. Precisely, y;‘}q, is set to true, if there exists a word w € X* such that there are runs A: ¢; — ¢ and
A/, qI/ i> q/
To ensure L(A") C L(A), $c 4 imposes the following constraints:

A
Yi1

/\ /\ /\ [ R y(;}q’:|

q=6(p,a) p’,q'€[n] a€EX
/\ /\ [yzép’ %ﬁfp'}

pEF p'€ln]



The first constraint ensures that the synchronized runs of A and A’ start in the respective initial states, while the
second constraint ensures that they adhere to their respective transition functions. The third constraint ensures that if
the synchronized run ends in a non-final state in A, it must also end in a non-final state in A’.

The construction of the final conjunct @4 4 relies on the following result:

Lemma 1. Let A, A’ be DFAs such that |A| = |A’| = n, L(A") C L(A), and K = n®. Then there exists a word
w € X* of length < K, such that w € L(A) and w ¢ L(A").
The above result, essentially, establishes an upper bound to the length of the word that distinguishes DFAs A and A’.
Based on this result, we introduce variables z; , , where i € [n?] and ¢,q’ € [n], to track the synchronized run of
Aand A’ on a word of length at most K = n?. Precisely, if 2; 4 is set to true, then there exists a word w of length 4,
with the runs A: ¢; = gand A’ : ¢y = ¢
Now, & 4 imposes the following constraints:

20,q1,q1"
/\ [ \/ Ziq,q’ N [ /\ “Zipp V _‘zi,q,q’]}
i€[n?] g¢,9’'€[n] p#qE(n]
p'#4'€[n]
/\ |:[Zi,p,p’ A Zi-‘rl,q,q/] - \/ dp’7¢1711’:|
p,q€[n] a€ X where
p’,q'€ln] 7=9(pa)
\/ [Zi,mq/ A _‘fq’]
i€[n?] g€[n]
qer

The first three constraints above ensure that words up to length n? have a valid synchronised run on the two DFAs A
and A’. The final constraint ensures that there is a word of length < n? on which the synchronized run ends in a final
state in A but not in A’.

4 Learning LTL formulas from Positive Examples

We now switch our focus to algorithms for learning LTL formulas from positive examples. We begin with a formal
introduction to LTL.

Linear temporal logic (LTL) is a logic that reasons about temporal behavior of systems using temporal modalities.
While traditionally LTL is built over propositional variables P |Pnuelil (1977)), to unify the notation with DFAs, we
define LTL over an alphabet Y. It is, however, not a restriction since an LTL formula over P can always be translated
to an LTL formula over X = 27. Formally, LTL formulas—which we denote by small Greek letters—are defined
inductively as:

p=acX|pleVe|[Xe|pUp
As syntax sugar, along with additional constants and operators used in propositional logic, we allow the standard
temporal operators F (“finally”) and G (“globally”). We define A = {—,V,A, =, X, U,F,G} U X as the set of
all operators (which, for simplicity, also includes symbols). We define the size |¢| of ¢ as the number of its unique
subformulas; e.g., size of ¢ = (a UXb) vV X b is five, since its five distinct subformulas are a, b, X b,a U X b, and
(aUXb)VXb.

To interpret LTL formulas over (finite) words, we follow the semantics proposed by |Giacomo and Vardi (2013)).
Given a word w, we define recursively when a LTL formula holds at position i, i.e., w, i |= ¢, as follows:

w,i = a € X if and only if a = w]i]
w,? = —p if and only if w, i [~ ¢
w,i = Xpifandonly if i < |w|and w,i +1 = ¢
w,i = ¢ U if and only if w, j |= ¢ for some
i <j<|wlandw,i' E ¢foralli <i < j



We say w satisfies ¢ or, alternatively, ¢ holds on w if w, 0 |= ¢, which, in short, is written as w = .

The OCC problem for LTL formulas, similar to Problem [T} relies upon a set of positive words P C X* and a size
upper bound n Moreover, an LTL formula ¢ is an n-description of P if, for all w € P, w = ¢, and |¢| < n. For
brevity, we omit P from n-description when obvious.

We state the OCC problem for LTL formulas as follows:

Problem 2 (OCC problem for LTL formulas). Given a set of positive words P and a size bound n, learn an LTL
formula ¢ such that:

(1) ¢ is an n-description; and
(2) for all LTL formula ¢’ that is an n-description, ¢’ 4 @ or ¢ — ¢’.

Intuitively, the above problem asks to search for an LTL formula ¢ that is an n-description and holds on a minimal
set of words. Once again, like Problem El, there can be several such LTL formulas, but we are interested in learning
exactly one of them.

