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Abstract

In this work, we perturbatively calculate the modular Hamiltonian to obtain the

entanglement entropy in a free fermion theory on a torus with three typical deforma-

tions, e.g., T T̄ deformation, local bilinear operator deformation, and mass deformation.

For T T̄ deformation, we find that the leading order correction of entanglement entropy

is proportional to the expectation value of the undeformed modular Hamiltonian. As

a check, in the high/low-temperature limit, the entanglement entropy coincides with

that obtained by the replica trick in the literature. Following the same perturbative

strategy, we obtain the entanglement entropy of the free fermion vacuum state up to

second-order by inserting a local bilinear operator deformation in a moving mirror set-

ting. In the uniformly accelerated mirror, the first-order and second-order correction

of entanglement entropy vanishes in the late time limit. For mass deformation, we

derive the entanglement entropy up to first-order deformation and comment on the

second-order correction.
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1 Introduction

Entanglement is crucial to exploring the information encoded in the quantum theory. One of

the important tools to demonstrate the entanglement between complementary spatial regions

is entanglement entropy. The system is divided into the subsystem A and the complement
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subsystem B. The entanglement entropy between A and B is defined as the von Neumann

entropy as

SA = −TrA[ρA log ρA], (1.1)

where ρA is the reduced density matrix of the subsystem A. Usually, the direct analysis

of the entanglement entropy in the logarithmic form as (1.1) is complex. In practice, one

may use the replica trick to compute the entanglement entropy [1]. In this approach, one

firstly calculates the Rényi entropy on an n-fold cover of a manifold. Then the entanglement

entropy could be obtained by taking the n→ 1 limit of the Rényi entropy. In the viewpoint

of holography, the entanglement entropy corresponds to the area of extremal surface in the

bulk spacetime which is known as the Ryu-Takayanagi(RT) formula [2, 3].

The entanglement entropy can also be evaluated from the expectation value of modular

Hamiltonian KA of the subsystem A which by definition is related to reduced density matrix

as

ρA =
e−2πKA

TrAe−2πKA
. (1.2)

Modular Hamiltonian can be used to calculate the relative entropy of excited state [4,5]. It

plays a crucial role in proving of the first law of entanglement [6,8–12,65] and the averaged

null energy condition [13]. The gravity duality of modular Hamiltonian becomes a effective

tool to reconstruct the bulk operator in [14–16]. In terms of the modular Hamiltonian, the

entanglement entropy can be written as

SA = 2π〈KA〉+ log(TrAe
−2πKA). (1.3)

In general, the modular Hamiltonian is non-local, and the explicit expression is difficult

to write down. Nevertheless, there are a few cases where the modular Hamiltonian is known

analytically in field theory. From the result of Bisognano and Wichmann [18,19], the modular

Hamiltonian is the boost generator for the half-plane x > 0 of the flat Minkowski space. For

a conformal field theory (CFT), the authors of [17,20] obtained the modular Hamiltonian of

a spherical region by the conformal mapping from the thermal state. When the subsystem

is conformally equivalent to the annulus, the modular Hamiltonian is constructed in [21]. In

the case of chiral fermion in 1 + 1 dimension, the modular Hamiltonian is provided for the

gaussian state by using the resolvent [21–24].

Furthermore, it is nontrivial to explore the entanglement entropy and modular Hamil-

tonian for more generic entangling surfaces and states, even employing the perturbative

approach [25]. When the entangling surface between the subregions is disturbed, it was

suggested in [26] that the modular Hamiltonian’s shape dependence is needed for proving

the quantum null energy condition. One can refer to [27–29] for studying the shape depen-

dence of the entanglement entropy of vacuum state in both dual CFTs and the gravity side.
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The entanglement entropy and modular Hamiltonian of excited state for a ball shape region

are investigated in [5] in which the authors give a correspondence from both sides of the

holographic duality. The evaluation of modular Hamiltonian of excited state can be found

in [30–32].

It is a nontrivial temptation to understand the generic structure of modular Hamiltonian

in generic quantum field theory, even in a perturbative sense. In recent years, much atten-

tion has been paid to the T T̄ deformed quantum field theory which keeps the integrability

properties of the undeformed theory [33,34]. From holographic viewpoint, the T T̄ deformed

CFTs dual to the cutoff AdS3 spacetime [35], which is refined by [36] recently. Under such

duality, the holographic entanglement entropy can be computed by RT surface in finite-cutoff

geometry [35–42].1 In field theory side, the entanglement entropy of vacuum state and local

excited states in deformed theories has been investigated in [43] [44] [45] [46] [47]. Besides

the T T̄ deformation, studying the free field theory with mass deformation is also interesting.

In [29]̈ı¼Œ authors showed the entanglement entropy of free fermions and scalars [48] with

mass deformation matches the results from the holographic calculation, which suggests that

the free field theory is useful for understanding the holography. Further, one can obtain

the modular Hamiltonian and its flow by turning on an local operator in the path integral

formalism in [31, 52], as well as the time evolution of entanglement entropy for free fermion

under the local bilinear operator deformation [57].

In this work, we focus on the modular Hamiltonian in free fermion field theory on a

torus with three kinds of deformation mentioned above, i.e., T T̄ deformation, mass term

deformation, and local bilinear operator deformation. In the case of T T̄ deformation, we

study the chiral fermion on a torus [53] whose entanglement entropy can be calculated

from the modular Hamiltonian and the technical details of developed in [54, 55]. Further,

following similar construction in [52, 57], we turn on a local bilinear operator deformation

in moving mirror setup [58] to mimic hawking radiation [59] under the disturbance of the

locally external source. Finally, we investigate the modular Hamiltonian from its local term

in the free fermion on a torus with a mass term deformation [56].

The remainder of this manuscript is organized as follows. In Sec. 2, the modular Hamil-

tonian on a torus and the conventions are introduced. Next, the modular Hamiltonian of a

single interval on a cylinder and an interval at the end of a semi-infinite line is computed.

To study the entanglement entropy of T T̄ deformed fermions in Sec. 3, the entanglement

entropy of free fermion with a T T̄ deformation for a single interval on a torus is firstly an-

alyzed from the modular Hamiltonian in Sec. 3.1. In this case, the modular Hamiltonian’s

local and non-local parts are evaluated. Next, the entanglement entropy correction of free

1There is an alternative holographic dictionary which stated that the T T̄ deformed CFT is dual to the

AdS3 with mixing boundary condition [49–51].
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fermion with a T T̄ deformation for a half-line is evaluated in Sec. 3.2. Then, we obtain

the entanglement entropy on a torus of a local bilinear operator deformed fermions in Sec.

4.1. In Sec. 4.2, the entanglement entropy for moving mirror of chiral fermion with a local

bilinear operator is studied. Following a similar method, we derive entanglement entropy on

a torus of mass deformed fermions in Sec. 5. Finally, the conclusions is presented in Sec. 6.

2 Entanglement entropy and modular Hamiltonian

In this section, we establish the notations and conventions for the modular Hamiltonian of

free chiral fermion on a torus, i.e., finite size and finite temperature system. At the same

time, we review the derivation of modular Hamiltonians on a cylinder and a half-line that

we will need for our analysis.

It was found in [22] that the modular Hamiltonian of the chiral fermion field consists of

two parts: the local modular Hamiltonian and the bi-local modular Hamiltonian. The latter

appears for multi-interval cases on a plane. The situation is more complicated on a torus,

where the modular Hamiltonian would develop both local and bi-local parts even for a single

interval [24].

To demonstrate the properties of the Gaussian state,2 the author of [60] gave an ex-

ample in the fermionic hopping model. The Hamiltonian of the system satisfies Ĥ =

−
∑

n,m tn,mc
†
ncm where tn,m is the hopping amplitude between nearest sites and ci,j is the

fermion field of the model.

Study a subregion M with the notation i, j label the sites. For the state which is Slater

determinant, the high correlation function Ci,j can be factorized through the one point

function as Ci,j = tr(ρc†icj). According to the Wick’s theorem, when the reduced matrix ρ is

exponential of the free-fermion operator, one has ρ = Ke−H, where K is the normalization

constant and H =
∑

i,j Hi,jc
†
icj. of the chiral fermion field ψ, the reduced density matrix

is [60,61] also Gaussian. For a subystem restricted to a single interval A = (a, b) on a torus,

the modular Hamiltonian takes the form

KA =

∫
A

dxdyψ†(x)kA(x, y)ψ(y), x, y ∈ A (2.1)

where kA(x, y) is the kernel which is related with the two-point correlation function GA(x, y)

through kA = − log(G−1
A − 1).3 It was shown in [24] that the modular Hamiltonian of chiral

fermion on a torus can be separated into a local term and a bi-local term as

KA = KlocalA +Kbi−localA . (2.2)

2Gaussian state is a state of a Hamiltonian which is quadratic in the creation or annihilation operator.
3Here GA(x, y) ≡ 〈ψ(x)ψ†(y)〉 is the two-point function of the chiral fermions with x, y ∈ A.
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As our study involves the system in Minkowski spacetime and Euclidean spacetime, we will

introduce the corresponding modular Hamiltonian and stress tensor separately.

In the Minkowski spacetime with the coordinate (x, t), the local modular Hamiltonian

for chiral fermion is constructed by an integral as

K̃localA =

∫
A

β(x)Ttt(x, t)dx, (2.3)

where β(x) = 2πβ
2π+β∂x log ΩA(x|τ)

is the entanglement temperature with ΩA(x|τ) = −ϑ1(x−a|τ)
ϑ1(x−b|τ)

.4

The tt-component of stress tensor is Ttt(x, t) = i
2
[ψ†(x, t)γtγx∂xψ(x, t)−∂xψ†(x, t)γtγxψ(x, t)]

with 2-component spinor ψ(x, t) = (ψ1(x+ t), ψ2(x− t)), or

Ttt(x, t) =
i

2

(
ψ?1(x+t)∂xψ1(x+t)−∂xψ?1(x+t)ψ1(x+t)

)
− i

2

(
ψ?2(t−x)∂xψ2(t−x)−∂xψ?2(t−x)ψ2(t−x)

)
.