4.1 The Semi-Symbolic Algorithm

This algorithm, being semi-symbolic, does not entirely depend on the current hypothesis, an LTL formula ¢ here, as
was the case in Algorithm[I] In addition, it relies on a set of negative examples NN, accumulated during the algorithm.
Thus, relying on both the current hypothesis ¢ and the negative examples [N, we construct a propositional formula
w#:N to search for the next hypothesis ¢’. Concretely, ¥V has the properties that: (1) ¥#*" is satisfiable if and only
if there exists an LTL formula ¢’ that is an n-description, does not hold on words in N, and ¢ /4 ¢’; and (2) based on
a model v of ¥~ one can construct such an LTL formula pv.

The semi-symbolic algorithm follows a paradigm similar to the one illustrated in Algorithm[I] However, unlike the
previous algorithm, the current guess ', obtained from a model of ¥¥:" may not always satisfy the relation ¢’ — .
In such a case, we generate a word (i.e., a negative example) that satisfies ¢, but not ¢’ to eliminate ¢’ from the
search space. The generation of words is performed by constructing DFAs from the LTL formulas (Zhu et al., [2017)
and then performing a breadth-first search over them. If, otherwise, ¢’ — ¢, we then update our current hypothesis
and continue until ¥V is unsatisfiable. Overall, this algorithm learns an appropriate LTL formula with the following
guarantee:

Theorem 2. Given positive words P and size bound n, the semi-symbolic algorithm learns an LTL formula o that is
an n-description and for all LTL formulas ' that is an n-description, ©' / ¢ or o — ¢'.

We now focus on the construction of &%V, which is significantly different from that of $. It is defined as follows:
TN = W AUP AN ATy, 2)

The first conjunct Wy, ensures that the hypothesis is a valid LTL formula ¢’. The second conjunct ¥p ensures that ¢’
holds on all positive words, while the third, ¥, ensures that it does not hold on the negative words. The final conjunct
&, , ensures that ¢ 4 ¢'.

% 5
9 )
U 4
VAR /N

a X 1 3

! !

b 2
(a) Syntax DAG (b) Identifiers

Fig. 1: Syntax DAG and identifiers for (a UXb) vV X b



Following [Neider and Gavran| (2018), all of our conjuncts rely on a canonical syntactic representation of LTL
formulas as syntax DAGs. A syntax DAG is a directed acyclic graph (DAG) that is obtained from the syntax tree of an
LTL formula by merging its common subformulas. An example of a syntax DAG is illustrated in Figure|lal Further,
to uniquely identify each node of a syntax DAG, we assign them unique identifiers from [n] in a way that every parent
node has an identifier larger than its children (see Figure[Tb).

Now, to construct the hypothesis ¢’, we encode its syntax DAG, using the following propositional variables:
(1) z; ) fori € [n] and A € A; and (2) [; ; and r; ; for ¢ € [n] and j € [i — 1]. The variable z; ) tracks the operator
label of the Node i of the syntax DAG of ¢’, while variables I; ; and r; ; track the left and right child, respectively, of
Node i. Mathematically, ; ) is set to true if and only if Node ¢ is labeled with operator \. Precisely, if I; ; (resp. r; ;)
is set to true if and only if left (resp. right) child of Node ¢ is Node j.

To ensure variables x; y, l; ; and r; ; have the desired meaning, Wi imposes certain structural constraints. For
instance, to ensure that each node of the syntax DAG of ¢’ is uniquely labeled by an operator, we have the following

constraints:
/\ [ \/ Tia N /\ [ﬁl’i,)\ \Y ﬁxi)\/]]

i€[n] AeA A£ENEA

;1. has more structural constraints for which we refer the readers to|Neider and Gavran| (2018)).

We now move on to the construction of ¥p and ¥y . They relies on variables y;, ;, where i € [n], w € PU N, and
t € [Jw]]. The variable y}, , tracks whether ¢'[i] holds on suffix w([t:], where ¢'[] is the subformula of ¢’ rooted at
Node . Precisely, 4/, , is set to true if and only if wlt:] = ¢'[i].

To ensure desired meaning of variables yfw, Up and ¥y rely on semantic constraints, again similar to ones pro-
posed by Neider and Gavran| (2018)). Exemplarily, the constraint implementing the semantics of the X-operator is the
following:

/\ zix Nlij — [ /\ yZu,t A yfu,tJrJ A _‘yzu,\w|'
i€[n] tel|w|—1]
J€li—1]

Intuitively, this constraint states that if Node i is labeled with X and Node j is the left child of Node i, then ’[i] holds
on wt:] if and only if ¢’[j] holds on w[t + 1:] (i.e., if ¢ < |w]). For the other LTL operators, we have similar semantic
constraints, which the readers can find in the supplementary material.

Now to ensure that ¢’ holds on positive words ¥p additionally imposes A\, c p ¥u o, While, to ensure ¢ does not

hold on negative words, ¥ imposes A\, ¢y ¥z, 0-

The conjunct ¥, requires symbolically encoding a word u of length upto a time horizon of K = 22" The

choice of K is derived from the fact that size of equivalent DFAs for an LTL formulas can be at most doubly exponen-
tial (Giacomo and Vardi| (2015) and the result in Lemma[I} Now our encoding of a symbolic word relies on variables
Pt Where t € [K] and a € X If p; , is set to true, then u[t] = a.

To ensure that the variables p, , encode a valid word u, we generate a formula Wy.r4 that has constraints like the
following:

/\ [ \/ Pta /\ [_‘Pt,a\/—'pt,a']]

te[K] aeXU{e} aF#a’ € XU{e}

The above constraint ensures that, in the word u, each position ¢ < K has a unique symbol from X' U {e}.
Further, to track whether ¢ and ¢’ hold on u, we have variables z“"t’ and 2} ;" where i € [n], t € [K]|. These

variables are similar to yw ;> in the sense that 2% (resp 2¥ ) is set to true, if (resp ') holds at position ¢. To assign
meaning to these Varlables we impose constralnts, Wthh we denote using Wy, similar to the semantic constraints
imposed on y;, ,. For instance, for a symbol a, we have the following constraint:

/\ /\ [ﬂci,a /\ Zut Hpta}

i€[n] a€X te[K]



Finally, we express ¥, as follows:

’

@,n @'n
Uora N\ Ysem N\ Zuo N %00

Intuitively, this constraint ensures that there exists a word on which ¢ holds and ¢’ does not.

4.2 The Counterexample-guided Algorithm

We now design a counterexample-guided algorithm to solve Problem[2] In contrast to the symbolic (or semi-symbolic)
algorithm, this algorithm does not guide the search based on propositional formulas built out of the hypothesis LTL
formula. Instead this algorithm relies entirely on two sets: a set of negative words /N and a set of discarded LTL
formulas D. Based on these two sets, we design a propositional formula 27> that has the properties that: (1) 2V:7
is satisfiable if and only if there exists an LTL formula ¢ that is an n-description, does not hold on w € N, and is not
one of the formulas in D; and (2) based on a model v of 2% one can construct such an LTL formula.

Being a counterexample-guided algorithm, the construction of the sets /N and D forms the crux of the algorithm. In
each iteration, these sets are updated based on the relation between the hypothesis ¢ and the current guess ¢’ (obtained
from a model of 27V:7). There are exactly three relevant cases, which we discuss briefly.

— First, ¢’ < ¢, i.e., ¢’ and ¢ hold on the exact same set of words. In this case, the algorithm discards ¢’ by adding
it to D due to its similarity to .

— Second, ¢’ — p and ¢ /4 ¢, i.e., ¢ holds on a proper subset of the set of words on which ¢ hold. In this case,
our algorithm generates a word that satisfies  and not ¢’ and adds it to N to eliminate .

— Third, ¢’ ¢ ¢, i.e., ¢’ does not hold on a subset of the set of words on which ¢ hold. In this case, our algorithm
generates a word w that satisfies ¢’ and not ¢ and adds it to N to eliminate '

By handling the cases mentioned above, we obtain an algorithm with guarentees exactly same as the semi-symbolic
algorithm in Section

S Experiments

In this section, we evaluate the performance of the proposed algorithms using three case studies. First, we evaluate the
performance of Algorithm (1| referred to as SYMpra, and compare it to a baseline counterexample-guided algorithm
by |Avellaneda and Petrenko| (2018), referred to as CEGpra (case study 1). Then, we evaluate the performance of
the proposed semi-symbolic algorithm (Section[4.1)), referred to as S—SYM; 11, and counterexample-guided algorithm
(Section[d.2)), referred to as CEGy,r1,, for learning LTL formulas (case studies 2 and 3).

In S-SYM 11, we fix the time horizon K to a natural number, instead of the double exponential theoretical upper
bound of 22", Using this heuristic means that S—SYM;1;, does not solve Problem [2, but we demonstrate that we
produce good enough formulas in practice.

In addition, we implement two existing heuristics from|Avellaneda and Petrenko|(2018)) to all the algorithms . First,
we implement in every algorithm, we learn models in an incremental manner, i.e., we start by learning DFAs (resp.
LTL formulas) of size 1 and then the size by 1. We repeat the process till bound n. Second, we use a set of positive
words P’ instead of P that starts as an empty set, and at each iteration of the algorithm, if the inferred language does
not contain some words from the original set P, we then extend P’ with one of such words, preferably the shortest
one. This last heuristic helps when dealing with large input samples, by using as fewest words from P.

We implemented every algorithm using python, using PySAT (Ignatiev, Morgado, and Marques-Silva, 2018)) for
learning DFA, and using an ASP (Baral, |2003)) encoding that we solve using clingo (Gebser et al., [2017)) for learning
LTL formulas. Overall, we ran the experiments using 8 GiB of RAM and two CPU cores.