(2.4)

For chiral fermion on a torus corresponding to spin sectors ν = 2 (real periodic, complex

antiperiodic) and ν = 3 (doubly antiperiodic) [24], the bi-local modular Hamiltonian is 5

K̃bi−local± =

∫
A

∑
k∈Z\{0}

(±1)kβ̃(x, xk(x))ψ†(x, t)ψ(xk(x), t)δ
(
x−xk+β

1

2π(b− a)
log

ΩA(x|τ)

ΩA(xk|τ)
−k
)
dx,

(2.5)

where the symbol +,− correspond to the spin sector ν = 2, 3. And the points xk satisfies

the equation below

x− xk + β
1

2π(b− a)
log

ΩA(x|τ)

ΩA(xk|τ)
− k = 0. (2.6)

Here the bi-local entanglement temperature defines as

β̃(x, y) =
iπ

(b− a) sinh 1
2(b−a)

log ΩA(x|τ)
ΩA(y|τ)

. (2.7)

In Euclidean signature, the authors of [61] studied the entanglement entropy and modular

Hamiltonian for chiral fermions on a torus from the images method. In the limit β →∞, the

modular Hamiltonian in [61] is consistent with (2.3) and (2.5) after the analytic continuation

of imaginary to real-time.

In the present work, the modular Hamiltonian in Euclidean signature is obtained by the

analytic continuation τ̃ → it of (2.3), (2.5) and (2.4). Then the stress tensor reads

Tzz =
i

2

(
ψ∗(z)∂ψ(z)− ∂ψ∗(z)ψ(z)

)
(2.8)

4The periods of a torus is taken to be 1, τ = iβ. ϑ1 is the Jacobi-ϑ function shown in the App. C. And

define γt =

(
0 1

1 0

)
, γx =

(
0 −1

1 0

)
.

5For the cases ν = 1, 4, the related Green’s function is unbounded. There is no good expression for the

entanglement entropy in the resolvent approach pointed out in [53]
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with the complex coordinate z = x+ iτ̃ , z̄ = x− iτ̃ .6The local and bi-local modular Hamil-

tonian in Euclidean spacetime are respectively

KlocalA = −
∫
A

β(x)Tτ̃ τ̃ (x, τ̃)dx, (2.9)

Kbi−local± = −
∫
A

∑
k∈Z\{0}

(±1)kβ̃(x, xk(x))ψ†(x, τ̃)ψ(xk(x), τ̃)δ
(
x−xk+β

1

2π(b− a)
log

ΩA(x|τ)

ΩA(xk|τ)
−k
)
dx.

(2.10)

2.1 Single interval on a cylinder

Before studying the modular Hamiltonian on a torus, two specific examples are given to

show the construction of the modular Hamiltonians by conformal mapping [21], which will

be used in Sec. 3.1.1. In the first case, we study a cylinder that is equivalent to a torus

at the zero temperature limit β → ∞. The modular Hamiltonian for a single interval

V = {(−R,R), ` = 2R} takes the following form [21]

KV =

∫
C

(Tzz + c
24π
{f(z); z})

f ′(z)
dz +

∫
C̄

(T̄z̄z̄ + c
24π
{f(z̄); z̄})

f ′(z̄)
dz̄. (2.11)

This expression corresponds to the local modular Hamiltonian (2.9) discussed in previous

section. C is the intersection of the spatial region V with a constant time slice and {f(z); z}
is the Schwarzian derivative with f(z) = log

(
e2πiz−e−2πiR

e2πiR−e2πiz

)
. c represents the central charge.

7 For the static case evaluated hereafter, we will take a Euclidean time slice at τ̃ = 0. Then

C = C̄, and the modular Hamiltonian (2.11) is simplified to 8

KV = −
∫
C

Tτ̃ τ̃ (x)

f ′(x)
dx+

c

12π

∫
C

{f(x);x}
f ′(x)

dx. (2.12)

For a cylinder of circumference L, the one-point function for stress tensor is [62]

〈Tτ̃ τ̃ 〉 =
πc

6L2
. (2.13)

Plugging (2.13) and the function f(z) into (2.12), the modular Hamiltonian becomes 9

〈KV 〉 =
c

12π
log
( L
πε

sin
πl

L

)
+O(1). (2.14)

6Following [62], we introduce T = −2πTzz, T̄ = −2πTz̄z̄,Θ = −2πTzz̄ .
7Here we have −Tτ̃ τ̃ (τ̃ , x) = Tzz + T̄z̄z̄.
8The extra minus sign in front of the integral comes from the fact that the Hamiltonian density in

Minkowski signature is different from the euclidean one by a minus sign.
9Details of the calculation is demonstrated in the App. A.
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2.2 Single interval at the end of a semi-infinite line

As for the other example, investigate a spacial subregion A = (−R, 0) at the end of semi-

infinite line B = (−∞, 0). Following the similar procedure in the above subsection, one can

construct the modular Hamiltonian of the interval A through the conformal transformation

f(z) = log R+z
R−z . Plugging f(z) into (2.12), then it is shown that

〈KA〉 =
c

12π

∫
A

R

R2 − x2
dx, (2.15)

where we have used the one-point function of stress tensor on the half-plane 〈T (z)〉 = 0 [63].

Then the modular Hamiltonian is

〈KA〉 =
c

12π
log

2R

ε
. (2.16)

3 Entanglement entropy of T T̄ deformed fermions

In this section, we would like to investigate the entanglement entropy for free chiral fermion

with T T̄ deformation perturbatively. Both finite (Sec. 3.1) and infinite (Sec. 3.2) system

are taken into consideration.

Let us begin with deriving the entanglement entropy of a system under general deforma-

tion denoted as T by employing modular Hamiltonian. The perturbed action upto the first

order in coupling constant λ reads 10

Iλ = ICFT − λT . (3.1)

For the T T̄ deformation, we have T ≡ TT = i
2

∫
M d2zT (z)T̄ (z̄). In the same setting, the T T̄

deformed correlators on a torus were evaluated by using the perturbative approach in [64].

The entanglement entropy of the subsystem A can be expanded as11

SA(λ) = S
(0)
A + λ

dSA(λ)

dλ

∣∣∣∣∣
λ=0

+
λ2

2

d2SA(λ)

d2λ

∣∣∣∣∣
λ=0

+ ...., (3.2)

From eq. (1.2), the entanglement entropy can be written in path integral formalism as [54]

SA(λ) =
1

Zλ

∫
Dψe−Iλ

(
2πKA(λ) + log(trAe

−2πKA(λ))
)
, (3.3)

10Here the coordinate transformation is chosen to be d2x = i
2d

2z.
11The superscript (i) represents the i-th order correction of expectation value. For simplicity, we drop the

expansion parameter and one can read the expansion order from the power of coupling constant λ.
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where Zλ is the partition function of the system. It is derived in [54,55] that the first-order

derivative of the entanglement entropy is 12

dSA(λ)

dλ
= 〈2πT KA(λ)〉λ − 〈T 〉λ〈2πKA(λ)〉λ. (3.4)

Plugging (3.4) into (3.2), the entanglement entropy is

SA(λ) = S
(0)
A + 2πλ

(
〈T KA(λ)〉λ − 〈T 〉λ〈KA(λ)〉λ

)∣∣∣
λ=0

+O(λ2)

= S
(0)
A + ∆SA(λ), (3.5)

where ∆SA(λ) is the correction of the entanglement entropy of deformed theory. Then the

leading order correction of the entanglement entropy S
(1)
A gives the first law of entanglement

entropy [11,55,65]̈ı¼Œ

S
(1)
A = 2πλ

(
〈T KA(λ)〉λ − 〈T 〉λ〈KA(λ)〉λ

)∣∣∣
λ=0

. (3.6)

3.1 Single interval on a torus

3.1.1 Local modular Hamiltonian

As mentioned before the modular Hamiltonian of chiral fermions for a single interval A =

(a, b) on a torus contains local and bi-local terms. We first investigate the contribution from

the local modular Hamiltonian to the entanglement entropy of T T̄ deformed chiral fermions.

From the (3.6), we have

SlocalA

(1)
= 2πλ

(
〈TTKlocalA (λ)〉λ − 〈TT 〉λ〈KlocalA (λ)〉λ

)∣∣∣
λ=0

. (3.7)

To calculate (3.7), we first introduce the partition function and correlation function for chiral

fermions on a torus which will be needed for analysis. The partition function on a torus for

general CFT is 13

Z = Tr(qL0−c/24q̄(L̄0−c/24)), q = e2πiτ . (3.8)

For the free fermion with spin structure ν, the partition function on a torus is factorized into

holomorphic and antiholomorphic parts as [62]

Zν = Z ′νZ̄
′
ν , Z ′ν(τ) =

(ϑν(τ)

η(τ)

)1/2

. (3.9)

12Please refer to App. B for a detailed derivation.
13L0 is the zero mode operator of the energy density.

8



where η(τ) is the Dedekind function, ϑν is Jacobi-ν function. The two point correlation

function of chiral fermion with spin secotr ν satisfies

〈ψ?(z)ψ(w)〉ν =
1

2πi
Pν(z − w),

〈ψ̄?(z̄)ψ̄(w̄)〉ν =
1

2πi
P̄ν(z̄ − w̄), ν = 2, 3, 4 (3.10)

where

Pν(z) =
√
P (z)− eν−1 =

ϑν(z|τ)∂zϑ1(0|τ)

ϑ1(z|τ)ϑν(0|τ)
. (3.11)

Here P (z) is the Weierstrass P function defined in the App. C. One can apply point-splitting

regularization [66] to compute the following one-point functions

〈∂ψ?(z)ψ(z)〉ν = lim
w→z

(〈∂ψ?(z)ψ(w)〉ν + (z − w)−2) =
1

2πi
∂Pν(0) = − 1

2πi
eν−1. (3.12)

To fix the second term of (3.7), one can apply the 〈T (z)T̄ (z̄)〉014 given by [64].