Learning DFAs For this case study, we consider a set of 28 random DFAs of size 2 to 10 generated using AALpy (Muskardin
et al.| 2022)). Using each random DFA, we generate a set of 1000 positive words of length 1 to 10. We run algorithms
CEGpra and SYMppa with a timeout 770 = 1000s, and for n up to 10.
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Fig.2: Comparison of SYMpra and CEGpr, in terms of the runtime and the number of iterations of the main loop.

Figure@] shows a comparison between the performance of SYMpra and CEGpra in terms of the inference time and
the required number of iterations of the main loop. On the left plot, the average ratio of the number of iterations is
0.14 which, in fact, shows that SYMpr, required noticeably less number of iterations in comparison with CEGpra. On
the right plot, the average ratio of the inference time is 1.09 which shows that the inference of the two algorithms is
comparable and yet SYMpra is computationally less expensive due to requiring less iterations.

Learning Common LTL Patterns In this case study, we generate sample words using 12 common LTL patterns (Dwye
Avrunin, and Corbett, |1999). For instance, 1 = G ag, 2 = G(a1 — G(—ao)) and 3 = (G(—ag)) V (F(ag A
(F(a1)))). We refer the readers to appendix for a complete list of LTL patterns. Using each of these 12 ground truth
LTL formulas, we generate a sample of 10000 positive words of length 10. Then, we infer LTL formulas for each
sample using CEGy,r1, and S—SYMy 11, separately. For both algorithms, we set the maximum formula size n = 10 and
a timeout of 7O = 1000s, and for S—SYMy 1, we set the time horizon K = 8. Figure [3| represents a comparison
between the mentioned algorithms in terms of inference time for the ground truth LTL formulas 1, 12, and 3.

On average, S—SYMyry, is 173.9% faster than CEGy 11, for all the 12 samples. Our results show that LTL formulas
inferred by S—SYMy 1, are more or equally specific (i.e., included in term of language) than the ground truth LTL
formulas for five samples out of the 12 samples, while the LTL formulas inferred by CEGyr1, are equally or more
specific than the ground truth LTL formulas for three samples out of the 12 samples.

Learning LTL from Trajectories of Unmanned Aerial Vehicle (UAV) In this case study, we implement S—SYMp,
and CEGy 1, using sample words of a simulated unmanned aerial vehicle (UAV) for learning LTL formulas. Here, we
use 10000 words clustered into three bundles using k-means clustering approach. Each words summarizes selective
binary features such as xo = 0: “low battery” (o = 1: “high battery), z; = 0: “glide” (z; = 1: “thrust”), zo = 0:
“change yaw angle” (x5 = 1: “not change yaw angle”), x3 = 0: “change roll angle” (z3 = 1: “not change roll angle”),
etc. We set n = 10, K = 8, and a timeout of 7O = 3600s. We inferred LTL formulas for each cluster using CEGy 1,
and S—-SYMy ;. Figure depicts a comparison between CEGyr;, and S—SYMy 71, in terms of the inference time for three
clusters. Our results show that, on average, S—SYMyry, is 260.73% faster than CEGr 1. Two examples of the learned
LTL formulas from the UAV words are F(z1) V = G(z1) which reads as “either the UAV always glides, or it never
glides” and G(x2 — x3) which reads as “a change in yaw angle is always accompanied by a change in roll angle”.
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Fig. 4: Comparison of SYMpr» and CEGpra in terms of the runtime for three clusters of words taken from a UAV.

6 Conclusion

We present novel algorithms for learning DFAs and LTL formulas from positive examples only. Our algorithms rely
on conciseness and language minimality as regularizers to learn meaningful models. We demonstrate the efficacy of
our algorithms on three case studies.

A natural direction of future work is to lift our techniques to tackle learning from positive examples for other finite
state machines, e.g., non-deterministic finite automata [1997), and more expressive temporal logics, e.g., linear
dynamic logic (LDL) (Giacomo and Vardi, [2013).
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A Results for the Symbolic Algorithm in Section

A.1 The Theoretical Guarantees

Before we prove the theoretical guarantees of the algorithm (Theorem [I)), we re-state the constraints used for the
symbolic algorithm (Algorithm[T)) for convenience. We begin with the constraints for @pg,:

/\ /\ [ \/ dp,a,q N /\ [ dpva-,q\/ﬁdp,a,q/” 3)

n]a€X g€ln q#q’' €[n]

We then provide the constraints for @ p as follows:

rea A\ g )
ge{2,...,n}
A /\ [xu,p /\ dp,a,q] _> xua,q (5)
ua€ Pref (P) p,q€[n]
A /\ Tug— fq (6)
weP g€ln
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Next, we provide the constraints for @c 4
iy 7

A A /\[?/pp//\dp,,q]%yqq} )

q=4(p,a) p’,q’€[n] a€X

AN vy =t ©)

pEF p'€ln]
Finally, we end with the constraints for $3 4:
20,1,1 (10)
/\ [ \/ Zi,q,q N i /\ “Zipp V _‘Zlyq,q’] (an
i€[n?]  g¢,q’€[n] p#qE[n] ’
p'#4'€[n]
/\ “Zi,mﬂ AZiglgq] = \/ dp' a,q’ (12)
p,g€(n] a€ X where .
p',q' €[n] 7=4(pa)
\/ \/ [zl,q o N fy (13)
i€[n2]q )
q EF

We now prove the correctness of the propositional formula &4 that we construct using the above constraints:
Theorem 3. Let & be as defined above. Then, we have the following:

(1) If @4 is satisfiable, then there exists a DFA A’ that is an n-description and L(A") C L(A).
(2) If there exists a DFA A’ that is an n-description and L(A’) C L(A), then ®* is satisfiable.

To prove the above theorem, we propose intermediate claims, all of which we prove first. In what follows, we as-
sume v to be a model of 4, A’ = (Q',%,0',q;’, F’') to be the DFA constructed from a model v of ¢* and
A=(Q,X,6,q1, F) to be the current hypothesis.

Claim. For allu € Pref(P), A" : qi' = g implies v(z,, 4) = 1.
Proof. We prove the claim using an induction on the length |u| of the word w.

Base case: Let u = €. Based on the definition of runs, A’ : ¢;/ < ¢ implies ¢ = ¢;’. Moreover, using Constraint
we have v(z. 4) = 1 if and only if ¢ = ¢;’. These two facts prove the claim for the base case.

Induction hypothesis: As induction hypothesis, let A’ : ¢;/ - ¢ implies v(z,, ;) = 1 for all words u € Pref(P) of
length < k. Now, consider the run A’ : ;" = ¢ % ¢ for some ua € Pref (P) For this run, based on the induction
hypothesis and the construction of A’, v(2y,q) = 1 and v(dp,q,4) = 1. Now, using Constraint[5} v(x,,q) = 1 and
v(dp,qa,q) = 1 implies v(zyq,q) = 1, proving the claim.

Claim. Forallw € ¥*, A:q; = qand A : ¢; = ¢ imply v(yj;}q,) =1.
Proof. 'We prove this using induction of the length |w| of the word w.

Base case: Let w = e. Based on the definition of runs, A : q; = ¢, A’ : ¢/ = ¢ implies ¢ = ¢; and ¢ = q;’.
Moreover, using Constraint q = qr and ¢’ = ¢q;’ implies v(y;‘}q,) = 1. These two facts prove the claim for the
base case.

Induction hypothesis: As induction hypothesis, let A : g; — g and A’ : q;/ = ¢/ imply v(y;"‘q,) = 1 for all words

w € X* of length < k. Now, consider theruns A : q; — p = gand A’ : ¢;" = p' % ¢ for some word wa € X*
For this run, based on the induction hypothesis and the construction of A’, v(yﬁp,) =1land v(dp a,q) = 1. Now,
using Constraint together U(y;,‘}p/) =1land v(dy q,) = 1 imply v(y;‘}q,) = 1 (where ¢ = §(p, a)), proving the
claim.
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Claim. v(ziq,4) = 1 implies there exists w € X% withruns A : g; — gand A’ : ;" > ¢'.
Proof. We proof this using an induction on the parameter i.

Base case: Let i = 0. Based on the Constraints and v(20,q,¢/) = 1 implies ¢ = ¢ and ¢ = ¢;’. Now, there
always exists a word of length 0, i.e., w = ¢, for which A : q; = gand A’ : ¢;/ = ¢ proving the claim for the
base case.

Induction hypothesis: As induction hypothesis, let v(zy p /) = 1 hold and thus, w be a word of length % such that
A:q S pand A - g 2 p'. Now, consider V(2k+1,q,/) = 1. Based on Constraint for some a € XY
such that ¢ = 6(p,a), v(dy ) = 1 Thus, on the word wa, we can have the runs A : ¢r — p % ¢ and
A g 5 ' S ¢, proving the claim.

We are now ready to prove Theorem i.e., the correctness of 4.