〈T (z)T̄ (z̄)〉0 = −(2πi)2 1

Z
∂τ∂τ̄Z, (3.13)

Then one can obtain

〈TT 〉0 =
i

2

∫
M
〈T (z)T̄ (z̄)〉0d2z = −i(2πi)2τ

1

Z
∂τ∂τ̄Z. (3.14)

As indicated in (2.9), the local modular Hamiltonian is expressed as the integral of the

energy density which can be separated into holomorphic and antiholomorphic parts, i.e.

T (w) + T̄ (w̄). Accordingly, we separated the local modular Hamiltonian into two parts

〈KlocalA 〉0 = 〈KlocalA 〉h0 + 〈KlocalA 〉h̄0 (3.15)

with

〈KlocalA 〉h0 = i∂τ lnZ

∫
A

β(x)dx, 〈KlocalA 〉h̄0 = −i∂τ̄ ln Z̄

∫
A

β(x)dx. (3.16)

Here we used 〈T (w)〉 = −2πi∂τ lnZ, 〈T̄ (w̄)〉 = 2πi∂τ̄ ln Z̄ [64] and (2.9).

Plugging the modular Hamiltonian defined in (2.9) into the first term of (3.7), we obtain

〈TTKlocalA (λ)〉h0 =

∫
M

∫
A

β(w)〈Tww(w)T (z)T̄ (z̄)〉0d2zdw, (3.17)

where we have 〈TTKlocalA 〉h0 = 〈TTKlocalA 〉h̄0 . The correlator in the integral eq. (3.17) equals [64]

〈Tww(w)T (z)T̄ (z̄)〉0 =
4π2i∂2

τ∂τ̄Z

Z
− ic

12
∂2P (w−z)∂τ̄ lnZ+(P (w−z)+2η1)

4π∂τ∂τ̄Z

Z
, (3.18)

14〈...〉0 represents the expectation value in the undeformed theory.
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where η1 = ζ(1/2), and ζ(z) is the zeta function. And we set Z = Zν for convenience

hereafter. Thus we obtain

〈TTKlocalA (λ)〉0 =

∫
A

β(x)
(8π2τ∂2

τ∂τ̄Z

Z
+

8π2∂τ∂τ̄Z

Z

)
dx, (3.19)

where we have used the integrals in eq. (C.8) and eq. (C.9). Plugging (3.19), (3.14)

and (3.16) into (3.7), the leading order correction of entanglement entropy from the local

modular Hamiltonian is

SlocalA
(1)

2π
= λ

∫
A

β(x)
(8π2τ∂2

τ∂τ̄Z

Z
+

8π2∂τ∂τ̄Z

Z
− 4π2τ

1

Z
∂τ∂τ̄Z(∂τ lnZ − ∂τ̄ ln Z̄

)
dx.

(3.20)

Note that the terms in the bracket on the RHS are coordinate-independent. Comparing

the (3.20) with (3.16), the correction of the entanglement entropy is proportional to the

expectation value of local modular Hamiltonian for the undeformed fermions that

SlocalA

(1)
= 2πλ〈KlocalA (λ)〉0 ×

1

(i)∂τ̄ lnZ − (i)∂τ lnZ

(8π2τ∂2
τ∂τ̄Z

Z
+

8π2∂τ∂τ̄Z

Z

− 4π2τ
1

Z
∂τ∂τ̄Z(∂τ lnZ − ∂τ̄ ln Z̄)

)
, (3.21)

where the undeformed modular Hamiltonian is 〈KAlocal〉0 = i(−∂τ lnZ + ∂τ̄ ln Z̄)
∫
A
β(x)dx.

This local modular Hamiltonian can be calculated numerically. For the spin sector ν =

3 in the low-temperature limit β → ∞, the local modular Hamiltonian is simplified to

2π〈KAlocal〉0 = S
(local)
A

(0)
− log(Z) 15 according to (1.3), where the bi-local part of modular

Hamiltonian is zero [24].

By taking the large size limit in the space direction of the torus, the leading order

correction of entanglement entropy in (3.21) can be reduced to the results on a cylinder. To

show this, one can make use of the modular transformation τ → − 1
τ

and take the “high

temperature” limit β → 0. In the situation τ → 0, we obtain16

SlocalA

(1)
=

32λπ3∂τ∂τ̄Z

Z

∫
A

β(x)dx, (3.22)

According to (3.14), the stress tensor of a cylinder with Ramond boundary condition in the

time direction is

〈T (z)T̄ (z̄)〉0 =
(π2c

6β2

)2

. (3.23)

15By using the resolvent in [53], the spin-independent entanglement entropy for a single interval (a, b) in

CFT on a torus is SlocalA

(0)
= 1

6

(
log |ϑ1(b− a|τ)| − log |ϑ1(ε|τ)|

)
16Full demonstration can be found in App. A and C
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Plugging (A.7), (3.23), (3.14) and (3.22) into (3.21), the leading order correction to the

entanglement entropy is

lim
β→0

S
local(1)
A (λ) =

λlπ4c2

9β3
coth

πl

β
. (3.24)

It matches the entanglement entropy in T T̄ deformed CFT on a cylinder (2.22) in [38].

To compare the entanglement entropy on a torus with the result on a cylinder at zero

temperature, we evaluate the torus corresponding to the low-temperature limits β → ∞.

Using the Wick’s theorem,17 the entanglement entropy from (3.20) becomes

lim
β→∞

SlocalA

(1)
= −iπλ lim

β→∞

∫
A

β(x)

∫
M

( ∂̄P̄ν(0)(∂Pν(z − x))2

π
− ∂̄P̄ν(0)∂2Pν(z − x)Pν(z − x)

π

)
dxd2z

= 2λ lim
β→∞

∫
A

β(x)∂̄P̄ν(0)
(
eν−1(π + i2τη1)− iτ(eν−1)2 +

ig2τ

6

)
dx

= 2λ lim
β→∞

∫
A

β(x)∂̄P̄ν(0)
(
τ
(
i2η1eν−1 − i(eν−1)2 +

ig2

6

)
+ πeν−1

)
dx

= 0. (3.25)

The last equality follows from the fact that the first term of the third line is zero for ν = 2, 3

sectors, and the second term, which corresponds to the stress tensor, is suppressed by the

factor 1/β. In this way, the correction to the entanglement entropy vanishes in the low-

temperature limit, which is consistent with the eq.(2.37) in [38].

3.1.2 Bi-local modular Hamiltonian

Unlike the local modular Hamiltonian, the form of the bi-local modular Hamiltonian is

complicated. The correction of entanglement entropy from the bilocal modular Hamiltonian

is difficult to study even using the resolvent. In this subsection, the low-temperature region

β → ∞ is evaluated. As the bi-local modular Hamiltonian for spin sector ν = 3 is zero in

this limit [24], we focus on the ν = 2 sector at present.

In the low-temperature region β → ∞, the bi-local modular Hamiltonian (2.10) is sim-

plified to [24,61]

lim
β→∞

Kbi−local+ = −
∫
A1

∫
A2

i

` sinh 1
2`

log ΩA(x)
ΩA(y)

ψ†(x, τ̃)ψ(y, τ̃)dxdy. (3.26)

Using the perturbation method, the correction of the entanglement entropy from the bi-local

modular Hamiltonian for T T̄ deformed fermions is

Sbi−localA

(1)
= 2πλ

(
〈TTKbi−localA (λ)〉λ − 〈TT 〉λ〈Kbi−localA (λ)〉λ

)∣∣∣
λ=0

. (3.27)

17Please refer to [66] for related analysis.
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Applying the Wick’s theorem, the first term of eq. (3.27) equals

〈TTKbi−localA (λ)〉0

= −
∫
A1

∫
A2

β̃(x, y)〈ψ†(x, τ̃)ψ(y, τ̃)TT 〉dxdy

= − i
2

∫
A1

∫
A2

β̃(x, y)

∫
M
〈ψ†(x, τ̃)ψ(y, τ̃)T (z)T̄ (z̄)〉dxdyd2z

= −2× i

2

∫
A1

∫
A2

∫
M
β̃(x, y)

( ∂̄P̄2(0)∂P2(0)P2(x− y)

2πi
− ∂̄P̄2(0)∂P2(y − z)P2(x− z)

4πi

+
∂̄P̄2(0)∂P2(x− z)P2(y − z)

4πi

)
dxdyd2z, (3.28)

where an extra factor 2 in the third line comes from the contributions from two different

chiral fermion fields. Please refer to App. C for detail calculation. The eq. (3.28) turns out

to be

lim
β→∞
〈TTKbi−localA (λ)〉0 = − i

π
lim
β→∞

∫
A1

∫
A2

β̃(x, y)(iτ ∂̄P̄2(0)∂P2(0)P2(x−y)+π3∂̄P̄2(0)P2(x−y))dxdy.

(3.29)

Taking (3.29) into (3.27), the leading order correction of entanglement entropy is

lim
β→∞

Sbi−localA

(1)
(λ) = −2λπ4 lim

β→∞
∂̄P̄2(0)〈Kbi−local

A (0)〉, (3.30)

where 〈Kbi−local
A (0)〉 = −

∫ ∫
A
dxdyβ̃(x, y)P2(x−y)

πi
is the expectation value of undeformed bi-

local modular Hamiltonian (3.26). Therefore the leading order correction of entanglement

entropy based on the bi-local modular Hamiltonian contributes a term which is the expecta-

tion value of the modular Hamiltonian of the undeformed fermion multiplied by a constant.

From the analysis of the above two subsections, the leading order correction of entanglement

entropy for T T̄ deformed fermions on a torus from local(bilocal) modular Hamiltonian is pro-

portional to the expectation value of local(bilocal) modular Hamiltonian for the undeformed

fermions and its scale coefficient depends on the modular parameter τ .

3.2 A half-line on the plane

In the subsection, we turn to study the entanglement entropy of T T̄ deformed CFT for

the case where the chiral fermion is defined on an infinite line L at zero temperature, and

the subsystem is chosen to be a half-line P = {x|x > 0}. In such a setting, the modular

Hamiltonian is given by [18,19]

KP = −
∫
P

xTτ̃ τ̃ (x)dx. (3.31)
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Upto the second-order, the T T̄ deformed action is [66]

Iλ = ICFT−
iλ

2

∫
L

(
T (0)(z)T̄ (0)(z̄)−λ

2
(T (0)(z)T̄ (1)(z̄)+T (1)(z)T̄ (0))(z̄)

)
d2z = ICFT−λT (0)

T −
λ2

2
T (1)
T ,

(3.32)

where T (0) and T (1) are the undeformed stress tensor and its leading order correction respec-

tively. 18 From [54], the first order correction of the entanglement entropy is

1

2π

dSP (λ)

dλ
= 〈T (0)

T KP (λ)〉λ−〈T (0)
T 〉〈KP (λ)〉λ +

λ

2
(〈T (1)

T KP (λ)〉λ−〈T (1)
T 〉λ〈KP (λ)〉λ). (3.33)

Similar to the discussion in [25], the leading order correction of the entanglement entropy

vanishes since the integrand of 〈T (0)KP 〉λ ∝ (〈T̄ 〉+ 〈T 〉) which is zero in the plane. We now

extend the calculation to the second-order correction, which contains the correction of the

stress tensor for the deformed fermions.

Following the method in [54], the second-order derivative of the entanglement entropy

behaves as

1

2π

d2SP (λ)

dλ2
= 〈T (0)

T T
(0)
T KP (λ)〉λ + 〈T (0)

T

dKP (λ)

dλ
〉λ +

1

2
〈T (1)

T KP (λ)〉λ − 〈T (0)
T T

(0)
T 〉〈KP (λ)〉λ

− 〈T (0)
T 〉〈T

(0)
T KP (λ)〉λ −

1

2
〈T (1)

T 〉λ〈KP (λ)〉λ +O(λ). (3.34)

Plugging (3.33) and (3.34) into (3.2), the entanglement entropy is

SP (λ) = S
(0)
P +

λ2

2

(
〈3πT (1)

T KP (λ)〉0 + 〈2πT (0)
T T

(0)
T KP (λ)〉0 + 〈2πT (0)

T

dKP (λ)

dλ
〉0
)

+O(λ3),

(3.35)

where we used 〈T (ω)T̄ (z̄)〉0 = 0 = 〈T (ω)〉0 in the plane.

The following three properties are needed to compute the second-order correction (3.35).

The T T̄ deformation is constructed from operators by point-splitting

T (z)T̄ (z̄) = lim
ω→z

(
T (ω)T̄ (z)−Θ(ω)Θ(z)

)
. (3.36)

Referring to [35], the trace relation to the leading order in irrelevant parameter λ is

Θλ(z) = −πλT (0)T̄ (0) +O(λ2). (3.37)

In the complex plane, the conservation equation of energy-momentum tensor is [68]

∂z̄Tzz + ∂zTzz̄ = 0, ∂z̄Tzz̄ + ∂zTz̄z̄ = 0. (3.38)

18We define T (0)
T ≡ i

2

∫
L d

2z
(
T (0)(z)T̄ (0)(z̄)

)
and T (1)

T ≡ − iλ4
∫
L d

2z
(

(T (0)(z)T̄ (1)(z̄) +T (1)(z)T̄ (0))(z̄)
)

in

eq. (3.32). and the deformed stress tensor is expanded as Tλµν =
∑∞
n=0

λn

n! T
(n)
µν .
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Then the first term of the second-order correction in (3.35) is,19

〈T (1)
T KP 〉0 = lim

ω1→z1

∫
P

∫
R2

〈2πxT (0)(ω1)T̄ (1)(z̄1)(T (0)(v) + T̄ (0)(v̄))〉0dxdz2
1 + h.c., (3.39)

where the integrand turns out to be zero. To show this, take the derivative of the integrand,

using (3.38), (3.37) and the point-splitting method,

∂z1 lim
ω1→z1

〈T (0)(ω1)T̄ (1)(z̄1)(T (0)(v) + T̄ (0)(v̄))〉0 + h.c.

= πλ lim
ω1→z1

∂z̄1〈T (0)(ω)T (0)(z1)T̄ (0)(z̄1)(T (0)(v) + T̄ (0)(v̄))〉0 + h.c.

= 0 (3.40)

where we have used the conservation equation (3.38) and trace relation (3.37) in the second

line of (3.40). The last line is obtained by factorization and 〈T (z)〉 = 0. Thus the integrand

of 〈T (1)
T (z̄1)(T (0)(v) + T̄ (0)(v̄))〉0 = C, where C is a anti-holomorphic function in z̄1 since C

can not depends on z̄ − v̄ from the Wick contraction. Then C equals zero by the cluster

decomposition principle. Thus we have 〈T (1)
T KP 〉0 = 0.

For the last term of (3.35), it is 20

〈T (0)
T (ω)

dKP (λ)

dλ
〉0 =

d〈T (0)
T (ω)KP (λ)〉0

dλ
=
d〈T (0)

T (ω)
∫
P
x(T λ(v) + T̄ λ(v̄))dx〉0

dλ
, (3.41)

where the derivative of the first term of the integrand in RHS of eq. (3.41) is

d∂v̄〈T (0)
T (ω)T λ(v)〉0
dλ

=
d∂v〈T (0)

T (ω)Θλ(v)〉0
dλ

=
−πd(λ∂v〈T (0)

T (ω)T (0)
T (v)〉0)

dλ
=

πc2

(ω − v)5(ω̄ − v̄)4

(3.42)

Taking a similar analysis as 〈T (1)
T KP 〉0 = 0, we can obtain

d〈T (0)
T (ω)Tλ(v)〉0

dλ
= πc2

3(ω−v)5(ω̄−v̄)3
which

is consistent with eq. (4.9) in [69]. Meanwhile we can acquire
d〈T (0)

T (ω)T̄λ(v̄)〉0
dλ

= πc2

3(ω−v)3(ω̄−v̄)5
.

Thus (3.41) is simplified to be

〈T (0)
T (ω)

dKP (λ)

dλ
〉0 =

∫
L

∫
P

πc2x
( 1

3(ω − v)5(ω̄ − v̄)3
+

1

3(ω − v)3(ω̄ − v̄)5

)
dxd2ω. (3.43)

From the calculation of (3.43) presented in App. C, we obtain

〈T (0)
T (ω)

dKP (λ)

dλ
〉0 = 0. (3.44)

19Here we choose v = x+ iτ̃ and v̄ = x− iτ̃ .

20Tλ represents the deformed stress tenor. In the plane, we have dKP (λ)
dλ =

d
∫
P
x(Tλ(v)+T̄λ(v̄))dx

dλ [55].
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Following the same way in deriving 〈T (1)
T KP 〉0 = 0 and eq. (3.44), one can obtain

〈T (0)
T T

(0)
T KP 〉0 = 0, (3.45)

where the calculation is presented in App. C. Now substituting 〈T (1)
T KP 〉0 = 0, (3.45) and

(3.44) into (3.35), the second-order correction to the entanglement entropy of the half-line

is zero. To sum up, we find that the leading order and second-order correction of the

entanglement entropy for the T T̄ deformed fermions on a half-line vanish.

4 Entanglement entropy of a local bilinear operator

deformed fermions

It is an interesting question to study the time evolution of the entanglement entropy under

injection of local excitation in free fermion. It helps us to understand the time evolution

mechanism of the system. As an example, the authors of [67,70] suggested that the propaga-

tion of the quasiparticles can be used to describe the time evolution of entanglement entropy.

We would like to figure out the entanglement entropy of a single interval on a torus for free

fermion under the deformation of a local bilinear operator by adding a source localized in

space and time in Sec. 4.1. In Sec. 4.2 under the same deformation, the time evolution of

entanglement entropy for a single interval is calculated in a system with a time-dependent

boundary, i.e., moving mirror setting [71] [74]. It gives us some insights into hawking radia-

tion [71–73] from the field theory side. One can refer to recent progresses [58,74–76] in this

direction.

4.1 Single interval on a torus

In this section, we analyze the entanglement entropy to a single interval A = (a, b) in case

of local deformation for the chiral fermion on a torus. We perturb the system with a local

term, i.e. adding a source supported at a certain point inside the interval [a, b]

I ′ψ = ICFT − λ
∫
M
δ(2)(x− z0)ψ†(w, τ̃)ψ(w, τ̃)d2x = ICFT − λψ†(w0, τ̃0)ψ(w0, τ̃0), (4.1)

where z0 = w0 + iτ̃ , w0 ∈ [a, b]. We have TL = ψ†(w0, τ̃0)ψ(w0, τ̃0).

According to the leading order correction of entanglement entropy (3.7) and the local

modular Hamiltonian (2.9), it yields

〈ψ†(w0, τ̃0)ψ(w0, τ̃0)T localA (x)〉0 = 〈ψ†(w0, τ̃0)ψ(w0, τ̃0)〉0〈T localA (x)〉0, (4.2)
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where the other terms produced by contraction of the stress tensor with ψ†(w0, τ̃), ψ(w0, τ̃)

are cancelled out in (4.2). Taking (4.2) into (3.7), the leading order correction of entangle-

ment entropy based on the local modular Hamiltonian is zero.