Proof (of Theorem . For the first direction, let consider & is satisfiable and v is a model of $ and A’ be the DFA
constructed from the model v. First, based on Claim forallw € P, A': q;/ = ¢ This further implies ¢ € F,
using Constraint[6] Thus, A" accepts all positive words and hence, is an n-description. Second, based on Claim[A.1]
for all words w € X*, A : q; — qand A : ¢/ = ¢ imply v(yé‘}q,) = 1. Thus, if ¢ € F, then ¢’ ¢ F, using
Constraint@, implying L(A’) C L(A). Third, based on Claim|[A.1} v(z;, ) = 1 implies there exists w € X with
runs A : ¢ — gand A’ : ¢/ =5 ¢’ Combining this with Constraint , we deduce that there exists w € X* with
length < n? with a run of A ending in F and run of A’ not ending in F’. This shows that L(A) # L(A’). We thus
conclude that A is an n-description and L(A') C L(A).

For the other direction, based on a suitable DFA A’, we construct an assignment v for all the introduce propositional
variables. First, we set v(dp.q,q) = 1if §'(p,a) = g and v(f,) = 1if ¢ € F’. Since J is a deterministic function, it is
clear that v satisfies the Constraint Similarly, we set v(z,,,) = 1if A’": g; = g for some u € Pref(P). It is again
a simple exercise to check that v satisfies Constraints 4 to |6 Next, we set v(y;‘}q,) = 1 if there are runs A: q; — ¢

and A': q;/ = ¢ on some word w € X*. The runs of the DFAs can be simulated using simple breadth-first search
techniques. Again, with a quick check, one can see that model v satisfies Constraints[7]to[9] Finally, we set assignment
to 2i 4.4 exploiting a word w which permits runs A: ¢y — g and A’: q;" = ¢, where g is in F but ¢’ not in F. In
particular, we set v(z; 4./) = 1 for i = |u] and A: g; Z gand A': q;' = ¢ for all prefixes u of w. Clearly, such an
assignment encodes a synchronized run of the DFAs .4 and .4’ on word w and thus, satisfies Constraints|10|to

The correctness of the encoding $** provides in a straightforward manner the correctness of the symbolic algo-
rithm, since the search space of DFA of upto size n is finite.

A.2 The complete algorithm with heuristics

We first present the complete symbolic algorithm (i.e., along with the main heuristics) for solving the OCC problem for
DFA (Problem I)). The pseudocode is sketched in Algorithm [2] Compared to the algorithm presented in Algorithm
we make a few modifications to improve performance. First, we introduce a set P’ (also described in Section [5)) to
store the set of positive words necessary for learning the hypothesis DFA A’. Second, we incorporate an incremental
DFA learning, meaning that we search for DFAs satisfying the propositional formula ¢ of increasing size (starting
from size 1). To reflect this, we extend @A with the size parameter, represented using @A™ to search for a DFA of
size m.

A.3 Comparison with a Semi-symbolic Approach

We have introduced counter-example guided, semi-symbolic and symbolic approaches in this paper. Our exploration
of these methods wouldn’t be complete if we didn’t also tried a semi-symbolic algorithm for learning DFA. Hence,
we introduce S—SYMpra, a semi-symbolic approach for learning DFA. This is done in a similar fashion than for LTL
(Algorithm, but with DFA instead. Hence, we define the SAT problem as DA = Pppa APp AD N A ®3 4. In practice,
S—SYMpra is always worse than SYMpra, both in term of inference time (in average, 3.2 times more) and number of
iterations (in average, 2.1 times more), as demonstrated in Figure@
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Algorithm 2: Symbolic Algorithm for Learning DFA (with heuristics)

Input: Positive words P, bound n
I A Ase, * « Do A Dp
2P +0m+1
3: while m < n do

4 QA PPN D NP ADpa
5: if no model v satisfies ™ then
6: m<+—m+1
7: else
8: A’ < DFA constructed from v
9: if exists w € P\ L(A’) then
10: Add the shortest of such w to P’
11: else
12: A+ A
13: end if
14: end if
15: end while
16: return A

Algorithm 3: Semi-symbolic Algorithm for LTL formulas
Input: Positive words P, bound n
I: N« 0,D+ 0
D o, NP — @ AUp
. while 277 is satisfiable (with model v) do
¢’ < LTL formula constructed from v
if ¢’ — ¢ then
Update ¢ to ¢’
else
Add w to N, where w = —¢' A ¢
9:  endif
10 QNP =W AUp AUN AW,
11: end while
12: return ¢

A A

B Results for the Semi-symbolic Algorithm in Section [4.1]

B.1 The Algorithm

We first present the pseudo-code of the semi-symbolic algorithm for solving the OCC problem for LTL formulas
(Problem2).
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Fig.5: Comparison of SYMpra and S—SYMpra in terms of the inference time and the number of iterations of the main

loop.

B.2 All the constraints

We here provide all the constraints necessary for constructing the main propositional formula ¥V, We begin by
listing the structural constraints required for Yy ry.