Bringing (2.10) into (3.27) under local operator deformation, the leading order correction

of entanglement entropy from the bi-local modular Hamiltonian becomes

Sbi−localA

(1)
(λ)

=
λ

π

∫
A

∑
k∈Z\{0}

(±1)kβ̃(x, xk(x))(Pν(x− w0)Pν(xk(x)− w0)δ
(
x− xk + β

1

2π(b− a)
log

ΩA(x|τ)

ΩA(xk|τ)
− k
)
dx.

(4.3)

In terms of (4.3), the correction of entanglement entropy based on the bi-local modular

Hamiltonian depends on the correlation function of the local bilinear operators. Since the

correlation function represented by Pν(x) is a periodic function, the leading order correction

of entanglement entropy based on the bi-local modular Hamiltonian is periodic concerning

the location of the inserting operator.

In the low-temperature region β → ∞, as discussed in (3.1.2), the correction of the

entanglement entropy for spin sector ν = 2 yields

lim
β→∞

Sbi−localA

(1)
(λ) =

λ

π

∫
A1

∫
A2

iβπ

` sinh 1
2`

log ΩA(x1)
ΩA(y2)

Pν(x1 − w0)Pν(y2 − w0)dx1dy2

= 0. (4.4)

This final step of eq. (4.4) follows from the fact that the above equation is anti-symmetry

with respect to x1 and y2.

4.2 Single interval in the Moving mirror

In this subsection, we would like to calculate the entanglement entropy of chiral fermion in

a single interval A = (a, b) with a time-dependent boundary. In particular, we study chiral

free fermion with a moving mirror boundary under local bilinear operator deformation [71].

Consider the action of massless Dirac spinors ψ± over a region M of 1 + 1-dimensional

Minkowski spacetime with a boundary ∂M defined by v = g(u). In light-cone coordinate

u = x+ = t− x, v = x− = t+ x, the action reads [74]

Imirror =
i

2

∫
M

(ψ†−∂+ψ− + ψ†+∂−ψ+)dxdt. (4.5)

Upon variation, the action gives a total derivative term along the boundary that

IB =
i

2

∫
∂M

(ψ†−δψ− − g′(x−)ψ†+δψ+)dx− + h.c. (4.6)
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Here we study the system constrained to the correct part of the boundary. Therefore the

right and left movers ψ(u), ψ(v) are regarded as the outgoing and incoming modes. The

total derivative term IB of the action vanishes when ∂M acts as a “mirror” by imposing the

reflected boundary condition [74], which is

ψ+(u) = −
√
g′(u)ψ−(g(u)). (4.7)

Following [59] the in-mode ψink ansatz whose left moving part is proportional to e−ikvU2, the

reflected boundary condition (4.7) implies that

ψink = −
√
g′(u)

2π
e−ikg(u)U1 +

1√
2π
e−ikvU2, (4.8)

where the orthogonal spinor basis is {U1 =

(
1

0

)
, U2 =

(
0

1

)
}.

The chiral fermion can then be expanded as

ψ(u, v) =

∫ ∞
0

(aink ψ
in
k (u, v) + bin†k ψin−k(u, v))dk, (4.9)

here aink , b
in
k and ain†k , bin†k are the annihilation and creation operators satisfying

{aink , a
in†
k′ } = {bink , b

in†
k′ } = δ(k − k′), for k, k′ > 0. (4.10)

These operators define a normalised in-vacuum state |0in〉 which means

aink |0in〉 = bink |0in〉 = 0, for k > 0. (4.11)

Taking (4.8) and (4.9) into (2.4), the renormalized stress tensor of chiral fermion becomes

〈Tuu(u)〉 ∝
(g′′′(u)

g′(u)
− 3

2
(
g′′(u)

g′(u)
)2
)
, (4.12)

which is the Schwarzian derivative of g(u) with respect to u.

In the moving mirror setting, the action induced by a local bilinear operator deformation

is

Ĩψ = Imirror−
iλ

2

∫
M
δ(2)(z−z0)ψ†(x0, t0)ψ(x0, t0)d2z = Imirror−λψ†(x0, t0)ψ(x0, t0), (4.13)

where x0 is the insertion point for the local operator and we define Tr = ψ†(x0, t0)ψ(x0, t0).

According to the perturbation method presented in Sec. 3, the correction of entanglement

entropy is expanded as

SA(λ) = S
(0)
A + λ(〈2πTrKA(λ)〉0 − 〈Tr〉0〈2πKA(λ)〉0) + λ2(〈πTrTrKA(λ)〉0

+ 〈πTr
dKA(λ)

dλ
〉0 − 〈πTrTr〉0〈KA(λ)〉0 − 〈Tr〉0〈πTrKA(λ)〉0

)
+O(λ3) (4.14)
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The equation implies that the correction of entanglement entropy relies on the local bilinear

operator’s correlation function and the modular Hamiltonian derivative.

From the eq. (2.1), the modular Hamiltonian KA takes the form

KA =

∫
M
ψ†(x)k(x, y)ψ(y)dxdy. (4.15)

where the component of kernel in the presence of moving mirror is [74]

kij(x, y) = −2πδ(Z(qi(x))− Z(qj(x)))Gij(x, y), (4.16)

where Gij = 〈ψiψ†j〉 with i, j = ± and q+(x) = g(x+), q−(x) = x−. Function Z(x) =
1

2π
log (−G(x,b−)

G(x,a−)
G(x,g(a+))
G(x,g(b+))

). Since different chiral fermions are entangled, the kernel is not

diagonal [74].

As the mirror trajectory generally breaks the system’s conformal symmetry, the moving

mirror setup is not the traditional boundary conformal field theory (BCFT). Instead of

studying the moving mirror by transforming the moving trajectory into static BCFT in [58],

we analyze the correlation function in the moving mirror setup through the Wick contraction.

From the eq. (4.16), the modular Hamiltonian depends on the trajectory of the mirror. We

investigate the uniformly accelerated mirror following the trajectory t2 − x2 = −R2, which

corresponds to

g(u) = −R
2

u
. (4.17)

Substituting (4.17), (4.9) into (4.8), the two-point correlation functions of chiral fermion are

given by

〈ψ−(u1)ψ∗−(u2)〉0 =

∫ ∞
0

dk

√
g′(u1)g′(u2)

2π
e−ikg(u1)eikg(u2)

= −
i
√
g′(u1)g′(u2)

2π(g(u1)− g(u2))

=
i

2π(u2 − u1)
, (4.18)

and

〈ψ+(u1)ψ∗+(u2)〉0 =

∫ ∞
0

dk
1

2π
e−ikv1eikv2

= − i

2π(v1 − v2)
. (4.19)

In the limit t→∞, it shows that the correlation functions become

G±∓ → 0. (4.20)
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Thus the off-diagonal elements of eq. (4.16) vanish. Plugging (4.18), (4.19) and (4.16) into

(4.15), the undeformed modular Hamiltonian K(0)
A can be written in a compact form as

K(0)
A = K(0)

++ +K(0)
−−, (4.21)

that

K(0)
++ =

∫
M

2π

Z ′(g(u))
Tuudu, K(0)

−− =

∫
M

2π

Z ′(v)
Tvvdv, (4.22)

where Z ′(g(u)) or Z ′(v) represents the derivative of function Z with respect to u or v. Com-

paring (4.22) with (2.9), the effective temperature β(u) = 2π
Z′(g(u))

depends on the trajectory

of the moving mirror. Plugging (4.18) and (4.19) into (4.13), we obtain

〈Tr〉0 ∝ (〈ψ−(w1)ψ∗−(w2)〉0 + 〈ψ+(w1)ψ∗+(w2)〉0), (4.23)

with

〈ψ−(w1)ψ∗−(w2)〉0 =

∫ ∞
0

dk

√
g′(w1)g′(w2)

2π
e−ikg(w1)eikg(w2)

= −
i
√
g′(w1)g′(w2)

2π(g(w1)− g(w2))

= − 1

4πε
, (4.24)

and

〈ψ+(w1)ψ∗+(w2)〉0 = − 1

4πε
, (4.25)

here we define w1 = t0−x0 + iε, w2 = t0−x0− iε and apply the regularization to remove the

divergent pieces presented in the last line of eq. (4.24) and eq. (4.25). By plugging (4.21),

(4.13) and (4.23) into (4.14), one can show the correction of the entanglement entropy (4.14)

is

lim
t→∞

∆SA(λ) = λ2〈πTr
dKA(λ)

dλ
〉0, (4.26)

where the other terms in (4.14) are simply zero upon the Wick contraction. Therefore (4.26)

implicates that the second-order correction of entanglement entropy depends on contraction

of local bilinear operator and the deformed modular Hamiltonian.

Under the local bilinear operator deformation, we can calculate (4.26) by comparing the

one-point function 〈Tr〉λ in operator formalism with this one-point function in path integral

formalism.

In the path integral formalism, the one-point function 〈Tr〉λ is expanded as

〈Tr〉λ = 〈Tr〉0 + λ〈TrTr〉0 − λ〈Tr〉0〈Tr〉0 +O(λ2). (4.27)
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While the one-point function in operator formalism, it shows that

〈Tr〉λ = TrA∪Ā

(
ρ(λ)Tr

)
= TrA

(
ρA(λ)Tr

)
= TrA

(e−2πKA(0)−2πλ
dKA(λ)

dλ

∣∣
λ=0

+O(λ2)

Zλ
Tr
)

= 〈Tr〉0 − 2πλTrA

(e−2πKA(0)

Z0

dKA(λ)

dλ

∣∣
λ=0
Tr
)
− λ〈Tr〉0〈Tr〉0

= 〈Tr〉0 − 2πλTrA

(e−2πKA(0)

Z0

Tr
dKA(λ)

dλ

∣∣
λ=0

)
− λ〈Tr〉0〈Tr〉0

= 〈Tr〉0 − 2πλ〈Tr
dKA(λ)

dλ
〉0 − λ〈Tr〉0〈Tr〉0. (4.28)

In deriving the second and third line of the equation, we have used the cyclic permutation

property of a trace and take only terms which are functions of the undeformed modular

Hamiltonian K(0)
A with only a single operator dKA(λ)

dλ

∣∣
λ=0

. 21 Then comparing eq. (4.28) with

eq. (4.27), we obtain

〈Tr
dKA(λ)

dλ
〉0 = − 1

2π
〈TrTr〉0. (4.31)

Taking (4.23),(4.25), (4.24) and (4.31) into (4.26), the correction of entanglement entropy

vanishes as

lim
t→∞

∆SA(λ) ∝ 〈TrTr〉0 = 0. (4.32)

According to (4.26), the correction of the entanglement entropy of chiral free fermions

under the local bilinear operator deformation on a torus depends on the expectation value

of the deformed stress tensor. In the late time limit, the correction vanishes since there is no

radiation of stress tensor in the uniformly accelerated mirror at t→∞. That is to say, the

deformed system achieves equilibrium in late time. A similar situation has been discussed

in [71], which is associated with the scalar field in the moving mirror setting. One can refer

to a more recent discussion [74] about the entanglement entropy of chiral fermion in the

radiation process.

21To linear order in small perturbation of 〈Tr〉λ, we have to prove

TrA

(
e
−2πK(0)

A −2πλ
dKA(λ)

dλ

∣∣
λ=0Tr

)
= TrA

(
e−2πK(0)

A e
−2πλ

dKA(λ)

dλ

∣∣
λ=0Tr

)
(4.29)

. According to the BCH formula eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]+ 1
12 [B,[B,A]]..., it is equivalent to prove

TrA

(
K(0)
A

m
[K(0)
A ,

dKA(λ)

dλ

∣∣
λ=0

]K(0)
A

n
Tr
)

= 0 (4.30)

which is the general term in (4.29). We can obtain (4.30) from the cyclic property of the operator under the

trace and limt→∞[K(0)
A , Tr] = 0 from (4.15).
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5 Entanglement entropy of mass deformed fermions

In the section, we will study the entanglement entropy of a single interval A = (a, b) on a

torus in mass deformed fermion theory. In particular, we apply the perturbative field theory

approach to calculate the entanglement entropy of subsystem in the deformed theory. The

deformed action reads

Iψ = ICFT −m
∫
M
ψ̄(x, τ̃)ψ(x, τ̃)d2x. (5.1)

Comparing this deformed action with (3.1), we have Tm =
∫
M ψ̄(x, τ̃)ψ(x, τ̃)d2x and λ = m

at present case. Expanding the entanglement entropy to the second-order with respect to

the mass parameter, one obtains

SA(m) = SA(0) +m(〈2πTmKA(m)〉0 − 〈Tm〉0〈2πKA(m)〉0) +m2(〈πTmTmKA(m)〉0

+ 〈πTm
dKA(m)

dm
〉0 − 〈πTmTm〉0〈KA(m)〉0 − 〈Tm〉0〈πTmKA(m)〉0

)
+O(m3). (5.2)

The first-order correction of entanglement entropy is zero as 〈TTm〉0 = 0 and 〈Tm〉0 = 0 in

terms of the contraction of chiral fields. The same result can be also obtained from the eq.

(57) in [56].

In the following, we study the integrals in second order correction of entanglement entropy

from the local modular Hamiltonian (2.2). The integrand in the first term of second-order

correction in (5.2) is proportional to 〈TmTm(T + T̄ )〉0,

〈TmTmT (z)〉0 = 2

∫
M1

∫
M2

(∂Pν(z − z2)Pν(z − z1)P̄ν(z̄1 − z̄2)

8π2
− ∂Pν(z − z1)Pν(z − z2)P̄ν(z̄1 − z̄2)

8π2

− ∂Pν(0)Pν(z1 − z2)P̄ν(z̄1 − z̄2)

4π2

)
dx2

1dx
2
2

=

∫
M1

∫
M2

(∂Pν(z − z2)Pν(z − z1)P̄ν(z̄1 − z̄2)

2π2

)
dx2

1dx
2
2 + 〈T (z)〉0〈TmTm〉0.

(5.3)

For the fermions in ν = 2 sector at the low temperature limit β →∞, one can obtain that

lim
β→∞
〈TmTm〉0 = 2 lim

β→∞

∫
M1

∫
M2

(P2(z1 − z2)P̄2(z̄1 − z̄2))dx2
1dx

2
2 ∼ 2βπ lnπ, (5.4)

where “ ∼ ” means that the result is regularized by dropping the divergent terms. And

lim
β→∞

∫
M1

∫
M2

(∂P2(z − z2)P2(z − z1)P̄2(z̄1 − z̄2)

2π2

)
dx2

1dx
2
2 =

π4 lnπ

2
(5.5)

where the Wick contraction and two-point function for fermion fields [62] are used. Please

refer to App. C for details of the calculation.
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Substituting (5.3), (5.4) and (5.5) into (5.2), the undetermined term in the second-order

correction of the entanglement entropy is 〈πTm
dKlocalA (m)

dm
〉0. It is quite hard to obtain the

derivative of the modular Hamiltonian in 〈πTm
dKlocalA (m)

dm
〉0 on a torus.

In summary, we perturbatively compute the entanglement entropy of a single interval in

mass deformed free fermion. The leading order correction of entanglement entropy for mass

deformed fermions vanishes. To calculate the second-order correction of the entanglement

entropy, it is necessary to fix the derivative of the modular Hamiltonian with respect to

mass. It is quite a hard attempt to do so. Hopefully, we can figure out a concrete answer in

the future.

6 Conclusions and perspectives

In this work, we calculate the modular Hamiltonian of free fermion with three kinds of de-

formation, including T T̄ deformation, mass deformation, and local bilinear operator defor-

mation. It shows that the modular Hamiltonian is an effective tool to analyze entanglement

entropy under the perturbation framework, even for the system on a torus.

The modular Hamiltonian and entanglement entropy in free fermion theory with T T̄

deformation are perturbatively evaluated in Sec. 3.1 and Sec. 3.2. In Sec. 3.1, we find

that there exists a leading order correction of entanglement entropy on a torus. The leading

order correction to entanglement entropy of T T̄ deformed fermions always vanishes once

the entangling surface is a plane or a sphere in a flat space. The associating local (bi-

local) modular Hamiltonian of T T̄ deformed fermions on a torus acquires a new contribution

which is proportional to the expectation value of local(bi-local) modular Hamiltonian for

the undeformed fermions from the eq. (3.17) and (3.28). The scale factor in the deformed

modular Hamiltonian depends on the modular parameter of a torus. As a consistency check,

one can take the cylinder limit and reduce it to the leading order correction of entanglement

entropy obtained by replica trick [38]. In Sec. 3.2, we also demonstrate that the second-order

correction of the entanglement entropy of a half-plane in free fermion with a T T̄ deformation

vanishes.

The modular Hamiltonian in the free fermion field theory deformed by a local bilinear op-

erator is investigated in Sec. 4.1. The leading order corrections to the entanglement entropy

from the local and bi-local modular Hamiltonian are vanishing at the low-temperature limit.

The modular Hamiltonian in the deformed free fermion has been evaluated in the moving

mirror setting. It shows a time-dependent behavior due to the satisfying mirror boundary

condition. In particular, since there is no radiation in the time-dependent vacuum [71], the

deformed entanglement entropy will vanish within the late time limit.

22



As for mass deformation in free fermion field theory on a torus, the correction of entangle-

ment entropy is evaluated in Sec. 5. There is no leading order correction to the entanglement

entropy of mass deformed fermions. A similar observation was obtained in [56], where the

Sine-Gordon Model acquires no leading order correction of entanglement entropy on a torus.

For the second-order correction of the entanglement entropy, we left an undetermined term

〈πTm
dKlocalA (m)

dm
〉0 for the local Hamiltonian part. One may need to study the correlation func-

tion under mass deformed on a torus to analyze the entanglement entropy like the planar

case [22].

This work evaluates the modular Hamiltonian and entanglement entropy in free fermion

field theory with the three typical deformations. Fully understanding the structure of mod-

ular Hamiltonian in generic quantum field theories is quite challenging because there is no

good non-perturbative approach to evaluate, even in free field theory. It is an interesting

problem to study local quench triggered by a local operator in CFTs with time-dependent

boundary conditions to mimic the Hawking radiation [58,74,75]. One can calculate the time

evolution of modular Hamiltonian or entanglement entropy to extract the characteristic dy-

namical behavior of radiation pairs.
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A Modular Hamiltonian on a cylinder

Zero temperature

The Modular Hamiltonian for a single interval on a cylinder at zero temperature is

KV =

∫
C

Tτ̃ τ̃ (x)

f ′(x)
dx+

c

12π

∫
C

{f(x);x}
f ′(x)

dx (A.1)
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For the second term of the above equation, we have that∫
C

c

12π
{f(x);x}(df(x)

dx
)−1dx

=
c

12π
[

1

2(−1 + e4iπR/L)L

(
− L+ e4iπR/LL− 2(1 + e4iπR/L)iπR

− (−1 + e4iπR/L)L log(
−2iπε

L
) + (−1 + e4iπR/L)L log(2 sinh(

2iπR

L
))
)

− 1

2(−1 + e4iπR/L)L

(
− e4iπR/LL+ L+ 2(1 + e4iπR/L)iπR

− (−1 + e4iπR/L)L log(1− e4iπR/L) + (−1 + e4iπR/L)L log(e2iπR/L2πε

L
)
)

]

=
c

12π
log(

L

πε
sin

2πR

L
) +

c

12π
− c

12π

2 cos(2πR/L)iπR

sin(2πR/L)L
− iπc

12
, (A.2)

where the last two terms of the above equation is a imaginary number. We take the real

part of the above equation.