/\ { \/ ;A A /\ [_‘l'i,)\ V ﬁﬂﬂi,x]}

ic[n] AeA A£ENEA

A [\/ Lin o N\ [ﬂr,-dvﬁli,j/]}

i€{2,---,n} jeE€[i—1] j#j'€li—1]

/\ [ \/ rig A\ /\ [ﬁri’j\/ﬁri,j”

i€{2,--,n} je€[i—1] j#£j €li—1]
\/ T1,a

acX
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We then move on to the semantic constraints required for ¥p and ¥y.

iu,tifa:wH
A Awo=]| A {?iyzu,tifa#zm ]

i€[n] a€X te(|wl]

/\ Tiv Nl N1y o — [ /\ |:yzut A l/fm N ijt:H
i€[n] TE[|wl]
3.3’ €li—1]

/\ zix Ny — [ /\ Yoot < Y11 A _‘yq]u,|w|
i€[n] te(|w|—1]
jeli-1]

/\ riu Nl ANry o — { /\ |:yzwt <

i€[n] tef|w(]

33" €ld]
\/ |:y7{)/,t’ N /\ yzu,‘r}:|

t<t'€fjwl] t<r<t!

As mentioned in the Section Wp additionally imposes \/,, ¢ p Yo o and ¥y imposes \/ , c v %1 o

Next, we provide the constraints in ¥4 for symbolically encoding a word of length at most K.

/\ [ \/ Dta N /\ [ﬂpt,a\/_'pt,afﬂ

te[K] aceXU{e} aFa’' € XU{e}

/\ Pte = Dt+1,e
te[K—1]

.
We now mention the constraints in Wy, to ensure the meaning of the variables zf’t’l:

A N wia— [ N =4 Hpt,a:|

i€[n]acXy te[K]
/\ Ty A l@j AT g —
i€[n]

3.4"€li=1]

’ . 7. i
) ] ® 3
[ /\ [zwi 24 \/Zu,t H
te[K]

/\ Tix N liyj —

i€[n]
jeli—1]
! ’
@t ® 5] L2 Y
[ /\ R e R R A ]
te[K—1]
/\ T;u N liﬂ‘ ATy —
i€[n]
4,5" €ld]

(A [ie V[ A )

te[K] t<t’'€[K] t<r<t’

(18)

(19)

(20)

2D

(22)

(23)

(24)

(25)

(26)

27)

As evident, the above constraints are identical to the Constraints [18[to [21{imposed on variables y., ;. The constraints

on variables zgz are quite similar. The only difference is that, for hypothesis (, we know the syntax DAG exactly and

thus, can exploit it instead of using an encoding of the syntax DAG.
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Finally as stated in Section[d.1] ¥y, is expressed as follows:

Wword A g’sem A Z;f:g A ﬁzf (,)n (28)

We now prove the correctness of the encoding ¥V described using the constraints above.
Theorem 4. Let W be as defined above. Then, we have the following:

(1) If %N is satisfiable, then there exists an LTL formula ' that is an n-description, ©' does not hold on w € N

and o 4 ¢,
(2) If there exists a LTL formula ¢' that is an n-description, ' does not hold on w € N and ¢ /> ¢', then U¥N is

satisfiable.

To prove this theorem, we rely on intermediate claims, which we prove first. In what follows, v is a model of g N
¢’ is the LTL formula constructed from v and ¢ is the current hypothesis LTL formula.

Claim. Forallw € PUN, v(y;, ;) = 1 if and only if w(t:] |= ¢[i].
The proof proceed via a structural induction over ¢'[i]. For a proof of this claim, we refer the readers to the correctness
proof of the encoding used by Neider and Gavran|(2018).

A .
Pty P,
w,t ) =1 (resp. U(Zw:t

Claim. v(z ) = 1) if and only for a word w, w[t:] |= ¢’ (resp. w[t:] E ¥).

The proof again proceeds via a structural induction on ¢’ (resp. ) (similar to the one show by Neider and Gavran
(2018)).

We are now ready to prove Theorem i.e., the correctness of 27,

Proof (of Theorem E]) For the first direction, let consider ¥#-" is satisfiable and v is a model of ¥¥"V and ¢’ be
the LTL formula constructed from the model v. First, based on Claim we have that v(y,; ;) = 1 if and only
if w[t:] |= ¢'. Now, based on the constraints ¥p and ¥y, we observe that v(y;, o) = 1 for all words w € P and
V(s 0) = O for all words w € N. Thus, combining the two observations, we conclude w = ¢’ for w € P and
w fE ¢ for w € N Next, using Claim and conjunct ¥y, we conclude that there exists a word w on which ¢
holds and ¢’ does not. Thus, in total, we obtain ¢’ to be an n-description which does not hold on w € N and ¢ 4 ¢

For the other direction, based on a suitable LTL formula ¢’, we construct an assignment v for all the introduce
propositional variables. First, we set v(z; x) = 1 if Node 7 is labeled with operator X and v(l; ;) = 1 (resp. v(r; ;) = 1)
if left (resp. right) child of Node 7 is Node j. Since ¢ is a valid LTL formula, it is clear that the structural constraints
will be satisfied by v. Similarly, we set v(y}, ;) = 1if w[t:] = ¢'[i] for some w € PUN, t € [|w]]. It is again a simple

ZQP

) = 1land v(zf,;”) for a word w for which

exercise to check that v satisfies Constraints (18| to a Next, we set v(
w = ¢ and w = . It is again easy to check that v satisfies ¥, .