Taking (2.13) and f(x) defined in the context into the first term of the cylinder’s modular

Hamiltonian, the result is∫
C

Tτ̃ τ̃ (x)

f ′(x)
dx =

c

6L

∫
V

sin(π(R− x)/L) sin(π(x+R)/L)

sin(2πR/L)
dx

= −Rc cot(2πR/L)

6L
+

c

12π
. (A.3)

Finite temperature

We calculate the entanglement entropy on a cylinder from the modular Hamiltonian. For

the subsystem, A = (−R,R) in an infinite line at finite temperature 1/β, the stress tensor

of the system is,

Tτ̃ τ̃ (x) =
πc

6β2
. (A.4)

In the finite temperature case, the mapping function is chosen to be

f(z) = log
e2πz/β − e−2πR/β

e2πR/β − e−2πR/β
. (A.5)

Then we obtain the modular Hamiltonian as

KA =
β

π

∫
A

sinh(π(R− x)/β) sinh(π(R + x)/β)

sinh(2πR/β)
T00(x)dx+

∫
A

c

12π

{f(z), z}
f ′(z)

dz, (A.6)

and

β(x) =
β

π

sinh(π(R− x)/β) sinh(π(R + x)/β)

sinh(2πR/β)
. (A.7)
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For the first term of the modular Hamiltonian, we obtain

β

π

∫
A

sinh(π(R− x)/β) sinh(π(R + x)/β)

sinh(2πR/β)
T00(x)dx =

β

π
(R coth

2πR

β
− β

2π
)(
πc

6β2
). (A.8)

The second term of the modular Hamiltonian behaves as∫
A

c

12π

{f(z), z}
f ′(z)

dz =
c

12π
(1−

πR cosh 2πR
β

β sinh 2πR
β

+ log(
β

πε
sinh

2πR

β
)). (A.9)

So the modular Hamiltonian on a cylinder at finite temperature is

KA =
c

12π
log(

β

πε
sinh(

2πR

β
))− cR

12β
coth

2πR

β
. (A.10)

With Wick’s theorem, combine (C.10) with (C.11) mentioned below to rewrite the

equation (3.20) as

SlocalA
(1)

(λ)

4π
= −iλ

2

∫
A

β(x)

∫
M

(
∂̄P̄ν(0)(∂Pν(z − x))2

2π
− ∂̄P̄ν(0)∂2Pν(z − x)Pν(z − x)

2π
)dxd2z

= −λ
∫
A

β(x)(
∂̄P̄ν(0)(eν−1(π + i2τη1) + (e2

ν−1 −
g2
6

)(−iτ))

2π

−
∂̄P̄ν(0)(−eν−1(π + i2τη1)− (e2

ν−1 −
g2
6

)(−iτ))

2π
)dx. (A.11)

In the “high temperature” limit iτ → 0, the correction of the entanglement entropy simplifies

to

lim
β→0

SlocalA

(1)
(λ) = −2πλ lim

β→0

∫
A

β(x)(2∂̄P̄ν(0)eν−1)dx

= 2πλ lim
β→0

∫
A

β(x)
16π2∂τ∂τ̄Z

Z
dx. (A.12)

It confirms our statement in the main text that only the second term contributes to the

“high temperature” limit.

B Perturbative methods

To be self-consistent, we review briefly the perturbative methods for computing entanglement

entropy (see (3.2)) in terms of modular Hamiltonian as demonstrated in [54,55]. Evaluating

a theory under perturbation induced by operator O(x), the action of the perturbed theory

is given by

Iλ = I0 + λO, (B.1)
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where O =
∫
ddxO(x), and λ is the coupling constant.

From eq.(1.3), the entanglement entropy can be written in the path integral formalism

as

SA(λ) =
1

Zλ

∫
Dψe−Iλ

(
2πKA(λ) + log(TrAe

−2πKA)
)
, (B.2)

where the partion function is Zλ = TrAe
−2πKA(λ). It follows that

dSA(λ)

dλ
=

1

Zλ

∫
Dψe−Iλ

(
− dIλ

dλ
(2πKA(λ) + log(TrAe

−2πKA)) +
d(2πKA(λ) + log(TrAe

−2πKA))

dλ

− d logZλ
dλ

(2πKA(λ) + log(TrAe
−2πKA))

)
=− 〈2πOKA(λ)〉λ + 〈O〉λ〈2πKA(λ)〉λ + 〈d(2πKA(λ) + log(TrAe

−2πKA))

dλ
〉λ,

(B.3)

where we used
dIλ
dλ

= O, d logZλ
dλ

= −〈O〉λ. (B.4)

Note that the last term in the last line of (B.3) identically zero

〈d(2πKA(λ) + log(TrAe
−2πKA))

dλ
〉λ

=TrA

( e−2πKA

TrAe−2πKA

d(2πKA(λ) + log(TrAe
−2πKA))

dλ

)
=− d

dλ
TrA

e−2πKA

TrAe−2πKA
= 0

(B.5)

Therefore we have

dSA(λ)

dλ
= −〈2πOKA(λ)〉λ + 〈O〉λ〈2πKA(λ)〉λ. (B.6)

Similarly, the second-order derivative of the entanglement entropy could also be worked out

as

d2SA(λ)

d2λ
= 〈2πOOKA(λ)〉λ − 〈O

d2πKA(λ)

dλ
〉λ − 〈OO〉λ〈2πKA(λ)〉λ − 〈O〉λ〈2πOKA(λ)〉λ.

(B.7)

C Some useful integrals

In this section we introduce the Weierstrass functions and the related integrals which are

used in the context.
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From our convention, the torus (T 2) is defined by the identificaiton on the complex plane

z ∼ z + 2ω1 and z ∼ z + 2ω2 with 2ω1 = 1, 2ω1 = iτ .

The Weierstrass P function is defined as [77]

P (z) =
1

z2
+

∑
{m,n}6={0,0}

( 1

(z − ω̃)2
− 1

ω̃2

)
, ω̃ = 2mω1 + 2nω2. (C.1)

The Weierstrass P function is elliptic function which is doubly periodic on the complex plane

with periods 2ω1 and 2ω2. The Laurent series expansion of P (z) in the neighborhood of z = 0

is

P (z) =
1

z2
+
g2

20
z2 +

g3

28
z4 +O(z6) (C.2)

where

g2 =
∑

{m,n}6={0,0}

60

ω̃4
, g3 =

∑
{m,n}6={0,0}

140

ω̃6
, (C.3)

and

e1 = P (ω1), e2 = P (−ω1 − ω2), lim
τ→∞

e1 =
2π2

3
, lim

τ→∞
e2 =

−π2

3
. (C.4)

The primitive function of the Weierstrass −P (z) function is the Weierstrass zeta-function

ζ(z) which satisfies

− P (z) = ∂ζ(z), (C.5)

where the Weierstrass zeta-function ζ(z) is defined by

ζ(z) =
1

z
+

∑
{m,n}6={0,0}

( 1

z − ω̃
+

1

ω̃
+

z

ω3

)
(C.6)

The integrals for local modular Hamiltonian

The calculation in subsection3.1.1 involves integrals with singularity, we use the following

strategy to regularize the result as in [66]. For double periodic meromorphic function W (z),
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its integral is∫
M
d2xW (z) =

i

2

∫
M
W (z)dz ∧ dz̄ =

i

2

∫
M
d[(z − z̄)W (z)dz] =

i

2

∫
∂M

(z − z̄)W (z)dz

=
i

2

∫ z0+2w1

z0

(z − z̄)W (z)dz +
i

2

∫ z0+2w1+2w2

z0+2w1

(z − z̄)W (z)dz +
i

2

∫ z0+2w2

z0+2w1+2w2

(z − z̄)W (z)dz

+
i

2

∫ z0

z0+2w2

(z − z̄)W (z)dz − i

2
lim
r→0

∮
Poles

(z − z̄)W (z)dz

= − i
2

∫ z0+2w1

z0

(2w2 − 2w̄2)W (z)dz +
i

2

∫ z0+2w2

z0

(z − z̄ + 2w1 − 2w1)W (z + 2w1)dz

− i

2

∫ z0+2w2

z0

(z − z̄)W (z)dz − i

2
lim
r→0

∮
Poles

(z − z̄)W (z)dz

= τ2

∫ z0+2w1

z0

W (z)dz − i

2
lim
r→0

∮
Poles

(z − z̄)W (z)dz. (C.7)

As an example, calculate the integral of Weierstrass P function which is∫
T 2

d2zP (z) =
−i
2

∮
∂T 2

ζ(z)dz

= − i
2

∫ z0+ω1

z0

dz̄(ζ(z)− ζ(z + ω2)) +
i

2

∫ z0+ω2

z0

dz̄(ζ(z)− ζ(z + ω1))

= π − 2τη1. (C.8)

In a similar manner, we can work out the following integrals which are needed in main text.∫
M
d2x∂2P (z) = 0. (C.9)∫

M
(∂Pv(z))2d2x = eν−1(π + i2τη1) + (e2

ν−1 −
g2

6
)(−iτ), (C.10)∫

M
(Pν(z)∂2Pν(z))d2x = −eν−1(π + i2τη1)− (e2

ν−1 −
g2

6
)(−iτ). (C.11)

where we used the fact that elliptic fucntions which can be written in terms of Weierstrass

P function and its derivatives, for example

(∂Pν(z))2 =
1

6
∂2P (z) + eν−1P (z) + e2

ν−1 −
g2

6
. (C.12)

For more detailed computation, please refer to [66].
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The integrals for bi-local modular Hamiltonian

This subsection we introduce the integral which are used to calculate the integral for bi-local

modular Hamiltonian in subsection3.1.2.