The correctness of the encoding ¥¥+V provides in a straightforward manner the correctness of the semi-symbolic
algorithm, since the search space of LTL formula of upto size n is finite.

C A symbolic algorithm for learning LTL formulas

We now describe few modifications to the semi-symbolic algorithm presented in Section to convert it into a
completely symbolic approach. This algorithm relies entirely on the hypothesis LTL formula ¢ for constructing a
propositional formula ¥¥ that guides the search of the next hypothesis. Precisely, the formula &% has the properties
that: (1) ¥¥ is satisfiable if and only if there exists an LTL formula ¢’ that is an n-description and ¢ 4 ¢’ and ¢’ — ¢;
and (2) based on a model v of #¥:"V, one can construct such an LTL formula.

The algorithm, sketched in Algorithm |4} follows the same framework as Algorithm [I| We here make necessary
modifications to search for an LTL formula. Also, the propositional formula ¥¥ has a construction similar to 2%:P,
with the exception that ¥y is replaced by ¥_, .

We here only describe the construction of the conjunct ¥_,,, which reuses the variables and constraints already
introduced in Section .11

Vo = Vie[K],aesPta : “Ep‘”rd N Psen] — Zni = Ziﬁ?} 29

Intuitively, the above constraint says that if for all words u of length < K, if ¢’ holds on u, then so must ¢.
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Algorithm 4: Symbolic Algorithm for Learning LTL
Input: Positive words P, bound n
1D o s+, 0P =Y ANVUp
: while V¥ is satisfiable (with model v) do

2

3 ( < LTL formula constructed from v
4: U? =Y AUp A LD*;QP A LD?Lv
5

6

: end while
: return @

C.1 Evaluation of SYMyr1,

We refer to this symbolic algorithm for learning LTL formulas (Algorithm[) as SYMr 1. We implement SYM; o1, using
QASP2QBF [Fandinno et al.| (2021)). SYM;r;, has an inference time several orders of magnitude above the inference
time of S-SYM; 1, as demonstrated in Figure [6] This can be explained by the choice of the solver, and the inherent
complexity of the problem due to quantifiers. On the third experiment (Section 3)), SYM; 1, timed out even for n = 1.

70 (2 7 () P3

= 102

=

< 10!

S

g —e— CEGrtL

= 100 — @ S-SYMq
1071 '

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
bound n bound n bound n

Fig. 6: For each sample of the second experiment (Section , comparison of the inference time between CEGrrz,
S—=SYM;,T1, and SYMy 11,

D The Counter-example guided Algorithm for learning LTL formula

We present the full pseudo-code for the counter-example guided algorithm from Section 2] in Algorithm [5] This
algorithm is also referred as CEGy1y,.

E LTL patterns

We use ground-truth LTL formulas from Table[I]to generate the samples for the second experiment (Section[3). These
LTL formulas are categorized in different categories, i.e., absence, existence, universality, and disjunctions of common
LTL patterns.
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Algorithm 5: CEG Algorithm for LTL formulas

Input: Positive words P, bound n
. N« 0, D+ 0
2 @ pue, QNP =W AP
3: while 277 is satisfiable (with model v) do

4.

5:  if ¢’ + ¢ then

6: Add ¢’ to D

7:  else

8: if ¢’ —  then

9: Add w to N, where w = —¢ A ¢’
10: o ¢

11: else
12: Add w to N, where w = —¢' A ¢
13: end if
14:  endif

15: QNP =Wy AWp AUN AUD
16: end while
17: return ¢

absence existence universality

G (—ao) Fao G ao
G(a1 = G(—ao)) (G(—ao)) V (F(ao A (Fai))) G(a1 = Gao)
Fa — (ﬁao Ual) G(ao N ((ﬁal) — ((ﬁ(h) U(a2 A (ﬁal))))) Fa — (ao Ual)

disjunction of common patterns

(Faz2) V ((Fao)V (Fa1))
((G(ma0)) V (F(ao A (Fa1)))) V ((G(-as)) V (F(az A (F a3))))
(G(ao A ((ma1) = ((ma1) Ulaz A (5a1)))))) V (Glas A ((masa) = ((maq) Ulas A (2a4))))))

Table 1: Common LTL patterns used for generation of words.
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