The Jacobi−ϑ functions define as

ϑ1(z|τ) = 2q1/4

∞∑
n=0

qn(n+1) sin((2n+ 1)πz),

ϑ2(z|τ) = 2q1/4

∞∑
n=0

(−1)nqn(n+1) cos((2n+ 1)πz). (C.13)

Because Pν and ∂Pν are double periodic function, we use the regularization introduced

in App. C. Then we have∫
M
∂P2(x1−z)P2(y−z)d2x = −iτ

∫ 1

0

∂P2(x1−z)P2(y−z)dz− i
2

lim
r→0

∮
pole

(z−z̄)∂P2(x1−z)P2(y−z)dz.

(C.14)

At the low temperature region β →∞, we obtain (3.11)

lim
β→∞

P2(z) =
π cos(πz)

sin(πz)
. (C.15)

Taking the equation (C.15) into the first term of (C.14), we have the following results

lim
β→∞

∫ 1

0

∂P2(x1 − z)P2(y − z)dz =

∫ 1

0

π3 cos(π(y − z))

sin2(π(x1 − z)) sin(π(y − z))
dz = 0. (C.16)

and

− i

2
lim
β→∞

lim
r→0

∮
pole

(z − z̄)∂P2(x1 − z)P2(y − z)dz

= − i
2

lim
β→∞

lim
|z−y|=r

∮
pole

(z − z̄)∂P2(x1 − z)P2(y − z)dz − i

2
lim
β→∞

lim
|z−x|=r

∮
pole

(z − z̄)∂P2(x1 − z)P2(y − z)dz

=
π3 cos(π(x1 − y))

sin(π(x1 − y))
= π3 lim

β→∞
P2(x1 − y). (C.17)

Thus we obtain

lim
β→∞

∫
M
∂P2(x1 − z)P2(y − z)d2x = π3 lim

β→∞
P2(x1 − y). (C.18)
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The integrals in the half-line

In this part we calculate the eq.(3.43) in Sec.3.2.

〈T (0)
T (ω)

dKP (λ)

dλ
〉0 =

i

2

∫
L

∫
P

πc2x
( 1

3(ω − v)5(ω̄ − v̄)3
+

1

3(ω − v)3(ω̄ − v̄)5

)
dxd2ω

=
i

2

∫
L

∫
P

πc2x

3

( 1

(ω − x)3(ω̄ − x)3

)( 1

(ω − x)2
+

1

(ω̄ − x)2

)
dxd2ω

=
i

2

∫
L

∫
P

πc2x

3

( 2

(y − x+ iτ̃)3(y − x− iτ̃)3

) (y − x)2 − τ̃ 2

(τ̃ 2 + (y − x)2)2
dxd2ω

= −
∫
L

∫
P

2πc2x

3

cos(2θ)

r7
dxdrdθ

= 0. (C.19)

where the coordinate transformation i
2
d2ω = dydτ̃ = rdrdθ is used and we drop out the

contact terms during the calculation.

To calculate eq.(3.45), we have that

〈T (0)
T T

(0)
T KP 〉0 = −1

4

∫
L1

∫
L2

∫
P

d2z1d
2z2dx〈xT (0)(z1)T̄ (0)(z̄1)T (0)(z2)T̄ (0)(z̄2)(T (0)(z)+T̄ (0)(z̄))〉0

(C.20)

For the first term of RHS integral, we have

− 1

4

∫
L1

∫
L2

∫
P

d2z1d
2z2dx〈xT (0)(z1)T̄ (0)(z̄1)T (0)(z2)T̄ (0)(z̄2)(T (0)(z))〉0

= − 1

16

∫
L1

∫
L2

∫
P

d2z1d
2z2dx

xc2

(z1 − z2)2(z1 − z)2(z2 − z)2(z̄1 − z̄2)4

=
1

48

∫
L1

∫
L2

∫
P

d2z1d
2z2dx

xc2

(z1 − z2)2(z1 − z)2(z2 − z)2
∂z̄1

1

(z̄1 − z̄2)3

= − 1

48

∫
L1

∫
L2

∫
P

d2z1d
2z2dx∂z̄1

( xc2

(z1 − z2)2(z1 − z)2(z2 − z)2

) 1

(z̄1 − z̄2)3

=
π

48

∫
L1

∫
L2

∫
P

d2z1d
2z2dx∂z1δ

(2)(z1 − z2)
xc2

(z1 − z)2(z2 − z)2

1

(z̄1 − z̄2)3
+ (z2 ↔ z)

=
π

24

∫
L1

∫
L2

∫
P

d2z1d
2z2dxδ

(2)(z1 − z2)
xc2

(z1 − z)3(z2 − z)2

1

(z̄1 − z̄2)3
+ (z2 ↔ z)

=
iπ

12

∫
L2

∫
P

d2z2dx
xc2

(z2 − z)5

1

(z̄ − z̄2)3
, (C.21)

where we use ∂z 1
z̄

= πδ(2)(z) and get rid of the divergent terms when two points coincide.
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Similarly, we also obtain

− 1

4

∫
L1

∫
L2

∫
P

d2z1d
2z2dx

(
xT (0)(z1)T̄ (0)(z̄1)T (0)(z2)T̄ (0)(z̄2)(T (0)(z))

)
=
iπ

12

∫
L2

∫
P

d2z2dx
xc2

(z̄2 − z̄)5

1

(z − z2)3
. (C.22)

Thus we have

〈T (0)
T T

(0)
T KP 〉0 =

ic2π

12

∫
L2

∫
P

d2z2dx
( x

(z̄2 − z̄)5

1

(z2 − z)3
+

x

(z2 − z)5

1

(z̄2 − z̄)3

)
= 0, (C.23)

where the eq.(C.19) is used in the last step.

The integrals of mass deformed fermions

In the appendix we evaluate the term 〈TmTm〉 appearing in section (5). From (5.4), we have

〈TmTm〉0 ∼
∫
M1

∫
M2

dx2
1dx

2
2Pν(z1 − z2)P̄ν(z̄1 − z̄2). (C.24)

To calculate it, we first analyze the first integral
∫
M1

d2x1Pν(z1 − z2)P̄ν(z̄1 − z̄2). According

to the definition of Pν function in (3.11), we have

Pν(z)P̄ν(z̄) = |P (z)− eν−1|. (C.25)

As the Weierstrass P (z) is double periodic function, so is the function Pν(z)P̄ν(z̄).

Thus we obtain∫
M1

d2x1Pν(z1 − z2)P̄ν(z̄1 − z̄2) =

∫
M1

d2x1Pν(z1)P̄ν(z̄1) = C. (C.26)

where the factor C is a undetermined constant which implies that the integral is independent
of the parameter z2. To have a glimpse of the integral, we analyze it in the ν = 2 sector the
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low temperature limit β →∞. Taking (C.15) into (5.5), the result is

lim
β→∞

∫
M1

∫
M2

dx2
1dx

2
2P2(z1 − z2)P̄2(z̄1 − z̄2)

=

∫
M1

∫
M2

π2 cos(π(z1 − z2))

sin(π(z1 − z2))

cos(π(z̄1 − z̄2))

sin(π(z̄1 − z̄2))
dx2

1dx
2
2

= −
∫
M1

∫
M2

∂z2

(
ln(sin(π(z1 − z2))

π cos(π(z̄1 − z̄2))

sin(π(z̄1 − z̄2))

)
+

∫
M1

∫
M2

ln(sin(π(z1 − z2))∂z2(
cos(π(z̄1 − z̄2))

sin(π(z̄1 − z̄2))
)

= − i
2

∫
M1

∫
∂M2

dz̄2 ln(sin(π(z1 − z2))
π cos(π(z̄1 − z̄2))

sin(π(z̄1 − z̄2))
+
i

2

∫
M1

∫
∂pole2

dz̄2 ln(sin(π(z1 − z2))
π cos(π(z̄1 − z̄2))

sin(π(z̄1 − z̄2))

+

∫
M1

∫
M2

ln(sin(π(z1 − z2))δ(z1 − z2) cos(π(z̄1 − z̄2))

= − i
2

∫
M1

∫
∂M2

dz̄2 ln(sin(π(z1 − z2))
π cos(π(z̄1 − z̄2))

sin(π(z̄1 − z̄2))
+ lim
r→0

βπ lnπr + iβπ2

= − i
2

∫
M1

(

∫ 1

0
+

∫ 1+β

1
+

∫ β

1+β
+

∫ 0

β
) ln(sin(π(z1 − z2))

π cos(π(z̄1 − z̄2))

sin(π(z̄1 − z̄2))
dz̄2 + lim

r→0
βπ lnπr + iβπ2

= βπ lnπ, (C.27)

in the above integral we have used ∂z 1
z̄ = πδ(2)(z) and omit both the divergent term and imaginary

term in the calculation. In the last step of the equation, dz̄ = dre−iθ = e−iθdz is used when the

angular coordinate θ = 0, π2 is fixed for the integral path we choose. Equation (C.26) implicating

that the integral in the domainM2 is independent of the location of z1, we may take z1 = 0 in the

calculation.

Here we calculate the integral in eq.(5.3) for the system at the low temperature limit β → ∞
in ν = 2 sector.

lim
β→∞

∫
M1

∫
M2

(∂P2(z − z2)P2(z − z1)P̄2(z̄1 − z̄2)

2π2

)
dx2

1dx2
2

= lim
β→∞

∫
M′1

∫
M2

(∂P2(z − z2)P2(z − z′1 − z2)P̄2(z̄′1)

2π2

)
dx′1

2
dx2

2

= lim
β→∞

∫
M′1

(∂P2(z − z2)P2(z − z′1 − z2)P̄2(z̄′1)

2

)
dx′1

2
dx2

2

= lim
β→∞

∫
M′1

(π3P2(z′1)P̄2(z̄′1)

2

)
dx′1

2

=
π4 lnπ

2
, (C.28)

where we seperately use the eq.(C.18) and eq.(C.27) in the third line and last line.
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